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FLORA: A Unified Generalist Model for Visual Brain Decoding via Multimodal
Neural Embeddings
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Figure 1. A comparative overview of visual decoding paradigms: (a) Single-modality decoding involves a neural encoder and a neural
decoder, designed to process only one type of neural data at a time. (b) Multi-modality decoding employs distinct encoders tailored for
various neural data types, with a unified decoder for subsequent tasks. (c) Unified Multi-modality Model (Ours), featuring a shared,
integrated encoding process that captures complementary representations across diverse neural data modalities. This architecture facilitates
seamless interaction with multiple downstream tasks, embodying a one-to-any paradigm.

Abstract
Decoding visual information from neural data
using artificial intelligence enhances our under-
standing of the human visual system. How-
ever, simultaneously acquiring paired neural data
across modalities is challenging, leading most
existing approaches to process these signals in-
dependently. This neglects their complementary
characteristics and hinders decoding performance.
In this study, we introduce FLORA, an end-to-
end generalist model designed to integrate cross-
modal neural data—including EEG, MEG, and
fMRI—to construct a unified neural representa-
tion. FLORA employs multimodal large language
models (MLLMs) alongside multimodal adapters
and specialized diffusion model decoders, achiev-
ing superior performance on downstream tasks
(e.g., neural signal retrieval and visual stimu-
lus reconstruction) compared to single-modal ap-
proaches. By leveraging high-performance mod-
els, FLORA minimizes the number of parame-
ters in the alignment and fusion layers, ensur-
ing cost-effective fine-tuning. This design facil-
itates efficient training and seamless integration

of extra modalities and datasets. Our approach
holds promise for advancing our understanding
of the brain’s visual mechanisms and fostering
new insights within the cognitive science and
brain-computer interface communities. Our code
is available at https://anonymous.4open.
science/r/FLORA-2C4A.

1 Introduction

The brain processes external stimuli by receiving and encod-
ing information through the coordinated activity of large-
scale neural networks and intricate mechanisms. Gaining
insight into these processes is essential, as it can reveal
fundamental neural mechanisms and broaden potential ap-
plications in fields like brain-computer interfaces (BCIs).
Recent advancements in computer science, particularly with
generative models and pre-trained techniques, have driven
substantial progress in decoding neural data from various
neural modalities, including EEG (Li et al., 2024b; Kim
et al., 2024), fMRI (Chen et al., 2023b; Caro et al., 2023),
and MEG (Benchetrit et al., 2024; Cui et al., 2024). By
leveraging the power of deep learning and unsupervised
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algorithms, these methods are reshaping our capacity to
interpret complex patterns of brain activity and enhancing
the real-time decoding of neural signals.

One core challenge in achieving better decoding perfor-
mance lies in establishing cross-modality representations for
diverse neural data. Such data exhibit significant complexity
and variability, influenced by factors like individual subjects,
acquisition devices, visual content, and spatial-temporal dy-
namics. Existing approaches often rely solely on a single-
modality (Pan et al., 2024; Xia et al., 2024c) or alignment
among neural data, images, and text with contrastive learn-
ing (Fu et al., 2024; Jiang et al., 2024; Lin et al., 2022).
These strategies either limit the decoding performance or
introduce unconfirmed prior knowledge. Recent works de-
velop multi-encoder structures such as NeuroBind (Yang
et al., 2024a), which deploys distinct encoders tailored for
specific types of neural data. Additionally, unified-encoder
architectures like UMBRAE (Xia et al., 2024b) have aimed
to establish a uniform representation across different neural
data modalities. While these efforts demonstrate progress
in enhancing performance for various downstream tasks,
they remain constrained by the inherent limitations of single
modalities and the lack of effective modal complementarity.
This challenge highlights the critical need for more cohesive
and innovative frameworks that not only integrate multiple
modalities but also facilitate their unique characteristics to
improve overall decoding properties.

Inspired by the power of multimodal large language models
(MLLMs) in processing the input information in a wider
variety of forms (Liu et al., 2024), we utilize it to integrate
multi-modal neural data, for enhancing the encoding and
decoding performance of complex brain activity in a previ-
ously unattainable way with single-modal data. In this work,
we develop FLORA, a multimodal large language model
that processes four modalities (i.e., EEG, MEG, fMRI, and
behavioral data) within a unified framework. As illustrated
in Fig. 1, FLORA comprises multimodal encoders, and a
trainable mixture of experts (MoE) to perfrom universal
projection across modalities. Unlike previous approaches,
the encoder in FLORA is trained on a diverse range of
multimodal data, including 16,540 paired EEG-image sam-
ples (Grootswagers et al., 2022), 19848 paired MEG-image
samples, and 8540 paired fMRI-image samples (Hebart
et al., 2023), ensuring shared representations across all
modalities. To evaluate the FLORA model, we apply it
for downstream tasks including retrieval, caption, and re-
construction compared to single-modality models. Through
solid experiments, we find that FLORA outperforms main-
stream single-modality-based decoder frameworks in all
downstream tasks, benefiting from its unified training strat-
egy. The unification in FLORA advances neuroscientific
insights into visual representation in the brain and broadens
practical Brain-Computer Interface (BCI) applications.

Our work has three main contributions.

• We propose a novel unified encoder to capture diverse
neural data embeddings, realizing feature complemen-
tarity across heterogeneous neural modalities.

• Our framework, FLORA, enables seamless alignment
and integration with various downstream tasks, sig-
nificantly enhancing its adaptability and achieving
SOTA performance across joint-subjects visual decod-
ing benchmarks.

• To the best of our knowledge, FLORA is the first work
to concurrently unify multiple modalities (EEG, MEG
and fMRI) and task paradigms, providing a cohesive
computational foundation for non-invasive neural de-
coding and BCI applications.

2 Related work

2.1 Visual decoding via uni-modal neural data

Significant progress has been made in visual decoding
through single modalities such as EEG, fMRI, and MEG.
Early research predominantly focused on leveraging deep
learning techniques to classify (Zheng & Chen, 2021;
Spampinato et al., 2019) and retrieve (Ye et al., 2022) vi-
sual stimuli based on neural recordings. In recent years,
visual decoding has achieved unprecedented quality (Sun
et al., 2023; Zhou et al., 2024; Benchetrit et al., 2024; Ma
et al., 2024), driven by advancements in generative models
(Ho et al., 2020; Rombach et al., 2022; Liu et al., 2022)
and LLMs (Touvron et al., 2023; Brown et al., 2020). For
instance, RealMind (Li et al., 2024a) utilizes multimodal
models that combine the ability of semantic and geomet-
ric information, leading to improved decoding performance.
Additionally, (Scotti et al., 2024b) demonstrates high-quality
cross-subject reconstruction and retrieval capabilities, re-
quiring minimal data, particularly valuable in scenarios with
limited sample sizes. Moreover, (Benchetrit et al., 2024)
successfully achieves real-time level retrieval and gener-
ation by capitalizing on the high temporal resolution of
MEG, thereby enhancing the decoding of dynamic visual
perception. These advancements underscore the practicality
and effectiveness of utilizing artificial intelligence to gain
insights into visual information processing and the function-
ing of the visual system.

2.2 Multimodal Large Models

Multimodal Large Language Models (MLLMs) have trans-
formed AI by enabling seamless integration and generation
of information across diverse modalities, including text,
images, audio, video, and 3D objects. Foundational archi-
tectures like single-tower models (e.g., ViT (Dosovitskiy
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Figure 2. Overall Architecture of FLORA. FLORA comprises neural modality encoders, a universal projection, and a Mixture of
Experts (MoE) projection module, with separate outputs for each modality. Left: The modality encoders, implemented as a time series
backbone network with spatial-temporal convolutional layer, transforms the input signal into a sequence of tokens. The universal encoder
is designed to align high-dimensional feature representations from heterogeneous data. Middle: The MoE projection module projects and
aligns diverse neural modalities into a unified semantic representation space. Right: Various task heads facilitate different downstream
tasks such as retrieval, captioning, and reconstruction. All modules are jointly trained during the same stage, optimizing computational
efficiency.

et al., 2021)) and multi-tower models (e.g., CLIP (Radford
et al., 2021)) pioneered image-text alignment, establishing
the basis for multimodal learning. Building on these innova-
tions, models like BLIP (Li et al., 2022), BLIP-2 (Li et al.,
2023), Qwen-VL (Bai et al., 2023), and DALL·E (Ramesh
et al., 2022) have significantly improved cross-modal under-
standing and generative capabilities. Inspired by the success
of vision-language models, recent research has expanded
to include audio (e.g., Tacotron (Shen et al., 2018), Nat-
uralSpeech (Tan et al., 2022)), video (e.g., Create-to-Tell
(Pan et al., 2018), DreamVideo (Wang et al., 2024a)), and
3D objects (e.g., DreamFusion (Poole et al., 2022)). Mod-
els like NExT-GPT (Wu et al., 2024) exemplify versatile
multimodal capabilities, seamlessly interacting across text,
images, audio, and video using distinct encoders tailored
to various downstream tasks. Similarly, Meta-Transformer
(Zhang et al., 2023) utilizes a unified parameter set to en-
code data from multiple modalities, effectively supporting a
wide range of task types.

3 Method

Formulation. Let T represent the length of neural data,
C the number of channels, and N the total number of
data samples. Our objective is to derive neural embed-
dings Z = E(X) ∈ RN×F from the brain activity data
X ∈ RN×C×T , where E is the unified encoder and F
is the projection dimension of the embeddings. Concur-

rently, we use the CLIP model to extract image embeddings
Ẑ ∈ RN×F from images I . Our goal is to effectively align
the multimodal representation with the image representation,
as illustrated in Fig. 2.

3.1 Model Architecture

Our method aims to process the combination of multiple
modalities of neural data via one unified model. All cross-
modal neural features are efficiently aligned through the
MoE module, maximizing complementary strengths across
modalities. Multi-stage training strategies are applied to the
encoding and alignment procedure. In the training phase,
encoders are trained with neural data and image pairs using
a contrastive learning framework. Then each modality is
aligned by entering the Unified Projector based on each pre-
trained encoder. In the inference phase, neural embeddings
from the Unified Projector can be used for a variety of zero-
shot tasks, including EEG/MEG/fMRI image classification,
retrieval, and image reconstruction.

3.1.1 NEURAL FEATURE EXTRACTION MODULE

This module is mainly employed to address the cross-subject
challenges in multimodal neural data decoding as shown in
Fig. 3. The core difficulty arises from the heterogeneous
neural responses of different subjects to identical visual
stimuli, leading to substantial inter-subject variability in

3
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tokens. Multi-granularity attention is applied to the embedded tokens of correlated variables, enhancing interpretability and revealing
electrode-level correlations. The representations for each token are then assigned through the router layers. Subsequently, Temporal-Spatial
convolution is employed to mitigate overfitting while improving the model’s capacity for temporal-spatial representation learning.

the data. By incorporating multi-granular approaches, as
proposed in (Wang et al., 2024c), into the encoder architec-
ture, inter-subject heterogeneity can be mitigated, thereby
facilitating the learning of shared joint embeddings across
subjects.

For input neural signal X ∈ RT×C , the architecture first
performs Multi-Granularity Time Patching with exponen-
tially increasing patch lengths {21, 22, ..., 2n}: x

(i)
p ∈

RNi×(2i·C), Ni = ⌈T/2i⌉. Then we get a group tokens
x(i) ∈ RNi×D by:

x(i) = x(i)
p W (i) +Wpos[1 : Ni] +W (i)

gr (1)

where Wpos[1 : Ni] ∈ RNi×Dis the first Ni rows of the
positional embedding Wpos, and a learnable granularity em-
bedding W

(i)
gr ∈ R1×D. And the router is used in the multi-

granularity self-attention (as described later) for each granu-
larity:

u(i) = Wpos[Ni + 1] +W (i)
gr (2)

The embeddings undergo a two-stage Multi-Granularity
Attention mechanism. In the first stage, intra-granularity
attention captures temporal dependencies within each scale
by concatenating patch embeddings with their correspond-
ing router. The intermediate sequence of embeddings
z(i) ∈ R(Ni+1)×D is formed as:

z(i) = Concat(x(i), u(i)) (3)

where x(i) ∈ RNi×D represents patch embeddings at scale
i, and u(i) ∈ R1×D is the router embedding. Self-attention
is applied on each z(i) to update both x(i) and u(i). The

collection of all scale-specific representations is:

Z = Concat(z(1), z(2), ..., z(n)) (4)

Then, inter-granularity attention facilitates information ex-
change across scales through router interactions. All router
embeddings are aggregated:

U = Concat(u(1), u(2), ..., u(n)) ∈ Rn×D (5)

These router embeddings serve as query vectors to attend
to features across scales. The attended features are concate-
nated as:

Hattn = Concat(x(1), x(2), ..., x(n)) ∈ R(
∑n

i=1 Ni)×D (6)

Finally, Hattn is processed through a temporal-spatial con-
volution module to obtain Hconv, followed by an MLP to
get the final encoding Y ∈ RD, which aligns with CLIP
embeddings of the corresponding visual stimuli image.

3.1.2 UNIFIED PROJECTION MODULE

Aligning the multimodal neural representation space with
the visual embedding space of the CLIP model is a crucial
step, particularly given the complexity and heterogeneity
of the multimodal neural imaging-image pairs. We employ
a MoE module (Zhu et al., 2024), which has K projection
experts E1, E2, . . . , EK , where each expert is a two-layer
MLP, and a soft router Rsoft to control the contribution of
each expert.

Using a small network g, we use the soft router computes
a score vector for each token, with a length equal to the
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number of experts K. Finally, the Softmax function is
applied to obtain the final routing vector, yielding the final
routing vector. It can be formulated as:

Rsoft(xi) =
Sigmoid(g(xi))∑
Sigmoid(g(xi))

(7)

To alleviate the heterogeneity of different neural modalities.
Rsoft is a lightweight MLP designed to receive the inputs
of different encoders, and calculate the routing weights
Wsoft ∈ RN×F×K of each expert for each neural token,
which can be formulated as:

Wsoft(Z) = σ ·Rsoft (Z) (8)

where σ is the SoftMax function. Then we can obtain
aligned neural tokens Z ∈ RN×F through a weighted sum
of all experts’ output as follows:

Z =

K∑
k=1

Wsoft,k · Ek(Z) (9)

where wsoft,k denotes the routing weight of the k-th projec-
tion expert.

3.2 Training Objective

We applied multiple approaches to loss functions, serving
various downstream tasks. For retrieval tasks, we utilize
CLIP Loss for contrastive learning(Radford et al., 2021).
By aligning fused data F with corresponding image data
I , FLORA could utilize potential of each modalities and
achieve the identification of images seen by subjects with
given neural data. Training consists of three progressive
stages: visual-neural Data contrast training, visual-neural
generation training, and supervised fine-tuning through Uni-
versal Projection.

3.2.1 HIGH-LEVEL VISUAL MODELING

This pipline is primarily used to learn high level unified rep-
resentation from the unified encoder. We use the contrastive
learning functions inspired by (Scotti et al., 2024a) to train
both the multi-tower encoder and Unified Projection:

LSoftCLIP = −
N∑

i,j=1

exp
(

ti·tj
τ

)
Zi

· log

exp
(

pi·tj
τ

)
Z

(p)
i


(10)

Zi =

N∑
m=1

exp

(
ti · tm
τ

)
, Z

(p)
i =

N∑
m=1

exp

(
pi · tm

τ

)
(11)

Where pi = E(xi), ti = CLIPImage(yi). For generative
tasks, including captioning and reconstruction, we incorpo-
rate Mean Squared Error (MSE) loss to ensure consistent

model training for regression-based tasks. As a result, the
overall loss function of FLORA is formulated as a compos-
ite of these individual loss components. The optimization
of model parameters θ is then governed by the following
objective function:

min
θ

L = LBiMixCo|SoftCLIP + α · LMSE + β · Lprior (12)

where α and β are hyperparameters to control the balance
of each loss function.

3.2.2 LOW-LEVEL VISUAL MODELING

Previous works (Scotti et al., 2024b; Li et al., 2024b; Zhang
et al., 2024) have extensively used prior diffusion to en-
hance the transformation of neural data embeddings to im-
age embedding distributions. We continue this approach
with prior diffusion, but use the neural embeddings directly
output by the Unified Projection module for retrieval evalu-
ation—rather than after image prior enhancement, because
this can more objectively measure the degree of alignment
of neural data with the neural manifold of the image without
over-reliance on image priors.

To train the low-level pipline, the original unified encoder
goes through additional CNN upsampler to get f̂ , the ap-
proximation of original f . Then a new image Î is recon-
structed using the Stable Diffusion (Rombach et al., 2021)
VAE decoder D(·) given f̂ , and a compound loss L is mini-
mized:

Llowlevel = ∥D(f)−D(f̂)∥+∥f−f̂∥+λPLP (D(f̂)) (13)

where LP (·) is a perceptual loss such as LPIPS (Zhang et al.,
2018), and λP is loss weights.

4 Experiment

4.1 Dataset and Implementation

Dataset. We jointly trained FLORA with the THINGS-
EEG2 (Gifford et al., 2022), THINGS-MEG, and THINGS-
fMRI (Hebart et al., 2023) datasets to achieve a unified
semantic representation. Notably, we noticed that relatively
few decoding studies (Xue et al., 2024) have utilized the
THINGS-EEG1 dataset (Grootswagers et al., 2022), which
might be due to its low signal-to-noise ratio. This limitation
is primarily attributed to two methodological factors: (i)
the short presentation time of visual stimulus (50ms), and
(ii) the lack of trial repetition (each stimulus viewed only
once by each participant). Finally, we explored fine-tuning
experiments using THINGS EEG1 in the Appendix B. The
THINGS-EEG2 training set consists of 1654 concepts, each
associated with 10 images, with 4 repetitions per image,
while the testing set includes 200 concepts, each represented
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Table 1. Multimodal Retrieval Performance. We present the retrieval performance of various methods on the THINGS-EEG2, THINGS-
MEG and THINGS-fMRI datasets. Retrieval refers to the task of correctly identifying paired neural latent representations from the 200 or
100 class test set clip embeddings. Performance is evaluated across joint subject retrieval tasks, and we report results for several retrieval
configurations: 2-way, 4-way, 10-way, as well as Top-1 and Top-5 accuracy for the 200-way retrieval task (100 for fMRI). FLORA is
compared with previous SOTA methods, including NICE (Song et al., 2023), EEGNetV4 (Lawhern et al., 2018), B.D. (Benchetrit et al.,
2024), MindEyeV2 (Scotti et al., 2024b), UMBRAE (Xia et al., 2024a), ATM-S (Li et al., 2024b), CongnitionCapturer (Zhang et al.,
2024), MindBridge (Wang et al., 2024b), WAVE (Wang et al., 2024d) and MB2C (Wei et al., 2024).In subject results refers to Appendix F.

Model
THINGS-EEG2 THINGS-MEG THINGS-fMRI

2-way 4-way 10-way 200-way 200-way 2-way 4-way 10-way 200-way 200-way 2-way 4-way 10-way 100-way 100-way
Top-1 Top-1 Top-1 Top-1 Top-5 Top-1 Top-1 Top-1 Top-1 Top-5 Top-1 Top-1 Top-1 Top-1 Top-5

NICE 90.10 77.15 57.15 13.80 35.80 60.62 39.62 20.87 2.50 7.88 87.00 74.67 55.00 22.00 51.00
EEGNetV4 88.15 77.05 59.10 12.15 35.85 71.13 48.63 29.38 3.88 11.88 86.00 74.67 55.33 18.00 44.67

B.D. 90.05 76.85 55.85 12.45 34.15 62.12 35.50 17.63 1.88 6.50 72.67 58.33 38.00 6.67 26.00
MindEyeV2 90.25 79.85 64.30 17.35 43.65 64.25 40.25 20.37 2.13 8.38 92.00 80.33 64.33 21.33 60.33
UMBRAE 66.50 41.95 21.85 2.90 10.00 61.75 35.50 16.63 2.00 6.50 85.67 70.67 50.67 16.67 42.67

ATM-S 93.35 83.70 68.60 19.70 48.60 77.00 59.25 38.88 6.25 20.12 92.67 81.67 65.33 24.00 55.33
CongnitionCapturer 92.90 84.00 67.85 20.50 50.70 67.88 47.63 23.57 2.38 10.37 86.67 73.00 55.33 20.67 48.00

MindBridge 89.10 75.35 57.45 15.00 39.15 64.88 40.12 20.13 1.87 7.37 88.33 73.33 55.67 16.67 54.33
WAVE 89.40 75.85 58.80 15.00 39.05 67.50 44.75 24.00 3.00 11.38 88.67 71.67 52.33 20.33 45.33
MB2C 85.20 70.25 49.65 10.20 29.85 61.75 33.25 17.00 1.25 5.50 84.67 69.00 49.67 18.67 42.33

FLORA-unimodal 95.55 86.90 73.45 25.35 57.30 81.75 64.50 46.62 8.00 24.38 91.33 79.00 63.00 26.33 57.33
FLORA-multimodal 94.05 87.30 73.15 25.05 56.35 80.50 61.88 39.75 6.88 23.38 92.33 84.67 70.67 28.33 63.33

by a single image and 80 repeated trials. The original train-
ing set for THINGS-MEG contains 1854 concepts, each
with 12 images (viewed once), and the testing set selects
one unseen image from 200 of these concepts, repeated 12
times. The THINGS-fMRI training set comprises 720 con-
cepts, each associated with 12 images (viewed once), and
the testing set includes 100 concepts, with a single image
selected from each and repeated 12 times. To facilitate zero-
shot evaluation, we reclassified the data during experiments
(Appendix D for more details).

Implementation and training setup. All experiments,
including both training and inference procedures across
modalities, were conducted using two NVIDIA A100-80GB
GPUs. For visual encoding, we employed CLIP (ViT-L-14)
to generate image embeddings. Each modality encoder
was trained on the original training set of the THINGS
dataset for 50 epochs, with a learning rate of 3e-4 and a
batch size of 360, utilizing the AdamW optimizer. During
the forward pass, batches from different modalities were
processed sequentially, with each batch maintaining a size
equal to the specified batch size. Hyperparameters were
shared across all modalities.

4.2 Results on Retrieval

Multimodal retrieval Image retrieval metrics are used
to quantify the extent of fine-grained image information
captured in neural embeddings. The effectiveness of the
image retrieval task is evaluated by computing the cosine
similarity between embeddings derived from EEG, MEG,
and fMRI signals, and the CLIP embeddings for a test set
consisting of images. Tab. 1 presents the average retrieval
performance across all subjects for EEG, MEG and fMRI.

4.3 Results on Reconstruction

Multimodal reconstruction Previous studies have made
significant advancements in the task of reconstructing im-
ages from fMRI data (Takagi & Nishimoto, 2023; Chen
et al., 2023a; Scotti et al., 2024a;b). The SDXL (Podell
et al., 2023) + ip-adapter framework is utilized in the recon-
struction pipline. Our approach builds upon the framework
of MindEye2 (Scotti et al., 2024b), integrating state-of-the-
art models such as SDXL (Podell et al., 2023) and FLUX
for image reconstruction. What distinguishes our work
is the ability to leverage the complementary strengths of
the unified encoder, enabling the reconstruction of images
from latent representations of multimodal neural data across
different modalities using a single model. We employ a
lightweight UNet as a prior diffusion denoising network
to map the embeddings into the image space across dif-
ferent neural modalities. The cross-modal reconstruction
performance results are presented in Tab. 2.

4.4 Results on Captioning

Multimodal caption Prior work (Li et al., 2024a) has
demonstrated that directly reconstructing images from la-
tent representations yields superior performance compared
to first reconstructing the images and then generating cap-
tions. Building on this insight, we further employ Prior
Diffusion to modulate the distribution of model features,
thereby enhancing caption generation performance. Sub-
sequently, we evaluated the captioning performance of our
model by inputting the neural latents from the unified en-
coder to OpenFlamingo (Awadalla et al., 2023). The results
are presented in Tab. 3.
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Table 2. Multimodal Visual Reconstruction. Quantitative evaluation of the reconstruction quality for EEG, MEG and fMRI from all
subjects. Comparative methods include MindEye (Scotti et al., 2024a), BrainDiffuser (Ozcelik & VanRullen, 2023), B.D. (Benchetrit Y,
2023), MindEye2(Scotti et al., 2024b), UMBRAE (Xia et al., 2024a) and ATM-S (Li et al., 2024b).It is noteworthy that, in contrast to other
THINGS dataset-based works that conduct training and inference within single subjects, FLORA implements training and reconstruction
in a cross-subject and cross-modality setting. For detailed descriptions of the evaluation details, please refer to the Appendix D.

Dataset Method Low-level High-level
PixCorr ↑ SSIM↑ AlexNet(2)↑ AlexNet(5)↑ Inception↑ CLIP↑ SwAV↓

MindEye 0.130 0.308 0.917 0.974 0.936 0.942 0.369
BrainDiffuser 0.254 0.356 0.942 0.962 0.872 0.915 0.423

NSD-fMRI B.D. 0.305 0.366 0.962 0.977 0.910 0.917 0.410
MindEye2 0.322 0.431 0.961 0.986 0.954 0.930 0.344
UMBRAE 0.283 0.341 0.955 0.970 0.917 0.935 0.393

THINGS-fMRI FLORA-multimodal 0.090 0.362 0.535 0.548 0.551 0.624 0.676

THINGS-MEG
B.D. 0.058 0.327 0.695 0.753 0.593 0.700 0.630
B.D. (averaged) 0.076 0.336 0.736 0.826 0.671 0.767 0.584
ATM-S 0.104 0.340 0.613 0.672 0.619 0.603 0.651
FLORA-multimodal 0.070 0.291 0.553 0.613 0.567 0.619 0.663

THINGS-EEG2 ATM-S 0.160 0.345 0.776 0.866 0.734 0.786 0.582
FLORA-multimodal 0.117 0.362 0.702 0.772 0.666 0.725 0.604

Table 3. Multimodal Brain Captioning. We compare the performance of various methods for brain captioning. To more clearly illustrate
the superiority of our approach, the baseline method was trained and evaluated on the NSD dataset, while our method was trained and
evaluated on the THINGS-fMRI dataset, in cross-subject settings.

Method BLEU1 ↑ BLEU2 ↑ BLEU3 ↑ BLEU4 ↑ METEOR ↑ ROUGE ↑ CIDEr ↑ SPICE ↑ CLIP-S ↑ RefCLIP-S ↑
SDRecon (Takagi & Nishimoto, 2023) 36.21 17.11 7.72 3.43 10.03 25.13 13.83 5.02 61.07 66.36
OneLLM (Han et al., 2024) 47.04 26.97 15.49 9.51 13.55 35.05 22.99 6.26 54.80 61.28
UniBrain (Mai & Zhang, 2023) - - - - 16.90 22.20 - - - -
BrainCap (Ferrante et al., 2023) 55.96 36.21 22.70 14.51 16.68 40.69 41.30 9.06 64.31 69.90
UMBRAE (Xia et al., 2024a) 57.84 38.43 25.41 17.17 18.70 42.14 53.87 12.27 66.10 72.33
FLORA-unimodal w/o prior fMRI* 36.71 30.58 25.36 18.80 41.14 40.52 4.46 16.19 17.55 73.37
FLORA-unimodal w/ prior fMRI* 33.73 27.77 22.41 16.05 41.73 39.21 4.74 15.05 17.71 59.81

* The evaluation metrics for FLORA were computed using the nltk evaluation framework.

4.5 In-depth Analysis

Visual Concept Localization We adopted a methodology
similar to that presented in (Shen et al., 2024) for localizing
semantic concepts within neural signals. Specifically, we
employed Honeybee (Cha et al., 2024) to extract the target
concepts from natural language with the prompt ”Describe
the main concept in the picture in three words”. These
concepts were encoded by the CLIP ViT-L-14 text encoder
and used as target representations for integrated Grad-CAM,
facilitating the spatial localization of these concepts within
brain signals. We trained a unified encoder incorporating all
three input modalities. The final layers of this model were
leveraged to extract semantic features. Fig. 4 visualizes
the localization outcomes on the THINGS-fMRI dataset,
showing the discrimination of various semantic information
within brain signals in response to novel visual stimuli.

We conducted ablation studies on the localized semantic
concepts. After identifying the relevant concepts within
the original fMRI voxels from visual cortex, we selectively
masked the corresponding voxels. Feature extraction and

visual reconstruction were subsequently performed using
these modified brain signals. In Fig. 5, the targeted removal
of fMRI voxels from specific brain regions associated with
particular semantic concepts led to the exclusion of these
semantics in the reconstructed visual representation.

5 Discussion and Conclusion

Here, we present FLORA, a unified generalist model that
employs a shared encoder to extract cohesive neural rep-
resentations across three distinct modalities: EEG, MEG,
and fMRI. To the best of our knowledge, this represents
the first work to align visual representations across mul-
tiple neural modalities using a unified encoder. FLORA
achieves substantial performance gains across a range of
downstream neural decoding tasks, representing a signifi-
cant step forward in the development of a unified framework
for cross-modal visual neural decoding.

Our framework has several limitations that warrant fur-
ther investigation. First, the samples from different neural
data modalities are imbalanced. Such imbalanced distri-
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Figure 4. Gradient heatmaps of brain activity generated by FLORA. It shows the neural representation of different semantic information
in the brain in response to the same visual stimulus, such as the semantics ’green’ and ’tall’ from the bamboo image.
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Figure 5. Concept analysis on THINGS-fMRI using FLORA through semantic signal nullification. We show the impacts on visual
reconstruction by ablating certain concepts from visual stimuli.

butions of samples across modalities and classes pose a
challenge for the unified encoder in effectively capturing
modality-specific representations, thereby constraining the
overall performance of the framework. To mitigate this is-
sue, one potential solution could involve pre-training the
modality-specific encoders on larger and more balanced neu-
ral datasets, which may enhance their ability to generalize
across modalities. Second, due to the shared parameters
and representation spaces, our framework underperforms
compared to some SOTA methods in certain single-modality
downstream tasks, such as reconstruction and caption gener-
ation. This performance gap could potentially be addressed
by leveraging larger datasets and more sophisticated model
architectures. Finally, inherent limitations of THINGS se-
ries datasets, including their limited size and repetitive na-
ture, restrict FLORA’s ability to enforce consistent category
distributions between training and test sets across modalities.
For example, the fMRI training and test sets exhibit an inclu-
sion relationship in their category sets, which may introduce

biases. To overcome these challenges, larger-scale, cross-
modal datasets with more consistent category distributions
are of high need.

Despite these limitations, FLORA demonstrates the poten-
tial of multimodal grand unified neural decoding by ef-
fectively leveraging the complementary information from
different modalities to enhance performance across various
tasks. Future work may prioritize two key directions: (i)
the utilization of larger neural datasets, both paired and un-
paired, to train robust multimodal foundation models, and
(ii) the exploration of cutting-edge unified model architec-
tures that incorporate advanced components for representa-
tion, alignment, and fusion stages, tailored to diverse neural
decoding tasks. With such a unified framework, beyond the
visual concept analysis (Fig. 4), more scientific questions
can be studied, such as how these semantic representations
across modalities are unified and adapted to personal expe-
riences and knowledge.
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• Sec. B: Additional Ablation Experiments.
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• Sec. E: Comparison with Prior Works.

• Sec. F: Additional Qualitative Results.

B Additional Ablation Experiments

B.1 Ablation Study of FLORA

To assess the contribution of each component within our
framework, we conducted ablation studies on various model
modules in Tab. 4. Using Medformer (Wang et al., 2024c) as
the baseline, we evaluated the impact of the temporal-spatial
convolution module and the Mixture of Experts (MoE) mod-
ule. Additionally, we explored replacing the MoE module
with the Perceiver as the universal projection module; how-
ever, this approach resulted in a prohibitively large number
of parameters, slower computation times, and suboptimal
performance.

The experimental results substantiate that our proposed ar-
chitecture effectively optimizes the trade-off between model
capacity and computational efficiency. The temporal-spatial
convolutional module preserves predictive performance

while substantially reducing the parameter count, thereby fa-
cilitating the scalable processing of high-dimensional neural
datasets. More critically, our soft-routing universal projec-
tion mechanism, when trained with heterogeneous multi-
modal neural data, learns invariant and transferable feature
representations. Traditional MoE module selects a single
expert based on the maximum score, while softrouter imple-
ments a weighted combination of experts. This architectural
paradigm is particularly advantageous for joint-subject mod-
eling, as the exposure to diverse neurophysiological patterns
across modalities during training enhances FLORA’s robust-
ness in addressing inter-subject variability while maintain-
ing a significantly lower computational burden compared
to alternatives such as Perceiver (Alayrac et al., 2022). The
empirical results demonstrate that this routing strategy in
universal projection facilitates knowledge transfer across
modalities, contributing to strong generalization capabilities
in zero-shot cross-modal inference.

The ablation study corroborates our design rationale, high-
lighting the efficacy of multimodal training in bolstering
model generalization—an attribute that becomes increas-
ingly pivotal when scaling to expansive neural datasets
encompassing extensive subject pools and multiple trial
repetitions.

B.2 Supervised Scaling Up on Data Size

We analyzed the effect of training set size on joint subject
training performance using THINGS-EEG2, as illustrated in
6A. This factor is critical for model efficacy. The training set
comprised 1654 distinct concepts × 10 image conditions,
each repeated four times. We preserved all four repetitions
for training. Expanding the dataset size by increasing the
number of conditions yielded substantial improvements in
decoding accuracy, particularly in transitions from 20%
to 40% and from 40% to 60%. Additionally, augmenting
repetitions contributed significantly to performance gains,
notably from 80% to 100%. These findings indicate that,
under joint-subject training, larger datasets facilitate further
performance enhancements. Our approach demonstrates
strong scalability, underscoring its potential for improving
neural decoding with increased data availability.

A key advantage of our cross-modality joint-subject training
framework is its capacity to enable subject adaptation with
minimal training data. To rigorously assess the generaliza-
tion capability of our approach, we leverage the pretrained
unified encoder on THINGS-EEG2, THINGS-MEG, and
THINGS-fMRI to adapt the joint-subject model to THINGS-
EEG1, utilizing varying amounts of training data, as illus-
trated in Fig. 6B. The dataset partitioning strategy for train-
ing and evaluation in THINGS-EEG1 remains consistent
with its original split. We perform adaptation evaluation on
a 200-way image retrieval task (chance level: 0.5%). Given
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Table 4. Retrieval performance of FLORA under varying input projection mechanisms. The first two rows compare time-series Trans-
formers trained using an attention-based algorithm without any projection or feature fusion. The following rows illustrate the impact
of FLORA enhancements. “Medformer”: A multi-granularity time-series model designed for medical data. “Medformer+TSConv”:
Medformer with the addition of temporal-spatial convolution. “Re. EEG”: Retrieval performance on the THINGS-EEG2 dataset. “Re.
MEG”: Retrieval performance on the THINGS-MEG dataset. “Re. fMRI”: Retrieval performance on the THINGS-fMRI dataset.

# Description Para. Model Uni. Proj. Softrouter Re. EEG ↑ Re. MEG ↑ Re. fMRI ↑
1 Med. (Linear) 97.9M Time series ✗ ✗ 18.15 3.50 25.00
2 Med. (TSConv) 18.67M FLORA-uni. ✗ ✗ 26.50 3.00 24.00

3 +Uni. Proj. 162.0M FLORA-multi. ✓ ✗ 26.45 8.38 24.33
4 +Softrouter 162.0M FLORA-uni. ✓ ✓ 25.35 8.00 26.33

+Softrouter 162.0M FLORA-multi. ✓ ✓ 25.05 6.88 28.33

the inherently low signal-to-noise ratio in EEG data, the
zero-shot performance of our model approximates chance
level. However, after 50 epochs of fine-tuning, the model
exhibits notable scalability, underscoring its potential for
efficient subject adaptation and robust cross-modality trans-
fer.

A

B Retrieval performance with new dataset adaptation

Retrieval performance with scaling data

Figure 6. Effect of data size in training and test set (THINGS-
EEG2), and weakly-supervised subject adaptation (THINGS-
EEG1).

C Additional Implementation Details

C.1 Neural Modality Encoders

EEG Encoder. The shape of an EEG signal is R63×250.
With Medformer, we get multiple sets of tokens output
x ∈ R221×250. By temporal-spatial convolution layers,
we then resize the tensor x ∈ R221×250 into a 1D tensor
x ∈ R1×1024.

MEG Encoder. The shape of an MEG signal is R271×201.
With Medformer, we get multiple sets of tokens output

x ∈ R178×250. By temporal-spatial convolution layers,
we then resize the tensor x ∈ R178×250 into a 1D tensor
x ∈ R1×1024.

fMRI Encoder. In the THINGS-fMRI data set, the original
voxel number of visual ROI (Region of Interest) of each of
the three subjects was 6036, 5944 and 5238. In order to facil-
itate model processing, pad was unified to 7000 when data
was loaded. So the shape of an fMRI signal is R7000. We
tokenize it with a linear layer: Linear(Cin = 7000, Cout =
8192). We then resize the output tensor x ∈ R8192 into a
2D tensor x ∈ R8×1024 to align with the input of the trans-
former encoder. With Medformer, we get multiple sets of
tokens output x ∈ R899×250. By temporal-spatial convolu-
tion layers, we then resize the tensor x ∈ R899×250 into a
1D tensor x ∈ R1×1024.

C.2 Low-Level Pipeline

Compared to vision-centric pretraining paradigms such as
ViT, ResNet, and DINO, the CLIP vision model exhibits
a deficiency in capturing fine-grained low-level visual fea-
tures. To mitigate this limitation, our framework integrates
a dedicated low-level visual reconstruction pipeline. Specif-
ically, we aim to reconstruct fundamental perceptual at-
tributes—such as contour, posture, and orientation—by
leveraging EEG-derived representations. This is achieved
through an alignment mechanism with the latent space of a
variational autoencoder (VAE), facilitating the recovery of
pixel-level structural information. By enforcing this latent
alignment, our approach enhances the model’s capacity to
infer and preserve crucial low-level visual semantics from
neural signals, thereby improving the fidelity of EEG-to-
vision mappings.

We trained the low-level reconstruction pipeline for 200
epochs, employing a latent mean squared error (MSE) loss
in conjunction with a contrastive learning loss and a varia-
tional autoencoder (VAE) image reconstruction loss. The
objective was to align the 4× 64× 64 EEG-derived latent
representations—obtained via a projection layer and an up-
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sampling CNN—with the VAE latent space. However, we
observed that the reconstruction loss and contrastive learn-
ing loss underperformed compared to solely optimizing the
latent space loss, while also imposing significantly higher
GPU memory demands.

Furthermore, our investigation revealed that incorporating a
low-level visual model for knowledge distillation in the low-
level reconstruction pipeline not only failed to enhance VAE
latent alignment but also exacerbated overfitting. These
findings suggest that zero-shot low-level visual reconstruc-
tion from EEG signals lacks stability and may introduce
misleading artifacts in the generated outputs.

In our framework, when utilizing the low-level reconstruc-
tion pipeline, we typically set the inference steps of SDXL to
10 (or SDXL-Turbo to 4) and configure the image-to-image
denoising strength to 0.5.

D Evaluation Details

In this section, we will give more evaluation details.

Visual Retrieval tasks. We use forward retrieval (all im-
age embeddings in test set is retrieved using one neural
data embedding) for evaluation. For the neural data of each
modality, we output it as x ∈ R1×1024 and calculate the dot
product similarity with the image embedding, taking the
image with the greatest similarity as the image output by
zero-shot. For THINGS-EEG1, the test set has 12 condi-
tions per concept, so we only take the first image condition
among the 200 concepts in the test set, that is, we use 200
images from 200 categories to test. For THINGS-EEG2, the
test set has only 1 condition per concept, so we test with 200
images from 200 categories. For THINGS-MEG, there are
200 concepts in the test set, each of which has 12 conditions,
so we only use the first condition of each concept as the
test, with a total of 200 images from 200 categories to test.
For THINGS-fMRI, the test set is 100 concepts, where each
concept has 1 condition, so a total of 200 images from 200
categories are tested.

Visual Reconstruction tasks. The test set configuration
of the visual reconstruction task is exactly the same as that
of the retrieval task, except that the image reconstruction has
more indicators to measure the performance of the image
reconstruction. It should be emphasized that, in contrast
to existing approaches on the THINGS dataset which train
models independently for each subject’s neural data and
conduct visual reconstruction, FLORA-multimodal neces-
sitates addressing highly heterogeneous multimodal and
cross-subject neural data in both the training phase and vi-
sual reconstruction inference evaluation. Moreover, within
the fMRI modality, FLORA employs the THINGS-fMRI
dataset, which is smaller in scale than the NSD dataset used

in existing major works, thus requiring the model to more
efficiently utilize limited data resources.

Visual Captioning tasks. The idea of employing Prior dif-
fusion to alter the distribution of model features is inspired
by the two-stage image reconstruction approach described in
ATM-S (Li et al., 2024b), with the expectation of achieving
similar effects in the domain of caption generation. Al-
though the final quantitative results show only marginal
differences, the incorporation of Prior diffusion leads to
more structurally coherent and semantically accurate cap-
tions that better reflect the content of the original images.
The test set configuration for the visual captioning task is
exactly the same as for the retrieval task. The THINGS
image data set lacks the original text captions annotation.
To generate captions for the test set images as ground truth,
we used the prompt ”Please provide a concise and formal
sentence to describe the image, beginning with ’An image
of,’ and keeping it to approximately 10 words.” from the
large model Kimi to obtain descriptions for each image in
the test set. By using different MMLMs as interfaces, we
can generate captions of different qualities from the latent,
and we give an assessment of captioning quality for different
MMLMs adapted to FLORA.

E Comparison with Prior Works

The key distinction between FLORA and previous neural de-
coding approaches lies in its demonstration that specialized
neural encoders, when coupled with a universal projection
layer, can effectively align diverse neural modalities with
visual representations in a unified framework. As evidenced
in Tab. 5, while prior works typically develop independent
architectures for each modality, FLORA achieves multi-
modal integration across EEG, MEG, and fMRI signals
while maintaining a compact parameter footprint (7.36M).
The empirical results (Tab. 1) demonstrate competitive per-
formance across modalities compared to modality-specific
models, while ablation studies (Tab. 4) reveal that joint
training within this unified framework provides particular
benefits for modalities with limited data availability.

The effectiveness of FLORA’s architecture in handling di-
verse neural signals suggests broader implications for scal-
able neural decoding. By successfully integrating mul-
tiple modalities through a shared projection space while
maintaining computational efficiency, FLORA provides in-
sights into architectural design principles for larger-scale
neural models. The framework’s demonstrated capabilities
in addressing fundamental challenges - from cross-subject
variability to zero-shot generalization - while preserving
modality-specific characteristics, establish a foundation for
developing more comprehensive neural decoding systems.
These results not only validate the feasibility of unified mul-
timodal frameworks but also suggest promising directions
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for scaling neural decoding models toward more ambitious
multimodal applications.

Table 5. Comparison between FLORA and related works on visual
retrieval, reconstruction, and caption tasks. Methods compared
include MindEye2 (Scotti et al., 2024b), NICE (Song et al., 2023),
B.D. (Benchetrit et al., 2024), N.F. (Ferrante et al., 2024), Neu-
roVL (Shen et al., 2024), UMBRAE (Xia et al., 2024b), V.D. (Li
et al., 2024b), and NeuroBind (Yang et al., 2024b).

Method Modalities Tasks

MindEye2

NICE

B.D.

N.F.

NeuroVL

UMBRAE

V.D.

NeuroBind

FLORA

F Additional Qualitative Results

To achieve cross-modal concept-level zero-shot retrieval,
we realigned the THINGS-MEG dataset split to match
THINGS-EEG2. Tab.6 demonstrates the impact of this
realignment and trial averaging on retrieval performance.
Notably, due to the realignment, some concepts in both train-
ing and test sets inherit different numbers of trials from the
original MEG dataset structure. To maintain consistency, we
standardized to one trial per concept in the ”unave.” setting.
However, for concepts that were originally in the MEG test
set (which had 12 trials per concept), we also evaluated a
”averaged” setting where these 12 trials were averaged. The
performance improvement from FLORA-unimodal (unave.)
to FLORA-unimodal demonstrates the benefit of this trial
averaging, which effectively improves the signal-to-noise
ratio for these concepts.

Table 6. Impact of average retrieval performance across mul-
tiple conditions on the THINGS-MEG test set. We report the
retrieval performance of FLORA on the THINGS-MEG dataset
under various evaluation settings.

Model
2-way
Top-1

4-way
Top-1

10-way
Top-1

200-way
Top-1

200-way
Top-5

FLORA-unimodal (unave.) 72.38 54.62 36.88 5.75 17.87
FLORA-unimodal 81.75 64.50 46.62 8.00 24.38
FLORA-multimodal (unave.) 74.75 52.00 36.38 6.12 18.25
FLORA-multimodal 80.50 61.88 39.75 6.88 23.38

The original THINGS-MEG dataset presents this evaluation
scenario in its data partitioning: the training set contains
1,654 concepts (12 images per concept, single repetition),
while the test set comprises 200 concepts (1 image per con-
cept, 12 repetitions per image) in a concept-level zero-shot
setting. In this experiment, FLORA-unimodal was trained
without the MoE-based universal projection and multimodal
training, using an independent model for each subject’s
MEG recordings in an in-subject evaluation protocol. While
our model has demonstrated superior performance in cross-
subject zero-shot scenarios with richer data availability (as
shown in Tab.1), it maintains competitive performance in
this more constrained setting, as evidenced in Tab.7. The
results validate that FLORA’s core architecture provides
robust performance even when trained on single-subject
data with limited per-concept samples, without leveraging
the benefits of multimodal training data and cross-subject
information.

Table 7. Retrieval performance on the original THINGS-MEG
dataset. We trained and evaluated various methods on the orig-
inal THINGS-MEG training and test sets. Each method was in-
dependently trained and assessed for each subject, with results
reported for different retrieval configurations: 2-way, 4-way, 10-
way, as well as Top-1 and Top-5 accuracy for the 200-way retrieval
task.The methods compared include NICE (Song et al., 2023),
EEGNetV4 (Lawhern et al., 2018), B.D., MindEyeV2 (Scotti et al.,
2024b) and ATM-S (Li et al., 2024b).

Model
2-way
Top-1

4-way
Top-1

10-way
Top-1

200-way
Top-1

200-way
Top-5

NICE 89.29 76.94 60.19 17.12 40.15
EEGNetV4 85.34 71.78 52.85 12.76 32.38
B.D. 77.16 57.76 37.82 6.06 19.38
ATM-S 90.25 79.50 63.66 17.84 44.73
FLORA-unimodal 87.75 75.25 57.50 15.62 39.37

Our evaluation demonstrates that FLORA achieves strong
performance in both in-subject and cross-subject settings on
the THINGS-EEG2 dataset. When tested in the in-subject
paradigm, where models are independently trained and
tested on individual subjects’ data as is shown in Tab.8,
FLORA maintains competitive performance.

Notably, our cross-subject evaluation results shown in Tab.1
show better retrieval performance compared to the in-subject
setting, validating our model’s effectiveness in addressing
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Table 8. In-subject Retrieval on THINGS-EEG2. We report the
retrieval performance of different methods on the THINGS-EEG2
(in-subject) datasets. Each method is trained and evaluated in each
subject independently, with results for different retrieval configura-
tions: 2-way, 4-way, 10-way, and the Top-1 and Top-5 accuracy of
200-way. The methods compared include NICE (Song et al., 2023),
EEGNetV4 (Lawhern et al., 2018), B.D. (Benchetrit et al., 2024),
MindEyeV2 (Scotti et al., 2024b), UMBRAE (Xia et al., 2024a),
ATM-S (Li et al., 2024b), CongnitionCapturer (Zhang et al., 2024),
MindBridge (Wang et al., 2024b), WAVE (Wang et al., 2024d) and
MB2C (Wei et al., 2024).

Model
THINGS-EEG2 (in-subject)

2-way 4-way 10-way 200-way 200-way
Top-1 Top-1 Top-1 Top-1 Top-5

NICE 93.23 83.93 69.22 21.67 51.34
EEGNetV4 91.42 80.21 63.37 16.84 42.58

B.D. 89.03 56.77 56.77 13.29 35.50
CogCap 93.15 82.85 69.35 22.05 51.60
MB2C 78.40 62.25 43.75 8.85 25.20
Wave 88.65 73.70 54.70 13.00 34.50

MindBridge 89.10 75.35 57.45 15.00 39.15
ATM-S 94.70 86.73 74.00 26.85 57.21

MindEyeV2 92.50 82.80 66.10 23.80 50.25
FLORA-unimodal 93.75 85.70 69.65 21.85 51.65

cross-subject challenges. FLORA’s robust performance can
be attributed to its efficient encoder architecture across dif-
ferent data scales and the flexibility to incorporate or remove
components like the MoE module. These results confirm
FLORA’s capability to deliver strong performance across
various experimental paradigms while effectively leveraging
larger-scale datasets when available.

Table 9. In-subject Retrieval on THINGS-MEG. We report the
retrieval performance of different methods on the THINGS-MEG
dataset in the in-subject setting. Each method is trained and eval-
uated in each subject independently, with results for different
retrieval configurations: 2-way, 4-way, 10-way, and the Top-1
and Top-5 accuracy of 200-way. The methods compared include
NICE (Song et al., 2023), EEGNetV4 (Lawhern et al., 2018), B.D.,
MindEyeV2 (Scotti et al., 2024b) and ATM-S (Li et al., 2024b).

Model
THINGS-MEG (in-subject)

2-way 4-way 10-way 200-way 200-way
Top-1 Top-1 Top-1 Top-1 Top-5

NICE (unave.) 68.65 43.63 24.88 2.63 9.25
EEGNetV4 (unave.) 69.25 49.63 29.00 4.37 13.25

B.D. (unave.) 56.75 35.00 16.12 0.75 5.37
MindEyeV2 (unave.) 68.12 45.13 24.62 2.25 9.37

ATM-S (unave.) 80.13 60.75 42.75 7.38 21.75
FLORA-unimodal(unave.) 76.25 59.12 37.25 6.25 17.25

NICE 79.75 60.75 40.00 6.00 20.50
EEGNetV4 80.37 62.87 41.00 6.75 21.50

B.D. 64.25 43.32 21.50 2.00 8.50
MindEyeV2 76.25 56.88 37.62 6.00 18.75

ATM-S 82.87 68.00 46.13 8.12 27.12
FLORA-unimodal 81.75 66.00 48.13 10.25 26.25

The in-subject evaluation on the THINGS-MEG dataset
demonstrates that FLORA-unimodal achieves state-of-the-
art performance in the averaged condition while maintain-

ing robust performance in the unaveraged setting (Tab.9).
This superior performance, particularly with high-quality
averaged MEG signals, validates FLORA’s strong decoding
capabilities even when operating on smaller-scale datasets.

This consistent performance can be attributed to two fun-
damental aspects of our architecture: first, the model’s
adaptable design that effectively accommodates various
experimental paradigms, and second, its ability to effi-
ciently utilize the enhanced signal-to-noise ratios in av-
eraged MEG data without relying on the advantages of
large-scale datasets. These findings further substantiate
FLORA’s effectiveness as a versatile neural decoding frame-
work, demonstrating robust performance across both joint-
subject and in-subject experimental paradigms.

Table 10. In-subject Retrieval on THINGS-fMRI. We report the
retrieval performance of different methods on the THINGS-fMRI
dataset. Each method is trained and evaluated in each subject
independently, with results for different retrieval configurations:
2-way, 4-way, 10-way, and the Top-1 and Top-5 accuracy of 200-
way. The methods compared include NICE (Song et al., 2023),
EEGNetV4 (Lawhern et al., 2018), B.D. (Benchetrit et al., 2024),
MindEyeV2 (Scotti et al., 2024b), UMBRAE (Xia et al., 2024a),
ATM-S (Li et al., 2024b), CongnitionCapturer (Zhang et al., 2024),
MindBridge (Wang et al., 2024b), WAVE (Wang et al., 2024d) and
MB2C (Wei et al., 2024).

Model
THINGS-fMRI (in-subject)

2-way 4-way 10-way 100-way 100-way
Top-1 Top-1 Top-1 Top-1 Top-5

NICE 90.00 82.67 62.67 25.00 56.00
EEGNetV4 89.00 76.00 56.00 20.33 50.67

B.D. 80.33 69.67 33.33 9.67 24.00
CogCap 93.67 81.33 64.00 27.33 64.00
MB2C 93.00 80.33 61.33 23.67 57.00

Neuro.V2L 86.67 70.67 50.67 15.00 39.67
Wave 91.00 79.67 65.67 29.00 61.00

ATM-S 95.00 81.00 66.67 25.67 60.33
UMBRAE 89.00 77.00 60.00 22.00 50.67

MindEyeV2 95.00 86.67 76.67 32.67 69.00
FLORA-unimodal 92.33 87.00 67.00 24.33 61.67

The in-subject evaluation on the THINGS-fMRI dataset
demonstrates FLORA-unimodal’s strong adaptability in de-
coding capabilities, even when operating on limited single-
subject data. As shown in Tab.10, our model maintains
competitive performance, validating its effectiveness across
varying data scales and modalities. These results substanti-
ate that FLORA, while primarily optimized for cross-subject
scenarios with larger-scale datasets, retains robust decoding
capabilities even when constrained to limited single-subject
fMRI data. This finding further underscores the versatil-
ity of our architectural design across diverse experimental
paradigms.

Examining in-subject retrieval performanceTab. 8, 9, and 10
demonstrate FLORA’s consistent performance across EEG,
MEG, and fMRI modalities in in-subject settings, showing
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that our model, while optimized for cross-subject general-
ization, maintains competitive performance when trained on
single-subject data. Comparing with Tab.1 , notably, while
traditional approaches often suffer significant performance
degradation in cross-subject scenarios, FLORA maintains or
improves its performance when moving from in-subject to
joint-subject settings, proposing a solution to joint-subject
large neural models.

G Additional images results

We present a qualitative comparison of the highest-,
moderate-, and lowest-fidelity generated images in Fig. 7.
EEG data were randomly sampled from all subjects view-
ing 200 images, and corresponding EEG-derived embed-
dings were extracted to condition the image generation
process. By computing the cosine similarity between the
CLIP embeddings of the generated and original images,
we identified six examples for each fidelity category. In
the highest-fidelity group, the generated images exhibit
strong semantic correspondence with the original images
while effectively preserving low-level visual attributes. In
the moderate-fidelity group, the generated images main-
tain semantic coherence with the original stimuli, yet ex-
hibit partial alterations in low-level visual details. In the
lowest-fidelity group, both semantic integrity and low-level
visual structures are substantially distorted, leading to a pro-
nounced divergence from the original images. See Fig. 8
and Fig. 9 for MEG and fMRI reconstruction results.
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Figure 7. Examples of cross-modality EEG-guided cross-
subject visual reconstruction from FLORA. From top to bottom,
we exhibit the best, median, and worst 6 generated images, respec-
tively. We show the images subjects seen and the generated images
by our two-stage image generator.
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Figure 8. Examples of cross-modality MEG-guided cross-
subject visual reconstruction from FLORA. From top to bottom,
we exhibit the best, median, and worst 6 generated images, respec-
tively. We show the images subjects seen and the generated images
by our two-stage image generator.
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Figure 9. Examples of cross-modality fMRI-guided cross-
subject visual reconstruction from FLORA. From top to bottom,
we exhibit the best, median, and worst 6 generated images, respec-
tively. We show the images subjects seen and the generated images
by our two-stage image generator.
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