
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HIERARCHICAL EQUIVARIANT GRAPH GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning, and more specifically denoising models, have significantly im-
proved graph generative modeling. However, challenges remain in capturing
global graph properties from local interactions, ensuring scalability, and main-
taining node permutation equivariance. While existing equivariant models ad-
dress node permutation issues, they struggle with scalability, often requiring dense
graph representations that scale with O(n2).
To overcome these challenges, we introduce a novel coarsening-lifting method
that generates sparse spanning supergraphs, preserving global graph properties.
These supergraphs serve as both conditioning structures and sparse message-
passing layouts for generative models. Leveraging this method with discrete diffu-
sion, we model graphs hierarchically, enabling efficient generation of large graphs.
Our approach, to the best of our knowledge, is the first hierarchical equivariant
generative model for graphs. We demonstrate its performance introducing new
evaluation datasets with larger graphs and more instances than traditional bench-
marks.

1 INTRODUCTION

Graph generation is a research area with important applications, including drug discovery, mate-
rial design (Lu et al., 2020), protein design (Ingraham et al., 2019), programming code modeling
(Brockschmidt et al., 2019), natural language processing (Chen et al., 2018; Klawonn & Heim,
2018), and robotics (Li et al., 2017). Advancements in deep generative models, such as deep auto-
regressive models, generative adversarial networks, variational auto-encoders, and vector-quantized
auto-encoders, have significantly benefited graph modeling. Recently, the adoption of denoising
models (Jo et al., 2022; Yang et al., 2019; Haefeli et al., 2022; Jo et al., 2024; Qin et al., 2024;
Eijkelboom et al., 2024) has further improved graph distribution modeling.

Generated graph

level l+1

Spanning supergraph

level l

Generated graph

level l

Lifting Lifting

Figure 1: One step of generative process: At level l, we receive the generated coarse graph Ĝl+1 from the
coarseness level l + 1, which we lift to obtain the conditioning graph Hl (colors and annotation in Ĝl+1

correspond to colors and number of node in Hl). Using the learned conditional distribution pθ(Gl|Hl), we
sample Ĝl (represented in bold black edges) in the graph space defined by Hl (light gray edges, which implies
that Hl is a spanning supergraph of Gl). In its turn, Ĝl is lifted and passed to the finer level l − 1. We iterate
this process until we reach the original data level, i.e. level 0.

Despite these advancements, generative graph modeling still faces several specific and challeng-
ing issues such as the multiple possible representations due to node permutations, the difficulty in
capturing global graph properties from local node interactions, and scalability concerns.
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Models equivariant to node permutations (referred to concisely as equivariant models) offer an ele-
gant solution to the issue of multiple representations by ensuring a unique computational graph for
all possible instantiations of the same graph. Empirical evidence suggests that equivariant models
better capture the distribution of small graphs compared to their non-equivariant counterparts (Jo
et al., 2022). However, in the absence of prior information and generation order, equivariant models
need to consider all node pairs in parallel, which exacerbates issues related to capturing global graph
properties and scalability. For that reason, most equivariant models use a dense graph representation
(Haefeli et al., 2022; Vignac et al., 2023; Jo et al., 2022; Boget et al., 2024). A few equivariant
models (Qin et al., 2024; Chen et al., 2023) adopt a sparse representation by focusing on a sub-
set of possible node pairs at any given time; however, they still ultimately need to account for all
node pairs. Unlike some models for molecule generation that construct molecular graphs based on
3D atomic coordinates (Hoogeboom et al., 2022; Xu et al., 2023), our work focuses on the task of
general graph generation.

We propose a method to address these two issues while preserving equivariance. Our approach gen-
erates coarse graphs, which are expanded into spanning supergraphs that capture spectral properties
of the graph and provide a sparse conditioning structure for message-passing at the finer level. We
then leverage equivariant discrete diffusion to model each graph level hierarchically.

Our method enables the efficient generation of large graphs, motivating us to introduce new eval-
uation datasets with larger graphs and more instances than those in traditional benchmarks. We
demonstrate our approach using discrete diffusion, presenting, to the best of our knowledge, the first
hierarchical equivariant generative model for graphs.

We summarize our contributions as follows:

• We propose a novel graph coarsening method to produce minimal spanning supergraphs
that serve as conditioning and as sparse structures for generation.

• We prove that our coarsening method not only maximizes the sparsity of the conditioned
structure but also provides theoretical guarantees for preserving important spectral proper-
ties given by the graph spectrum.

• We leverage this method to introduce a hierarchical model based on discrete diffusion,
which scales to large graphs with over than a thousand nodes.

• By preserving equivariance in our coarsening and generative framework, we introduce, to
the best of our knowledge, the first graph generative approach that is both hierarchical and
equivariant.

• Our method inherently provides a conditional generative model for structure-guided graph
generation, enabling effective spectrum-conditioned generation.

• We introduce new datasets with more instances and larger graphs, enabling improved eval-
uation of graph generative models.

Our code is publicly available at https://anonymous.4open.science/r/HD-graph-C557/.

2 BACKGROUND

Denoting an unattributed graph as a set of nodes and a set of edges, G = (VG , EG), we begin by
introducing two key notions for our method.

Definition 1. H is a spanning supergraph of G, denoted H = G + ES , where ES represents a set
of additional edges and + denotes the disjoint union. Consequently, we have: H = G + ES ⇐⇒
VG = VH, EH ⊇ EG .

Definition 2. The Gamma Index of a graph G, denoted γG , represents the proportion of edges
relative to all possible node pairs. For an undirected graph without self-connections, it is defined
as: γ = 2m/n(n− 1).

We use standard notations for graphs throughout this work. If needed, indications are provided in
Appendix A.1.
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2.1 METHOD OVERVIEW

We present a hierarchical graph generative method that progressively generates finer graphs from
coarser ones through a series of conditional generation steps. The conditional generation steps
are trained, and operate, on the outputs of a sequence of coarsening and lifting operations. These
operations, applied as a preprocessing step, transform an input graph to ever coarser versions of it.

Specifically, for each original input graph in a dataset, we create a sequence of graph representations
{G0, ...GL} from the finest level G0, representing the original input graph to the coarsest level GL.
Additionally, we create a corresponding set of lifted graph representations {H0, ...HL−1}, where
each Hl = LIFT(Gl+1) ̸= Gl. We highlight two key properties of these hierarchical representations.
First, the lifted graph Hl is a spanning supergraph of its corresponding Gl; and second, unlike the
coarsening function, our LIFT function is invertible.

Given that the coarsening process is Markovian and the lifting function is bijective, we model the
graph distribution autoregressively over the coarsening levels:

p(G) = pθL(GL)
L∏

l=1

pθl(Gl|Hl) = pθL(GL)
L∏

l=1

pθl(Gl|Gl+1). (1)

Figure 1 illustrates one step of our hierarchical approach. Visualizations of preprocessed and gener-
ated data are presented in Appendix F.

2.2 MOTIVATIONS

Our hierarchical generative model begins at the coarsest level, generating a coarse graph that cap-
tures essential high-level spectral properties. The lifted graph, which retains these spectral prop-
erties, is then used as a conditioning structure to generate a finer graph enriched with the spectral
properties of the lower levels. By iterating this process, we generate progressively finer represen-
tations, ultimately capturing the original graph distribution. Instead of generating the entire graph
in a single step, our approach incrementally captures both graph structure and spectral information
through a sequence of conditional generative steps.

We argue that each of these conditional steps represents a simpler task. Indeed, we leverage the
sparsity of the conditioning graph Hl, which serves both as a conditional space and as a message-
passing scheme to generate the graph Gl. This sparsity provides several advantages over dense,
unconditional models:

1. By leveraging sparsity, our method enables efficient training on larger graphs. As shown
by Qin et al. (2024), generative models for graphs require substantial computational power
and parameters for edge representations. Since dense models’ complexity grows with
O(n2), large graphs cause memory issues during training, slow training, and slow gen-
eration speeds. Moreover, sparsity significantly improves training and generation speed
compared to similar dense models, even when applied to relatively small graphs.

2. In contrast to dense models, which predict edge presence or absence for every node pair,
our model only needs to predict edges within the conditioning graph H. Consequently,
by construction, our approach sets a high proportion (1− γH) of node pairs as non-edges,
preventing the risk of error on those, and focusing the model capacity on the remaining
edges.

3. As a result of message-passing, in our model each node aggregates information only from
its adjacent nodes in H. In contrast, in dense models, each node aggregates information
from every other node in the graph into a fixed-length vector. In large graphs, this process
can lead to oversquashing (Topping et al., 2022; Akansha, 2024), limiting their ability to
model large graph distributions.

While several hierarchical graph models exist (Jin et al., 2018; Karami, 2024; Bergmeister et al.,
2024), none of them preserve equivariance, which, as empirical evidence suggests (Jo et al., 2022),
is a crucial property in graph modeling. In contrast, our model preserves equivariance and represents,
to the best of our knowledge, the first approach that is both hierarchical and equivariant.
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2.3 RELATED WORK

We categorize graph generative models into two classes: models that operate sequentially, and equiv-
ariant models. Sequential models generate graphs by auto-regressively adding nodes, edges, or sub-
graphs. (You et al., 2018; Liao et al., 2019; Kong et al., 2023). Equivariant models address the node
permutation issue by ensuring a unique computational graph for every possible instantiation of the
same object. These models have been developed within various generative frameworks (Martinkus
et al., 2022; Liu et al., 2019). Recently, equivariant denoising models (Jo et al., 2022; Haefeli et al.,
2022; Vignac et al., 2023; Jo et al., 2024; Eijkelboom et al., 2024) and equivariant quantized auto-
encoders (Boget et al., 2024; Nguyen et al., 2024) have significantly improved graph generation for
small graphs. Similar to the work we present here, SparseDiff (Qin et al., 2024) and EDGE Chen
et al. (2023) tackle the scalability challenges faced by equivariant models. A detailed comparison
of these frameworks with ours is provided in the Appendix D.1. Recent works (Karami, 2024;
Bergmeister et al., 2024) adopt hierarchical approaches. However, none is equivariant. A more
comprehensive review of related work is presented in the Appendix.D.1.

3 SPANNING SUPERGRAPH GAMMA MINIMIZATION

In this section, we present a new coarsening algorithm and its corresponding lifting function, which
we use in a preprocessing step, to create the graph representations G and H at different coarseness
levels. Our coarsening algorithm brings important advantages in the context of our hierarchical
method: It maximizes the sparsity of the spanning supergraph, maintains equivariance, and pre-
serves the graph’s spectral properties. We first present relevant graph coarsening work, and motivate
the need for a new coarsening method. We then introduce our coarsening algorithm, and derive key
properties related to equivariance and spectrum preservation. We validate our method experimen-
tally.

3.1 GRAPH COARSENING: RELATED WORKS

Graph coarsening methods can be broadly categorized into three main classes: node-dropping, con-
traction, and clustering methods. Node-dropping methods (Gao & Ji, 2019; Lee et al., 2019) coarsen
a graph by removing specific nodes and their associated edges, either one-by-one or by blocks. Con-
traction methods (Loukas, 2019; Diehl, 2019) coarsen graphs by merging nodes through either edge
contraction, where the endpoints of an edge are merged, or neighborhood contraction, where all
adjacent nodes of a given node are merged. However, both methods fail to maintain invariance and
equivariance, either during the coarsening process or in their potential reverse lifting scheme (see
Appendix C.1 for a detailed discussion).

Clustering methods (Ying et al., 2018; Bianchi et al., 2020) coarsen graphs by merging nodes within
the same cluster. They therefore depend on a clustering algorithm. Most clustering-based coars-
ening methods are permutation-invariant, and they typically focus on community detection-based
clustering. In contrast, our approach aims to maximize sparsity. Although our method falls within
this category, it differs in its clustering objective. For complete reviews on graph coarsening, we
refer to Grattarola et al. (2024); Liu et al. (2023); Wang et al. (2024).

3.1.1 COARSENING AND LIFTING GRAPHS

We define coarsening and lifting operations using matrix multiplications. Assume that we have
access to an assignment matrix CGl ∈ {0, 1}n×K , where each row is a one-hot indicator of a node’s
cluster membership, and K represents the number of clusters.

Coarsening We define nl+1
G := CT

Gl1n ∈ NK , the coarse annotation vector. Its elements indicate
the number of nodes assigned to each cluster. We denote with N := diag(n) the corresponding
diagonal matrix. We define the coarse adjacency matrix as Al+1

G := C+
Gl

T
Ãl

GC
+
Gl − IK , where

C+
Gl = (CGlN−1)T is the left-inverse of CGl , and Ã = A + In the adjacency matrix augmented

with self-connections. Therefore, we define the coarse graph as Gl+1 := (nl+1
G ,Al+1

G ).

4
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Graph lifting We define the lifted graph as Hl := Al
H = CGlÃl+1

G CT
Gl − In. Crucially

for our generative model, we observe that we can recover CGl up to a permutation uniquely as
a function of the coarse annotation vector. We present the procedure in Appendix B.2. Since
Ãl+1

G = C+
GlCGlÃl+1

G (C+
GlCGl)T , we additionally remark that the lift operation is invertible.

For an intuitive and illustrated explanation of the coarsening-lifting process, see Appendix B.1.

Graph projection Through the projection matrix Π = CGlC+
Gl , we can directly obtain the pro-

jected graph Hl a function of Gl: H = Al
H = ΠÃl

GΠ
T . We can now state the following proposition:

Proposition 1. The projected graph H is a spanning supergraph of G, that is:

Al
H = ΠÃl

GΠ
T =⇒ H = G + ES .

Proofs are provided in Appendix A.

By coarsening and projecting graphs sequentially, we obtain a dataset with graph representations
ordered from finer to coarser {(G0

i ,H0
i ), ..., (GL

i ,HL
i )}Ni=1; at the coarsest level we set HL = KnL ,

where Kn is the complete graph (i.e., fully-connected). We set K as a fraction of the number of
nodes in the largest graph (between a third and a fifth in our experiments). We stop iterating when
the Gamma Index reaches 0.5, which resulted in models with two to four coarseness levels in our
experiments. The whole procedure is fast and is performed as a preprocessing step.

3.2 GAMMA-MIN CLUSTERING

Given a graph G, the spanning supergraph is entirely determined by the node clustering, as given by
the assignment matrix CGl . We learn CGl by minimizing the Gamma Index of the spanning super-
graph. This approach not only maximizes the sparsity of the spanning supergraph, but also ensures
equivariance to node permutations, and provides theoretical guarantees for preserving important
spectral properties given by the graph spectrum.

To achieve this, we parametrize the assignment matrix CGl ∈ {0, 1}n×K as :
CGl = Hardmax(σ(GNNG(X,E))), (2)

where σ denotes the softmax function, and Hardmax is the node-wise one-hot encoded argmax,
which we implement using the gradient straight-through estimate for backpropagation. The model
architecture details are given in the appendix B.

Instead of directly minimizing the number of additional edges in the supergraph, mS = |S|, we will
operate over a normalized version of it using mS+mG

mK
= mH

mK
= γH, which does not depend on

the graph size. The normalization yields the Gamma Index of the spanning supergraph. Hence, our
objective function, called the Gamma-Min objective, is directly interpretable. Its value is bounded
as γG ≤ γH ≤ 1. We compute the objective as:

γH =
1

n(n− 1)

 K∑
i=1

K∑
j=1

W l+1
i,j

− n

 , (3)

where W l+1 = (nl+1
G nl+1

G
T
)⊙ Ãl+1

G , with ⊙ representing the element-wise product.

3.3 INVARIANCE AND EQUIVARIANCE

We now state two properties, which are important for our generative model.
Proposition 2. The coarse graph representation Gl+1 = (Al+1

G ,X l+1
G ) is invariant to node permu-

tations of the Gl graph.

This invariance, well-known and inherent to clustering-based coarsening methods, ensures that each
graph corresponds to a unique coarse graph. In contrast, methods relying on specific orderings, such
as edge or node contraction, lack this property and can produce different coarse graphs from the
same input graph.

5
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Proposition 3. The spanning supergraph representation Al
H is equivariant to node permutations of

the Gl graph.

This equivariance property ensures that the node representation of a graph and the one of its spanning
supergraph are aligned, preventing the need for a costly matching procedure.

3.4 SPECTRAL PROPERTIES

We now show that our coarsening-lifting operations preserve important graph features, as given by
the graph spectrum. In particular, we prove two properties. First, the lifting operation preserves
the spectrum of the graph. Second, minimizing the Gamma Index lower an upper bound on the
spectral discrepancy between a graph G and its projection H. Thus, our method minimizes spectral
information loss during coarsening and preserves it entirely during graph lifting.

Formally, we define the spectral distance between a graph and its spanning supergraph as∑n
i=1 |λG(i) − λH(i)|, where λ(i) is the ith eigenvalue of the Laplacian sorted in non-decreasing

order.

Proposition 4. The eigenvalues of the normalized Laplacian of the spanning supergraph contain
all the eigenvalues of the normalized Laplacian of the weighted coarse graph plus the eigenvalue 1
with multiplicity nl − nl+1.

As a consequence of Proposition 4, the spectral distance between a graph and its spanning su-
pergraph is lower bounded by

∑s2
i=s1+1 |λG(i) − 1|, where s1 = argmaxi{i : λG(i) < 1} and

s2 = n−K + s1.

Let us define the matrix S := Al
H−Al

G , so that the change of degree of each node between a graph
and its spanning supergraph is given by dS(i) =

∑
j Si,j . Then, the following proposition holds.

Proposition 5. The spectral discrepancy between the eigenvalues of the unnormalized Laplacians
is upper bounded by twice the maximum degree change that is |λG(i)−λH(i)| ≤ 2 · max

1≤i≤n
dS(i).

By minimizing γH, we minimize an upper bound of the spectral discrepancy between the input
graph and its spanning supergraph. Since lifting the graph preserves the spectrum, we interpret the
discrepancy as an indication of the information loss resulting from the graph’s coarsening. So by
minimizing γH, we minimize this loss.

3.5 EMPIRICAL EVALUATION

Our method not only provides theoretical guarantees in terms of structural information preservation
but also demonstrates empirical efficiency. Table 1 reports the average Gamma Index of the spanning
supergraphs obtained after the first coarsening step across various datasets, comparing our model
(GammaMin) with two popular deep coarsening methods: DiffPool (Ying et al., 2018) and MinCut
(Bianchi et al., 2020). Detailed descriptions of the datasets and experimental settings, including
baseline descriptions, are provided in Appendices E.4, and B.3, respectively.

Table 1: Gamma Index for three coarsening models.
Dataset Data DiffPool MinCut γ-Min (Ours)

Zinc250k 0.094 0.336 0.305 0.247
SBM20k 0.083 0.640 0.265 0.213
GitStar 0.016 0.955 0.249 0.053

Reddit12k 0.005 0.857 0.067 0.017

As our model directly minimizes the
Gamma Index, it is expected to per-
form better on this objective. How-
ever, these empirical results highlight
the importance of developing a coarsen-
ing method specifically designed for our
hierarchical generative approach.

The Gamma Index also represents the
ratio of edges in our model compared to
dense models that operate on the fully connected graphs. Our method significantly reduces this ratio,
which directly corresponds to a reduction in the computational complexity of the model. This ad-
vantage is especially pronounced for large, sparse graphs. The resulting sparsity enables our model
to efficiently scale in training and inference, handling graphs with more than a thousand nodes.
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4 HIERARCHICAL EQUIVARIANT DISCRETE DIFFUSION

We introduce our Hierarchical Equivariant Discrete Diffusion method (HEDD), which models the
graph distribution as an auto-regressive sequence of graphs, as expressed in Equation 1. After pre-
processing, the dataset contains graph pairs for each level: {(G0

i ,H0
i ), ..., (GL

i ,HL
i )}Ni=1. At each

level l, we independently model the conditional distribution p(Gl|Hl). While we use discrete diffu-
sion to model these conditional distributions, our hierarchical framework is compatible with other
equivariant generative approaches.

4.1 BACKGROUND

Discrete diffusion (Austin et al., 2021) consists of a forward process that progressively adds discrete
noise to an instance until it reaches a known limit distribution and a backward process where a
model is trained to iteratively denoise the instances. In our method, both processes operate at each
coarseness level independently. At the coarsest level, HL is set as KnL , making the conditional
formulation equivalent to the unconditional one1: pθL(G|H = KnL) = pθL(G). All levels sharing
the same formulation, we simplify notation by omitting the superscript indicating the level.

The key idea is to create an edge attribute matrix E ∈ Rm×de , representing the edge attributes
of H, to encode the edge attributes of G. We make this possible thanks to the fact that H is a
spanning supergraph G (Proposition 1), that H is equivariant to G (Proposition 3), and that H is an
unattributed graph. To encode G into E, we treat the absence of an edge as a distinct edge type.
Specifically, each row vector Ei is a one-hot encoding of the edge attribute in G, with one category
representing the absence of an edge. The correspondence between edges and their attributes is
maintained via the edge index matrix J ∈ N2×m. Similarly, thanks to the fact that H is unattributed,
the annotation matrix X represents the node attributes of G. Since both graphs share the same set
of nodes VG = EH, there is no need to encode the absence of a node.

4.2 SPARSE NOISING PROCESS

We define edge and node type transition probabilities between time steps t−1 and t via the transition
matrices Qt

E ∈ Rde×de , and Qt
X ∈ Rdx×dx , respectively. The noising process consists of sampling

each node and each edge independently from the following categorical distributions:

q(Xt|X0) = X0Q̄t
X , and q(Et|E0) = E0Q̄t

E , (4)

where Q̄t
· =

∏t−1
t=0 Q

t
· .

4.3 DENOISING

Since Xt, Et, and JH jointly represent Gt and H, we leverage the sparsity in H to parametrize
pθ(G0|Gt,H) using a Message-Passing Neural Networks (MPNN). Our model takes as input the
noisy annotation and edge attribute matrices Xt and Et

H, the time step t as well as the edge in-
dex matrix JH, which indicates the edges involved in the message-passing scheme. It outputs the
predicted annotation and edge attribute matrices X̃ and Ẽ: X̃, Ẽ = σ(MPNNH(Xt,Et

H, t;JH)),
where σ is the sigmoid function for binary variables and the softmax function otherwise. We in-
terpret each model output as probabilities over the clean graph Ẽi = pθ(Ei|H,Gt) and X̃i =
pθ(Xi|H,Gt). We train our model by maximizing its log-likelihood, which coincide with the cross-
entropy loss used in Vignac et al. (2023):

L = E(G,H)∼pdata

[
Eq(Xt

i |X0
i )
γ[−log(pθ(Xi|H,Gt))] + Eq(Et

i |E0
i )
(1− γ)[−log(pθ(Ej |H,Gt))]

]
,

(5)

where γ is a weighting factor between nodes and edges. We use γ = n/(n+m).

1Unconditional discrete diffusion models are actually implicitly conditioned on the number of nodes n.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.4 SAMPLING

We first describe how we sample on a single level, and then describe the hierarchical sampling
process.

Level-wise sampling To simplify the presentation, let us first assume access to H. Sampling at a
single level requires estimating the reverse diffusion p(Gt−1|Gt,H), which we model as a product
over nodes and edges (see Equation 41). This probability distribution is approximated by marginal-
izing over the network prediction, as in standard discrete diffusion, following Equation 42.

In practice, we first sample ET and XT from the known limit distributions, according to the edges
and nodes induced by JH. We then denoise the graph iteratively using Equation 42 until we obtain
Ê0 and X̂0, from which Ĝ is constructed. During sampling, however, H is not available. Instead,
following a teacher-forcing strategy, we replace it with the Ĥ, induced by the graph sampled at the
previous coarser level.

Hierarchical sampling At the coarsest level L, we sample nL according to the data distribution
and set HL = KnL . Using our model for level L, we sample ĜL. Next, we lift ĜL to obtain
ĤL−1 using ÃL−1

Ĥ
= ĈL

Ĝ Ã
L
Ĝ (Ĉ

L
Ĝ )

T , where ĈL
Ĝ is the assignment matrix reconstructed from ĜL

(this procedure is detailed in Appendix B.2). Using ĤL−1, which is fully described by ÃL−1

Ĥ
, we

sample ĜL−1 from level L− 1. By iterating this procedure across all levels, we eventually generate
Ĝ = Ĝ0. For node- and edge-attributed graphs, our model outputs their attributes generating the
finest coarseness level.

4.5 PROPERTIES

Complexity By conditioning on H, we reduce the computational complexity from O(n2) (stan-
dard discrete diffusion) to O(mH), linear in the number of edges of H.

Equivariance Since we apply the noise independently to each node and edge, and the condi-
tioning spanning supergraph is equivariant to node permutations, our denoising model inherits this
equivariance.

Additional Graph Features Enhancing GNN inputs by computing additional synthetic features,
including spectral embeddings, has become a widespread practice (Martinkus et al., 2022; Vignac
et al., 2023; Qin et al., 2024; Bergmeister et al., 2024; Boget et al., 2024). However, denoising
models usually need to recompute these features before each forward pass, both during training
generation, which is computationally expensive. Instead, we use the spectral embeddings of the
spanning supergraph, the graph size and the cluster size as extra feature, which we need to compute
only once during preprocessing. We present the detailed extra features scheme in appendix B.4.

4.6 CONDITIONAL GENERATION

Conditional generation is an important feature for generative models, as most real-world applica-
tions require some form of guidance during the generation process. Notably, our model inherently
operates as a structure-conditioning model. By fixing the conditioning graph H, our model restricts
the generated graphs to those satisfying G = H\ES . We are not aware of models proposing a similar
structural conditioning. We demonstrate in Section 5 the effectiveness of our conditional generative
model in guiding the graph spectrum during generation.

A more common conditional generation setting consists of generating molecules with specific global
properties, represented as a vector c. By concatenating this conditioning vector to each node at-
tribute input vector, we obtain a property-based conditional generative model. Furthermore, by
training both conditional and unconditional models, we would enable classifier-free guidance (Ho
& Salimans, 2022). However, this feature has not yet been implemented in our current work.
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5 EXPERIMENTS

We evaluate our model on molecular, synthetic, and real graph datasets. For molecules, we use the
Zinc250k dataset, containing 250,000 molecular graphs with up to 38 heavy atoms of 9 types.

For large graphs, we introduce three new datasets that not only contain larger graphs but also have
large numbers of instances: the Stochastic Block Model 20k (SBM20k), Github Stargazers (GitStar),
and Reddit 12k, which contain 20,000, 12,725, and 11,551 graphs with up to 194, 957, and 1,499
nodes, respectively. Indeed, most popular benchmark datasets for large graphs, i.e., the Stochastic
Block Model (SBM), Ego, and Proteins, contain few instances (200, 720, 916, respectively), which
raises two main issues. First, any models with enough capacity can overfit the datasets, producing
good evaluation results independently of their generalization ability. Second, by saving a small
proportion of the data as a test set, the evaluation relies on few instances, making it untrustworthy.

We ran all experiments on a 25GB GPU. Time indications are clock time in seconds. Due to space
limitation, we provide detailed descriptions of both the evaluation procedure and the datasets in
Appendix E.

5.1 MOLECULE GENERATION

For molecule generation, we compare our model with four recent competitive models: DGAE (Bo-
get et al., 2024), a discrete equivariant auto-encoder, GDSS (Jo et al., 2022), a continuous score-
based model, DiGress (Vignac et al., 2023), and SparseDiff (Qin et al., 2024), which are discrete
diffusion models. For ablation, we also implement a dense discrete diffusion (DiscDiff) model us-
ing exactly the same architecture and parameterization as the finer level of our HEDD. We report
the Fréchet ChemNet Distance (FCD) (Preuer et al., 2018), which evaluates the similarity of the
generated molecules to real molecules in chemical space, and the Neighborhood subgraph pairwise
distance kernel (NSPDK) (Costa & Grave, 2010) metrics, comparing their graph structures. Valid-
ity without correction indicates the proportion of chemically valid molecules. We report the less
informative uniqueness, and novelty in the Appendix E.

The results, reported in Table 2, are the means and standard deviations of three runs. For DGAE
and GDSS, we used the results from the original article. The results show that our method better
captures the chemical and graph structures than other models while maintaining a high validity rate.
We attribute the chemical and graph structure improvement to the structure conditioning brought by
our method. Despite the relatively small graph size in Zinc250k, we also observe that our method
significantly speeds up graph generation compared to other discrete diffusion models.

Table 2: Generation results on the Zinc dataset. The NSPDK results are rescaled by 103.
Model NSPDK ↓ FCD↓ Val. wo. corr. %↑ Gen. Time (s) ↓
DGAE 7 ± 0 4.4 ± 0.0 77.9 ± 0.5 -
GDSS 19 ± 1 14.7 ± 0.7 97.0 ± 0.8 -

DiGress 71.3 ± 1.3 18.80 ± 0.19 90.75 ± 0.51 5517 ± 29
SparseDiff 55.1 ± 1.8 15.82 ± 0.16 76.05 ± 1.47 9826 ± 85

DiscDiff 11.4 ± 0.5 7.36 ± 0.09 97.74 ± 0.80 4372 ± 40
HEDD 2.1 ± 0.2 3.80 ± 0.07 97.07 ± 0.22 465 ± 5

5.2 LARGE GRAPH GENERATION

For large unannotated graph datasets (SBM20K, GitStar, Reddit12K), we compare our HEDD with
dense equivariant models (DiGress, DiscDiff), and recent models designed to scale to large graphs
SparseDiff, EDGE, (Chen et al., 2023) and GraphLE (Bergmeister et al., 2024). Unfortunately, we
were unable to generate graphs in a reasonable amount of time with GraphLE. As expected, dense
models cannot train on larger graphs, resulting in Out-Of-Memory (OOM) errors.

We report the usual Maximum Mean Discrepancies (MMDs) computed over the degree, clustering
(cluster.), orbit, and spectrum (spect.) distributions, as well as the generation time (gen. t.) and
training time per epoch (ep. t.). For SBM20K, we computed MMDs and generation times over
1000 generated graphs and 1000 graphs from the test set. Due to the slow generation time from
SparseDiff, we used only 100 graphs for evaluation on the GitStar and Reddit12K datasets. Still, we
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Table 3: Generation results on large graph datasets. The MMDs results are rescaled by 103.
Model degree↓ clust. ↓ orbit↓ spect.↓ gen. t. (s)↓ ep. t. (s)↓

SB
M

20
K

EDGE 154.16 ± 3.79 766.79 ± 19.24 10.58 ± 0.12 37.63 ± 1.63 350 ± 8 430 ± 2
DiGress 4.85 ± 6.15 5.92 ± 1.97 28.30 ± 14.4 1.30 ± 1.15 3906 ± 53 626 ± 1

SparseDiff 1.10 ± 0.34 5.25 ± 0.50 19.11 ± 4.52 0.54 ± 0.12 11089 ± 640 241 ± 0
DiscDiff 1.68 ± 0.72 23.37 ± 0.44 74.65 ± 0.99 5.44 ± 0.48 3594 ± 8 267 ± 0
HEDD 0.18 ± 0.02 4.98 ± 0.38 16.26 ± 3.90 1.31 ± 0.34 526 ± 18 70 ± 0

G
itS

ta
r

EDGE 32.58 ± 7.18 60.39 ± 2.97 11.30 ± 0.60 12.61 ± 0.70 103.7 ± 1.9 249 ± 3
DiGress OOM - - - - -

SparseDiff 11.52 ± 6.05 32.92 ± 6.37 25.79 ± 4.47 17.36 ± 6.84 2715.0 ± 205.3 1119 ± 6
DiscDiff OOM - - - - -
HEDD 0.52 ± 0.15 15.20 ± 0.23 11.51 ± 1.60 2.42 ± 0.60 52.0 ± 15.5 56 ± 1

R
ed

di
t EDGE 154.16 ± 3.79 766.79 ± 19.24 10.58 ± 0.12 37.63 ± 1.63 172 ± 1 606 ± 5

SparseDiff 93.73 ± 10.80 68.46 ± 39.01 202.48 ± 10.75 124.96 ± 14.24 7234 ± 859 1350 ± 18
HEDD 3.50 ± 2.54 7.33 ± 1.53 41.94 ± 11.46 6.27 ± 2.27 177 ± 9 93 ± 0

provide results for our method with 1000 graphs in the Appendix E for future comparison. We report
the results in Tables 3. For our hierarchical model, generation and epoch times are the cumulated
time across all levels.

We observe that our method better captures the graph distribution. On the SBM20k dataset,
SparseDiff and DiGress produce results comparable to our HEDD but at the cost of much slower
generation. For the datasets with the largest graphs (GitStar, Reddit), the benefits of our method are
even more apparent, both in terms of convergence and generation time. Visualizations are available
in Appendix F.

5.3 ABLATION AND CONDITIONAL GENERATION

Number of levels From Tables 2 and 3, we observe that on the Zinc and SBM20k datasets, our
hierarchical model with 2 and 3 levels, respectively, consistently outperforms their non-hierarchical
counterparts (DiscDiff), which represents a 1-level model. On larger datasets, a minimum of 3 levels
was required to avoid out-of-memory issues. In Appendix E.2, we provide a complete ablation study
on the number of levels. We observe a strong relation between the sparsity of the conditioning graph
and the number of levels. However, no clear or systematic relationship in generative performance
was observed.

Conditional generation Experimental results demonstrate the effectiveness of our model in con-
ditioning on graph structure. The average spectral distance between reference graphs (Gref) and
conditionally generated graphs (Ĝ ∼ pθ(G|H)) is nearly ten times smaller than that between refer-
ence graphs and test set graphs (see detailed experimental settings and results in Appendix E.3).

6 CONCLUSION

We demonstrate that our method, leveraging discrete diffusion, enables fast and scalable graph gen-
eration. Our approach more effectively captures large graph distributions by extracting global struc-
tural features and learning them hierarchically. In addition, it generates graphs significantly faster
than other methods and reduces training time. At this stage, we do not foresee any significant ethical
concerns related to our model.

We acknowledge that our methods requires training on multiple graph levels, which, despite the
method’s robustness to hyperparameter changes, expands the hyperparameter space and makes fine-
tuning potentially challenging. However, we emphasize that this multi-level approach offers several
benefits, including: accelerating the overall training and generation process, enabling generation
on large graphs, and significantly improving generative performance compared to the few available
baseline methods.

Orthogonal to improvements regarding the generative framework itself, our hierarchical method
highlights the importance of model architecture in graph generation. Hierarchical equivariant mod-
els hold great potential for advancing graph generation and scaling it to even larger graphs.
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REPRODUCIBILITY STATEMENT

Reproducibility, as a cornerstone of science, is essential to us. Below, we outline the efforts made to
facilitate the reproduction of our results:

• Code Availability: Our code is publicly available at
https://anonymous.4open.science/r/HD-graph-C557/. It includes the complete model
code, dataset preprocessing scripts, and default configuration files for all experiments,
along with installation instructions.

• Model Details: The full model architecture, hyperparameters, and the extra feature scheme
are provided in Section B of the Appendix.

• Dataset and Evaluation: We describe the datasets and detailed evaluation procedures, along
with references, in Section E of the Appendix. Links to the files containing the exact
training and test set splits used in our experiments are also provided.

• New Dataset: We have made the new synthetic dataset, Stochastic Block Model 20k, pub-
licly available. Details on how it was created can be found in Section E of the Appendix,
and the code to produce it is included in our repository.

• Benchmark Models: We exclusively used benchmark models with official public repos-
itories. The hyperparameters used for our experiments are detailed in Section E of the
Appendix.

• Proofs: All proofs of the propositions presented in the paper are included in Section A of
the Appendix.
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Matt J. Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar Variational Autoen-
coder. In Proceedings of the 34th International Conference on Machine Learning, pp. 1945–1954.
PMLR, July 2017. URL https://proceedings.mlr.press/v70/kusner17a.html.
ISSN: 2640-3498.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pp. 3734–3743. PMLR,
09–15 Jun 2019. URL https://proceedings.mlr.press/v97/lee19c.html.

Y. Li, W. Ouyang, B. Zhou, K. Wang, and X. Wang. Scene graph generation from objects, phrases
and region captions. In 2017 IEEE International Conference on Computer Vision (ICCV),
pp. 1270–1279, Los Alamitos, CA, USA, oct 2017. IEEE Computer Society. doi: 10.1109/
ICCV.2017.142. URL https://doi.ieeecomputersociety.org/10.1109/ICCV.
2017.142.

13

https://proceedings.mlr.press/v80/jin18a.html
https://proceedings.mlr.press/v80/jin18a.html
https://github.com/wengong-jin/hgraph2graph
https://github.com/wengong-jin/hgraph2graph
https://proceedings.mlr.press/v108/jin20a.html
https://proceedings.mlr.press/v108/jin20a.html
https://github.com/harryjo97/GDSS. http://arxiv.org/abs/2202.02514
https://github.com/harryjo97/GDSS. http://arxiv.org/abs/2202.02514
https://proceedings.mlr.press/v235/jo24b.html
https://openreview.net/forum?id=KNvubydSB5
https://openreview.net/forum?id=KNvubydSB5
https://ojs.aaai.org/index.php/AAAI/article/view/12321
https://ojs.aaai.org/index.php/AAAI/article/view/12321
https://proceedings.mlr.press/v202/kong23b.html
https://proceedings.mlr.press/v202/kong23b.html
https://openreview.net/forum?id=qiAxL3Xqx1o
https://openreview.net/forum?id=qiAxL3Xqx1o
https://proceedings.mlr.press/v70/kusner17a.html
https://proceedings.mlr.press/v97/lee19c.html
https://doi.ieeecomputersociety.org/10.1109/ICCV.2017.142
https://doi.ieeecomputersociety.org/10.1109/ICCV.2017.142


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel
Urtasun, and Richard Zemel. Efficient Graph Generation with Graph Recurrent Attention Net-
works. In Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
d0921d442ee91b896ad95059d13df618-Abstract.html.

Chuang Liu, Yibing Zhan, Jia Wu, Chang Li, Bo Du, Wenbin Hu, Tongliang Liu, and Dacheng
Tao. Graph pooling for graph neural networks: progress, challenges, and opportunities. In
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJ-
CAI ’23, 2023. ISBN 978-1-956792-03-4. doi: 10.24963/ijcai.2023/752. URL https:
//doi.org/10.24963/ijcai.2023/752.

Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing flows. In
Advances in Neural Information Processing Systems, volume 32, 2019.

Andreas Loukas. Graph reduction with spectral and cut guarantees. Journal of Machine Learning
Research, 20(116):1–42, 2019. URL http://jmlr.org/papers/v20/18-680.html.

Chengqiang Lu, Qi Liu, Qiming Sun, Chang Yu Hsieh, Shengyu Zhang, Liang Shi, and Chee Kong
Lee. Deep Learning for Optoelectronic Properties of Organic Semiconductors. Journal of Physi-
cal Chemistry C, 124(13):7048–7060, apr 2020. ISSN 19327455. URL https://pubs.acs.
org/doi/abs/10.1021/acs.jpcc.0c00329.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. GraphDF: A Discrete Flow Model for Molecular
Graph Generation. Proceedings of the 38th International Conference on Machine Learning, 139:
7192–7203, 2021. URL http://arxiv.org/abs/2102.01189.

Kaushalya Madhawa, Katushiko Ishiguro, Kosuke Nakago, and Motoki Abe. Graphnvp: An invert-
ible flow model for generating molecular graphs, 2019.
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A PROOFS

A.1 PRELIMINARIES

A.1.1 NOTATION

We define a graph as G = (V, E , X,E), where V is a set of nodes, E is a set of edges, X and
E are functions mapping nodes and edges to their respective features. We denote the number of
nodes and the number of edges as n = |V| and m = E , respectively. An unattributed graph can
be represented in one of two ways: as an adjacency matrix A ∈ {0, 1}n×n, or as a matrix of edge
indices J ∈ N2×m, where the first row contains the indices of source nodes and the second the
indices of the corresponding target nodes. Edge attributes, of dimension de are represented as a
matrix of edge attributes, E ∈ Rm×de , where the attributes Ei,· correspond to edge J·,i. Node
attributes, of dimension dx are represented as an annotation matrix X ∈ Rn×dx . We denote Ã =
A+ In the adjacency matrix with virtual additional self-connections.

Let G = (V, E , X,E) be an undirected graph, where X and E are functions mapping nodes and
edges to their respective feature vectors such that X(νi) = xi ∈ Rdx and E(νi, νj) = ei,j ∈ Rde .
We can also represent a graph with the triplet of its adjacency matrix, A ∈ {0, 1}n×n, its annotation
matrix, X ∈ Rn×dx , and its matrix of edge attributes, E ∈ Rm×de , where n and m are the number
of nodes and edges respectively, and dx and de are the dimensions of the node and edge attribute
vectors. Denoting + the union of disjoint subsets, we remind that H is a spanning supergraph of G
if H = G + S, where S is a set of additional edges. We denote by K the fully connected graph, i.e.
the graph such that EK = {(νi, νj)|∀ νi, νj ∈ VK}.

A.1.2 COARSENING-LIFTING

For the subsequent proofs, we first formalize the coarsening and lifting procedure in terms of node
and edge sets.

A node partitioning of a G graph in K non-overlapping subsets of vertices such that
⋃K

k=1 Ck = V
and

⋂K
k=1 Ck = ∅ results from an assignment function C mapping each node to a partition C(νj) =

Ci. We can represent the node partitioning as an assignment matrix C ∈ {0, 1}n×K , where the row
vector corresponds to one-hot encoded node assignments. The node partitioning also structures the
edges to subsets of edges that link the nodes of some partition k to the notes of another partition l,
i.e. Bk,l = {(νi, νj)|νi ∈ Ck, νj ∈ Cl, (νi, νj) ∈ E}.

Given a node partitioning of a Gl graph we can define a graph coarsening operation, f(Gl), which
will produce a coarse version, Gl+1, of the original graph in which each partition of the original
graph gives rise to a node in the coarse graph and the nodes of the coarse graph are connected if
there is an edge between the nodes contained in their respective partitions. More formally, f(Gl) =

Gl+1 = (V l+1, E l+1, X l+1) such that νl+1
i ∈ V l+1 ⇐⇒ Cl

i ̸= ∅, (νl+1
i , νl+1

j ) ∈ E l+1 ⇐⇒
Bl
i,j ̸= ∅ and, where X is the annotation function X(νl+1

i ) = xl+1
i = |Cl

i| = nl
i. So, the vector of

partition cardinalities n = [n1, ..., nK ]T ∈ NK is also the one-dimensional annotation matrix.

The lifting function, g(.), operates in the opposite direction; given a coarse graph Gl+1, it produces
a finer one, Hl, where each node of the coarse graph gives rise to a clique, whose node cardinality
is provided by the annotation of the node, and pairs of connected nodes in the coarse graph produce
bicliques. More formally, g(Gl+1) = Hl = (V l

H, E l
H), such that V l

H = {C1, ...CC}, where Ci =

{νj |j ∈ N, (
∑i

r=1 nr−1) + 1 ≤ j ≤
∑i

r=1 nr, n0 = 0} and E l
H = {(νi, νj)|νi, νj ∈ Ck} ∪

{(νi, νj)|νi ∈ Cs, νj ∈ Cr, (νs, νr) ∈ E l+1
G }.

We will denote by h the composition of the coarsening and lifting function h = f ◦ g. Given the
Gl graph, h(Gl) produces the lifted graph Hl which has the same nodes as Gl and its edge set is a
superset of those of Gl; as we will see right away h(Gl) is a spanning supergraph of Gl.

A.2 PROPOSITION 1

To prove that H = G + S, it is sufficient to show that VH = VG and EH ⊇ EG .
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1. We show: VH = VG .

Let call CC = {CC
1 , ..., CC

K} and CL = {CL
1 , ..., CL

K} the clustering resulting from coarsening
and lifting, respectively.

We have VG = {νi|νi ∈ CC
k ,∀k ∈ [K]} and VH = {νi|νi ∈ CL

k ,∀k ∈ [K]}.

Let call π the node permutation such that:
π(CC

i ) = {νπ(j)|π(j) ∈ N, (
∑i

r=1 nr−1) + 1 ≤ π(j) ≤
∑i

r=1 nr, n0 = 0}

Then, we have: π(CC
i ) = CL

i , ∀i ∈ [K].

Hence, VH = VG .

2. We show: EH ⊇ EG .

Let assume (νi, νj) ∈ EG
Case 1: {νi, νj} ⊆ CC

k

{νi, νj} ⊆ CC
k ⇐⇒ {νπ(i), νπ(j)} ⊆ π(CC

k ) (6)

⇐⇒ {νi, νj} ⊆ CL
k (7)

=⇒ (νi, νj) ∈ EH (8)

Case 2: νi ∈ CC
a , νj ∈ CC

b

νi ∈ CC
a , νj ∈ CC

b ⇐⇒ νπ(i) ∈ π(CC
a ), νπ(j) ∈ π(CC

b ) (9)

⇐⇒ νi ∈ CL
a , νj ∈ CL

b (10)

νπ(i) ∈ π(CC
a ), νπ(j) ∈ π(CC

b ) =⇒ Ba,b ̸= ∅ (11)

⇐⇒ (νa, νb) ∈ E l+1
G (12)

νi ∈ CL
a , νj ∈ CL

b , (νa, νb) ∈ E l+1
G =⇒ (νi, νj) ∈ EH (13)

In both cases: (νi, νj) ∈ EG =⇒ (νi, νj) ∈ EH
Hence, EG ⊆ EH

A.3 PROPOSITION 2

PRELIMINARIES

Without loss of generality, we represent the permutation π ∈ Π, with Π being the set of all possible
permutations, by the matrix Pπ .

Note that C is the composition of an MPNN, which is equivariant by construction, and element-wise
operations that are trivially equivariant. Hence, we have:

PπC = Hardmax(σ(GNNG(PπX,Eπ))) ∀π ∈ Π. (14)

Note that N = diag(n) = diag(CT1) is invariant to node permutation, because:

CT1 = n =⇒ CTP T
π 1 = n (15)

PROOF

We show that the coarse graph representation Gl+1 = (Al+1
G ,X l+1

G ) is invariant to node permutation
of Gl = (Al

G ,X
1
G)

Let define:
Al+1

G = fA(A
l
G) = (CN−1)TAl

G(CN−1) (16)

X l+1
G = fX(C) = CT1 (17)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

We show that:
Al+1

G = fA(A
l
G) =⇒ Al+1

G = fA(PπA
l
GP

T
π ) (18)

X l+1
G = fX(Al

G) =⇒ X l+1
G = fX(PπA

l
GP

T
π ) (19)

fA(P
T
π Al

GPπ) = (PπCN−1)TPπA
l
GP

T
π (PπCN−1) (20)

= (CN−1)TP T
π PπA

l
GP

T
π Pπ(CN−1) (21)

= (CN−1)TAl
G(CN−1) (22)

= fA(A
l
G) (23)

Equation 22 uses the fact that permutation matrices are orthonormal matrices, such that P T
π Pπ =

PπP
T
π = I .

The invariance of fX follows directly from Equation 15.

A.4 PROPOSITION 3

Let define Al
H = hA(A

l
G) = CAl+1

G CT

We show that:
hA(PπA

l
GP

T
π ) = .PπA

l
HP T

π ∀π ∈ Π (24)

hA(P
T
π Al

GPπ) = PπCAl+1
G (PπC)T (25)

= PπCAl+1
G CTP T

π (26)

= PπhA(A
l
G)P

T
π (27)

Equation 25 follows from Proposition 2.

A.5 PROPOSITION 5

Let denote LG = DG−AG and LH = DH−AH the unnormalized graph Laplacians of the original
graph and the spanning supergraph, respectively.

Let define the matrix LS := LH −LG . We can interpret LS as a perturbation of LG .

By Weyl’s inequality, we have |λG(i)− λH(i) ≤ ||LS ||2.

From here, we have:

||LS ||2 =
√
ρ(LT

SLS) (28)

≤
√

||LT
SLS ||∞ (29)

≤
√
||LT

S ||∞||LS ||∞ (30)

= ||LS ||∞ (31)

= max1≤i≤n(
∑
j

LSi,j) (32)

= max1≤i≤n(2
∑
j

Si,j) (33)

Equation 28, where ρ() denotes the spectral radius, follows the definition of the spectral norm on
real-valued matrices. Equation 29 follows from the fact that the spectral radius is upperbouded by
any consistent matrix norm. By the sub-multiplicativity of the matrix norm and the symmetry of
LS , we get Equation 30

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.6 PROPOSITION B

Let’s define the normalized coarsening matrix as R := N−1/2C.

We remark that R is a semi-orthogonal matrix, hence RTR = IK , and that RRT = CC∓ = H ,
where H is the projection matrix Al

H = HAl
GH .

Let LW and LH be the normalized Laplacians of the weighted coarsen and lifted graphs, respec-
tively.

We remark that LW = RTLHR, and LH = RLWRT = RRTLHRRT .

From now on, we reproduce here a proof given by Jin et al. (2020b).

Consider the eigenvalue equation:

LWu = λiui (34)

RTLHR = λiui (35)

RRTLHR = λiRui (36)

RRTLHRRTR = λiRui (37)
LHR = λiRui (38)

Thus, LH contains all the eigenvalues of LW , with R acting as an eigenvector lifting operator.

We observe that Inl − LH is at most a rank n matrix because equivalent nodes have the same edge
weights in In −LH. So, In −LH has eigenvalue 0 with multiplicity n−K, and correspondingly,
LH has as much multiplicity of eigenvalue 1.

B MODELS

B.1 PREPROCESSING

B.1.1 INTUITIVE INTERPRETATION

We present a hierarchical graph generative method that progressively generates finer graphs from
coarser ones through a series of conditional generation steps. The conditional generation steps are
trained and operate on the outputs of a sequence of coarsening and lifting operations, which, in a
preprocessing step, transform an input graph to coarser versions of it.

We will now describe the sequence of coarsening and lifting operations. Coarseness level l = 0
represents the finer level, G0 which is the original input graph, and level l = L the coarsest graph
level. At level l, we coarsen the graph Gl to produce the graph Gl+1 at level l + 1. We then lift the
coarse graph Gl+1 producing the graph Hl, which is a spanning supergraph of Gl, i.e., Hl = Gl+S,
where S is a set of additional edges. Thus, at each level l, we obtain a pair of graphs (Gl,Hl). At
the coarsest level L, we use the complete graph K, i.e., the graph with edges on all node pairs, as
the spanning supergraph. We present a pseudo-code algorithm in Algorithm 1.

We create a coarse graph by learning node partitions and merging nodes from the same partition
into a single parent node. Thus, the number of partitions K in a graph at level l corresponds to the
number of nodes nl+1 in the coarsened graph at level l + 1. Coarse nodes are connected if at least
one pair of their corresponding child nodes is connected. Each coarse node is annotated with the
number of child nodes it contains. In the reverse process, we lift a coarse graph to a finer graph by
expanding each coarse node into a clique, with the number of nodes matching the annotation of the
coarse node. If two coarse nodes are connected, a biclique is established between their constituent
nodes. Note that lifting a graph does not invert the coarsening operation, i.e., it does not recover the
graph before coarsening; instead, the process yields a spanning supergraph of it. Figure 2 illustrates
a coarsening-lifting procedure step.

To learn the partitions, we propose a new partitioning method, called Gamma-Min, that minimizes
the Gamma Index of the spanning supergraph; the Gamma Index indicates the graph sparsity. In
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Graph level l Graph level l+1

Coarsening

Spanning supergraph level l

Lifting

Graph pair

Figure 2: Coarsening and lifting. Graph level l: The color represents the node partitions. By
coarsening, we obtain the graph at level l + 1. Graph at level l + 1: Nodes in a given partition at
level l have been pooled together. The node attribute indicates the number of child nodes in each
coarse node. Lifting: Child nodes from the same parent node or from connected parent nodes are
connected in the lifted graph. The lifted graph Hl, which is unannotated, is a spanning supergraph
of Gl. Graph pair: The process produces a graph pair for each coarseness level.

section 3, we show that the spanning supergraphs produced by our method preserve the spectral
properties of the coarse graph, and we provide an upper bound on the spectral discrepancy between
the graph Gl and its spanning supergraph Hl. We use the spanning supergraph both as a conditioning
structure in our hierarchy of generative models, enforcing the preservation of the global spectral
information captured at the coarser level, and as a sparse structure for efficient message-passing. By
minimizing the Gamma Index of the spanning supergraph, we increase the sparsity of the supergraph
structure. This is an important feature of our method since it results in a corresponding reduction of
the computational complexity of the generative models that we apply over supergraphs.

Algorithm 1: Hierarchical Preprocessing

Data: Din = D0 = {G0
i }Ni=1, where G0

i = (A0
i ,X

0
i )

1 Set Dout = {}
2 for l = 0 to L− 1 do
3 Train partitioning model Cl

θ on Dl

4 Set Dl+1 = {}
5 for Gl

i in Dl do
6 Ci = Cl

θ(A
l
i) Partitioning

7 Gl+1
i = (X l+1

i ,Al+1
i ) = Coarsen(Gl

i,Ci))

8 Hl
i = Lift(Gl+1

i )

9 Pair (Gl
i,Hl

i) in Dl

10 Dl+1.append(Gl+1
i )

11 end
12 Dout.append(Dl)
13 end
14 for GL

i in DL do
15 Pair (GL

i ,K)
16 end
17 Dout.append(DL)

Result: Dout = {(Gl
i,Hl

i)
N
i=1}L0

B.2 RECONSTRUCTION OF THE ASSIGNMENT MATRIX AT GENERATION

During generation, it is necessary to lift the generated graph Ĝl. However, the corresponding assign-
ment matrix is not available directly, but we can recover it (up to a permutation) uniquely from its
annotation vector nl

Ĝ .

To achieve this, we define the node index vector iĜl+1 = [1, ..., n]. Using this, we construct c by
repeating each index ij a number of times equal to the corresponding entry nj . This operation corre-
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sponds to the PyTorch function REPEAT INTERLEAVE(i, n). By one-hot encoding c, we eventually
recover the assignment matrix ĈĜl+1 .

With ĈGl+1 , we can then lift Ĝl+1 to Ĥl using the formula: Al
Ĥ = ĈĜl+1Ã

l+1

Ĝ
ĈT

Ĝl+1
− In.

B.3 GAMMA-MIN

B.3.1 MODEL ARCHITECTURE

We train the Gamma-Min partitioning using a GNN, which includes three layers of MPNN identical
to the one used for discrete diffusion and detailed in Appendix B.4.2, followed by three Transformer
blocks (Vaswani et al., 2017). We linearly project the network outputs to the number of partitions
before applying hardmax.

B.3.2 GAMMA-INDEX

We present in Table B.3.2 all the Gamma-Index used for experimentation and their training time.

Dataset level nmax Reduc. γdata γH Time (s)
Zinc250k 0 38 4 0.094 0.247 991
SBM20k 0 194 3 0.083 0.213 661
SBM20k 1 67 3 0.181 0.410 478
SBM20k 2 23 - - - -
GitStar 0 957 5 0.016 0.053 4794
GitStar 1 192 4 0.059 0.195 1573
GitStar 2 48 3 0.160 0.378 1491
GitStar 3 16 - - - -

Reddit12k 0 1499 3 0.005 0.017 5891
Reddit12k 1 500 3 0.014 0.059 1516
Reddit12k 2 167 3 0.048 0.197 1281
Reddit12k 3 56 - - - - -

Table 4: Gamma-Index for all datasets and all levels

B.3.3 TRAINING AND HYPERPARAMETERS

Table 5: Hyperparameters identical for all experiments

Layers in MLPs 3
MPNN layers 3
Transformer Blocks 3
Learning rate 0.0002
Optimizer Adam
Betas parameters for Adam (0.9, 0.999)
Extra feature: eigen features True
Extra feature: number of nodes True
Layers in MLPs 3

B.3.4 EVALUATION

In our experiments, we compare our coarsening model with two baselines: DiffPool (Ying et al.,
2018) and MinCut (Bianchi et al., 2020). We evaluate graph sparsity in the spanning supergraph at
the finest level, using the described coarsening approach and parameters. All three models rely on an
assignment matrix C parameterized by a Graph Neural Network (GNN), with the same GNN archi-
tecture used across models. The key difference lies in their training objectives: DiffPool minimizes
a link prediction objective, MinCut minimizes a continuous relaxation of the normalized minCUT
problem, our GammaMin minimizes the Gamma-Index of the spanning supergraph. Both baseline
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Table 6: Hyperparameters depending on the dataset
Zinc250k SBM20k GitStar Reddit

Reduction rates 4 (3, 3) (5, 4, 3) (3, 3, 3)
Node vector dimensions 32 (128, 32) (256, 64, 32) (256, 128, 32)
Edde vector dimensions 8 (32, 8) (64, 16, 8) (64, 32, 8)

Number of epochs 5 30 60 40
Batch size 32 32 16 8

Number of eigenvectors in eigen features 5 4 4 20

models require additional regularization terms to avoid degenerate solutions, such as assigning most
nodes to a single cluster. Our model do not need such regularization.

B.4 HIERARCHICAL EQUIVARIANT DISCRETE DIFFUSION

B.4.1 FORWARD NOISING PROCESS

Austin et al. (2021) proposed many options for the noising model leading to a fixed limit distribution
q(xT |x0) = q(xT ). We use the standard categorical transition matrix Qt = αtI + (1 − αt)1m′,
where m′ is the row vector of the limit distribution.

We use the marginal distribution of the node attributes as the limit distribution for the node attributes.
For the edges, we use the ’non-edge’ category as an absorbing state (see Austin et al. (2021)) so that
all the mass of the limit distribution is on the ’non-edge’ attribute.

For α, we employ the standard cosine schedule α = cos(0.5π(t/T + s)/(1 + s))2, with a small S.

B.4.2 DENOISING NETWORKS

We use standard message-passing neural networks (MPNN) for our denoising models, with L layers
following these two equations:

el+1
i,j = LayerNorm(fedge([x

l
i,x

l
j , e

l
i,j ]) (39)

xl+1
i = LayerNorm

xl
i +

∑
j∈N (i)

fnode([x
l
i,x

l
j , e

l
i,j ])

 , (40)

where [·, ·] is the concatenation operator and the f functions are 3-layers MLPs. The neighborhood
N (i) on the right-hand side of equation 40 defines the adjacent node in the spanning supergraph.

The last layer outputs are projected to corresponding dimensions. We enforces edge symmetry with
ei,j = (ei,j + ej,i)/2. We ensure that the output can be interpreted as probabilities by applying
either the softmax of the sigmoid function.

We use the same number of vector dimensions for the node and edge representations and for the
hidden sizes of the MLPs. The dimensions used for each experiment are reported hereunder.

B.5 SAMPLING

diffusion p(Gt−1
l |Gt

l ,Hl), which We model a single denoising step as a product over nodes and
edges:

p(Gt−1
l |Gt

l ,Hl) =

n∏
i=1

pθ(x
l,t−1
i |Gt

l ,Hl)

mH∏
j=1

pθ(e
l,t−1
i |Gt

l ,Hl) (41)

We approximate this probability distribution by marginalizing over the network prediction as in
standard discrete diffusion. However, in generation, we do not have access to Hl. Instead, we use
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the graph Ĥl obtained by lifting the graph Ĝl+1 generated at the coarser level. The marginalization
becomes:

pθ(e
t−1
i |Gt

l ,Hl) =

de∑
d=1

p(et−1
i |ei = d,Gt

l , Ĥl)pθ(ei = d|Ĥl). (42)

B.5.1 TRAINING AND HYPERPARAMETERS

Table 7: Hyperparameters fixed for all experiments

MPNN layers 4
Layers in MLPs 3
Diffusion steps 500
Learning rate 0.0002
Optimizer Adam
Betas parameters for Adam (0.9, 0.999)
Extra feature: eigen features True
Extra feature: number of nodes True
Layers in MLPs 3

Table 8: Hyperparameters depending on the dataset
Zinc SBM20k GitStar Reddit

Reduc. rates 4 (3, 3) (5, 4, 3) (3, 3, 3)
Node vect. dim. (256, 64) (64, 64, 64) (64, 64, 64, 64) (64, 64, 64, 64)
Edge vect. dim. (64, 16) (32, 64, 64, 64) (64, 64, 64) (64, 64, 64, 64)

# epochs (40, 40) (125, 250, 250) (150, 150 ,150, 150) (100, 100 ,100, 100)
Batch size (64, 64) (16, 64, 64, 64) (16, 64, 64, 64) (16, 64, 64, 64)

# of eigenvect. 5 4 4 20

B.5.2 EXTRA FEATURES

We use three extra features: eigen features, graph size, and partition size. All these features are
concatenated to the input node attributes.

Eigen features First, we use the eigenvectors associated with the k lowest eigenvalues of the
graph normalized Laplacian of the spanning supergraph, which are (up to normalization) identical
to the eigenvectors of the corresponding coarse graph, except in level L, where we recompute the
eigenvector of the noisy graph at each training step. Otherwise, and unlike other denoising models,
the computation of the eigenvectors is a single preprocessing step.

Graph size We use the graph size represented as a ratio between the size of the current graph and
the largest graph in the dataset n/nmax. We concatenate the (same) value to all nodes in a graph.

Partition size Similarly, we use the partition size, which is represented as a ratio between its size
and the largest partition in the dataset. All nodes in the same partition (in a partition with the same
number of nodes) have the same value.

C RELATED WORK

C.1 GRAPH COARSENING

We further explain why node-dropping methods and contraction methods are not suitable choices
for hierarchical generative models.

Node-dropping methods (Gao & Ji, 2019; Lee et al., 2019) coarsen a graph by removing specific
nodes and their associated edges , either one-by-one or by blocks. However, node-dropping induces
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a node ordering, which breaks equivariance. Furthermore, reversing the process typically leads to
node-wise or block-wise autoregressive models, similar to existing approaches, such as Liao et al.
(2019).

Contraction methods (Loukas, 2019; Diehl, 2019) coarsen graphs by merging nodes through either
edge contraction, where the endpoints of an edge are merged, or neighborhood contraction, where
all adjacent nodes of a given node are merged. However, these methods require a specific contraction
ordering, which breaks equivariance, to ensure that no node belongs to multiple contracted clusters.
Additionally, contraction methods offer limited control over the coarsening factor, i.e., the ratio of
nodes before and after coarsening.

D RELATED WORKS

D.1 GENERATIVE MODELS

One of the main challenges in graph representation and generation is that a graph can be represented
in multiple ways. There can be up to n! different representations of the same graph, resulting from
the n! possible node permutations. Two main approaches address the multiplicity of equivalent
representations: models that operate sequentially and equivariant models.

Sequential models generate graphs by auto-regressively adding nodes, edges, or subgraphs. To
limit the number of different sequences that represent a single graph, most of these models use a
Breadth-First Search (BFS) approach (You et al., 2018; Shi et al., 2020; Luo et al., 2021; Liao et al.,
2019; Kong et al., 2023). While canonical representations exist for specific domains, e.g. canon-
ical SMILES for molecular graphs (Gómez-Bombarelli et al., 2018; Kusner et al., 2017), methods
based on general graph canonization (Goyal et al., 2020) fail for large graphs (see experiments in
Bergmeister et al. (2024)). Subgraph aggregation (Jin et al., 2018; 2020a), sometimes described
as hierarchical, falls into this category. It requires listing the set of all possible substructures and
connections between them, which is feasible only for some specific applications such as molecular
graphs.

Equivariant models address the node permutation issue by ensuring a unique computational
graph for all possible instantiations of the same object. These models have been developed within
various generative frameworks such as GANs (Krawczuk et al., 2021; Martinkus et al., 2022) or Nor-
malizing Flows (Madhawa et al., 2019; Zang & Wang, 2020; Liu et al., 2019). Recently, equivariant
denoising models used in score-based diffusion (Yang et al., 2019; Jo et al., 2022), discrete diffusion
(Haefeli et al., 2022; Vignac et al., 2023), diffusion bridges (Jo et al., 2024), and Flow Matching
(Eijkelboom et al., 2024) have significantly improved graph generation for small graphs. While
less known, equivariant quantized auto-encoders have also demonstrated competitive performance
(Boget et al., 2024; Nguyen et al., 2024). However, equivariant models are not without limitations.
They operate by producing predictions for all node pairs and rely on dense graph representations,
which prevents them from scaling to large graphs.

Sparse Equivariant Model SparseDiff (Qin et al., 2024) and EDGE Chen et al. (2023) are re-
cent diffusion models that address scalability challenges in equivariant models. Both models share
similar objectives and generative framework as ours. We comparative analysis to highlight their
differences from ours.

Both models construct a sparse structure by selecting a subset of ”active” nodes, with ’active edges’
defined by their induce complete graph. SparseDiff randomly selects ”active” nodes, while EDGE
determines them based on predicted changes in degree. As a result, in both models, for the same
graph, the sparse structure varies at each iteration. In contrast, our model maintains a fixed structure
of ’active edges’ established by the spanning supergraph.

The sparse strategies employed by SparseDiff and EDGE lead to a number of function evaluations
per node and edge, which is critical for denoising models and represents a fraction of the total
diffusion steps. SparseDiff compensates for this by increasing function evaluations, denoising the
graph in blocks of nodes and edges, ultimately considering all node pairs. This approach results in
a number of function evaluations (NFE) that is inversely proportional to the edge fraction in each
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block. EDGE does not compensate for excluded edges, which, we assume, is the reason for its
comparatively low generative performance (see 5).

At generation, we still leverage our fixed graph structure. In our model, the additional computa-
tional cost arises from generating graphs at lower levels. However, since these graphs are signif-
icantly smaller and computational cost scales quadratically with the number of nodes, this cost is
comparatively small.

Hierarchical models A couple of works follow a similar hierarchical approach to ours, but differ
in their coarsening and generative strategies. HiGen (Karami, 2024) coarsens the graph using a
modularity objective to partition the graph into communities. The community-based partitions often
produce dense coarse graphs, which strongly limits the effectiveness of the strategy, both in terms
of the information extracted from the coarsening and the resulting sparsity used for generation.
Moreover, the model leverages an autoregressive method to generate graphs at each level, which is
inefficient for large graphs.

Bergmeister et al. (2024) use a local coarsening scheme involving edge or neighborhood contraction.
To prevent the coarsening from pooling a child node into two parent nodes, by contracting two of its
adjacent edges, they sample a different contraction sequence at each training iteration. Moreover,
the method requires a low reduction rate - set to a maximum of 0.3 - necessitating sequences with
many coarseness levels. In our experiments, we were not able to generate large graphs in reasonable
time with this method (see Section 5). In contrast to these hierarchical models, our method uses a
single coarsening procedure in a preprocessing step, a small number of levels, and, last but not least,
maintains equivariance.

E EVALUATION

E.1 DOWNLOADS

To download the Stochastic Block Model 20k (SBM20k) in the pytorch geometric Dataset format:

https://drive.switch.ch/index.php/s/t5I9N8rDQCfMIVX

To download the splits between training and test sets used in our experiments:

• SBM20k: https://drive.switch.ch/index.php/s/zhlXUa4mUKyCP3G

• GitStar: https://drive.switch.ch/index.php/s/ADn014uV44Kwcbj

• Reddit12k https://drive.switch.ch/index.php/s/xIS3DMY2eUCzN8c

E.2 ABLATION STUDY

We present an ablation study to analyze the effect of the number of hierarchical levels L. Models
were trained with 1 to 5 levels on SBM20k and 2 to 7 levels on GitStar, keeping all other hyperpa-
rameters fixed.

We fixed the total reduction in the number of nodes (relative to the nmax), the number of node in
the largest graph. We set this reduction R to 16 for SBM20k and 64 for Gitstar. Since the total
reduction is fixed, the more steps the smaller the reduction at each step. We used a fixed reduction
rate corresponding to that R = n

( 1
L

max. Hence, the maximum number of nodes at each level is given
by: nl+1

max = nl
max/R.

The results are reported in Figures E.2 and E.2.

We make four key observations:

1. The Gamma Index of the spanning supergraph decreases as the number of levels increases
at the data level. Consequently, we were unable to train models with only one or two levels
on GitStar.

2. All hierarchical models outperform their non-hierarchical counterpart on SBM20k.
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Figure 3: Effect of the number of levels on the generative performance.

3. The Degree MMD metric exhibits relatively large variations that appear unrelated to the
number of levels. We are currently unable to explain these variations.

4. On SBM20k, except the non-hierarchical model, performance slightly decreases with the
number of levels across all other metrics.

5. No similar relationship between performance and the number of levels is observed on Git-
Star.

In conclusion, hierarchical models consistently outperform their non-hierarchical counterpart. How-
ever, we do not find a clear or systematic relationship between the number of levels and overall model
performance.

E.3 CONDITIONAL GENERATION

In conditional generation, we generate graphs Ĝ conditionally to the spanning supergraph H. In
our experiment, we sample a graph from the validation set to serve as the reference graph Gref .
The conditional task involves generating graphs structurally similar to Gref by conditioning on its
spanning supergraph Href . Since we directly sample from an actual spanning supergraph, only the
finer-level model pθ(G0|H0) is needed for conditional generation.

We use the spectral distance to measure the distance between the reference graph and the condition-
ally generated graphs.

To evaluate similarity, we use the spectral distance between the reference graph and the conditionally
generated graphs. The spectral distance between graphs G1 and G2 is defined as

∑K
i=1 |λG1

(i) −
λG2

(i)|, where λ(i) is the ith eigenvalue of the Laplacian sorted in non-decreasing order. To ensure
that we can compute this distance between graphs of different sizes, we compute this distance only
on the K smallest eigenvalues.
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Table 9: Spectral distances
Dataset Test set Cond. gen. Ratio

SBM20k 4.57 ± 1.55 0.49 ± 0.06 0.114 ± 0.024
Reddit 3.57 ± 1.10 0.57 ± 0.31 0.161 ± 0.069

We computed the spectral distance between the reference graph and 100 conditionally generated
graphs, and compared it with the distances between the reference graph and graphs from the test set.
This experiment was repeated 10 times with different reference graphs. Table 9 shows the average
distances and ratios. On average, the generated graphs were approximately 10 times closer to the
reference graph than those in the test set, demonstrating the effectiveness of our model’s conditional
setting. We provide illustration of conditionally generated graph in Appendix F.

E.4 DATASETS

Zinc250 The Zinc250k dataset is a subset of the Zinc database (Irwin et al., 2012). It includes
250,000 molecules with up to 38 heavy atoms of nine types. We used the kekulized representation
of this dataset.

SBM20k The original Stochastic Block Model is a synthetic dataset made of community graphs,
with 2 to 5 communities, each containing 20 to 40 vertices. The intra-community and inter-
community edge probability are 0.3 and 0.005, respectively. We create a dataset, SBM20k, with
exactly the same characteristics but 20000 instances instead of 200.

GitStar Github Stargazers (Rozemberczki et al., 2020) is a collection of 12725 graphs with up to
957 nodes representing social networks. It is part of the TUDatasets, which are benchmark datasets
collected from the TU Dortmund University.

Reddit12k Reddit(Yanardag & Vishwanathan, 2015) contains graphs extracted from the Reddit
networks. It is also part of the TUDataset. We extracted the graphs containing up to 1500 nodes.
This results in a dataset that collects 11551 graphs with up to 1499 nodes.

E.5 EVALUATION PROCEDURE

E.5.1 ZINC250K

The benchmark results for Zinc250 are taken from the original paper, except for DiGress and
SparseDiff, which we ran ourselfs. We used the Official SparseDiff repository to implement the
Zinc250k dataset.

Spits We used the test sets provided by (Jo et al., 2022). The metrics are calculated over 10,000
samples from the test sets.

metrics We use the Fréchet ChemNet Distance (FCD) (Preuer et al., 2018) and the Neighborhood
subgraph pairwise distance kernel (NSPDK) MMD (Costa & Grave, 2010) metrics. FCD assesses
the generated molecules in chemical space, while NSPDK MMD evaluates the distribution of the
graph structures. In addition to FCD and NSPDK metrics, we include the validity rate without cor-
rection as a supplementary evaluation metric. This metric calculates the fraction of valid molecules
without valency correction or edge resampling.

Additional metrics As additional metrics presented in table E.5.1, we report the uniqueness - the
fraction of unique generated molecules - and the novelty - the fraction of unique molecules not in
the dataset. All models yield 100% validity with valency correction or resampling.

E.5.2 LARGE DATASETS: SMB20K, GITSTAR, REDDIT12K

We split the datasets into a test set with 1000 graphs and a training set with the remaining graphs.
We further split the remaining instances between the training and validation sets.
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Table 10: Generation results on the Zinc dataset.
Model Uniqueness↓ Novelty↓
GDSS 99.64 ± 0.13 100.00 ± 0.00
DGAE 99.94 ± 0.03 99.97 ± 0.01
DiGress 99.98 ± 0.01 99.99 ± 0.01

SparseDiff 100.00 ± 0.00 100.00 ± 0.00
DiscDiff 99.94 ± 0.02 99.99 ± 0.01
HEDD 99.99 ± 0.01 99.99 ± 0.01

metrics We employ the maximum mean discrepancy (MMD) to compare the distributions of graph
statistics between generated and test graphs (You et al., 2018). The MMDs are computed over the
distributions of degrees (deg.), clustering coefficients (clust.), and the number of occurrences of
orbits with up to four nodes (orbit) and the graph spectrum (spect.).

Similar to (Martinkus et al., 2022), we utilize the total variation distance kernel to compute the
MMDs. The MMDs are computed by comparing the test set to the same number of generated
samples. Due to the slow generation of SparseDiff, the MMDs for Gitstar and Reddit are calculated
over 100 graphs of the test set and the same number of generated samples.

Results on larger samples Due to the slow generation time from SparseDiff, we used ’only’ 100
graphs for the GitStar and Reddit12K datasets in the main text. Here, we provide results for our
method (HEDD) with 1000 graphs for future comparison.

Table 11: Generation results on the Reddit12k GitStar dataset. Results are rescaled by 103.
Dataset degree↓ clust.↓ orbit↓ spect.↓
GitStar 0.49 ± 0.21 4.86 ± 0.99 3.73 ± 0.94 1.27 ± 0.32

Reddit12k 3.87 ± 2.35 5.58 ± 1.37 43.73 ± 28.81 6.61 ± 2.38

E.6 CONFIGURATION OF BENCHMARK MODELS

E.6.1 DIGRESS AND SPARSEDIFF

SparseDiff is built upon DiGress to such an extent that it can be viewed as a revised version of
DiGress. The official DiGress repository even refers to SparseDiff for training on large graphs.
By setting the edge fraction generated at each step to 1, SparseDiff effectively reverts to DiGress.
For our experiments, we used this version of DiGress. It explains that both models share identical
hyperparameters.

E.6.2 EDGE

We use the training template for large network datasets provided by the official EDGE repository
for all the experiments.
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Table 12: Hyperparameters fixed for all experiments

learning rate 0.0002
optimizer adamw
weight decay 1e-12
diffusion steps 500
diffusion noise schedule ’cosine’
dropout 0.1
output y False
scaling layer False
extra features ’all’
eigenfeatures True
edge features ’all’
num. eigenvectors 8
num. eigenvalues 5
use charge False
num. degree 10
positional encoding False

Table 13: Hyperparameters depending on the dataset
SparseDiff Zinc SBM20k GitStar Reddit

Epochs 20 20 20 20
batch size 16 16 8 16
n layers 5 4 4 4

edge fraction 0.5 0.25 0.25 0.1
de 64 64 64 64
dx 256 64 64 64
dy 64 64 64 64

dim ffe 128 128 128 64
dim ffx 256 128 128 64
dim ffy 256 128 128 64

Table 14: Hyperparameters depending on the dataset
Digress Zinc SBM20k
Epochs 20 20

batch size 16 16
n layers 5 4

de 64 64
dx 256 64
dy 64 64

dim ffe 128 128
dim ffx 256 128
dim ffy 256 128

F VISUALIZATIONS

We present visualizations of real and generated graphs for Zinc, GitStar and Reddit12k.

For SBM20k, we present all graphs represented in the preprocessed dataset and their corresponding
graph during generation.

We also provide visualizations of conditionally generated graphs, including their reference graph
and their conditioning strucuture.
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Table 15: Hyperparameters for EDGE
EDGE SBM20k GitStar Reddit

batch size 4 4 4
num iter 256 256 256

num workers 8 8 8
epochs 50000 50000 50000
seed 0 0 0

loss type vb ce xt prescribred st vb ce xt prescribred st vb ce xt prescribred st
diffusion steps 512 512 512
diffusion dim 64 64 64
dropout rate 0.1 0.1 0.1
num heads [8, 8, 8, 8, 1] [8, 8, 8, 8, 1] [8, 8, 8, 8, 1]

arch TGNN degree guided TGNN degree guided TGNN degree guided
noise schedule linear linear linear

optimizer adam adam adam
lr 0.0001 0.0001 0.0001

warmup None None None
momentum 0.9 0.9 0.9

momentum sqr 0.999 0.999 0.999
gamma 0.1 0.1 0.1
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F.1 ZINC

Generated molecules Real molecules - Zinc

Figure 4: Comparison of generated molecules with molecules from the Zinc Dataset.
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F.2 GITSTAR

Generated graphs Real graphs - Gitstar

Figure 5: GitStar: Comparison of generated graphs with graphs from the dataset.
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F.3 REDDIT

Generated graphs Real graphs - Reddit

Figure 6: GitStar: Comparison of generated graphs with graphs from the dataset.
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F.4 SBM20K

Ĝ2 Ĥ1 Ĝ1 Ĥ0 Ĝ0

Figure 7: Generated graphs: SBM20k
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G2 H1 G1 H0 G0

Figure 8: Processed data: SBM20k
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F.5 CONDITIONAL GENERATION

G H G|H G|H G|H G|H

Figure 9: Conditional Generation on SBM20k. First column is the reference graph, the second
column its spanning supergraph that serves for the conditional generation, the other columns are
conditionally generated graphs (although some are very similar they are all different).
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