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Abstract

Most text-driven human motion generation methods employ sequential modeling
approaches, e.g., transformer, to extract sentence-level text representations auto-
matically and implicitly for human motion synthesis. However, these compact
text representations may overemphasize the action names at the expense of other
important properties and lack fine-grained details to guide the synthesis of sub-
tly distinct motion. In this paper, we propose hierarchical semantic graphs for
fine-grained control over motion generation. Specifically, we disentangle motion
descriptions into hierarchical semantic graphs including three levels of motions,
actions, and specifics. Such global-to-local structures facilitate a comprehensive
understanding of motion description and fine-grained control of motion generation.
Correspondingly, to leverage the coarse-to-fine topology of hierarchical semantic
graphs, we decompose the text-to-motion diffusion process into three semantic
levels, which correspond to capturing the overall motion, local actions, and action
specifics. Extensive experiments on two benchmark human motion datasets, in-
cluding HumanML3D and KIT, with superior performances, justify the efficacy of
our method. More encouragingly, by modifying the edge weights of hierarchical
semantic graphs, our method can continuously refine the generated motion, which
may have a far-reaching impact on the community. Code and pre-trained weights
are available at https://github.com/jpthu17/GraphMotion.

1 Introduction

Human motion generation is a fundamental task in computer animation [54, 4] and has many
practical applications across various industries including gaming, film production, virtual reality,
and robotics [61, 8]. With the progress made in recent years, text-driven human motion generation
has allowed for the synthesis of a variety of human motion sequences based on natural language
descriptions. Therefore, there is a growing interest in generating manipulable, plausible, diverse, and
realistic sequences of human motion from flexible natural language descriptions.

Existing text-to-motion generation methods [42, 61, 8, 1, 63] mainly rely on sentence-level repre-
sentations of texts and directly learn the mapping from the high-level language space to the motion
sequences. Recently, some works [54, 8, 62] propose conditional diffusion models for human motion
synthesis and further improve the synthesized quality and diversity. Although these methods have
made encouraging progress, they are still deficient in the following two aspects. (i) Imbalance. The
model, which directly uses the transformers [55] to extract text features automatically and implicitly,
may overemphasize the action names at the expense of other important properties like direction and
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Figure 1: We propose hierarchical semantic graphs, a fine-grained control signal, for text-to-
motion generation and factorize text-to-motion generation into hierarchical levels including
motions, actions, and specifics to form a coarse-to-fine structure. This approach enhances the fine-
grained correspondence between textual data and motion sequences and achieves better controllability
conditioning on hierarchical semantic graphs than carefully designed baselines.

intensity. As a typical consequence of this unbalanced learning, the network is insensitive to the
subtle changes in the input text and lacks fine-grained controllability. (ii) Coarseness. On the one
hand, motion descriptions frequently refer to multiple actions and attributes. However, the compact
sentence-level representations extracted by current works usually fail to convey the clarity and detail
needed to fully understand the text, leading to a lack of fine-grained details to guide the synthesis of
subtly distinct motion. On the other hand, mapping directly of existing works from the high-level
language space to motion sequences further hinders the generation of fine-grained details. Therefore,
we argue that it is time to seek a more precise and detailed text-driven human motion generation
method to ensure an accurate synthesis of complex human motions.

To this end, we propose a more fine-grained control signal, hierarchical semantic graphs, to represent
different intentions for controllable motion generation and design a coarse-to-fine motion diffusion
model, called GraphMotion. As shown in Fig. 1, motion descriptions inherently possess hierarchical
structures and can be represented as hierarchical graphs composed of three types of abstract nodes,
namely motions, actions, and specifics. Concretely, the overall sentence describes the global motion
involving multiple actions, e.g., “walk”, “pick”, and “stand” in Fig. 1, which occur in sequential order.
Each action consists of different specifics that act as its attributes, such as the agent and patient of the
action. Such global-to-local structures contribute to a reliable and comprehensive understanding of
motion descriptions. Correspondingly, to take full advantage of this fine-grained control signal, we
decompose the text-to-motion diffusion process into three semantic levels from coarse to fine, which
are responsible for capturing the overall motion, local actions, and action specifics, respectively.

The proposed GraphMotion has three compelling advantages: First, the explicit factorization of
the language embedding space enables us to build a fine-grained correspondence between textual
data and motion sequences, which avoids the imbalanced learning of different textual components
and coarse-grained control signal representation. Second, the hierarchical refinement property of
GraphMotion allows the model to progressively enhance the generated results from coarse to fine,
which avoids the coarse-grained generated results. Third, to further fine-tune the generated results for
more fine-grained control, our method can continuously refine the generated motion by modifying the
edge weights of the hierarchical semantic graph. Experimental results on two benchmark datasets for
text-to-motion generation, including HumanML3D [14] and KIT [43], demonstrate the advantages of
GraphMotion. The main contributions of this work are as follows:

• To the best of our knowledge, we are the first to propose hierarchical semantic graphs, a
fine-grained control signal, for text-to-motion generation. It decomposes motion descriptions
into global-to-local three types of abstract nodes, namely motions, actions, and specifics.

• Correspondingly, we decompose the text-to-motion diffusion process into three semantic
levels. This allows the model to gradually refine results from coarse to fine. Experiments
show that our method achieves new state-of-the-art results on two text-to-motion datasets.

• More encouragingly, by modifying the edge weights of hierarchical semantic graphs, our
method can continuously refine the generated motion, which may have a far-reaching impact.
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2 Related Work

Text-driven Human Motion Generation. Text-driven human motion generation aims to generate
3D human motion based on text descriptions. Due to the user-friendliness and convenience of natural
language [22], text-driven human motion generation is gaining significant attention and has many
applications. Recently, two categories of motion generation methods have emerged: joint-latent
models [2, 42] and diffusion models [8, 62, 47]. Joint-latent models, e.g., TEMOS [42], typically learn
a motion variational autoencoder and a text variational autoencoder. These models then constrain the
text and motion encoders into a shared latent space using the Kullback-Leibler divergences [29] loss.
The latter category of methods, e.g., MDM [54], proposes a conditional diffusion model for human
motion generation to learn a powerful probabilistic mapping from the textual descriptors to human
motion sequences. Although these methods have made encouraging progress, they still suffer from
two major deficiencies: unbalanced text learning and coarse-grained generated results. In this paper,
we propose to leverage the inherent structure of language [6, 58] for motion generation. Specifically,
we introduce hierarchical semantic graphs as a more effective control signal for representing different
intentions and design a coarse-to-fine motion diffusion model using this signal.

Diffusion Generative Models. Diffusion generative models [49, 18, 11, 21, 50] are a type of
neural generative model that uses the stochastic diffusion process, which is based on thermodynamics.
The process involves gradually adding noise to a sample from the data distribution, and then training
a neural network to reverse this process by gradually removing the noise. In recent years, diffusion
models have shown promise in a variety of tasks such as image generation [18, 50, 11, 19, 57],
natural language generation [3, 36, 13], as well as visual tasks [9]. Some other works [25, 32] have
attempted to adapt diffusion models for cross-modal retrieval [33, 34, 35, 23, 24]. Inspired by the
success of diffusion generative models, some works [62, 54, 8] have applied diffusion models to
human motion generation. However, these methods typically learn a one-stage mapping from the
high-level language space to motion sequences, which hinders the generation of fine-grained details.
In this paper, we decompose the text-to-motion diffusion process into three semantic levels from
coarse to fine. The resultant levels are responsible for capturing overall motion, local actions, and
action specifics, which enhances the generated results progressively from coarse to fine.

Graph-based Reasoning. The graph convolutional network [28] is originally proposed to recognize
graph data. It uses convolution on the neighborhoods of each node to produce outputs. Graph attention
networks [56] further enhance graph-based reasoning by dynamically attending to the features of
neighborhoods. The graph-based reasoning has shown great potential in many tasks, such as scene
graph generation [60], visual question answering [20, 31, 30], natural language generation [6], and
cross-modal retrieval [7]. In this paper, we focus on reasoning over hierarchical semantic graphs on
motion descriptions for fine-grained control of human motion generation.

3 Methodology

In this paper, we tackle the tasks of text-driven human motion generation. Concretely, given an
arbitrary motion description, our goal is to synthesize a human motion x1:L = {xi}Li=1 of length L.
The overview of the proposed GraphMotion is shown in Fig. 2.

3.1 Hierarchical Semantic Graph Modeling

Existing works for text-driven human motion generation typically directly use the transformer [55] to
extract text features automatically and implicitly. However, motion descriptions inherently possess
hierarchical structures that can be divided into three sorts of abstract nodes, including motions, actions,
and specifics. Compared with the sequential structure, such global-to-local structure contributes to a
reliable and comprehensive understanding of the semantic meaning of motion descriptions and is a
promising fine-grained control signal for text-to-motion generation.

Semantic Role Parsing. To obtain actions, attributes of action as well as the semantic role of each
attribute to the corresponding action, we implement a semantic parser of motion descriptions based
on a semantic role parsing toolkit [48, 7]. We extract three types (motions, actions, and specifics) of
nodes and twelve types of edges to represent various associations among the nodes. For details about
the types of nodes and edges, please refer to our supplementary material.
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Figure 2: The overview of the proposed GraphMotion for text-driven human motion generation.
We factorize motion descriptions into hierarchical semantic graphs including three levels of motions,
actions, and specifics. Correspondingly, we decompose the text-to-motion diffusion process into three
semantic levels, which correspond to capturing the overall motion, local actions, and action specifics.

Specifically, given the motion description, the parser extracts verbs that appeared in the sentence
and attribute phrases corresponding verb, and the semantic role of each attribute phrase. The overall
sentence is treated as the global motion node in the hierarchical graph. The verbs are considered as
action nodes and connected to the motion node with direct edges, allowing for implicit learning of
the temporal relationships among various actions during graph reasoning. The attribute phrases are
specific nodes that are connected with action nodes. The edge type between action and specific nodes
is determined by the semantic role of the specifics in relation to the action.

Graph Node Representation. Given the motion description, we follow previous works [53, 54, 61,
8] and leverage the text encoder of CLIP [45] to extract the text embedding. For the global motion
node vm, we utilize the [CLS] token to summarize the salient event described in the sentence. For
the action node va, we use the token of the corresponding verb as the action node representation. For
the specific node vs, we apply mean-pooling over tokens of each word in the attribute phrase.

Action-aware Graph Reasoning. The interactions across different levels in the constructed
graph not only explain the properties of local actions and how local actions compose the global
motion, but also reduce ambiguity at each node. For example, the verb “pick” in Fig. 1 can represent
different actions without context, but the context “with both hands” constrains its semantics, so that it
represents the action of “pick up with both hands” rather than “pick up with one hand.” Therefore,
we propose to reason over interactions in the graph to obtain hierarchical textual representations.

We utilize graph attention networks [56] (GAT) to model interactions in a graph. Specifically, given
the initialized node embeddings v = {vm, va, vs}, we first transform the input node embeddings into
higher-level embeddings h = {hm, ha, hs} by:

hm = W vm, ha = W va, hs = W vs, (1)

where W ∈ RD×D is a shared linear transformation and D is the dimension of node representation.
For each pair {hi, hj} of connected nodes, we concatenate the node hi ∈ RD with its neighbor node
hj ∈ RD, generating the input data h̃ij = [hi, hj ] ∈ R2D of the graph attention module.

However, in a graph with multiple types of edges, the vanilla graph networks need to learn separate
transformation matrices for each edge type. This can be inefficient when learning from limited motion
data, and prone to over-fitting on rare edge types.

To this end, we propose to factorize multi-relational weights into two parts: a common transformation
matrix M ∈ R2D×1 that is shared for all edge types and a relationship embedding matrix Mr ∈
R2D×N that is specific for different edges, where N is the number of edge types. Following GAT [56],
we apply LeakyReLU [39] in the calculation of attention coefficients and set the negative input slope
to 0.2. The attention coefficient ẽij is formulated as:

eij = LeakyReLU(M⊤h̃ij) + LeakyReLU(RijM
⊤
r h̃ij), ẽij =

exp(eij)∑
k∈Ni

exp(eik)
, (2)

4



where Rij ∈ R1×N is a one-hot vector denoting the type of edge between node i and j. Ni is the set
of neighborhood nodes of node i. To alleviate over-smoothing [59] in graph networks, we apply skip
connection when calculating output embeddings. The output embeddings V are formulated as:

Vi = σ
( ∑
j∈Ni

ẽijhj

)
+ vi, (3)

where σ is a nonlinear function. Following GAT [56], we use ELU [10] as the nonlinear function σ.

3.2 Coarse-to-Fine Motion Diffusion Model for Graphs

To leverage the coarse-to-fine topology of hierarchical semantic graphs during generation, we also
decompose the text-to-motion diffusion process into three semantic levels, which correspond to
capturing the overall motion, local actions, and action specifics. During the reverse denoising process,
the fine-grained semantic layer generates results based on the results from the coarse-grained semantic
layer. This allows for a detailed and plausible representation of the intended motion.

Motion Representation. Following previous works [42, 8, 61], we first encode the motion into the
latent space with a motion variational autoencoder [27] and then use diffusion models to learn the
mapping from hierarchical semantic graphs to the motion latent space.

Specifically, we build the motion encoder E and decoder D based on the transformer [55, 41]. For the
motion encoder E , we take C learnable query tokens and motion sequence x1:L = {xi}Li=1 as inputs
to generate motion latent embeddings z ∈ RC×D′

, where D′ is the dimension of latent representation.
For the motion decoder D, we take the latent embeddings z ∈ RC×D′

and the motion query tokens
as the input to generate a human motion sequence x1:L = {xi}Li=1 with L frames.

The loss LVAE of the motion variational autoencoder can be divided into two parts. First, we use the
mean squared error (MSE) to reconstruct the original input. Second, we use the Kullback-Leibler
divergences (KL) loss [29] to narrow the distance between the distribution of latent space q(z|x) and
the standard Gaussian distribution N (0, I). The full loss LVAE is formulated as:

LVAE = Ex∼q(x)

[
∥x−D(E(x))∥22︸ ︷︷ ︸

MSE

+λKL
(
N (0, I)∥q(z|x)

)︸ ︷︷ ︸
KL

]
, (4)

where λ is the trade-off hyper-parameter. q(z|x) = N (µz,Σz) is obtained by sampling based on the
mean µz and variance Σz estimated by the model. To generate motion from coarse to fine step by
step, we encode motion independently into three latent representation spaces zm ∈ RCm×D′

, za ∈
RCa×D′

and zs ∈ RCs×D′
, where the number of tokens gradually increases, i.e., Cm ≤ Ca ≤ Cs.

Hierarchical Graph-to-Motion Diffusion. Corresponding to the three-level structure of the
hierarchical semantic graphs, we decompose the diffusion process into three semantic levels and
build three transformer-based denoising models, which correspond to motions, actions, and specifics.

For the motion level model ϕm, our goal is to learn the diffusion process from global motion node
Vm to motion latent representation zm. In a forward diffusion process q(zmt |zmt−1), noised sampled
from Gaussian distribution is added to a ground truth data distribution zm0 at every noise level t:

q(zmt |zmt−1) = N (zmt ;
√

1− βtz
m
t−1, βtI), q(zm1:T |zm0 ) =

T∏
t=1

q(zmt |zmt−1), (5)

where βt is the step size which gradually increases. T is the length of the Markov chain. We sample
zmt by zmt =

√
ᾱtz

m
0 +

√
1− ᾱtϵ

m, where ᾱt =
∏t

i=1(1−βi). ϵm is a noise sampled from N (0, 1).
We follow previous works [18, 8] and predict the noise component ϵm, i.e., ϵ̂m = ϕm(zm, tm,Vm).

For the action level model ϕa, to leverage the results generated by the motion level, we concatenate
the action node Va, the motion node Vm, and the result zm generated by the motion level together as
the input of the action level denoising network, i.e., ϵ̂a = ϕa(z

a, ta, [Vm,Va, zm]).

For the specific level model ϕs, we leverage the results generated by the action level and nodes at all
semantic levels to predict the noise component, i.e., ϵ̂s = ϕs(z

s, ts, [Vm,Va,Vs, za]).
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Table 1: Comparisons to current state-of-the-art methods on the HumanML3D test set. “↑”
denotes that higher is better. “↓” denotes that lower is better. “→” denotes that results are better if the
metric is closer to the real motion. We repeat all the evaluations 20 times and report the average with
a 95% confidence interval. Bold and underlined indicate the best and second-best results, respectively.
For fair comparisons, we report results with total diffusion steps Tm + T a + T s of 50 and 150.

Methods R-Precision ↑ FID ↓ MM-Dist ↓ Diversity → MModality ↑
Top-1 Top-2 Top-3

Real motion 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

Text2Gesture [5] 0.165±.001 0.267±.002 0.345±.002 7.664±.030 6.030±.008 6.409±.071 -
Seq2Seq [44] 0.180±.002 0.300±.002 0.396±.002 11.75±.035 5.529±.007 6.223±.061 -
Language2Pose [2] 0.246±.001 0.387±.002 0.486±.002 11.02±.046 5.296±.008 7.676±.058 -
Hier [12] 0.301±.002 0.425±.002 0.552±.004 6.532±.024 5.012±.018 8.332±.042 -
MDM [54] 0.320±.005 0.498±.004 0.611±.007 0.544±.044 5.566±.027 9.559±.086 2.799±.072

TEMOS [42] 0.424±.002 0.612±.002 0.722±.002 3.734±.028 3.703±.008 8.973±.071 0.368±.018

TM2T [15] 0.424±.003 0.618±.003 0.729±.002 1.501±.017 3.467±.011 8.589±.076 2.424±.093

T2M [14] 0.457±.002 0.639±.003 0.740±.003 1.067±.002 3.340±.008 9.188±.002 2.090±.083

MLD [8] 0.481±.003 0.673±.003 0.772±.002 0.473±.013 3.196±.010 9.724±.082 2.413±.079

MotionDiffuse [62] 0.491±.001 0.681±.001 0.782±.001 0.630±.001 3.113±.001 9.410±.049 1.553±.042

T2M-GPT [61] 0.492±.003 0.679±.002 0.775±.002 0.141±.005 3.121±.009 9.722±.082 1.831±.048

GraphMotion (step=50) 0.496±.003 0.686±.003 0.778±.002 0.118±.008 3.143±.009 9.796±.069 2.603±.095

GraphMotion (step=150) 0.504±.003 0.699±.002 0.785±.002 0.116±.007 3.070±.008 9.692±.067 2.766±.096

Table 2: Comparisons to current state-of-the-art methods on the KIT test set. We repeat all the
evaluations 20 times and report the average with a 95% confidence interval.

Methods R-Precision ↑ FID ↓ MM-Dist ↓ Diversity → MModality ↑
Top-1 Top-2 Top-3

Real motion 0.424±.005 0.649±.006 0.779±.006 0.031±.004 2.788±.012 11.08±.097 -

Seq2Seq [44] 0.103±.003 0.178±.005 0.241±.006 24.86±.348 7.960±.031 6.744±.106 -
Text2Gesture [5] 0.156±.004 0.255±.004 0.338±.005 12.12±.183 6.946±.029 9.334±.079 -
MDM [54] 0.164±.004 0.291±.004 0.396±.004 0.497±.021 9.191±.022 10.85±.109 1.907±.214

Language2Pose [2] 0.221±.005 0.373±.004 0.483±.005 6.545±.072 5.147±.030 9.073±.100 -
Hier [12] 0.255±.006 0.432±.007 0.531±.007 5.203±.107 4.986±.027 9.563±.072 2.090±.083

TM2T [15] 0.280±.005 0.463±.006 0.587±.005 3.599±.153 4.591±.026 9.473±.117 3.292±.081

TEMOS [42] 0.353±.006 0.561±.007 0.687±.005 3.717±.051 3.417±.019 10.84±.100 0.532±.034

T2M [14] 0.370±.005 0.569±.007 0.693±.007 2.770±.109 3.401±.008 10.91±.119 1.482±.065

MLD [8] 0.390±.008 0.609±.008 0.734±.007 0.404±.027 3.204±.027 10.80±.117 2.192±.071

T2M-GPT [61] 0.416±.006 0.627±.006 0.745±.006 0.514±.029 3.007±.023 10.92±.108 1.570±.039

MotionDiffuse [62] 0.417±.004 0.621±.004 0.739±.004 1.954±.062 2.958±.005 11.10±.143 0.730±.013

GraphMotion (step=50) 0.417±.008 0.635±.006 0.755±.004 0.262±.021 3.085±.031 11.21±.106 3.568±.132

GraphMotion (step=150) 0.429±.007 0.648±.006 0.769±.006 0.313±.013 3.076±.022 11.12±.135 3.627±.113

Finally, the training objective of the diffusion models can be defined as:

LDIF = Eϵ∼N (0,1),z∼q(z|V),t

[
∥ϵm − ϕm(zm, tm,Vm)∥22︸ ︷︷ ︸

Motion level

+ ∥ϵa − ϕa(z
a, ta, [Vm,Va, zm])∥22︸ ︷︷ ︸

Action level

+ ∥ϵs − ϕs(z
s, ts, [Vm,Va,Vs, za])∥22︸ ︷︷ ︸

Specific level

]
.

(6)

During the training stage, the motion variational autoencoders are frozen. During the inference
stage, the fine-grained semantic layer generates results based on the results from the coarse-grained
semantic layer. We take the output at the specific level as the final result and use the motion decoder
to decode the latent representation into the motion sequence.

It is worth noting that our method is as efficient as the one-stage diffusion methods during the
inference stage, even though we decompose the diffusion process into three parts. This is because we
can control the total number Tm + T a + T s of iterations by restricting it to be the same as those of
the one-stage diffusion methods, which we will discuss in experiments (see Tab. 5).

4 Experiments

Datasets, Metrics and Implementation Details. Datasets. We compare the proposed method
with other methods on two commonly used public benchmarks: HumanML3D [14] and KIT [43].

6



“A person takes a step forward, moves to the right, then continues forward with their right hand on a rail.”

Real Ours MDM (ICLR23) MLD (CVPR23) MotionDiffuse (arXiv22)

“The person walked forward and lifted something up turned around and walked back.”

“A person was running by making the circle and return.”

Figure 3: Qualitative comparison of the existing methods. We provide the motion results from three
text prompts. The darker colors indicate the later in time. The generated results of our method better
match the descriptions, while others have downgraded motions or improper semantics, demonstrating
that our method achieves superior controllability compared to well-designed baseline models.

HumanML3D [14] is currently the largest 3D human motion dataset that originates from and
textually reannotates the HumanAct12 [16] and AMASS [40] datasets. This dataset comprises 14,616
human motions and 44,970 text descriptions, with each motion accompanied by at least three precise
descriptions. The lengths of these descriptions are around 12 words. KIT [43] contains 3,911 human
motion sequences and 6,278 textual annotations. Each motion sequence is accompanied by one to
four sentences, with an average description length of 8 words.

Metrics. Following previous works, we use the following five metrics to measure the performance
of the model. (1) R-Precision. Under the feature space of the pre-trained network in [14], given
one motion sequence and 32 text descriptions (1 ground-truth and 31 randomly selected mismatched
descriptions), motion-retrieval precision calculates the text and motion Top 1/2/3 matching accuracy.
(2) Frechet Inception Distance (FID). We measure the distribution distance between the generated
and real motion using FID [17] on the extracted motion features [14]. (3) Multimodal Distance (MM-
Dist). We calculate the average Euclidean distances between each text feature and the generated
motion feature from that text. (4) Diversity. All generated motions are randomly sampled to two
subsets of the same size. Then, we extract motion features [14] and compute the average Euclidean
distances between the two subsets. (5) Multimodality (MModality). For each text description, we
generate 20 motion sequences, forming 10 pairs of motions. We extract motion features and calculate
the average Euclidean distance between each pair. We report the average of all text descriptions.

Implementation Details. For the motion variational autoencoder, motion encoder E and decoder
D all consist of 9 layers and 4 heads with skip connection [46]. Following MLD [8], we utilize a
frozen text encoder of the CLIP-ViT-L-14 [45] model for text representation. The dimension of node
representation D is set to 768. The dimension of latent embedding D′ is set to 256. We set the
token sizes Cm to 2, Ca to 4, and Cs to 8. We set λ to 1e-4. All our models are trained with the
AdamW [26, 38] optimizer using a fixed learning rate of 1e-4. We use 4 Tesla V100 GPUs for the
training, and there are 128 samples on each GPU, so the total batch size is 512. For the HumanML3D
dataset, the model is trained for 6,000 epochs during the motion variational autoencoder stage and
3,000 epochs during the diffusion stage. The number of diffusion steps of each level is 1,000 during
training, and the step sizes βt are scaled linearly from 8.5×1e-4 to 0.012. For runtime, training tasks
16 hours for motion variational autoencoder and 24 hours for denoiser on 4 Tesla V100 GPUs.

Comparisons to State-of-the-art. We compare the proposed GraphMotion with other methods on
two benchmarks. In Tab. 1, we show the results on the HumanML3D test set. Tab. 2 shows the results
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Table 3: Ablation study about each part of our
method on the HumanML3D test set. “↑” denotes
that higher is better. “↓” denotes that lower is better.

Semantic Graph Coarse-to-Fine R-Precision FID ↓Graph Reasoning Diffusion Top-1 ↑

0.485±.003 0.418±.013

✓ 0.491±.003 0.281±.011

✓ ✓ 0.494±.003 0.212±.015

✓ ✓ 0.490±.004 0.196±.012

✓ ✓ ✓ 0.504±.003 0.116±.007

Table 4: Ablation study of the coarse-to-
fine motion diffusion model on the Hu-
manML3D test set. “↑” denotes that higher
is better. “↓” denotes that lower is better.

Motion Action Specific R-Precision FID ↓level level level Top-1 ↑

0.485±.003 0.418±.013

✓ 0.488±.003 0.217±.009

✓ ✓ 0.494±.003 0.150±.011

✓ ✓ ✓ 0.504±.003 0.116±.007

Table 5: Ablation study about the total number of diffusion steps on the HumanML3D test set.
“↑” denotes that higher is better. “↓” denotes that lower is better. We repeat all the evaluations 20
times and report the average with a 95% confidence interval. “✘” denotes that this method does not
apply this parameter. To speed up the sampling process, we use DDIM in practice following MLD.

Methods Diffusion Steps R-Precision ↑ FID ↓
Motion Tm Action Ta Specific T s Top-1 Top-2 Top-3

The total number of diffusion steps is 1000 with DDPM [18]
MDM [54] 1000 ✘ ✘ 0.320±.005 0.498±.004 0.611±.007 0.544±.044

MotionDiffuse [62] 1000 ✘ ✘ 0.491±.001 0.681±.001 0.782±.001 0.630±.001

The total number of diffusion steps is 50 with DDIM [50]
MLD [8] 50 ✘ ✘ 0.481±.003 0.673±.003 0.772±.002 0.473±.013

GraphMotion (Ours) 20 15 15 0.489±.003 0.676±.002 0.771±.002 0.131±.007

GraphMotion (Ours) 15 15 20 0.496±.003 0.686±.003 0.778±.002 0.118±.008

The total number of diffusion steps is 150 with DDIM [50]
MLD [8] 150 ✘ ✘ 0.461±.002 0.649±.003 0.797±.002 0.457±.011

GraphMotion (Ours) 50 50 50 0.504±.003 0.699±.002 0.785±.002 0.116±.007

on the KIT test set. Our model consistently outperforms state-of-the-art methods on both benchmarks,
which validates the effectiveness of our method. Moreover, we provide qualitative motion results in
Fig. 3. Compared to other methods, our method generates motions that match the text descriptions
better, indicating that our method is more sensitive to subtle differences in texts.
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Figure 4: Performance at each level on the HumanML3D test set. We repeat all experiments 10
times and report the average with a 95% confidence interval. The performance of the specific level is
the best, which confirms the effectiveness of the coarse-to-fine motion diffusion model.

Ablative Analysis. Effect of each part of our method. To explore the impact of each part of our
method, we provide the ablation results in Tab. 3. “Semantic Graph” refers to the decomposition
of the original motion description into nodes of three levels, namely motion, action, and specific.
These nodes are then directly fed into the one-stage motion diffusion model to generate the final
motion. “Graph Reasoning” utilizes a graph network to reason and update nodes in the hierarchical
semantic graph. “Coarse-to-Fine Diffusion” decomposes the text-to-motion diffusion process into
three semantic levels, from coarse to fine, which capture the overall motion, local actions, and
action specifics, respectively. If not otherwise specified, all ablation experiments are performed
using a diffusion step setting of 150. As shown in Tab. 3, we find that “Semantic Graph” can
avoid the imbalanced learning of different textual components, thus significantly improving the
semantic understanding ability of the model and the overall quality of motion generation. “Graph
Reasoning” further enhances the semantic reasoning ability of the model. In addition, “Coarse-to-Fine
Diffusion” can significantly improve the quality of motion generation. Our full model achieves the
best performance, which demonstrates that the three parts are beneficial for motion generation.
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Figure 5: Qualitative analysis of refining motion results. The darker colors indicate the later in
time. The trajectory of the human body is indicated by an arrow. The trajectory associated with the
modified edge is highlighted in red, and other parts are identified in blue.

Table 6: Quantitative experiment of the imbalance
problem on the HumanML3D test set. “↑” denotes
that higher is better. “↓” denotes that lower is better.

Methods FID ↓ MM-Dist ↓ Diversity → MModality ↑

MDM 5.622 7.163 8.713 3.578
MLD 3.492 5.632 8.874 3.596
GraphMotion 1.826 5.530 9.284 3.699

Table 7: User studies for quantitative
comparison. We show the preference rate
of GraphMotion over the compared model.

Methods Compared Preference Rate

GraphMotion vs. MotionDiffuse 64.10%
GraphMotion vs. MLD 56.41%
GraphMotion vs. Ground Truth 48.72%

Analysis of the coarse-to-fine motion diffusion model. In Tab. 4, we provide the ablation study of
the coarse-to-fine motion diffusion model on the HumanML3D test set. These results prove that
coarse-to-fine generation is beneficial to motion generation. In addition, we show the performance at
each level in Fig. 4. Among the three levels, the performance of the specific level is the best, which
confirms the effectiveness of the coarse-to-fine motion diffusion model.

Effect of the diffusion steps. In Tab. 5, we show the ablation study of the total number of diffusion
steps on the HumanML3D test set. Following MLD [8], we adopt the denoising diffusion implicit
models [50] (DDIM) during interference. As shown in Tab. 5, our method consistently outperforms the
existing state-of-the-art methods with the same total number of diffusion steps, which demonstrates
the efficiency of our method. With the increase of the total diffusion steps, the performance of our
method is further improved, while the performance of MLD saturates. We find that the number of
diffusion steps at the higher level (e.g., specific level) has a greater impact on the result. Therefore, in
scenarios requiring high efficiency, we recommend allocating more diffusion steps to the higher level.

Quantitative and Qualitative Discussion. Quantitative experiment of the imbalance problem.
In this experiment, we mask the verbs and action names in the motion description to force the model
to generate motion only from action specifics. For example, given the motion description “a person
walks several steps forward in a straight line.”, we would mask “walks”. Transformer extracts text
features automatically and implicitly. However, it may encourage the model to take shortcuts, such as
overemphasizing the action name “walks” at the expense of other important properties. Therefore,
when the verbs and action names are masked, the other models, which directly use the transformer
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Figure 6: Additional qualitative analysis of refining motion results. The qualitative results
demonstrate that our approach provides a novel method of refining generated motions.

to extract text features, fail to generate motion well. By contrast, the hierarchical semantic graph
explicitly extracts the action specifics. The explicit factorization of the language embedding space
facilitates a comprehensive understanding of motion description. It allows the model to infer from
action specifics such as “several steps forward” and “in a straight line” that the overall motion is
“walking forward”. As shown in Tab. 6, our method can synthesize motion by relying only on action
specifics, while other methods fail to generate motion well. These results indicate that our method
avoids the imbalance problem of other methods.

Human evaluation. In our evaluation, we randomly selected 39 motion descriptions for the user
study. As shown in Tab. 7, GraphMotion is preferred over the other models most of the time.

Qualitative analysis of refining motion results. To fine-tune the generated results for more fine-
grained control, our method can continuously refine the generated motion by modifying the edge
weights of the hierarchical semantic graph. As illustrated in Fig. 5, we can alter the action attributes
by manipulating the weights of the edges of the action node and the specific node. For example, by
increasing the weights of the edges of “zags” and “to left”, the human body will move farther to the
left. Moreover, by fine-tuning the weights of the edges of the global motion node and the action
node, we can fine-tune the duration of the corresponding action in the whole motion. For example,
by enhancing the weights of the edges of the global motion node and “walking”, the length of the
walk will be increased. In Fig. 6, we provide additional qualitative analysis of refining motion results.
Specifically, we perform the additional operations on the hierarchical semantic graphs: (1) masking
the node by replacing it with the MASK token; (2) modifying the node; (3) deleting nodes; (4) adding
a new node. The qualitative results demonstrate that our approach provides a novel method of refining
generated motions, which may have a far-reaching impact on the community.

5 Conclusion
In this paper, we focus on improving the controllability of text-driven human motion generation.
To provide fine-grained control over motion details, we propose a novel control signal called the
hierarchical semantic graph, which consists of three kinds of abstract nodes, namely motions,
actions, and specifics. Correspondingly, to leverage the coarse-to-fine topology of hierarchical
semantic graphs, we decompose the text-to-motion diffusion process into three semantic levels, which
correspond to capturing the overall motion, local actions, and action specifics. Extensive experiments
demonstrate that our method achieves better controllability than the existing state-of-the-art methods.
More encouragingly, our method can continuously refine the generated motion by modifying the edge
weights of hierarchical semantic graphs, which may have a far-reaching impact on the community.

Acknowledgements. This work was supported by the National Key R&D Program of China
(2022ZD0118101), Nature Science Foundation of China (No.62202014), and Shenzhen Basic Re-
search Program (No.JCYJ20220813151736001).
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Abstract This appendix provides additional discussions (Sec. A), implementation details (Sec. B),
more qualitative results (Sec. C), several additional experiments (Sec. D), details of motion represen-
tations and metric definitions (Sec. E).

Code Code is available at https://github.com/jpthu17/GraphMotion. In this code, we provide the
process of the training and evaluation of the proposed method, and the pre-trained weights.

A Additional Discussions
A.1 Potential Negative Societal Impacts

While our work effectively enhances the quality of human motion synthesis, there is a potential risk
that it may be used for generating fake content, such as generating fake news, which can pose a threat
to information security. Moreover, when factoring in energy consumption, there is a possibility that
the widespread use of generative models for synthesizing human motions may contribute to increased
carbon emissions and exacerbate global warming.

A.2 Limitations of our Work

Although our method makes some progress, there are still many limitations worth further study.
(1) The proposed GraphMotion inherits the randomness of diffusion models. This property benefits
diversity but may yield undesirable results sometimes. (2) The human motion synthesis capabilities
of GraphMotion are limited by the performance of the pre-trained motion variational autoencoders,
which we will discuss in experiments (Tab. D and Tab. E). This defect also exists in the existing
state-of-the-art methods, such as MLD [8] and T2M-GPT [61], which also use motion variational
autoencoder. (3) Though the proposed GraphMotion brings negligible extra cost on computations, it
is still limited by the slow inference speed of existing diffusion models. We will discuss the inference
time in experiments (Tab. C). This defect also exists in the existing state-of-the-art methods, such as
MDM [54] and MLD [8], which also use diffusion models.

A.3 Future Work

In this paper, we focus on improving the controllability of text-driven human motion generation.
Recently, large language models have made remarkable progress, making large language models a
promising text extractor for human motion generation. However, despite their strengths in general
reasoning and broad applicability, large language models may not be optimized for extracting subtle
motion nuances. In future research, we will incorporate the features of large-scale languages into
our model, using hierarchical semantic graphs to give large language models the ability to extract
fine-grained motion description structures.

B Implementation Details

B.1 Details of Hierarchical Semantic Graphs
Table A: Node types and edge types
in the parsed hierarchical semantic
graph. Each edge type corresponds to
a type of semantic role.

Node type Description

Motion global motion description
Action verb
Specific attribute of action

Edge type Description

ARG0 agent
ARG1 patient
ARG2 instrument, benefactive
ARG3 start point
ARG4 end point
ARGM-LOC location (where)
ARGM-MNR manner (how)
ARGM-TMP time (when)
ARGM-DIR direction (where to/from)
ARGM-ADV miscellaneous
ARGM-MA motion-action dependencies
OTHERS other argument types, e.g., action

To obtain actions, attributes of action as well as the semantic
role of each attribute to the corresponding action, we imple-
ment a semantic parser of motion descriptions based on a
semantic role parsing toolkit [48, 7]. Specifically, given the
motion description, the parser extracts verbs that appeared
in the sentence and attribute phrases corresponding verb,
and the semantic role of each attribute phrase. The overall
sentence is treated as the global motion node in the hierar-
chical graph. The verbs are considered as action nodes and
connected to the motion node with direct edges, allowing for
implicit learning of the temporal relationships among var-
ious actions during graph reasoning. The attribute phrases
are specific nodes that are connected with action nodes. The
edge type between action and specific nodes is determined
by the semantic role of the specifics in relation to the action.
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“A person gets on all fours and crawls forward, then turns around and crawls back.”

Real Ours MDM (ICLR23) MLD (CVPR23) MotionDiffuse (arXiv22)

“Using both hands, a person bends over to pat the ground.”

“A person sitting on the floor scratches their head and then leans back on their right hand.”

“Person kicks left legs back and forth.”

Figure A: Qualitative comparison of the existing methods. The darker colors indicate the later
in time. The generated results of our method better match the descriptions, while others have
downgraded motions or improper semantics, demonstrating that our method achieves superior
controllability compared to well-designed baseline models. We have provided a supplemental video
in our supplementary material. In the supplemental video, we show comparisons of text-driven
motion generation. We suggest the reader watch this video for dynamic motion results.

As shown in Tab. A, we extract three types (motions, actions, and specifics) of nodes and twelve
types of edges to represent various associations among the nodes.

B.2 Classifier-free Diffusion Guidance

Following MLD [8], our denoiser network is learned with classifier-free diffusion guidance [19]. The
classifier-free diffusion guidance improves the quality of samples by reducing diversity in conditional
diffusion models. Concretely, it learns both the conditioned and the unconditioned distribution (10%
dropout [51]) of the samples. Finally, we perform a linear combination in the following manner,
which is formulated as:

ϵ̂mscale = α
′
ϕm(zm, tm,Vm) + (1− α

′
)ϕm(zm, tm,∅),

ϵ̂ascale = α
′
ϕa(z

a, ta, [Vm,Va, zm]) + (1− α
′
)ϕa(z

a, ta,∅),

ϵ̂sscale = α
′
ϕs(z

s, ts, [Vm,Va,Vs, za]) + (1− α
′
)ϕs(z

s, ts,∅),

(A)
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A person is doing 

jumping jacks.

A person is doing a 

dance.

A person takes a jump 

sideways to their right.

A person hops 

up and down in 

place.

A person looks to the right 

then kicks something with 

their left foot.

The 

person is 

clapping.

A person walking 

forward then 

walks back.

A perso bend the knee and 

leand to the floor and 

start walked.

Dancing randomly like an 

indian traditional dance 

and mix of western culture.

A person steps forward and 

reaches down to grab or place 

something with their right hand.

Figure B: Additional qualitative motion results are generated with text prompts of the Hu-
manML3D test set. The darker colors indicate the later in time. These results demonstrate that our
method can generate diverse and accurate motion sequences.

Where α
′

is the guidance scale and α
′
> 1 can strengthen the effect of guidance [8]. We set α

′
to 7.5

in practice following MLD. Please refer to our code for more details.

B.3 Implementation Details for Different Datasets

Following MLD [8], we utilize a frozen text encoder of the CLIP-ViT-L-14 [45] model for text
representation. The dimension of node representation D is set to 768. The dimension of latent
embedding D′ is set to 256. For the motion variational autoencoder, motion encoder E and decoder
D all consist of 9 layers and 4 heads with skip connection [46]. We set the token sizes Cm to 2, Ca
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Real Ours MDM (ICLR23) MLD (CVPR23) MotionDiffuse (arXiv22)

“The person pick something up and tilted it to the right.”

“The person [mask] something up and [mask] it to the right.”

Figure C: Qualitative analysis on the imbalance problem. The darker colors indicate the later
in time. When the verbs and action names are masked, existing models tend to generate motion
randomly. In contrast, our method can generate motion based solely on the action specifics. These
results show that our method is not overly focused on the verbs and action names.

Motion level Action level Specific level

“A man performs a squat while lifting his arms to shoulder height and hands above his head.”

“A figure is standing, turns to look right and raises the right arm perpendicular to the ground, then looks left and raises 

the left arm perpendicular to the ground.”

Figure D: Qualitative comparison of different hierarchies. The output at the higher level (e.g.,
specific level) has more action details. Specifically, the motion level generates only coarse-grained
overall motion. The action level generates local actions better than the motion level but lacks action
specifics. The specific level generates more action specifics than the action level.

to 4, and Cs to 8. We set λ to 1e-4. All our models are trained with the AdamW [26, 38] optimizer
using a fixed learning rate of 1e-4. We use 4 Tesla V100 GPUs for the training, and there are 128
samples on each GPU, so the total batch size is 512. The number of diffusion steps of each level
is 1,000 during training, and the step sizes βt are scaled linearly from 8.5×1e-4 to 0.012. We keep
running a similar number of iterations on different data sets. For the HumanML3D dataset, the model
is trained for 6,000 epochs during the motion variational autoencoder stage and 3,000 epochs during
the diffusion stage. For the KIT dataset, the model is trained for 30,000 epochs during the motion
variational autoencoder stage and 15,000 epochs during the diffusion stage. Code is available at
https://github.com/jpthu17/GraphMotion. In this code, we provide the process of the training and
evaluation of the proposed method, and the pre-trained model.
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Table B: Ablation study about the total number of diffusion steps on the HumanML3D test set.
“↑” denotes that higher is better. “↓” denotes that lower is better. We repeat all the evaluations 20
times and report the average with a 95% confidence interval. “✘” denotes that this method does not
apply this parameter. To speed up the sampling process, we use DDIM in practice following MLD.

Methods Diffusion Steps R-Precision ↑ FID ↓
Motion Tm Action Ta Specific T s Top-1 Top-2 Top-3

The total number of diffusion steps is 1000 with DDPM [18]
MDM [54] 1000 ✘ ✘ 0.320±.005 0.498±.004 0.611±.007 0.544±.044

MotionDiffuse [62] 1000 ✘ ✘ 0.491±.001 0.681±.001 0.782±.001 0.630±.001

The total number of diffusion steps is 50 with DDIM [50]
MLD [8] 50 ✘ ✘ 0.481±.003 0.673±.003 0.772±.002 0.473±.013

GraphMotion (Ours) 20 15 15 0.489±.003 0.676±.002 0.771±.002 0.131±.007

GraphMotion (Ours) 15 15 20 0.496±.003 0.686±.003 0.778±.002 0.118±.008

The total number of diffusion steps is 150 with DDIM [50]
MLD [8] 150 ✘ ✘ 0.461±.002 0.649±.003 0.797±.002 0.457±.011

GraphMotion (Ours) 50 50 50 0.504±.003 0.699±.002 0.785±.002 0.116±.007

The total number of diffusion steps is 300 with DDIM [50]
MLD [8] 300 ✘ ✘ 0.473±.002 0.664±.003 0.765±.002 0.403±.011

GraphMotion (Ours) 100 100 100 0.486±.003 0.671±.004 0.767±.003 0.096±.008

The total number of diffusion steps is 1000 with DDIM [50]
MLD [8] 1000 ✘ ✘ 0.452±.002 0.639±.003 0.751±.002 0.460±.013

GraphMotion (Ours) 400 300 300 0.475±.003 0.659±.003 0.756±.003 0.136±.007

GraphMotion (Ours) 300 300 400 0.484±.003 0.694±.003 0.787±.003 0.132±.008

C Additional Qualitative Analysis

C.1 Qualitative Comparison of the Existing Methods

We provide additional qualitative motion results in Fig. A. Compared to other methods, our method
generates motions that match the text descriptions better, indicating that our method is more sensitive
to subtle differences in texts. The generated results demonstrate that our method achieves superior
controllability compared to well-designed baseline models.

C.2 Additional Visualization Results

In Fig. B, we provide additional qualitative motion results which are generated with text prompts
of the HumanML3D test set. These results demonstrate that our method can generate diverse and
accurate motion sequences from a variety of motion descriptions.

C.3 Qualitative Analysis on the Imbalance Problem

To demonstrate the imbalance problem of other methods and prove that our method does not have
this problem, we mask the verbs and action names in the motion description to force the model to
generate motion only from action specifics. As shown in Fig. C, when the verbs and action names are
masked, existing models tend to generate motion randomly. In contrast, our method can generate
motion that matches the description based solely on the action specifics. These results show that our
method is not overly focused on the verbs and action names.

C.4 Qualitative Comparison of Different Hierarchies

We provide different levels of qualitative comparison in Fig. D. The results show that the output at the
higher level (e.g., specific level) has more action details. Specifically, the motion level generates only
coarse-grained overall motion. The action level generates local actions better than the motion level
but lacks action specifics. The specific level generates more action specifics than the action level.
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Table C: Evaluation of Inference time costs on the HumanML3D test set. We evaluate the average
time per sample with different diffusion schedules and FID. “↓” denotes that lower is better. Please
note the bad FID of MDM with DDIM is mentioned in their GitHub issues #76. “✘” denotes that this
method does not apply this parameter. We use DDIM in practice following MLD.

Methods Reference Diffusion Steps Average time per sample (s) ↓ FID ↓
Motion Tm Action Ta Specific T s

The total number of diffusion steps is 1000 with DDPM [18]
MDM [54] ICLR 2023 1000 ✘ ✘ 178.7699 0.544
MLD [8] CVPR 2023 1000 ✘ ✘ 5.5045 0.568

The total number of diffusion steps is 50 with DDIM [50]
MDM [54] ICLR 2023 50 ✘ ✘ 20.5678 7.334
MLD [8] CVPR 2023 50 ✘ ✘ 0.9349 0.473
GraphMotion Ours 20 15 15 0.9094 0.131
GraphMotion Ours 15 15 20 0.7758 0.118

The total number of diffusion steps is 150 with DDIM [50]
MLD [8] CVPR 2023 150 ✘ ✘ 2.4998 0.457
GraphMotion Ours 50 50 50 2.5518 0.116

The total number of diffusion steps is 1000 with DDIM [50]
MLD [8] CVPR 2023 1000 ✘ ✘ 16.6654 0.460
GraphMotion Ours 400 300 300 22.1238 0.136
GraphMotion Ours 300 300 400 17.0912 0.132

D Additional Experiments

D.1 Analysis of the Diffusion Steps

In Tab. B, we show the ablation study of the total number of diffusion steps on the HumanML3D
test set. Following MLD [8], we adopt the denoising diffusion implicit models [50] (DDIM) during
interference. As shown in Tab. B, our method consistently outperforms the existing state-of-the-art
methods with the same total number of diffusion steps, which demonstrates the efficiency of our
method. We find that the number of diffusion steps at the higher level (e.g., specific level) has a greater
impact on the result. Therefore, in scenarios requiring high efficiency, we recommend allocating
more diffusion steps to the higher level. Moreover, with the increase of the total diffusion steps, the
performance of our method is further improved, while the performance of MLD saturates. These
results further prove the superiority of our design.

D.2 Analysis of the Inference Time

In Tab. C, we provide the evaluation of inference time costs. Our method is as efficient as the
one-stage diffusion methods during the inference stage, even though we decompose the diffusion
process into three parts. This is because we can control the total number Tm + T a + T s of iterations
by restricting it to be the same as those of the one-stage diffusion methods. As shown in Tab. C, the
inference speed of our method is comparable to that of the existing state-of-the-art methods with the
same total number of diffusion steps, which demonstrates the efficiency of our method.

D.3 Analysis of the motion VAE models

We provide the evaluation of the motion VAE models. In Tab. D, we show the results on the
HumanML3D test set. Tab. E shows the results on the KIT test set. Among the three levels, the
performance of the specific level is the best, which indicates that increasing the token size can improve
the reconstruction ability of the motion VAE models.

E Motion Representations and Metric Definitions

E.1 Motion Representations

Motion representation can be summarized into the following four categories, and we follow the
previous work of representing motion in latent space.
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Table D: Evaluation of the VAE models on the motion part of the HumanML3D test set. “↑”
denotes that higher is better. “↓” denotes that lower is better. “→” denotes that results are better if the
metric is closer to the real motion. The performance of the specific level is the best.

Methods Token Size R-Precision ↑ FID ↓ Diversity →
Top-1 Top-2 Top-3

Real motion - 0.511 0.703 0.797 0.002 9.503

Motion Level 2 0.498 0.692 0.791 1.906 9.675
Action Level 4 0.514 0.703 0.793 0.068 9.610
Specific Level 8 0.525 0.708 0.800 0.019 9.863

Table E: Evaluation of the VAE models on the motion part of the KIT test set. “↑” denotes that
higher is better. “↓” denotes that lower is better. “→” denotes that results are better if the metric is
closer to the real motion. The performance of the specific level is the best.

Methods Token Size R-Precision ↑ FID ↓ Diversity →
Top-1 Top-2 Top-3

Real motion - 0.424 0.649 0.779 0.031 11.08

Motion Level 2 0.431 0.623 0.745 1.196 10.66
Action Level 4 0.413 0.644 0.770 0.396 10.85
Specific Level 8 0.414 0.640 0.760 0.361 10.86

Latent Format. Following previous works [42, 8, 61], we encode the motion into the latent space
with a motion variational autoencoder [27]. The latent representation is formulated as:

x̂1:L = D(z), z = E(x1:L). (B)

HumanML3D Format. HumanML3D [14] proposes a motion representation x1:L inspired by
motion features in character control. This motion representation is well-suited for neural networks.
To be specific, the ith pose xi is defined by a tuple consisting of the root angular velocity ra ∈ R
along the Y-axis, root linear velocities (rx, rz ∈ R) on the XZ-plane, root height ry ∈ R, local joints
positions jp ∈ R3Nj , velocities jv ∈ R3Nj , and rotations jr ∈ R6Nj in root space, and binary
foot-ground contact features cf ∈ R4 obtained by thresholding the heel and toe joint velocities. Here,
Nj denotes the joint number. Finally, the HumanML3D format can be defined as:

xi = {ra, rx, rz, ry, jp, jv, jr, cf}. (C)

SMPL-based Format. SMPL [37] is one of the most widely used parametric human models.
SMPL and its variants propose motion parameters θ and shape parameters β. θ ∈ R3×23+3 is rotation
vectors for 23 joints and a root, while β represents the weights for linear blended shapes. The global
translation r is also incorporated to formulate the representation as follows:

xi = {r, θ, β}. (D)

MMM Format. Master Motor Map [52] (MMM) representations propose joint angle parameters
based on a uniform skeleton structure with 50 degrees of freedom (DoFs). In text-to-motion tasks,
recent methods [2, 12, 42] converts joint rotation angles into J = 21 joint XYZ coordinates. Given
the global trajectory troot and pm ∈ R3J , the preprocessed representation is formulated as:

xi = {pm, troot}. (E)

E.2 Metric Definitions

Following previous works, we use the following five metrics to measure the performance of the
model. Note that global representations of motion and text descriptions are first extracted with the
pre-trained network in [14].
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R-Precision. Under the feature space of the pre-trained network in [14], given one motion sequence
and 32 text descriptions (1 ground-truth and 31 randomly selected mismatched descriptions), motion-
retrieval precision calculates the text and motion Top 1/2/3 matching accuracy.

Frechet Inception Distance (FID). We measure the distribution distance between the generated
and real motion using FID [17] on the extracted motion features [14]. The FID is calculated as:

FID = ∥µgt − µpred∥2 − Tr(Σgt +Σpred − 2(ΣgtΣpred)
1
2 ), (F)

where Σ is the covariance matrix. Tr denotes the trace of a matrix. µgt and µpred are the mean of
ground-truth motion features and generated motion features.

Multimodal Distance (MM-Dist). Given N randomly generated samples, we calculate the average
Euclidean distances between each text feature ft and the generated motion feature fm from that text.
The multimodal distance is calculated as:

MM-Dist =
1

N

N∑
i=1

∥ft,i − fm,i∥, (G)

where ft,i and fm,i are the features of the ith text-motion pair.

Diversity. All generated motions are randomly sampled to two subsets ({x1, x2, ..., xXd
} and

{x′

1, x
′

2, ..., x
′

Xd
}) of the same size Xd. Then, we extract motion features [14] and compute the

average Euclidean distances between the two subsets:

Diversity =
1

Xd

Xd∑
i=1

∥xi − x
′

i∥. (H)

Multimodality (MModality). We randomly sample a set of text descriptions with size Jm from all
descriptions. For each text description, we generate 2×Xm motion sequences, forming Xm pairs
of motions. We extract motion features and calculate the average Euclidean distance between each
pair. We report the average of all text descriptions. We define features of the jth pair of the ith text
description as (xj,i, x

′

j,i). The multimodality is calculated as:

MModality =
1

Jm ×Xm

Jm∑
j=1

Xm∑
i=1

∥xj,i − x
′

j,i∥. (I)
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