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Abstract
In-Context Learning (ICL) has emerged as a piv-
otal capability of auto-regressive large language
models, yet it is hindered by a notable sensitiv-
ity to the ordering of context examples regardless
of their mutual independence. To address this
issue, recent studies have introduced several vari-
ant algorithms of ICL that achieve permutation
invariance. However, many of these do not ex-
hibit comparable performance with the standard
auto-regressive ICL algorithm. In this work, we
identify two crucial elements in the design of an
invariant ICL algorithm: information non-leakage
and context interdependence, which are not simul-
taneously achieved by any of the existing methods.
These investigations lead us to the proposed In-
variant ICL (InvICL), a methodology designed to
achieve invariance in ICL while ensuring the two
properties. Empirically, our findings reveal that
InvICL surpasses previous models, both invariant
and non-invariant, in most benchmark datasets.

1. Introduction
In-Context Learning (ICL) has shown to be a key emergent
property of large language models (LLMs) (Brown et al.,
2020). By utilizing a sequence of examples as the context,
LLMs can be adapted quickly and accurately to new tasks
without parameter tuning. Despite its impressive potential,
ICL exhibits a crucially unusual behavior: sensitivity to
the order of context examples (Lu et al., 2022; Zhao et al.,
2021; Xie et al., 2021; Agrawal et al., 2022). Although
context examples are independent, the order in which they
are presented can dramatically influence ICL predictions,
with variations from about 90% to 50% on the SST-2 dataset
(Lu et al., 2022).

It is easy to note that the auto-regressive (AR) nature of
LLMs is the root of order sensitivity. AR-LLMs often utilize
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Figure 1. Performance of different ICL algorithms under the set-
tings of Zhang et al. (2024). Task prompts are removed for fair
comparison.

a causal mask in the attention module, which breaks the per-
mutation invariance property of the de facto Transformer ar-
chitecture1. As the context examples are intrinsically equiv-
alent under different permutations, a model that respects this
data symmetry tends to enhance both learning and general-
ization (Sokolić et al., 2016; Tahmasebi & Jegelka, 2023).
Therefore, recent works have proposed several variant al-
gorithms of ICL to achieve the invariance by modifying
the Transformer architecture (e.g., Prefix ICL (Raffel et al.,
2020), PCW (Ratner et al., 2022), and BatchICL (Zhang
et al., 2024)). However, they often perform inferior to
non-invariant counterparts like AR ICL, as we extensively
observed in practice shown in Figure 1.

We note that although desirable, the invariance property
alone is insufficient for good ICL performance (e.g., a model
with constant output f(·) = c is invariant yet provides no
useful information). Therefore, to ensure the performance
of ICL, we need to satisfy the following two properties
while making ICL invariant: 1) Information Non-leakage:
it prevents the query from accessing its answer, thereby
avoiding shortcuts and enabling dense learning signals for
ICL by allowing the prediction of every context example
in the input. 2) Context Interdependence: Each context
example interacts with all preceding examples. As the se-
quence lengthens, more information is provided, thereby
enhancing prediction accuracy. However, existing methods
more or less compromise these properties when making ICL
invariant (Table 1), resulting in the lack of a well-performing
invariant ICL method.

Motivated by the analysis above, we design an effective
Invariant In-context Learning (InvICL) algorithm that

1Besides, sequential positive encodings (PEs) of the prompt
also introduce order sensitivity.
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Table 1. Comparisons of different ICL types (details in Section
2) on permutation invariance, information non-leakage, context
interdependence, and performance.

ICL Type Invariance Non-leakage Interdependence Performance

Auto-regressive ✗ ✓ ✓(partial) A (baseline)
Prefix (full attn.) ✓ ✗ ✓ A-
Bag-of-Examples ✓ ✓ ✗ A-
InvICL (ours) ✓ ✓ ✓ A/A+

maintains these essential properties, ensuring both invari-
ance and high performance. InvICL addresses the issue
of order sensitivity, not only avoiding information leakage
but also enhancing context interdependence beyond what
is achievable with AR-LLMs. To facilitate practical im-
plementation, we also develop a fully parallel version of
InvICL, capable of obtaining all Leave-One-Out (LOO) em-
beddings and predictions in a single forward pass using a
novel LOO-type attention mask. Empirically, InvICL out-
performs existing invariant ICL versions, and even surpasses
AR-ICL (non-invariant) on most tasks.

Our contributions includes highlighting the importance of
preserving information non-leakage and context interdepen-
dence of designing invariant ICL algorithms and synergizes
these goals by utilizing leave-one-out embeddings. Empiri-
cally, InvICL indeed achieves superior performance.

2. Preliminaries
Consider a classification task with a few i.i.d. training exam-
ples D = {x̃i := (xi,yi)}ni=1, where xi denotes the input
and yi denotes the classification target. An ICL algorithm
f takes these training examples (a.k.a. context examples)
together as input and then predicts a new test example xt.
A general formulation of f is

[ŷ1, . . . , ŷn, ŷt] = f(xi,yi, . . . ,xn,yn,xt), (1)

where ŷi denotes the label prediction for xi. Note the pre-
dictions for context example, {ŷi}ni=1, are optional but they
are generally available for AR-LLMs.

A popular model choice for ICL is Transformer (Vaswani
et al., 2017), where the self-attention layer is the elementary
module. Denote H = (h1, ...,hn)

⊤ be the input hidden
state of a self-attention layer, it outputs

H← H+AHWvP,

where A = softmax
(
HWq(HWk)

⊤ +M
)
.

(2)

where Wq,Wk,Wv,P denotes the query, key, value, and
projector matrices, respectively. M ∈ {0,−∞}n×n is an
attention mask.

Revisiting existing ICL algorithms, they can be categorized
into three families depending on their aggregation scheme
over the context examples: 1) Auto-regressive ICL (AR
ICL), 2) Prefix ICL, and 3) Bag-of-Example ICL. We make
a brief introduction of Prefix and BoE ICL.

Prefix ICL. To fully utilize the information of every context
example, the causal mask is discarded in Prefix LM (Raf-
fel et al., 2020). Therefore, it aggregates over all context
examples as

hxk
← aggr {{(hxi ,hyi)}ni=1} ,∀ k ∈ [n]; (3a)

hxt
← aggr {{(hxi

,hyi
)}ni=1,hxt

} . (3b)

Bag-of-Example ICL (BoE ICL). In addition to the two
conventional designs above, there is a new variant of ICL.
Methods like PCW (Ratner et al., 2022), SAICL (Cai et al.,
2023), and BatchICL (Zhang et al., 2024) encode each con-
text example (xi,yi) independently (without considering
other context examples), similar to the “bag-of-word” repre-
sentation. Its aggregation rules can be formulated as

[hxk
,hyk

]← aggr {(hxk
,hyk

)} ,∀ k ∈ [n]; (4a)
hxt ← aggr {{hxi ,hyi)}ni=1,hxt} . (4b)

3. The Proposed Invariant In-context Learning
(InvICL)

In this section, we identify the three important desiderata in
invariant ICL — permutation invariance, information non-
leakage and context interdependence, and explore how to
design ICL algorithms that preserve all three desiderata.

In Transformer, the only interaction among different exam-
ples occurs in the self-attention layer (Eq. (2)). Concep-
tually, self-attention can be viewed as a message-passing
scheme on a digraph of n examples, denoted as G, with
the adjacency matrix defined by the attention score ma-
trix A ∈ Rn×n (defined in Eq. (2)). Under this definition,
Aij represents the message passed from the j-th example
to the i-th example. The message passing then updates
with H← AH (informal) using A as the propagation ma-
trix. Here, we only consider the graph of context examples
{x̃i}ni=1, as we always want the test example x̃t to be fully
aware of the context examples, making these edges trivial. A
straightforward way to design invariant ICL algorithm, com-
monly used by existing works (Raffel et al., 2020; Ratner
et al., 2022; Cai et al., 2023) is to modify the attention mask
M as it is the only controllable factor in Eq. (2). Thus, in
the following, we discuss how to design the attention mask
M to meet these desiderata. All proofs are in Appendix D.

1) Invariance. In an ICL task, we have the prior knowl-
edge of data symmetry that the n context examples x̃i are
independently identical distributed (i.i.d.). Intuitively, per-
mutation invariance requires the attention mask M to exhibit
some form of symmetry. Notably, both the Prefix and BoE
masks (Fig. 2(b, c)) satisfy permutation invariance, while
the causal mask (Fig. 2(a)) does not. The following proposi-
tion explores whether other attention masks can also achieve
this property.
Proposition 3.1. Given an input matrix H =
(h1, ...,hn)

⊤ ∈ Rn×d with the features of the con-
text examples only. The permutation invariance of ICL
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Figure 2. The attention masks of four types of ICL, corresponding to different types of ICL methods.

outputs holds iff the attention mask on the context examples,
M, belongs toM = {M1,M2,0}, where

M1 =


0 −∞ · · · −∞
−∞ 0 · · · −∞

...
...

. . .
...

−∞ −∞ · · · 0

 ,M2 =


−∞ 0 · · · 0
0 −∞ · · · 0
...

...
. . .

...
0 0 · · · −∞

 .

Proposition 3.1 demonstrates that to achieve permutation
invariance, the attention mask on the context example must
fall into one of the three choices inM: 0 corresponds to
full attention in Prefix ICL; M2 corresponds to BoE ICL;
and M1 is their linear combination (only cross-attention
between tokens without self-attention).

2) Information Non-leakage. During training, AR-LLMs
learn to dynamically predict each intermediate context ex-
ample xi based on its previous tokens x<i as its own con-
text, leading to n prediction tasks that provide rich learning
signals for ICL. To achieve this, an essential architectural
inductive bias is the causal mask, which ensures that the
prediction of each query xi, such as ŷi, does not have access
to its ground-truth answer yi; otherwise, the prediction task
would become trivial. We believe this principle should be
generally adhered to when designing ICL algorithms. We
name this the information non-leakage principle.

According to Zheng et al. (2018), ensuring information
non-leakage is equivalent to guaranteeing the graph G is
acyclic (except for self-loops). This imposes the following
restriction on the attention mask M.
Proposition 3.2. An ICL algorithm realizes information
non-leakage iff it is possible to reorder context examples
such that the attention mask M is lower triangular.

Combining the conditions for attention masks outlined in
Propositions 3.1 & 3.2 (belong toM and lower triangular),
we find that the attention mask on context examples must be
a diagonal matrix, as concluded in the following proposition.
Proposition 3.3. The message-passing scheme respects per-
mutation invariance and information non-leakage iff the
attention mask on context examples M is diagonal.

Therefore, we conclude that if an ICL algorithm preserves

both permutation invariance and information non-leakage,
its attention mask not only can be, but has to be in the form
depicted in Figure 2(c). Specifically, it must take the form
of a bag-of-examples (BoE) ICL, denoted as:

hxt
← BoE {{(hxi

,hyi
)}ni=1,hxt

} . (5)

3) Context Interdependence. Another advantage of AR-
LLMs is that they allow the encoding of each example xi

to depend on other (previous) examples. These examples
provide the context for better encoding of xi, which in turn
improves the prediction of future examples. We name this
property as context interdependence.

In the derivation above, we conclude that an ICL algorithm
preserving both invariance and information non-leakage
must be in the form of BoE ICL. However, it is clear that
BoE ICL does not satisfy context interdependence. We
realize, though, that context interdependence can still be
achieved by encoding each context example with the context
of other samples, a process we term pre-encoding. To ensure
all three desiderata simultaneously, the pre-encoding step
must also adopt the form of a BoE ICL scheme, where it
aggregates independent encodings of all other samples (i.e.,
a leave-one-out encoding).

hxk
← BoE

{
{(h̄xi

, h̄yi
)}i ̸=k,hxk

}
, k ∈ [n] (6)

where h̄xi
, h̄yi

are the independent encoding (similar to
Eq. (4a)). Therefore, we arrive at a two-stage ICL method
as follows. First, we encode each context example with a
leave-one-out (LOO) BoE encoding as in Eq. (6). Then,
in the second stage, we utilize these contextual encodings
to predict the test examples as in Eq. (5). This approach
guarantees the three desiderata of invariant ICL.

Symmetric Positional Encoding. As a minor point, to
ensure the symmetry of the model, it is also necessary to
incorporate permutation invariance into the positional en-
coding. We adopt an independent position encoding scheme
that treats each example as an independent sequence. It
is also applicable to BoE ICL and Prefix ICL for ensuring
permutation invariance. Details are in Appendix A.1.
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Table 2. The in-context learning performance with language models based on GPT-2 Large. We changed the causal mask and positional
encoding to implement different types of ICL models. The models are finetuned under the framework of MetaICL (Min et al., 2022b).

METHOD
HR

→ LR
CLASS

→CLASS
NON-CLASS
→CLASS

QA
→QA

NON-QA
→QA

NON-NLI
→NLI

NON-PARA
→PARA

AVG.

All target tasks
Non-invariant
AR ICL (RADFORD ET AL., 2018) 43.4 43.4 40.2 44.0 37.9 50.3 34.1 41.9
NOPE (KAZEMNEJAD ET AL., 2024) 41.7 30.0 40.3 44.5 36.6 26.8 38.8 37.0

Invariant
PCW (BOE) (RATNER ET AL., 2022) 39.7 37.7 35.2 40.8 37.7 40.7 35.1 38.1
SAICL (BOE) (CAI ET AL., 2023) 43.4 43.2 37.5 45.1 37.6 49.8 33.3 41.4
BATCHICL (BOE) (ZHANG ET AL., 2024) 31.7 25.4 27.1 32.2 34.4 28.9 35.3 30.7
PREFIX ICL (RAFFEL ET AL., 2020) 40.3 39.6 35.1 43.6 36.8 45.4 34.9 39.4
INVICL(OURS) 45.1 42.9 39.4 45.3 38.3 51.6 34.7 42.4

Target tasks in unseen domains
Non-invariant
AR ICL (RADFORD ET AL., 2018) 31.5 35.7 28.1 56.5 39.2 80.3 34.1 43.6
NOPE (KAZEMNEJAD ET AL., 2024) 32.9 23.4 26.9 63.6 38.2 33.2 32.6 35.8

Invariant
PCW (BOE) (RATNER ET AL., 2022) 35.6 31.3 26.9 65.3 33.7 66.7 34.4 42.0
SAICL (BOE) (CAI ET AL., 2023) 30.7 29.7 26.4 56.2 41.5 64.3 37.1 40.8
BATCHICL (BOE) (ZHANG ET AL., 2024) 24.2 22.3 23.0 31.9 29.4 37.8 36.8 29.3
PREFIX ICL (RAFFEL ET AL., 2020) 31.0 33.0 29.6 63.8 36.4 52.6 34.0 40.1
INVICL(OURS) 44.4 35.8 29.0 67.6 42.6 81.8 37.5 48.4

Finally, we reach our proposed InvICL (Invariant In-
context Learning). Figure 2(d) gives an implementation of
the attention mask. We duplicate the context examples as
(x̃1, ..., x̃n, x̃1, ..., x̃n,xt) and perform a two-step forward
process to encode the context examples. In the first step, we
perform a BoE-style encoding of each context example. In
the second step, we apply a LOO-style mask to obtain the
LOO encodings of each example that are aware of all other
context examples. At last, we use the LOO encodings to
predict the test example xt. This unrolling scheme enables
us to accomplish InvICL in a single forward pass.

4. Empirical Validation of InvICL
In this part, we conduct experiments to evaluate the capacity
of InvICL. Since ICL tasks are generally different from
the pertaining one and some ICL methods introduce new
masking schemes for aggregation (significantly different
from the masking in pretrained model), a short finetuning of
the pretrained model on the ICL tasks using these new ICL
methods is necessary to fully utilize the pretrained model’s
capacity for ICL (Min et al., 2022b; Wei et al., 2021; Iyer
et al., 2022; Cai et al., 2023). Here, we follow MetaICL
(Min et al., 2022b) to do the short finetuning, and evaluate
the meta-trained models on the 7 settings of MetaICL. For
each setting, we test two cases: 1) all target tasks; 2) target
tasks in the training unseen domains (OOD generalization).

Baselines. Following MetaICL, we use GPT-2 Large
(762M) (Radford et al., 2019) as base model, and also
includes GPT-Neo 2.7B (Black et al., 2021) and Pythia-
2.8B (Biderman et al., 2023) (Appendix B.2). For non-
invariant methods, we select AR ICL (Radford et al., 2019)

and NoPE2 (Kazemnejad et al., 2024). For invariant meth-
ods, we select Prefix ICL (Raffel et al., 2020) and three
types of BoE ICL: PCW (Ratner et al., 2022), SAICL (Cai
et al., 2023), and BatchICL (Zhang et al., 2024).

InvICL Outperforms Baselines. Results are in Table 2.
Compared to non-invariant methods, InvICL outperforms
in 4 out of 7 tasks in “All target task” and all the 7 tasks in
“Target tasks in unseen domains”. This indicates that invari-
ance is indeed an crucial property for ICL algorithm, which
incorporate the inductive bias of symmetry into the model
architectures, resulting in an extraordinary improvement on
performance, especially when generalizing to OOD tasks.

Compared to invariant methods, InvICL outperforms 5 out
of 7 tasks in “All target task” and 6 out of 7 tasks in “Target
tasks in unseen domains”. Although being invariant, these
baselines exhibit poor performance (none of them surpasses
AR ICL on average). This highlights the crucial properties
of information non-leakage and context interdependence.

5. Conclusion
In this paper, by distilling the advantages of auto-regressive
language models, we identified two additional desiderata for
invariant ICL: information non-leakage and context interde-
pendence. We proposed a novel invariant ICL scheme called
Invariant In-context Learning (InvICL), which accomplishes
these goals concurrently. Empirically, we show that InvICL
outperforms both invariant and non-invariant ICL methods
on most tasks. These results sparked the unique advantages
of the principled design of invariant ICL.

2Although NoPE alone is invariant, it still utilizes an auto-
regressive LLM which breaks the invariance.
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A. Implementation Details
A.1. Symmetric Positional Encoding

In this paper, we mainly focus on the absolute positional encoding which is used in the GPT family. As shown in Figure 3,
we adopt an independent position encoding scheme that treats each example as an independent sequence, which follows the
design in (Ratner et al., 2022). For each context example x̃i, we always allocate the positional encoding as it starts from
the first position. Denote the maximal sequence length among x̃i as lmax. For the test example xt, we assign its positional
encodings starting from the index ℓmax. This implementation is applicable to BoE ICL, Prefix ICL, and InvICL.
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Figure 3. The symmetric positional encoding applied in our work. pi refers to the learned absolute positional embeddings that are added to
the token embeddings at position i. Figure (a) shows the positional encoding under the standard ICL input sequence. As for the duplicated
input of InvICL, we apply the same positional encoding for the original and the repeated examples, as shown in Figure (b).

A.2. Bag-of-Examples ICL

We introduce the implementation detail of two BoE ICL methods mentioned in the main text, PCW (Ratner et al., 2022),
SAICL (Cai et al., 2023) and BatchICL (Zhang et al., 2024).

PCW (Parallel Context Window). PCW is a work originally aimed at improving the acceptable length of language models.
Denote N be the maximal length of a language model, and n > N be the input length. PCW divides the input into context
windows with length N , and separately puts them into the LM. Finally, it utilizes a “bag-of-window” method (similar
to Figure 2(c), where each block in the mask refers to a context window) to generate the predictions. We note that by
considering each context example as a window in PCW, it can implement the Bag-of-Examples ICL algorithm.

SAICL (Structured Attention for ICL). SAICL is a method proposed to improve the inference efficiency and order-
sensitivity of in-context learning. Similar to PCW, they also encode the context examples independently but are also aware
of the test example. The original method is based on T5 (Raffel et al., 2020), a language model with the encoder-decoder
architecture. We transfer its design to the GPT family by directly taking its attention mask and use the symmetric PE
proposed above.

BatchICL. Instead of conducting N -shot encoding for all context examples, BatchICL utilizes N separate 1-shot encodings
for each context example. It then aggregates the intermediate hidden states of the respective last token, which is subsequently
incorporated into the forward computation of a zero-shot query to generate the final prediction. We basically follows all the
setting introduced in the original paper. As for the layer to extract the aggregated vector, we simply takes the 15-th layer,
since they found that any intermediate or later layer is a fair choice.

A.3. Setting of the Experiments on Linear Regression tasks.

Denote G = {g : X ∈ Rd → R, g(x) = w⊤x + b} as the linear function class. Let DG be a distribution on G, and DX
be a distribution on X . In the training phase, we iteratively sample a random function g ∈ G from DG , and sample i.i.d.
x1, ...,xk+1 from DX . Then, we produce a prompt in the ICL manner P = (x1, g(x1), ...,xk, g(xk),xk+1), and train a
model θ to output [ĝ(x1), ..., ĝ(xk), ĝ(xk+1)] = fθ(P ) (as equation Eq. (1)), where ĝ(xi) is the prediction for g(xi). The
training objective is

min
θ

EDG ,DX

[
1

k + 1

k∑
i=0

ℓ(ĝ(xi), g(xi))

]
, (7)

where ℓ is the MSE loss. In the experiments in Section B.1, we set d = 20, k = 40,DX = N (0, Id), and DG : w ∼
N (0, Id), b = 0.

7



The architecture selection follows (Garg et al., 2022), where a 12-layer GPT-like Transformer decoder is utilized. We
implement the four model types by using the symmetric attention mask and PE.

A.4. Implementation details of Experiments.

As in MetaICL, we utilize 142 tasks including text classification, question answering (QA), natural language inference
(NLI), and paraphrase detection. For each training iteration, we first sample a task Ti from the C meta-training tasks,
and then sample k + 1 training examples (x1,y1), ..., (xk+1,yk+1) from Ti. Given the model parameter θ, the training
objective is maximizing prediction accuracy of yk+1 under the formatting of ICL: maxθ LCE(ŷk+1,yk+1), where LCE is
the cross-entropy loss, and ŷk+1 is the in-context prediction defined in Eq. (1).

Evaluation. Following MetaICL (Min et al., 2022b), we consider 7 evaluation settings: 1) HR→LR, which means training
with high resource data and testing on low resource data; 2) X→X (X={Classification, QA}), which means training and
testing on the same task type, but with no overlap in tasks; 3) Non-X→X (X={Classification, QA, NLI, Paraphrase},
which means training and testing on different task type. The last settings are the most challenging, which require strong
generalization capacities of language models (Min et al., 2022b). For each setting, we make evaluations both on all target
tasks and a subset that contains target tasks in the unseen domains of the source tasks, e.g., medical, financial, and climate.
This setting also challenges the out-of-distribution generalization capability of models.

Truncation. Since MetaICL (Min et al., 2022b) truncates the training sequence when it exceeds the maximum input length
of the LM, and the ICL prompt sequence is duplicated in our implementation of InvICL, the training sequences differ
between InvICL and other methods because of different truncate rates. As shown in Table 3, there is a significant gap in the
dataset size between the standard input and the duplicated input under the truncating setting. To make the comparison fair,
we apply the same truncate rate in InvICL to the normal training sequence so that all the methods share the same training set.
Additionally, we reduce the number of context examples in the training phase from 16 to 8 to control the truncate rate of
InvICL to the same level as standard ICL.

Table 3. Ratio of the remaining data between different input types under the truncating setting of MetaICL (Min et al., 2022b). Here the
number of context examples is set to 8.

INPUT TYPE
HR

→ LR
CLASS

→CLASS
NON-CLASS
→CLASS

QA
→QA

NON-QA
→QA

NON-NLI
→NLI

NON-PARA
→PARA

Remaining ratio of training dataset
STANDARD 70% 90% 71% 59% 80% 85% 85%
DUPLICATED 53% 79% 55% 40% 62% 75% 71%

Direct & Channel. Besides the standard ICL paradigm, MetaICL (Min et al., 2022b) adopts a new inference paradigm
called noisy channel (“Channel”) (Min et al., 2022a) and achieves a better experimental performance. Contrary to the
standard ICL paradigm (also called “Direct” in (Min et al., 2022b)) that takes (x1,y1, ...,xn,yn,xt) as input, the Channel
paradigm takes (y1,x1, ...,yn,xn,yt) and try to generate xt. Note that in order to generate the prediction, Channel ICL
needs to perform n forward passes conditioned on each of the n labels yt and regard the label with minimum perplexity
as the prediction. This will, on the one hand, increase the computational complexity and, on the other hand, reduce its
applicability to the generative tasks where the label space is large, e.g., Question Answering. Therefore, we adopt the
“Direct” setting in our experiments, i.e., the standard ICL paradigm.

B. Additional Experimental Results
B.1. Experiments on Synthetic Scenario

To evaluate the in-context capability of InvICL, we conduct a series of experiments inspired by (Garg et al., 2022). Taking
the linear regression task for example, we train a model to perform linear regression using in-context learning, i.e., the
model takes the sequence (x1, g(x1), ...,xn, g(xn),xt) as input and predicts g(xt) where g is a linear function. Detailed
experimental settings are provided in Appendix A.3. We compared the ICL performance across five models: 1) Auto-
regressive (AR) (Radford et al., 2019); 2) Prefix (Raffel et al., 2020); 3) Bag-of-Examples (BoE) (Ratner et al., 2022); 4)
NoPE (i.e., removing the positional encoding) (Kazemnejad et al., 2024); and 5) InvICL. The MSE loss was reported for
models trained over various epochs, as illustrated in Figure 4. The key insights from our experiments are as follows:

• InvICL converges fast. At 50k epochs, only InvICL demonstrates good ICL performance (Figure 4(a)), while other
models perform well at later epochs (Figure 4(b)).
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Figure 4. ICL performance of different models that are trained with (a) 50k epochs and (b) 200k epochs. “Least Squares” is the optimal
algorithm for the linear regression task.

• InvICL has a strong length extrapolation ability. The models are trained with a sequence length of 40. As shown
in Figure 4(b), when the test sequence length exceeds 40, it is clearly that InvICL >AR ICL >Prefix ICL ≈ NoPE
>BoE ICL in terms of performance. This indicates the strong length generalization capability of InvICL. On one
hand, this result confirms the conventional conclusion that a model that respects the data symmetry enjoys better
generalization capability. On the other hand, it highlights that preventing information leakage and maintaining context
interdependence are crucial for an invariant ICL algorithm.

Besides, we also conduct further experiments demonstrating that InvICL also performs well in other function settings and
out-of-distribution tasks.

Other function settings. We consider two other function settings proposed by (Garg et al., 2022) — sparse linear regression
and decision tree, to illustrate the ability of InvICL to learn algorithms to solve other tasks. Results are given in Figure 5.

1. Sparse linear regression. In this task, a random linear function y = w⊤x + b is sampled to be predicted, yet the
efficient has only 3 non-zero coordinates out of 20 dimensions. Although it is also a linear regression task, its optimal
algorithm is no longer least squares but Lasso, which involves solving the least squares objective with an l1-norm
regularizer for the weight vector. This demands the in-context learners to learn an algorithm different from that in linear
regression to solve this task. Following the experimental settings in our paper, we test the performance of AR ICL
and InvICL which are trained with 200k epochs. We can still observe the consistent results of our paper that InvICL
possesses fast convergence (InvICL converges while AR ICL does not).

2. Decision tree. We follow the setting in (Garg et al., 2022), where the class of depth 4 decision trees with 20-dimensional
inputs is considered. We evaluate the performance of AR ICL and InvICL that are trained with 200k epochs. We
find that although AR ICL performs better than InvICL for short inputs, as the length of the input sequence increases,
InvICL gradually outperforms AR ICL, indicating the strong extrapolation ability of InvICL.

Out-of-distribution Setups. We consider three out-of-distribution setups proposed by (Garg et al., 2022; Chen et al., 2023),
to showcase the generalization capability of InvICL to out-of-distribution (OOD) tasks. We consider a distribution shift
between the training and test datasets. The training data remain consistent with Section A.3. However, for the test data, we
apply the following modification:

1. Add random noise to the labels by altering b = 0 to b ∼ N (0, 1).

2. Scale the data sampling by altering DX = N (0, Id) to DX = N (0, 32Id).

3. Sample the data xi from a random 10-dimensional subspace (out of 20 dimensions).
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(a) Sparse linear regression (b) Desicion tree

Figure 5. ICL performance on sparse linear regression and decision tree.

In Figure 6, we report the testing MSE loss with the models trained for respectively 50k and 200k epochs. We omit Prefix
ICL and BoE ICL for their poor performance. We find that InvICL continues the advantages mentioned earlier, i.e., the fast
convergence and strong extrapolation ability, indicating its strong capacity on OOD tasks.

B.2. Real-world Experiments based on GPT-Neo and Pythia

We also conduct experiments with models based on GPT-Neo 2.7B (Black et al., 2021) and Pythia-2.8B (Biderman et al.,
2023) with other hyper-parameters unchanged, as shown in Table 5. The result is similar to what is demonstrated in the
main text: InvICL outperforms the baseline in most of the tasks and especially performs well in the OOD settings. This
indicates the applicability of InvICL to different base models.

Besides, we note that the three LLMs (GPT-2, GPT-Neo and Pythia) studied in our work utilize three different kinds of PE —
trainable PE, Alibi and Rotary PE, respectively. Therefore, our design of symmetric PE is applicable to a wide range of PEs.

Table 4. The in-context learning performance on GPT-Neo 2.7B.

METHOD HR → LR CLASS
→CLASS

NON-CLASS
→CLASS

QA
→QA

NON-QA
→QA

NON-NLI
→NLI

NON-PARA
→PARA

AVG.

All target tasks
AUTO-REGRESSIVE ICL 45.8 41.2 40.1 46.4 36.8 45.2 33.1 41.2
INVICL(OURS) 46.1 40.2 40.2 48.6 35.8 44.7 33.7 41.3

Target tasks in unseen domains
AUTO-REGRESSIVE ICL 39.1 33.1 31.8 66.5 34.7 56.7 33.1 42.1
INVICL(OURS) 39.6 33.9 32.7 68.1 31.4 56.9 36.0 42.7

Table 5. The in-context learning performance on Pythia-2.8B.

METHOD HR → LR CLASS
→CLASS

NON-CLASS
→CLASS

QA
→QA

NON-QA
→QA

NON-NLI
→NLI

NON-PARA
→PARA

AVG.

All target tasks
AUTO-REGRESSIVE ICL 31.3 22.3 27.8 33.4 33.7 29.7 37.6 30.8
INVICL(OURS) 31.5 26.3 28.5 33.0 35.6 28.0 40.2 31.9

Target tasks in unseen domains
AUTO-REGRESSIVE ICL 20.8 21.0 21.0 43.5 39.7 33.5 34.2 30.5
INVICL(OURS) 20.9 24.2 21.1 44.6 43.7 33.5 38.6 32.4
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Table 6. Ablation study of invariant mask and symmetric positional encodings (PE) on ICL performance and order sensitivity.

METHOD HR→LR (↑) SENSITIVITY (↓)
AR ICL 43.4+1.5 0.25+0.05

+SYM PE 38.4−5.0 0.30+0.05

+INV MASK 44.8+1.4 0.10−0.15

+BOTH (INVICL) 45.1+1.7 0.00−0.25

B.3. Additional experiments for InvICL

Ablation Study. In Table 6, we conduct an ablation study to demonstrate the effect of the two components of InvICL:
the invariant mask and the symmetric positional encoding. The experiments show that either component is important for
invariant ICL. Besides, Table 6 also demonstrates the permutation invariance property of InvICL. Following (Chen et al.,
2022), we measure the order sensitivity as the frequency that the prediction is changed under random permutation. We
observe that both the invariant mask and PE are important for achieving invariance, and a lower sensitivity indicates better
performance.

Length Generalization. The generalization ability to different input lengths is a crucial property of the language model. In
the context of ICL, the ability to adapt to varying numbers of context examples can be perceived as a dimension of its length
generalization capability. However, in the main experiments, the number of context examples remains consistent throughout
both the training and evaluation phases. Hence, we vary the number of context examples, as illustrated in Figure 7. We
observe that InvICL is much more robust than AR ICL when the length of the test data differs from that of the training data,
indicating its strong capability for length generalization.

Computational Cost. We claim that our parallel implementation of InvICL has the same computational complexity order as
full self-attention and AR self-attention. In Table 7, we empirically verify this by evaluating the inference time of different
ICL models, showing that InvICL enjoys roughly the same inference speed as other models. Besides, a question worth
considering is the memory cost of InvICL since it duplicates the input sequence. We find that when the inputs size of the
GPT-2 Large model increases from 512 to 1024, the GPU memory overhead increases by 14% (from 4.2 GB to 4.8GB). We
consider this acceptable given the clear improvements in performance.

C. Theoretical Understanding InvICL from an Optimization Perspective
In this section, we further characterize the advantages of InvICL from an optimization perspective.

InvICL Approximately Implements Gradient Descent. Consider a linear regression task with instances (X,y), where X
consists of row vectors x⊤

i ∈ Rd, and y consists of labels yi ∈ R, i ∈ [n]. The goal is to find the optimal weight vector
w that minimizes the LSE loss L(w) = ∥Xw − y∥2. A standard gradient descent (GD) algorithm updates the weights
iteratively as follows:

wℓ = wℓ−1 − ηX⊤(Xwℓ−1 − y), (8)

where ℓ stands for the iteration step, and η is the step size.

Consider the ICL-style model input, formulated as Z = (z1, ..., zn, z1, ..., zn, zt), where zj =

(
xj

yj

)
, j ∈ [n] are the

context examples, and zt =

(
xt

0

)
is an arbitrary test example. Here we duplicate the input as required by InvICL and

expect the model to predict
(

xt

x⊤
t w

)
at the last token. The theorem below illustrates the evolution of the prediction through

the Transformer layer of InvICL.
Theorem C.1. With the attention weight matrices configured as in Von Oswald et al. (2023), i.e.,

Wk = Wq =

(
Id×d 0
0 0

)
,Wv =

(
0d×d 0
w0 −1

)
,P = ηI,

InvICL implements the following weight updating rule: at the ℓ-th layer of the Transformer, the last token outputs

z
(ℓ)
t =

(
xt

x⊤
t wℓ

)
, where

wℓ = wℓ−1 − ηX⊤(Xwℓ−1 − y) + η2∆wℓ−1. (9)
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Here, ∆wℓ = X⊤(XX⊤ − diag(XX⊤))(Xwℓ − y).

Theorem C.1 shows that the weight updating rule implemented by InvICL (Eq. (9)) is very similar to that of standard GD
(Eq. (8)), differing only by a second-order term. For gradient descent to converge, the step size η should be at most the
inverse of the largest eigenvalue of XX⊤. Under this condition, the term η2∆wℓ−1 is dominated by ηX⊤(Xwℓ−1 − y),
ensuring that InvICL closely approximates the standard GD algorithm in this linear regression task.

Discussion to Other ICL Methods. We provide a comprehensive comparison of all the ICL methods considered in this
paper from the optimization perspective: 1) AR ICL emulates the online GD algorithm (with a constant learning rate) (Ding
et al., 2023), which is not guaranteed to converge; 2) Prefix ICL implicitly implements the standard GD algorithm under a
specific set of parameters for attention (Von Oswald et al., 2023; Ding et al., 2023); and 3) BoE ICL can only update the
weight vector of the test (last) example (not the context examples) without context interdependence. This leads to a constant
gradient computed at the initial point, causing it to fail to converge (detailed discussion is in Appendix D.3).

Compared with these ICL algorithms, InvICL has several distinct advantages: 1) InvICL surpasses AR ICL in terms of
convergence to optimal solutions; 2) Similar to Prefix ICL, InvICL approximately implements the standard GD algorithm
while avoiding information leakage; and 3) Unlike BoE ICL, InvICL effectively incorporates context interdependence,
allowing it to emulate a more efficient GD algorithm. These advantages underscore the theoretical superiority of InvICL,
which synergizes information non-leakage and context interdependence within an invariant ICL framework.

D. Proofs
D.1. Proof of Proposition 3.1

Proof. We will first demonstrate that the attention score matrix A needs to adhere to a specific form when constrained
by the attention mask M, in order to guarantee the permutation equivariance of the embeddings of the context examples.
Subsequently, we will establish that this requirement is equivalent to the permutation invariance of the ICL prediction with
respect to the context examples.

Lemma D.1. Given an input matrix H = (h1, ...,hn)
⊤ ∈ Rn×d and its attention score matrix A ∈ Rn×n defined in

Eq. (2). Denote SA(H) = AHWvP be the self-attention operation, where A is defined in Eq. (2). Then, SA(H) is
permutation equivariant to {hi} iff the attention mask M is equal to

0 −∞ · · · −∞
−∞ 0 · · · −∞

...
...

. . .
...

−∞ −∞ · · · 0

 ,


−∞ 0 · · · 0
0 −∞ · · · 0
...

...
. . .

...
0 0 · · · −∞

 , or 0.

Proof. Denote T ∈ Rn×n be a permutation matrix on the row vectors of H. This implies that T ∈ {0, 1}n×n and
1⊤
nT = 1⊤

n , T1n = 1n. Then the permutation equivariant condition can be stated as TSA(H) = SA(TH). Since
SA(H) = softmax

(
HWq(HWk)

⊤ +M
)
HWvP, the condition can be expanded as

T softmax
(
HWq(HWk)

⊤ +M
)
HWvP

=softmax
(
THWqW

⊤
k H

⊤T⊤ +M
)
THWvP.

(10)

It can be easily verified that 1) the permutation and softmax operations are commutative, and 2) T is orthogonal. Therefore,
the above equation can be transformed to

softmax
(
THWq(HWk)

⊤ +TM
)
HWvP

=softmax
(
THWqW

⊤
k H

⊤ +MT
)
HWvP.

(11)

This is equivalent to
TMT−1 = M (12)

for arbitrary permutation matrix T. Next, we will discuss what kind of matrix M satisfies this condition. For notation
simplicity, we denote T(i, j) as the permutation performed only between the i-th and j-th index.
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• Assume Mi,i = c1. Taking T = T(i, j), from Eq. (12) we have Mj,j = c1. By iterating over j, we have Mk,k = c1
for every k ∈ [n].

• Assume Mi,j = c2, i ̸= j. Taking T = T(i, k), k ̸= j, from Eq. (12) we have Mk,j = c2; taking T = T(j, k), k ̸= i,
we have Mi,k = c2. Hence, by iterative applying permutations in this way, we can conclude that Mk,l = c2 for every
k ̸= l.

In conclusion, M = c1In + c2(1n×n − In). Since the elements of an attention mask can only take the value of either 0 or
−∞, M can only be one of the three forms demonstrated in Lemma D.1 (an all −∞ attention mask is meaningless).

Now we prove the equivalence between the desired permutation invariance property and the equivariance property discussed
in Lemma D.1. As the permutation invariance property involves the ICL prediction, which relies on the test embedding ht, it
is necessary to incorporate it into the discussion. We denote the full input matrix of ICL as H̃ = (h1, ...,hn,ht) ∈ R(n+1)×d,
and the corresponding matrices in the self-attention process as Ã, M̃.

Lemma D.2. Let the output embeddings of the Transformer be H′ = (h′
1, ...,h

′
n,h

′
t). Then, h′

t is invariant to the
permutation of (h1, ...,hn) iff (h′

1, ...,h
′
n) is equivariant to the permutation of (h1, ...,hn).

Proof. First, we need to extend existing results to the circumstance of the full input H̃. Consider the attention mask
M̃ ∈ R(n+1)×(n+1) of the full input, whose n× n submatrix at the upper-left is equal to M, i.e., M̃1:n,1:n = M. From the
condition in the Proposition we have that M̃n+1,: = 0⊤

n+1. Besides, it is evident that Proposition 3.2 also satisfies for M̃,
we have M̃1:n,n+1 = −∞ · 1⊤

n . Other variables can be naturally extended.

In Lemma D.1, we have proved that the equivariance property is equivalent to the attention mask M being one of three
specific forms. Now we prove the contrapositive statement of Lemma D.2.

If (h′
1, ...,h

′
n) is not equivariant to the permutation of (h1, ...,hn), by Lemma D.1, the mask on context examples M

must satisfy either 1) ∃i ̸= j, s. t.Mii ̸= Mjj , or 2) ∃i ̸= j, k ̸= l, s. t.Mij ̸= Mkl. We separately demonstrate that
these properties will break the property of permutation invariance. For the following circumstances, we uniformly let
Wq = Wk = Wv = P = In+1. Denote the embedding of hi after k self-attention layer as h(k)

i . Then, the embeddings
are updated as

h
(k+1)
i =

∑
j=1,...,n,t

[s(h
(k)
i ,h

(k)
j ) + M̃ij ]h

(k)
j , (13)

where s(·, ·) is the similarity function calculated by their inner product and softmax normalization, which is defined in 2.

• ∃i ̸= j, s. t.Mii ̸= Mjj . Without loss of generality, since the elements of M only take the value of either 0 or infty,
we let M11 = 0,M22 = −∞. Then we construct the input matrix as h1 = e1,h2 = e2,hi = 0(i > 2),ht = 0,
where ei denotes the i-th unit vector (i ∈ [d]). Since M22 = M2,n+1 = −∞, following Eq. (13), we find that
h
(1)
2 = c1e1. And since M11 = 0, we have h

(1)
1 = c2e1 + c3e1.

Now we permute the first and second examples, i.e., h1 = e2,h2 = e1. Although we find that the first update of the
test embedding remains unchanged since Eq. (13) is permutation invariant for hk

t , the second update differs. Since
we have h

(1)
2 = c1e2 and h

(1)
1 = c3e1 + c2e1, the aggregation h

(2)
i changes. Therefore, the property of permutation

invariance is broken.

• ∃i ̸= j, k ̸= l, s. t.Mij ̸= Mkl. Without loss of generality, let Mij = 0,Mkl = −∞. We construct hi = e1,hk =

e2, h̸=i,k = 0. Then, we have h
(1)
j = c1e1 + c2e2, and h

(1)
l = c3e1. Similar to the above process, we can prove that

ht is not permutation invariant w.r.t. the index exchange (i, j)↔ (k, l).

In conclusion, any attention mask M that violates Lemma D.1 will break the property of permutation invariance. Thus
Lemma D.2 is proved.

Finally, by combining Lemmas D.1 and D.2, we can deliver Proposition 3.1.
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D.2. Proof of Proposition 3.2

Proof. Consider the case that G has no self-loops. Since G is a digraph with no cycles, it is a directed acyclic graph (DAG).
According to the graph theory (Cormen et al., 2022), DAG can be topologically ordered, which means in this ordering, any
vertex is not reachable from later vertices in the graph. Therefore, if we reorder the vertices in this way, we have Aij = 0
for i ≤ j, which infers that A is strictly lower diagonal. Since the original graph allows self-loop, which corresponds to
the diagonal elements, the adjacency matrix is lower triangular. This is equivalent to that the attention mask on context
examples M is lower triangular.

D.3. Proof of Theorem C.1

Proof. We mainly adopt the setting of Von Oswald et al. (2023) and Ding et al. (2023). Let Z = (z1, ..., z2n, z2n+1) ∈

R(d+1)×(2n+1) be the duplicated input of InvICL, where zj =
(
xj

yj

)
,xj ∈ Rd,yj ∈ R, and zi = zn+i for i ∈ [n]. Consider

the linear self-attention layer in the scheme of InvICL. Given the query, key, value matrix Wq,Wk,Wv ∈ R(d+1)×(d+1)

and the projection matrix P ∈ R(d+1)×(d+1), the updating rule of the layer is as follows:

zj ← zj +PWvzj(z
⊤
j W

⊤
k Wqzj),

zn+j ← zn+j +PWv

∑
i∈[n]\{j}

zi(z
⊤
i W

⊤
k Wqzn+j),

z2n+1 ← z2n+1 +PWv

n∑
i=1

zn+i(z
⊤
n+iW

⊤
k Wqz2n+1),

(14)

where j ∈ [n]. Following the setting of Von Oswald et al. (2023) and Ding et al. (2023), we let

Wk = Wq =

(
Id×d 0
0 0

)
,Wv =

(
0d×d 0
w(0) −1

)
,P = ηI. (15)

Now, we hope to see what kind of iterative algorithm can naturally be implemented by InvICL. Before that, we first give the
L2
2 loss after doing one step of gradient descent

∥X(w − ηX⊤(Xw − y))− y∥2

= ∥Xw − y − ηXX⊤(Xw − y)∥2

= ∥(I− ηX⊤X)(Xw − y)∥2.
(16)

To compare InvICL with the conventional attention heads for ICL linear regression, here we investigate the convergence
properties of the leave-one-out scheme in Eq. (17) viewed as an optimization algorithm for solving the regression problem,
and compare it to that of gradient descent. It turns out that if we use the same weighting strategy as Von Oswald et al. (2023)
but with InvICL, then we obtain a similar iterative algorithm for in-context linear regression according to which the last row
of Z evolves, but the update rule transforms into

wℓ = wℓ−1 − ηX⊤(Xwℓ−1 − y′), (17)

where
y′ = y − ηXX⊤(Xwℓ−1 − y) + η[x⊤

i xi(x
⊤
i wℓ−1 − yi)]

n
i=1 (18)

is the label updated by the leave-one-out scheme. This equation is obtained by first perform a gradient descent step w.r.t. the
whole dataset with gradient update ηX⊤(Xw − y) and then minus the term w.r.t the i-th data point xi(x

⊤
i w − yi).

Expanding Eq. (17), we get that the global update becomes

wℓ = wℓ−1 − ηX⊤(Xwℓ−1 − y′)

= wℓ−1 − ηX⊤(Xwℓ−1 − y + ηXX⊤(Xwℓ−1 − y)

− η[x⊤
i xi(x

⊤
i wℓ−1 − yi)]

n
i=1)

= wℓ−1 − ηX⊤(Xwℓ−1 − y) + η2X⊤XX⊤(Xwℓ−1 − y)

− η2X⊤Diag(XX⊤)(Xwℓ−1 − y).

(19)
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This delivers Eq. (9).

Remark. In BoE ICL, since the context examples cannot interact with each other, the GD algorithm implemented by it
can only update the weight vector w of the test (last) example, but not the context examples. Particularly, this means the
gradient update process is wℓ = wℓ−1 − g(w0, {xi, yi}), where g is the update function of BoE ICL. This means that the
gradients are always computed at the initial point of the algorithm, thus the algorithm cannot converge.

E. Related Work
The order-sensitivity of ICL. The phenomenon that ICL is sensitive to the permutation of context examples has been
observed in several works. Zhao et al. (2021) and Lu et al. (2022) used GPT-3 to perform in-context learning on classification
tasks such as SST-2 and observe a high variance w.r.t. the permutation of the context examples. Besides, Xie et al. (2021)
and Agrawal et al. (2022) found the same phenomenon on a generated synthetic dataset and machine learning tasks,
respectively. Additionally, Chen et al. (2022) empirically showed that the order-sensitivity is negatively correlated to the
performance of ICL. To address this issue, Zhao et al. (2021) proposed a calibration module to make the output distribution
consistent with prior knowledge. Lu et al. (2022) filtered out the best prompt ordering by investigating their calibration
on a generated set. Xiang et al. (2024) utilizes contrastive learning to align representations of in-context examples across
different positions, resulting in the alleviation of order sensitivity. Besides, there are works that focuses on implementing
the concept of permutation invariance from an architectural perspective. For example, SAICL (Cai et al., 2023) proposed
a structured attention mechanism that achieves permutation invariance. However, their work is based on improving the
ICL performance of T5 (Raffel et al., 2020), a language model based on an encoder-decoder architecture, which did not
address the order-sensitivity issue of auto-regressive LMs. BatchICL (Zhang et al., 2024) is the work that is most relevant
to us. Instead of conducting N -shot encoding for all context examples, it utilizes N separate 1-shot encodings for each
context example. It then aggregates the intermediate hidden states of the respective last token, which is subsequently
incorporated into the forward computation of a zero-shot query to generate the final prediction. In this way, the model
achieves permutation invariance since the encoding of the context examples are independent.

The connection between ICL and Gradient Descent. Early stage formal theoretical investigation of the linear regression
in-context learners includes Akyürek et al. (2022); Von Oswald et al. (2023). They first showed that Transformers learn in
context via gradient descent, where one layer performs one gradient update. In subsequent work, von Oswald et al. (2023)
further argued that Transformers are strongly biased towards learning to implement gradient-based optimization routines.
Ahn et al. (2023) showed Transformers can learn to implement preconditioned Gradient Descent, where the pre-conditioner
can adapt to the data. Bai et al. (2023) provided detailed constructions for how Transformers can implement a range
of learning algorithms via gradient descent. Dai et al. (2022) conducted experiments on NLP tasks and concluded that
Transformer-based language models performing ICL behave similarly to models fine-tuned via gradient descent; however,
concurrent work argued that real-world LLMs do not perform ICL via gradient descent (Shen et al., 2023). Fu et al. (2023)
argued that Transformers actually learn to perform in-context learning by implementing a higher-order optimization method,
not gradient descent. Predictions made by different Transformer layers match iterations of higher-order optimization
methods better than they match iterations of gradient descent.
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(a) Random noise, 50k epochs.
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(b) Random noise, 200k epochs.
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(c) Scaling, 50k epochs.
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(d) Scaling, 200k epochs.

(e) Half subspace, 50k epochs. (f) Half subspace, 200k epochs.

Figure 6. ICL performance on OOD tasks. The training dataset remains consistent with Section B.1, but we change the distribution of the
test dataset. Random noise: changing the distribution of the linear bias from b = 0 to b ∼ N (0, 1). Scaling: changing the sampling
distribution of xi from DX = N (0, Id) to DX = N (0, 32Id). Half subspace: Sample the data xi from a random 10-dimensional
subspace (out of 20 dimensions).
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Figure 7. The length generalization behavior of InvICL and AR ICL on
HR→LR setting. The models are meta-trained by sequences with 8 context
examples.

Table 7. The inference time of different models.

Method Inference time (ms)

AR ICL 21.9
PCW (BoE ICL) 21.7
Prefix ICL 22.0
InvICL 22.0
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