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ABSTRACT

Video generation has many unique challenges beyond those of image generation.
The temporal dimension introduces extensive possible variations across frames,
over which consistency and continuity may be violated. In this study, we move
beyond evaluating simple actions and argue that generated videos should incorpo-
rate the emergence of new concepts and their relation transitions like in real-world
videos as time progresses. To assess the Temporal Compositionality of video
generation models, we propose TC-Bench, a benchmark of meticulously crafted
text prompts, corresponding ground truth videos, and robust evaluation metrics.
The prompts articulate the initial and final states of scenes, effectively reducing
ambiguities for frame development and simplifying the assessment of transition
completion. In addition, by collecting aligned real-world videos corresponding to
the prompts, we expand TC-Bench’s applicability from text-conditional models
to image-conditional ones that can perform generative frame interpolation. We
also develop new metrics to measure the completeness of component transitions in
generated videos, which demonstrate significantly higher correlations with human
judgments than existing metrics. Our comprehensive experimental results reveal
that state-of-the-art video generators achieve less than 20% of the compositional
changes, highlighting enormous space for improvement. Our analysis indicates that
current video generation models struggle to interpret descriptions of compositional
changes and synthesize various components across different time steps.

1 INTRODUCTION

Conditional video generation is the task of synthesizing realistic videos based on controlling inputs
such as text prompts (text-to-video, T2V) or images (image-to-video, I2V). Significant advancement
in dataset scale and model design has led to several large-scale, high-quality video generation models,
such as CogVideo (Hong et al., 2022), VideoCrafter (Chen et al., 2023a), Stable Video Diffusion
(Blattmann et al., 2023a), and others (Ho et al., 2022; Singer et al., 2022; Blattmann et al., 2023b).
The additional time dimension in videos makes it essential to accurately assess and benchmark the
alignment between the generated temporal variations and the condition inputs. While several studies
have proposed fine-grained and comprehensive evaluation protocols (Huang et al., 2024c; Liu et al.,
2024c;b; Wu et al., 2024), compositionality in the temporal dimension remains an under-addressed
yet crucial aspect of video generation tasks.

The principle of compositionality specifies how constituents are arranged and combined to make a
whole (Bienenstock et al., 1996; Partee, 2008; Cresswell, 2016). Ideal generative systems should
produce outputs that reflect the compositions described by the prompts (Liu et al., 2022; Li et al.,
2023a; Dziri et al., 2024). In image generation, prior work has focused on improving faithful
compositionality in attributes, numbers, and spatial arrangement (Feng et al., 2022; Chatterjee et al.,
2024; Lee et al., 2023). In video generation, compositional faithfulness is much more challenging—
the output must consistently reflect the required combination of concepts, even as it changes through
time. In this work, we investigate this temporal compositionality problem in video generation models
by focusing on prompts describing scenarios where object attributes or relations change over time.

While image generation prompts involving spatial compositionality (Yu et al., 2022; Huang et al.,
2024b) and video prompts describing actions or motions (Huang et al., 2024c; Liu et al., 2024c;
Soomro et al., 2012; Xu et al., 2016) have been used for assessing T2V models, they have two
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Figure 1: Left: a common text-video pair used in video generation evaluation with no temporal
compositionality. Right: a sample from our TC-Bench. Different colors of the chameleon are
composed along the time axis, resulting in the vertical “edges” in the spatiotemporal image. The gap
between horizontal edges shows changes in the chameleon’s position and its relation with the branch.

drawbacks: first, these prompts describe invariant compositions in time, and second, they lead to
synthesized videos that manipulate existing metrics. For instance, while Fig. 1 (left) depicts “a horse
running on the beach” motion, there are no compositional variations in the visual entities along the
time axis. Such omissions can lead to flaws that, while noticeable to human users, are not captured
by current benchmarks. In contrast, Fig. 1 (right) involves more specific compositional changes
in position and color, marked by the vertical “edges” and the gap between horizontal edges in the
spatiotemporal image representing attribute or object binding changes.

To this end, we propose Temporal Compositionality Benchmark (TC-Bench), which addresses three
scenarios of compositional changes: attribute transition, object relations, and background shifts.
We craft realistic prompts that clearly specify an object’s initial and final states, thereby requiring
changing compositional characteristics in a correctly synthesized video. These prompts span a wide
range of topics and scenes and present distinct challenges to different modules of T2V models. On
the one hand, the text encoding stage needs to aggregate different groups of constituents from the
prompt to guide the generation of different frames. On the other hand, the generation module must
synthesize seamless transitions between frames while maintaining object consistency. To broaden
applicability to I2V, we collect ground truth videos corresponding to the prompts, which allows us to
benchmark models capable of performing generative frame interpolation (Chen et al., 2023b; Xing
et al., 2023).

To facilitate the use of TC-Bench, we propose two evaluation metrics, TCR and TC-Score, that first
produce frame-level compositionality assertions and check them throughout the video using vision
language models (VLMs). TCR and TC-Score measure compositional transition completion and
overall text-video alignment, which are better correlated to human judgments than existing metrics.
We extensively benchmark multiple baselines across three categories of methods, ranging from direct
T2V models (Wang et al., 2023a; Chen et al., 2024; Zhang et al., 2023; Wang et al., 2023b) to
multi-stage T2V (Huang et al., 2024a; Lian et al., 2023) and I2V models (Chen et al., 2023b; Xing
et al., 2023). Our comprehensive experiments demonstrate that most of the video generation models
accomplish less than ∼20% of the test cases, implying enormous space for future improvement. Our
contribution can be summarized as three points:

• TC-Bench, a new benchmark that characterizes temporal compositionality in video genera-
tion. TC-Bench features different types of realistic transitions and covers a wide range of
visual entities, scenes, and styles.

• We propose new metrics to evaluate transition completion and text-video alignment and
investigate consistency measures with various methods. Our metrics achieve much higher
correlations with human judgments for evaluating temporal compositionality.

• A comprehensive evaluation of nine baselines shows that existing T2V and I2V methods
still struggle with temporal compositionality. Our in-depth analysis reveals key weaknesses
of current methods in prompt understanding and maintaining temporal consistency.
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2 RELATED WORK

2.1 CONDITIONAL VIDEO GENERATION

Conditional video generation has been a challenging task (Balaji et al., 2019; Zhang et al., 2022; Fu
et al., 2023; Blattmann et al., 2023a). Recently, with the advancement of diffusion models (Ho et al.,
2020; 2022) and large-scale video datasets (Bain et al., 2021; Wang et al., 2023c), video generation
models have gained significant improvement (Ho et al., 2022; Singer et al., 2022). Several studies
attempt to add temporal operation layers into a pre-trained image model, such that the latter can be
adopted as a video generation model in a zero-shot manner (Khachatryan et al., 2023) or through
fine-tuning (Blattmann et al., 2023b). The idea of latent space diffusion (Rombach et al., 2021) has
also been used in many video generation pipelines to improve the efficiency of training.

In T2V, Modelscope (Wang et al., 2023a) proposes spatial-temporal blocks. LaVie (Wang et al.,
2023b) concatenates three latent diffusion models for base video generation and spatial and temporal
super-resolution. Similarly, Show-1 (Zhang et al., 2023) concatenates three pixel-based and one
latent diffusion model. VideoCrafter2 (Chen et al., 2023a; 2024) adopts a single latent diffusion
model and devises a technique to better use high-quality image data. For I2V generations, SEINE
(Chen et al., 2023b) designs a random masking mechanism. DynamiCrafter (Xing et al., 2023)
proposes a dual-stream image injection paradigm. Both can generate transitions between two input
frames. Currently, most of the open-sourced video generation models can only generate a video of
2-3 seconds in one sampling sequence. Accordingly, our benchmark features temporal transitions
that could reasonably happen within a few seconds as well.

2.2 VIDEO GENERATION BENCHMARKS

Many large-scale text-to-video models are evaluated on the standard UCF-101 (Soomro et al., 2012)
and MSRVTT (Xu et al., 2016) benchmarks by reporting FVD for video quality and CLIP similarities
for text-video alignment (Radford et al., 2021). Recently, a few benchmarks and metrics have
been proposed to promote more comprehensive and fine-grained video evaluation. EvalCrafter (Liu
et al., 2024b) proposes a pipeline to exhaustively evaluate four aspects of the generated videos, such
as text-video alignment and temporal consistency. FETV (Liu et al., 2024c) disentangles major
content and attribute control in prompts to achieve a fine-grained evaluation of text-video alignment.
VBench (Huang et al., 2024c) is another evaluation suite that adopts a unique evaluator for each
of the 16 dimensions. T2VScore (Wu et al., 2024) uses Large Language Models (LLM) and video
question answering (VQA) models to evaluate the text-video alignment. However, prompts in these
benchmarks underaddress any transitions in attributes or object relations. Besides, we show that
these metrics have marginal correlations with human ratings. In contrast, we are the first to design a
benchmark and metrics that specifically characterize temporal compositionally.

2.3 COMPOSITIONALITY IN VISUAL GENERATION

Compositionality in image generation has been studied for years (Johnson et al., 2018; Yang et al.,
2022; Zeng et al., 2023). Some early studies focus on learning separable latent or pixel representations
for simple object generation (Andreas, 2018; Greff et al., 2019; Liu et al., 2021), while recent work
studies more complex concepts and relations in open-domain image generation (Liu et al., 2022;
Feng et al., 2022; Rassin et al., 2024). There are several studies on compositions in video prediction
or generation. For example, (Ye et al., 2019) factories entities in an image, predict their future states
and then generate future frames. AG2Vid (Bar et al., 2021) generates videos of moving blocks based
on action graphs and layout inputs to achieve compositionality in time. VideoComposer (Wang et al.,
2024a) uses a spatial-temporal condition encoder for sketch or motion inputs. Several other studies
use LLMs to generate layouts or frame-wise text guidance (Huang et al., 2024a; Lin et al., 2023;
Lian et al., 2023). Another concurrent work, VideoTetris (Tian et al., 2024), addresses multi-object
scenes and long-range video transitions by applying spatial-temporal composing techniques. While
more and more studies have started to address composition changes in video generation, there lacks
a unified, standard, and challenging benchmark for such aspects. Previously in image generation
evaluation, some metrics (Huang et al., 2024b; Saxon et al., 2024) have relied on the visual question
answering (Hu et al., 2023; Singh & Zheng, 2023; Cho et al., 2023) or image captioning (Lu et al.,
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A pink chameleon turns green.

A man passing a basketball from his right hand to left hand.

A cityscape transitioning from sunset to evening.
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Figure 2: Three types of prompt-video pairs in TC-Bench. The left side shows the transition of video
scene graphs. Green and blue nodes represent objects or scenes and red nodes represent attributes.

2024) abilities of VLMs. In this work, we rely on the image-understanding ability of VLMs to
evaluate generated videos by examining video assertions on sampled keyframes.

3 TC-BENCH

Our Temporal Compositionality Benchmark (TC-Bench) consists of prompts following a well-
defined scene graph space and ground truth videos. We first define three categories of temporal
compositionality in Sec. 3.1 and then describe how we collect the samples in Sec. 3.2.

3.1 TEMPORAL COMPOSITIONALITY PROMPTS

Given that oi denotes an object, ai denotes an attribute, and→ denotes a binding relation, a1 → o1
means that o1 has the attribute a1, while o1 → o2 means that o1 and o2 are interacting with each other.
A scene st at time t can be represented as a combination of these elements, i.e., st = {a1, o1, . . .}.
Then, we can define three types of scenarios as shown in Fig. 2:

Attribute Transition: s0 = {o1, a1|o1 ← a1} ⇒ sT = {o1, a2|o1 ← a2} means that an object’s
attribute changes from a1 at t = 0 to a different one a2 at the end t = T . A typical example is shown
in Fig. 2 (top), where a chameleon’s skin turns from pink to green. Prompts in this category cover a
wide range of different attributes, including color, shape, material, and texture.

Object Relation Change: s0 = {o1, o2, o3|o1 → o2} ⇒ sT = {o1, o2, o3|o1 → o3} indicates that
an object o1 interacts with different objects due to motions like passing or hitting. Fig. 2 (middle)
illustrates an example where a basketball (o1) is passed from the right hand (o2) to the left hand (o3).

Background Shifts: s0 = {o1, o2, a1|o2 ← a1} ⇒ sT = {o1, o2, a2|o2 ← a2} is similar to attribute
transition but the transition takes place on an object or scene o2. o1 serves as a distractor to challenge
models on frame consistency while generating dynamics. For instance, in Fig. 2 bottom, the cityscape
remains static while the sky changes from sunset to evening.

For simplicity, we neglect other possible nodes or edges and only focus on single transition events
that could possibly happen within a short time from one second to around ten seconds.

3.2 DATA COLLECTION

To collect the prompts and the corresponding videos, we adopt a multi-round human-in-the-loop
approach. We craft a set of video captions and verbalized type definitions. Then we feed them into
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Input: Frame 1,5,9,13
𝐴#: Do all frames show 
the same yellow stage 
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𝐴$%: ...

Input: Frame 1
𝐴$: Is the car in the image white? 
Input: Frame 16
𝐴&: Is the car in the image purple? 
𝐴': ...
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Prompt: A spinning car turns from white to purple with a yellow stage 
light behind it.
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Figure 3: Left: Assertion generation and verification covering three evaluation dimensions. Right:
We investigate various methods to evaluate frame consistency for I2V models and discover that
CLIP-based similarities demonstrate higher correlations with human ratings.

GPT-4 and instruct it to generate more prompts following the format and definition. We manually
select around 50 samples for each type, leading to TC-Bench-T2V. This set contains 150 prompts for
evaluating T2V models without relying on paired videos. The prompts cover a broad spectrum of
attributes, actions, and objects and explicitly depict the initial and end states of scenes to avoid any
semantic ambiguity in the start and end frames.

To broaden the scope of TC-Bench, we ask human annotators to find matching videos on YouTube
for the 150 prompts. If a video is highly relevant but not perfectly aligned, annotators adjust the text
accordingly. Conversely, if a suitable video cannot be found, the prompt is discarded and replaced by
generating new ones. We iterate over this process until we have collected 120 prompt-video pairs
forming TC-Bench-I2V. The ground truth videos not only provide image inputs for I2V models but
also serve as references for computing metrics. More details can be found in Appendix B.

4 EVALUATION METRICS

In this section, we first introduce our video assertion-based metrics to measure the text-video
alignment for both T2V and I2V models (Fig. 3 left). Then, we investigate four approaches to
measure frame consistency for I2V models (Fig. 3 right).

4.1 ASSERTION-BASED EVALUATION

Denote a text input P and a video V = {I1, . . . , IK} consisting of K frames. We use GPT-4 to
generate N index-assertion pairs {(Ki, Ai)} where Ki consists of up to 5 different frame indices
used to retrieve frames from V to examine the assertion Ai. Without constraints, generating K and Ai

simultaneously can lead to unreasonable assertions. Therefore, we indicate that Ai should cover three
dimensions: transition completion (Scomp), transition object consistency (Scons), and other objects
(Sother). We provide a few in-context exemplars so that the LLM can follow the same format. More
details about these dimensions are explained in Appendix C.

To verify each assertion Ai, we input Ai and the corresponding video frames Ii = {Ik|k ∈ Ki} to a
VLM (Achiam et al., 2023; Hong et al., 2024; Liu et al., 2024a) fVLM. The VLM produces a response
fVLM(Ii, Ai) ∈ {Yes,No}, indicating whether the assertion Ai is verified. When Ki contains more
than one index, we concatenate the frames horizontally as one image feeding into the VLM. We
empirically observe that the combined image input is more reliable than sequential image inputs for
TC-Bench evaluation, contrary to the findings of some recent work (Wang et al., 2024b). A transition
is completed if all Ai from transition completion and consistency are verified. Therefore, we define
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the Transition Completion of P and V as:

TC(P,V) =
{
1 if ∀i,1(fVLM(Ii, Ai) = Yes), where Ai ∈ Scomp ∪ Scons

0 otherwise,
(1)

where 1(·) is the indicator function. It returns True when fVLM verifies the assertion Ai according to
Ii. Therefore, we say a video Vj completes the transition described by Pj only when it passes all
assertion Ai ∈ Scomp ∪ Scons.

To this end, we can define a model’s Transition Completion Ratio (TCR) with equation 1. Given a set
of M text-video pair (Pj ,Vj) generated by the model, its TCR is given as below

TCR =
1

M

∑
j

TC(Pj ,Vj)× 100, j = 1, . . . ,M. (2)

TCR shows the percentage of videos in the whole benchmark that align with the prompts. We can
further define the TC-Score of a text-video pair (P,V) as the pass rate of all assertion examinations:

TC-Score(P,V) = 1

N

N∑
i=1

1(fVLM(Ii, Ai)), Ai ∈ Scomp ∪ Scons ∪ Sother, (3)

ending up with a value within [0, 1]. Compared to TCR, the averaged TC-Score can be viewed as a
more comprehensive metric that validates all concepts mentioned in the prompts.

4.2 CONSISTENCY EVALUATION FOR IMAGE-TO-VIDEO GENERATION

I2V models (Xing et al., 2023; Chen et al., 2023b), by using ground truth start and end frames as
inputs, may generate adversarial intermediate frames to deceive VLMs in verifying assertion. While
TCR and TC-Score still show positive correlations for these models, we find it beneficial to penalize
such phenomena by evaluating frame consistency using latent features. The TC-Score for I2V models
is then defined as:

TC-Score(P,V) = w1
1

N

N∑
i=1

1(fVLM(Ii, Ai) = Yes)) + w2
1

K − 1

K−1∑
k=1

fCLIP(Ik, Iref), (4)

where fCLIP is the CLIP cosine similarity and Iref is either the next frame Ik+1 or the frame from the
ground truth video Igt

k . w1 and w2 are weighting factors. As shown in Fig. 3 (right), we explore four
candidates and find that using CLIP latent features is more reliable (also see Appendix C.2).

5 METHOD

We introduce a simple and effective baseline to improve the transition completion rate over text-
to-video generation models. Based on the prompt P , we first instruct an LLM to generate the text
description of the initial scene P0 and the end scene PK . Then we utilize a diffusion-based text-to-
image generation model ft→i to generate the start and end frame I1, IK . However, simply using
P0, PK to guide the generation process overlooks the consistency across the frames. Therefore, we
apply the same noise map zT as the initialized noise pattern of both diffusion paths and substitute the
self-attention maps of IK with maps from I0’s diffusion trajectory for the first half of the timesteps.
As P0 and PK share similar semantics except in some attributes or object positions, we discover
that such a simple method can end up with I1 and IK sharing similar image structures. Then, the
generated frames are used to guide the process of video generation so that the temporal transition can
be completed under the guidance of Ik. We use an off-the-shelf video generation model SEINE (Chen
et al., 2023b) for the generative transition from I1 to IK . We refer to this baseline as SDXL+SEINE
as we adopt SDXL (Podell et al., 2023) for start and end frame generation.

6 EXPERIMENT

6.1 EXPERIMENT SETUP

Baselines Including the above SEINE-based method, we consider fourteen T2V models/systems
across three major types and two I2V models that perform generative frame interpolation. We
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Table 1: Automatic evaluation results of three types of baselines on TC-Bench-T2V. The bold text
highlights the best metric scores in each type of method. Multi-stage T2V methods adopt LLMs or
text-to-image models to generate additional conditions for video generation.

TC-Bench-T2V
Attribute Object Background Overall

Methods TCR TC-Score TCR TC-Score TCR TC-Score TCR ↑ TC-Score ↑
Open-source models: Text→ Video

1 ModelScope (Wang et al., 2023a) 3.52 0.5942 4.72 0.6230 3.54 0.5715 3.90 0.5955
2 Show-1 (Zhang et al., 2023) 3.85 0.6029 5.58 0.6544 5.49 0.6008 4.95 0.6182
3 Open-Sora-Plan v1.2 (Lab & etc., 2024) 5.77 0.6241 2.98 0.6764 2.75 0.5359 3.87 0.6105
4 Open-Sora v1.2 (hpcaitech, 2024) 6.15 0.6509 7.66 0.7406 2.35 0.5847 5.33 0.6565
5 LaVie (Wang et al., 2023b) 4.63 0.5807 6.06 0.6323 6.28 0.6252 5.64 0.6119
6 VideoCrafter2 (Chen et al., 2024) 4.25 0.6166 6.44 0.6724 7.06 0.6338 5.89 0.6399
7 CogVideoX-5B (Yang et al., 2024) 8.08 0.6930 10.64 0.7237 4.71 0.6338 7.73 0.6825

Proprietary models/systems: Text→ Video
8 Pika 1.0 (Pik, 2023) 5.77 0.6520 8.51 0.7242 1.96 0.6070 5.33 0.6593
9 Kling 1.0 (Kli, 2024) 7.69 0.6888 10.64 0.7819 3.92 0.6183 7.33 0.6940
10 Dream Machine (Lum, 2024) 9.80 0.7319 12.77 0.7755 5.88 0.6284 9.40 0.7102
11 Gen-3 Alpha (Gen, 2024) 9.62 0.7507 10.64 0.7073 27.45 0.7488 16.00 0.7365

Multi-stage T2V: Text→ Text/Layout/Images→ Video
12 Free-Bloom (Huang et al., 2024a) 6.32 0.6256 6.84 0.6215 24.02 0.7394 12.55 0.6633
13 LVD Lian et al. (2023) 5.77 0.6215 12.77 0.7081 1.96 0.5042 6.67 0.6088
14 SDXL+SEINE (Ours) 13.08 0.6579 5.60 0.6486 35.43 0.7916 18.37 0.6993

Table 2: Automatic evaluation results of I2V models on TC-Bench-I2V.

TC-Bench-I2V
Attribute Object Background Overall

Methods TCR TC-Score TCR TC-Score TCR TC-Score TCR ↑ TC-Score ↑
Start & End Frame→ Video

15 SEINE 17.86 0.7197 10.48 0.6541 7.96 0.7421 13.57 0.6978
16 DynamiCrafter 16.55 0.7449 13.91 0.7074 25.56 0.7949 16.89 0.7380

benchmark major open-source T2V models, such as VideoCrafter2 (VC2) (Chen et al., 2023a; 2024)
and CogVideoX-5B (Yang et al., 2024), most recent proprietary systems such as Kling and Gen-3
Alpha, and finally, multi-stage T2V models such as Free-Bloom (Huang et al., 2024a) and LVD (Lian
et al., 2023). Free-Bloom (Huang et al., 2024a) applies an LLM to generate a list of prompts that
are used to guide generation for different frames. We re-implement it on top of VideoCrafter2 for
optimal results. LVD (Lian et al., 2023) applies an LLM to generate bounding boxes for each frame
and synthesize videos with a layout-to-video model. For I2V models, SEINE (Chen et al., 2023b)
and DynamiCrafter (Xing et al., 2023) take the first and last frames from ground truth videos and
generate intermediate frames. Additional implementation details are clarified in Appendix A.

Metrics For the proposed TCR and TC-Score, we adopt GPT-4 Turbo, CogVLM2-19B, and LLaVA-
NeXT-7B to assess all the assertions. The results reported in the main paper are based on GPT-4
Turbo, and the other results are reported in Appendix A and Table 6 and 7. In comparison, we
consider four commonly used or recent text-video alignment metrics. CLIP score (Radford et al.,
2021) measures the average text-frame similarity. ViCLIP (Wang et al., 2023c) encodes video and
text as two separate feature vectors, which can be used to compute cosine similarity as the text-video
alignment score (Huang et al., 2024c). EvalCrafter (Liu et al., 2024b) computes a weighted sum of
many different metrics, but we only adopt the sum of CLIP score, SD score, and BLIP-BLEU since
these metrics are agnostic to prompt content and structure. Finally, UMTScore (Liu et al., 2024c)
uses the video-text matching score from a fine-tuned UMT (Li et al., 2023b), an advanced video
foundation model. We also collect human ratings with a 5-point Likert scale to compute correlations
with these automatic metrics.

6.2 QUANTITATIVE RESULTS

Direct T2V Models Table 1 shows the automatic evaluation results of T2V baselines on three types
of scenarios of TC-Bench. The overall TCR and TC-Score indicate a clear discrepancy between
open-source and proprietary models, except that CogVideoX-5B (Yang et al., 2024) achieves similar
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performances as Kling. CogVideoX-5B is particularly strong in showing object relation changes.
Gen-3 Alpha demonstrates apparent superiority in background transitions with a 27.45% TCR, while
Dream Machine achieves the best results in object relation transitions with a 12.77% TCR. As
no single model/system dominates over all three types of prompts, we conjecture that the results
implicitly reflect the differences in data curation between different models/systems. The overall
results also evidence the difficulty of TC-Bench prompts, even though they are mostly single-hop
transitions in concept. Our rank of T2V models also aligns with established benchmarks such as
VBench (Huang et al., 2024c) or EvalCrafter (Liu et al., 2024b).

Multi-stage T2V models, including Free-Bloom (Huang et al., 2024a), LVD (Lian et al., 2023), and
our SDXL+SEINE, generates frame-wise prompts, layouts, and images as intermediate steps. While
these methods effectively enhance the overall TCR, the unbalanced fluctuations across types reveal
limitations using explicit mid-level representations. For instance, LVD fails to address attributes or
backgrounds because these transitions cannot be represented using bounding boxes. SDXL+SEINE
underperforms in object relation because T2I models struggle to control object positions in two
diffusion paths of similar structures. The results suggest the necessity of fundamentally addressing
the gap between video and text features in the latent space to tackle TC-Bench.

I2V Models As shown in Table 2, SEINE (Chen et al., 2023b) and DynamiCrafter (Xing et al.,
2023) achieve much higher TCR than T2V models because they are designed for transition completion.
Both achieve high TCR in attribute and background as these types usually involve fewer temporal
dynamics. However, as is shown later in Sec. 6.3 & 6.4, the major challenge for generative frame
interpolation is to maintain frame consistency and smoothness, especially between the conditional
(start and end) frames and neighboring frames. We observe that both models are still weak in
maintaining consistency and coherence when the discrepancy between the start and end frames is
significant.

6.3 QUALITATIVE RESULTS

We show several representative examples in Fig. 4. For attribute binding, a common phenomenon
is that direct T2V models blend multiple concepts that should appear in different timesteps as a
static pattern throughout the video (first row) or display one dominant attribute (second row). In
contrast, SDXL+SEINE can generate color changes gradually. Object relation changes are more
challenging, yet some of the best open-source and commercial models/systems, such as Open-Sora,
CogVideoX, and Kling, can synthesize the process. While Dream Machine and Gen-3 Alpha fail
in this example, we show their success cases in the Appendix. Lastly, Gen-3 Alpha, Free-Bloom,
and SDXL+SEINE show strong results in background shifts of the cityscape. Still, the latter two are
weaker in maintaining transition smoothness and scene consistency, resulting in lower TC-Score as in
Table 1.

6.4 ANALYSIS

Temporal Compositionality We demonstrate temporal compositionality in the generated videos
by visualizing the existence of attributes a1, a2 at different time steps. Specifically, we compute the
CLIP similarity between each frame and captions “a a1 o1” to obtain Fig. 5 (a), and captions “a a2
o1” to obtain Fig. 5 (b). For instance, if the video prompt is “a pink chameleon turns green”, then
the two captions are “a pink chameleon” and “a green chameleon” respectively. The similarity to
a1 should decrease while the similarity to a2 should increase as the frame index increases. The flat
curves of T2V models indicate that they fail to generate the disappearance of a1 or the emergence of
a2 as time proceeds, which aligns with the case in Fig. 4. In contrast, SEINE and DynamiCrafter
align well with the trend of ground truth videos.

Frame Consistency Despite the fact that I2V models align with the trend of ground truth videos in
Fig. 5 (a)-(b), they suffer from more severe consistency issues than T2V models. Fig. 5 (c) shows the
CLIP similarity between two consecutive frames. I2V models are generally weaker than T2V models
in frame consistency, especially the consistency between the start and end frames (input conditions)
and their neighboring frames (model outputs). For T2V models, chasing higher consistency scores
does not help achieve temporal compositionality, as most transitions cannot be completed. Therefore,
we argue that it is only necessary to compute consistency for I2V models as in Eq. 4.
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CogVideoX-5B

Attribute Transition: A sunflower turns from yellow to pink.

Object Relation Change: A bird holding an envelope and placing it in its nest.

Open-Sora

SDXL+SEINE 
(Ours)

Dream Machine

Gen-3 Alpha

Free-Bloom

CogVideoX-5B

Kling

Dream Machine

Gen-3 Alpha

Background Shifts: A cityscape transitioning from day to night.

VideoCrafter 2

Dream Machine

Gen-3 Alpha

Free-Bloom

SDXL+SEINE
(Ours)

Figure 4: Qualitative comparison between different models in attribute and object binding transitions.
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Frame Consistency

VideoCrafter2 LaVie ModelScope SEINE DynamiCrafter GT videos

Figure 5: (a) Averaged CLIP cosine similarity between frame Ik and the start attribute a1. (b)
Averaged CLIP cosine similarity between frame Ik and end attribute a2. (a) and (b) reflect the
existence of a1, a2 as time proceeds. (c) CLIP cosine similarity between two consecutive frames.

Table 3: Correlations between human annotations and automatic evaluation metrics. The last row
refers to the averaged correlation between two different annotators to show that the ratings are
consistent across individuals.

TC-Bench-I2V

Q1: Transition Completion Q2: Overall Text-Video
Alignment

Metrics Spearman ρ Kendall’s τ Spearman ρ Kendall’s τ

CLIP Sim. (Radford et al., 2021) -0.0879 -0.1211 -0.0927 -0.1273
ViCLIP (Huang et al., 2024c) 0.0599 0.0760 0.0465 0.0660
EvalCrafter (Liu et al., 2024b) 0.1098 0.1515 0.1045 0.1468
UMTScore (Liu et al., 2024c) 0.1508 0.2074 0.1927 0.2659
TC-Score (Ours) 0.2977 0.3753 0.4513 0.5913
Human (Upper bound) 0.7011 0.7724 0.6735 0.7289

6.5 HUMAN EVALUATION

We compute Kendall and Spearman’s rank correlations to show that our proposed metrics align
with human judgments. We collect two ratings for each video where the first one only considers
transition completion and the other one considers overall text-video alignment (details in Appendix
D). As is shown in Table 3, our metrics achieve much higher correlations compared to existing
metrics in both aspects. The results verify the effectiveness of our metrics for evaluating temporal
compositionality. Despite being widely adopted in existing studies, averaged text-frame CLIP
similarity is unreliable and often outputs low scores for videos that complete the transitions. The
results are intuitive as the training text samples for CLIP describe static images instead of transitions
or motions, lacking awareness of compositional change across timesteps. In addition, we find that
advanced text-video alignment models like ViCLIP and UMTScore are still weak in understanding
temporal compositionality, leading to low correlations.

7 CONCLUSION

In this work, we propose a new video generation benchmark TC-Bench, featuring temporal compo-
sitionality. TC-Bench characterizes three different types and a wide range of topics. We show that
simple transitions that can happen in several seconds remain extremely challenging to existing T2V
methods. We also propose assertion-based evaluation metrics and investigate consistency evaluation
using flow-based methods or latent features. Our benchmark, experimental results, and analysis unveil
the weaknesses of existing T2V and I2V models in temporal compositionality, suggesting crucial
directions for future improvement. Future work should investigate techniques to 1) automatically
mine videos with specific temporal compositionality and generate detailed captions, 2) evaluate
text-video alignment more efficiently, and 3) improve text-to-video models in addressing temporal
compositionality.
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8 REPRODUCIBILITY STATEMENT

We upload the benchmark prompts and video URLs in Sec. 3, generated assertions and evaluation
results in Sec. 4 and 6.2 to the supplementary materials for reproducibility. We will release the full
benchmark, evaluation scripts, and results. In addition to referring to the materials, we have disclosed
implementation details in 6.1 and Appendix A.

9 ETHICS STATEMENT

For the human evaluation in Sec. 6.5, we use the Amazon Mechanical Turk platform and form
the comparison task as batches of HITs. We recruit a small group of annotators who are native
English speakers since the task requires understanding the English input prompt. Each HIT takes
around 15-30 seconds on average to accomplish, and we pay each submitted HIT with 0.3 US dollars,
resulting in an hourly payment of 36 US dollars. We will release the dataset, including the prompts,
video URLs, downloading scripts, pre-generated assertions, our evaluation results, and generated
videos.
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A IMPLEMENTATION DETAILS

We generate five videos per prompt per model which ends up with 750 videos in total. We set the fps
to 8 and the total number of frames to 16 per video, except that Show-1 is fixed to 29 frames. We use
the default resolution of each model, i.e., 320× 512 for VideoCrafter2, LaVie, and DynamiCrafter,
256 × 256 for ModelScope and LVD, 320 × 576 for Show-1, and 512 × 512 for SEINE. We use
GPT-4-turbo API for frame index and assertion generation and GPT-4V for TCR and TC-Score
evaluation for all videos and all models. As for fCLIP in Eq. 4, we first apply CLIP ViT-L/14@336px
to extract frame features as a vector and compute the cosine similarity between two normalized
feature vectors. We heuristically set the range of acceptable similarity scores as [0.90, 0.98] based
on the minimum and maximum values of ground truth videos. Scores within this range are linearly
mapped to values between [0, 1]. Scores outside this range are adjusted accordingly: values below
0.90 are set to 0, and values above 0.98 are set to 1. We heuristically set w1 to 2

3 and w2 to 1
3 since

consistency is one of the total three evaluation dimensions. We use the “Consecutive Frame CLIP
Sim.” because it demonstrates the highest ranking correlations with human ratings, as shown in Table

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

4 in Appendix C. All models can be run on a single 40 GB NVIDIA A100, and the evaluation is
conducted through OpenAI API calls.

For all videos generated from open-source models, we use the default parameters (including fps,
resolution, and number of frames) from the official GitHub repository. For Open-Sora-Plan v1.2,
we generate 93 frames under 480p, and for Open-Sora v1.2, we generate 2-second videos. For
commercial models, we generate one video for each prompt and use the default settings from the
GUI. For Kling, we generate 5-second videos in professional mode. For Dream Machine, we enabled
the prompt enhancement. For Gen-3 Alpha, we generate 5-second videos.

B TC-BENCH DATASET CONSTRUCTION

This section provides the details of the prompts for generating prompts in TC-Bench using ChatGPT.
We start with general instructions on the desired structure and format of temporal compositionality
prompts, followed by several manually written examples. The text prompts and metadata of TC-Bench
are available at this link and also at the project website.

Attribute Transition We explicitly ask ChatGPT to imagine scenarios where the attribute (including
lighting, color, material, shape, and texture) of a certain object changes and then generates the
corresponding prompts. Generate some concise prompts that describe scenarios where an object’s
attribute, such as lighting, color, material, shape, or texture, changes as time proceeds. The prompt
should describe transitions that could happen within a few seconds in a video. The described
transition should also be realistic and could happen in the real world. Here are some examples:

A chameleon’s skin changes from brown to bright green.

A leaf changing color from vibrant green to rich autumn red.

A car transitioning from silver to matte black.

Object Relation Change We first describe the idea of object binding and then instruct ChatGPT
to generate prompts that describe transitions in the binding relations. We also prompt ChatGPT to
consider many different subjects as it is biased towards mentioning human occupations. Generate
some concise prompts that describe scenarios where objects’ binding relations change due to some
actions or motions. Two objects are bound to each other if they are physically interacting with
each other. For example, in “a man passes a ball from left hand to right hand” the ball is bound to
the man’s left hand at first. Then, the binding relation changes from ball and left hand to ball and
right hand. The prompt should describe motions that could happen within a few seconds in a video.
Consider a wide range of subjects not limited to humans or one’s occupation, such as animals or
common objects. Here are more examples:

A man picking an apple from a tree and placing it in a basket.

A bird picking up a twig and placing it in its nest.

A child placing a toy car on a toy track.

Background Shifts is similar to attribute transition in prompting. The major difference is that
we clarify that the transition takes place on a background scene or object, with a foreground object
serving as the distractor. Generate some concise prompts that describe scenarios where a foreground
object remains relatively static and the background changes as time proceeds. The prompt should
describe transitions that could happen within a few seconds in a video, whether it is a normal-speed
video or a timelapse video. Here are some examples:

A cityscape transitioning from day to night.

A forest changing from summer greenery to autumn foliage.

A bench by a lake from foggy morning to sunny afternoon.

To ensure the integrity and quality of the data collection process, contributors must possess a nuanced
understanding of temporal compositionality and the dynamics of scene graph transitions, as depicted
in Figure 2. Given these specialized requirements, we opted to engage a team of students who have

16

https://github.com/weixi-feng/TC-Bench
https://weixi-feng.github.io/tc-bench


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Length of Videos (seconds)

0

5

10

15

20

25

30

De
ns

ity

Video Length Distribution
Histogram

0 1 2 3 4 5 6 7 8 9 1011121314151617
Average Magnitude

0

5

10

15

20

Fr
eq

ue
nc

y

Optical Flow Magnitudes of Moving Objects by Type
Attribute Transition
Object Binding
Background Shifts

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Di
st

rib
ut

io
n 

(%
)Cumulative Distribution (in %)

Figure 6: Left: Length distribution of ground truth videos. Right: Distribution of dynamics degree
of moving object in ground truth videos.

a background in the relevant domain. Crowdsource workers, while effective for broad-range tasks,
may not possess the domain-specific knowledge or the detailed task familiarity necessary for this
particular study.

B.1 GROUND TRUTH VIDEO COLLECTION AND STATISTICS

After obtaining a certain number of prompts for each type, each annotator manually searches YouTube
for videos that match or are relevant to the prompts. If a video illustrates temporal compositionality
but does not fully align with the prompt, annotators will revise the prompt to align with the video
instead. If relevant videos cannot be found after several search trials, we discard the prompt and
proceed to the next one. The annotators record the YouTube ID, start time, and end time for each
video. This metadata is shared with the users of TC-Bench for downloading ground truth videos. We
also ensure that the video length is within a reasonable range from several seconds to less than 20
seconds.

Fig. 6 provides two collected video statistics. On the left, we show the distribution of the video
lengths to prove that the events described in our prompts are realistic and could happen within a few
seconds. Note that around 80% of the videos have a length shorter than or equal to 6 seconds, and
95% of the videos are shorter than 15 seconds. On the right, we show the distribution of dynamic
degrees of all videos using optical flow. We first extract the optical flow for each frame and compute
the flow magnitude of each pixel. Then we apply a threshold to eliminate static background area
and compute the average magnitude over the remaining area that are moving objects or areas. We
observe that videos from attribute transition and background shifts contain less motion than those
from object binding changes. This aligns with our intuition because the latter often needs human
actions or subject motion to accomplish compositional change.

C EVALUATION METRICS

This section provides more details about assertion generation and frame consistency evaluation for
I2V models.

C.1 ASSERTION GENERATION

As described in Sec. 4 and Fig. 3, we provide three in-context exemplars for GPT-4 to generate
assertions for each prompt from TC-Bench-T2V and TC-Bench-I2V. We manually write one exemplar
for each type and append them after the instruction. The detailed prompt is shown in Table 8 and 9.
The three dimensions are transition completion, transition consistency, and other objects. Transition
completion first checks whether the start and end frames reflect the required concepts. To detect
unnatural videos with abrupt changes between two consecutive frames, assertions also check an
intermediate frame and a sequence of sampled frames. Transition consistency further examines

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

whether the objects in intermediate frames maintain key identity features as in the first frame. Finally,
we also check for other objects beyond those mentioned in the prompt, such as the distractor object
“bench” in Table 9.

C.2 FRAME CONSISTENCY FOR I2V MODELS

As is introduced in Sec. 4 and Fig. 3, we investigate four different methods to measure consistency
for generative frame interpolation. Note that since the ground truth videos are in arbitrary length and
an arbitrary number of frames, we first sample 16 frames with equal gaps from each video to match
the number of frames in the generated videos. Then, we apply different methods to extract optical
flow, trajectory, or latent features.

• End-Point-Error (EPE) is a standard metric from optical flow estimation that measures the
Euclidean distance between the vectors from two optical flow maps. We first use GMFlow
Xu et al. (2022) to extract optical flow vectors (uk, vk) for each pixel in frame k in the
generated videos. For simplicity, we omit the pixel index hery. Then we also extract
(uref

k , vref
k ) from the ground truth videos. End-Point-Error is simply an averaged L2 distance

between every pair of optical flow vectors of all pixels in all frames:

EPE =
1

|P|
∑
p∈P

1

K

∑
k

√
(uk − uref

k )2 + (vk − vref
k )2, (5)

where P in the set of pixels in a frame and p ∈ P represents all pixels within the frame.
• Average Trajectory Error (ATE) is a standard measure used in point tracking in video

sequences or other dynamic contexts. It quantifies the average discrepancy between the
estimated trajectories of points and their ground truth trajectories over time. We estimate the
position of 1024 points p̂k ∈ R2 for each frame and the reference pk ∈ R2 from ground
truth videos. The ATE is the averaged position differences over all K frames:

ATE =
1

|P|
∑
p∈P

1

K

∑
k

∥pk − p̂k∥2. (6)

• Frame Consistency Error (i.e. Consecutive Frame CLIP Sim. in Fig. 3), introduced in
Esser et al. (2023), is to compute the cosine similarity between features of two consecutive
frames extracted by CLIP Image encoder.

• Frame-wise CLIP Similarity is to compute the cosine similarity between features of the
generated frame and corresponding ground truth frames.

Since these metrics are investigated to measure consistency, we process the collected human ratings
to disentangle the score sets from involving transition completion consideration. In our 5-point Likert
scale, a score of 4 indicates that the transition is completed, but there are consistency issues. A score
of 5 indicates that the transition is completed and there are merely consistency issues. Since each
video has three different ratings, we filter out videos with an average score below 3.6 to ensure that
each has at least two scores of 4 or 5. This has led to 128 videos from I2V models. However, for T2V
models, the completion rate is too low that over 97% of the videos have average scores below 3. We
are unable to disentangle consistency from transition completion for T2V models. This is another
reason we only accommodate frame consistency error for I2V models as stated in Sec. 4 and Eq. 4.

Table 4 presents the ranking correlations between these four metrics and processed human ratings.
Consecutive Frame CLIP Similarity achieves the highest correlation scores and is unsupervised. We
conjecture that EPE and ATE are too strict for TC-Bench evaluation because there can be many
possible ways to generate natural transitions between two frames. We indeed observe cases where the
generated video contains a huge amount of dynamics and completes the attribute transition smoothly.
However, the ground truth video shows a static object changing attributes. Such discrepancy could
have caused misalignments between the automatic scores and human ratings.

D HUMAN EVALUATION

We first generate five videos per prompt per model for human annotations using Modelscope, LaVie,
VC2, SEINE, and DynamiCrafter on TC-Bench-I2V. This is to unify the prompt space for T2V and
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Table 4: Ranking correlations between frame consistency measurements and processed human ratings
for SEINE and DynamiCrafter.

Transition Completion Ratings

Metrics Unsupervised Spearman ρ Kendall’s τ

End-Point-Error ✗ -0.1742 -0.2320
Average Trajectory Error ✗ -0.1579 -0.2149
Frame-wise CLIP Sim. ✗ 0.2326 0.3107
Consecutive Frame CLIP Sim. ✓ 0.2861 0.3807

Table 5: Automatic and human evaluation results of T2V and I2V models on TC-Bench-I2V. The
results are used to compute ranking correlations.

TC-bench-I2V
Attribute Object Background Overall Human Ratings

Methods TCR TC-Score TCR TC-Score TCR TC-Score TCR ↑ TC-Score ↑ Completion rate
Q1¿=3.66 Q1 ratings Q2 ratings

Text→ Video
1 ModelScope 4.76 0.5577 1.33 0.5604 4.17 0.5330 3.28 0.556 0.00 1.304 1.727
2 LaVie 1.30 0.5329 1.33 0.5399 10.71 0.5967 2.78 0.5457 0.55 1.357 1.726
3 VideoCrafter 3.45 0.6187 12.33 0.6304 11.11 0.6898 8.02 0.6335 1.07 1.344 1.840

Start & End Frame→ Video
4 SEINE 17.86 0.7197 10.48 0.6541 7.96 0.7421 13.57 0.6978 22.56 2.895 2.837
5 DynamiCrafter 16.55 0.7449 13.91 0.7074 25.56 0.7949 16.89 0.7380 27.82 2.980 2.970

I2V models to reduce bias during annotation. Then, we randomly sampled around 900 videos from
all the videos and assigned three different annotators for each video to reduce variance. We discarded
the videos with divisive ratings and ended up with 2451 human ratings over 817 generated videos.
The detailed graphical user interface for rating collection is shown in Fig. 7. We design two questions,
the first focusing on transition only while the second considering the overall text-video alignment in
favor of measuring the transition. We release these ratings along with the benchmark data and metrics
for future work to improve the evaluation protocols further.

This data annotation part of our project is classified as exempt by the Human Subject Committee via
IRB protocols. We launched our annotation jobs (also called HITs) on the Amazon Mechanical Turk
platform. We recruited eight native English-speaking workers and provided thorough instructions
and guidance to help them understand the task’s purpose and the emphasis of each question. We also
provided five detailed examples in the annotation interface for their reference and communicated
with the workers to resolve confusion throughout the process. The workers’ submissions are all
anonymous, and we did not collect or disclose any personally identifiable information in the collection
stage or dataset release. Our prompts and generated videos do not contain offensive content. Each
HIT has a reward of 0.35 USD and takes around 40 seconds to complete, leading to an hourly rate of
31.5 USD and a total cost of 1134 USD.

E ADDITIONAL RESULTS

Quantitative Results We show the complete results of TC-bench-I2V in Table 5 with human
evaluation. We calculate the ratio of videos with a Q1 rating larger than 3.66 to extract a measurement
from human ratings with similar meanings to TCR. However, note that this measurement is not
statistically the same as TCR, and its value cannot be directly compared with TCR. It is designed to
reflect the overall ranking of models in terms of transition completion. I2V models achieve a much
higher completion rate than T2V models, which only achieve around 1%. The low average ratings in
Q1 and Q2 also imply the lack of temporal compositionality in existing T2V models.

Qualitative Results We show additional qualitative comparisons of baselines in Fig. 8 - 13.
Compared to direct T2V models or multi-stage T2V models, our SDXL+SEINE achieves better
temporal compositionality by showing more significant transitions in Fig. 8 & 10. However, as is
shown in Fig. 9, it still suffers from generating dynamics for object relation change. The intermediate
frames also show consistency issues. While LVD demonstrates the correct dynamics, it suffers from
low visual quality and consistency issues as well.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 7: Screenshot of our job on Amazon Mechanical Turk to collect human ratings for generated
videos.

Table 6: Automatic evaluation results of three types of baselines on TC-Bench-T2V using
llava-v1.6-mistral-7b-hf. The overall TCR ranks exhibit a correlation coefficient of
0.8569 with the evaluation results using GPT-4 Turbo, while TC-Score ranks demonstrate a correla-
tion coefficient of 0.8643.

TC-Bench-T2V
Attribute Object Background Overall

Methods TCR TC-Score TCR TC-Score TCR TC-Score TCR ↑ TC-Score ↑
Open-source models: Text→ Video

1 ModelScope (Wang et al., 2023a) 32.69 0.8465 38.30 0.8319 29.80 0.7939 33.47 0.8240
2 Show-1 (Zhang et al., 2023) 41.92 0.8707 48.94 0.8791 29.41 0.8116 39.87 0.8532
3 Open-Sora-Plan v1.2 (Lab & etc., 2024) 30.77 0.8208 29.79 0.7813 30.98 0.7930 30.53 0.7990
4 Open-Sora v1.2 (hpcaitech, 2024) 38.08 0.8322 46.38 0.8596 30.59 0.8152 38.13 0.8350
5 LaVie (Wang et al., 2023b) 35.39 0.8547 40.85 0.8418 34.51 0.8255 36.80 0.8407
6 VideoCrafter2 (Chen et al., 2024) 36.54 0.8595 47.66 0.8958 40.78 0.8611 41.47 0.8714
7 CogVideoX-5B (Yang et al., 2024) 45.39 0.8866 47.23 0.8768 33.73 0.8316 42.00 0.8649

Proprietary models/systems: Text→ Video
8 Pika 1.0 (Pik, 2023) 32.69 0.8625 53.19 0.8819 35.29 0.8653 40.00 0.8695
9 Kling 1.0 (Kli, 2024) 42.31 0.8792 61.70 0.9301 39.22 0.8523 47.33 0.8860
10 Dream Machine (Lum, 2024) 52.94 0.8932 72.34 0.9451 15.69 0.7683 46.31 0.8668
11 Gen-3 Alpha (Gen, 2024) 50.00 0.9080 40.43 0.8578 58.82 0.8990 50.00 0.8892

Multi-stage T2V: Text→ Text/Layout/Images→ Video
12 Free-Bloom (Huang et al., 2024a) 57.31 0.8930 33.62 0.7993 49.80 0.8645 47.33 0.8539
13 LVD Lian et al. (2023) 23.08 0.7798 27.66 0.7519 19.61 0.7218 23.33 0.7513
14 SDXL+SEINE (Ours) 62.69 0.9177 51.92 0.9121 63.92 0.9196 59.73 0.9166

Fig. 11-13 shows direct comparison between T2V models and I2V models. The main issue of
T2V models is that they cannot generate different semantics in different frames, as described in the
prompts. T2V models mix up a group of concepts and visualize them simultaneously in each frame
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Table 7: Partial evaluation results of three types of baselines on TC-Bench-T2V using
cogvlm2-llama3-chat-19B. Due to computational resource limitations, we only run five
models. The overall TCR ranks align with the evaluation results using GPT-4 Turbo, while TC-Score
ranks demonstrate a correlation coefficient of 0.9000.

TC-Bench-T2V
Attribute Object Background Overall

Methods TCR TC-Score TCR TC-Score TCR TC-Score TCR ↑ TC-Score ↑
7 CogVideoX-5B (Yang et al., 2024) 10.77 0.7324 17.45 0.7593 12.94 0.7186 13.60 0.7362
8 Pika 1.0 (Pik, 2023) 1.92 0.6856 12.77 0.7304 1.96 0.6410 5.33 0.6845
9 Kling 1.0 (Kli, 2024) 9.62 0.7308 19.15 0.7889 11.77 0.6869 13.33 0.7341
10 Dream Machine (Lum, 2024) 13.73 0.7646 19.15 0.8170 9.80 0.6772 14.09 0.7512
11 Gen-3 Alpha (Gen, 2024) 21.15 0.8102 17.02 0.7615 35.29 0.8261 24.67 0.8003

or may generate trivial motions. While I2V models generate more significant dynamics or transitions,
they suffer from consistency and coherence issues, like the “rainbow” in Fig. 13. We also show
additional qualitative comparisons of all the metrics considered in this work in Fig. 14-16. Existing
metrics fail to address temporal compositionality and assign higher scores to static scenes without
compositional changes.

F LIMITATION AND POTENTIAL SOCIAL IMPACTS

One limitation of our work is the discrepancy between our proposed metrics and human ratings.
While TCR and TC-Score both demonstrate much higher ranking correlations with human judgments,
there is still a need for having even more reliable and robust metrics for temporal compositionality.
Our proposed evaluation metrics are not perfect. For example, VLMs still struggle with multi-image
understanding. Besides, we rely on image-based assertion because strong video foundational models
are lacking. To the best of our knowledge, temporal compositionality is still challenging in the
context of video understanding. Therefore, future work could devise end-to-end video-based metrics
when such a stronger VLM is available. In terms of potential social impacts, TC-Bench users and
researchers should be aware of the potential abuse of text-to-video models. Hallucination issues and
biases of generated videos should also be addressed. Future research should exercise caution when
working with generated videos using TC-Bench prompts and ground truth videos.
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Table 8: System prompt and first two in-context exemplars of the prompt.

System Instruction:
”Given a video description, generate assertion questions and paired frames to verify important compo-
nents in the description. Each description describes a transformation/transition of an object’s attribute, or
an object’s position or background. Identify the transition object, its start and end status/place, and other
objects, and ask questions to verify them. Below are three examples showing three different types of
transitions. Follow these examples and generate questions for the given descriptions.”
In-context exemplars 1:
A chameleon changing from brown to bright green.
Transition object: chameleon, start: brown, end: bright green
other objects: None
- Check ”Transition Completion”
Input: Frame 1
Q: Is there a brown chameleon?
Input: Frame 16
Q: Is there a bright green chameleon?
Input: Frame 9
Q: Is there a chameleon with its color in between brown and bright green?
Input: Frame 1, 5, 9, 13, 16
Q: Has the chameleon changed color from brown to bright green?
- Check ”Transition object consistency”
Input: Frame 1, 6
Q: Aside from color difference, do Frame 1 and Frame 6 show the same chameleon?
Input: Frame 1, 11
Q: Aside from color difference, do Frame 1 and Frame 11 show the same chameleon?
- Check ”Other objects”
None
In-context exemplar 2:
A man passing a ball from his left hand to his right hand.
Transition object: ball, start: left hand, end: right hand
other objects: man
- Check ”Transition Completion”
Input: Frame 1
Q: Is there a ball on the man’s left hand?
Input: Frame 16
Q: Is there a ball on the man’s right hand?
Input: Frame 9
Q: Is the ball between the man’s left hand and right hand?
Input: Frame 1, 5, 9, 13, 16
Q: Has the ball been passed from left hand to right hand?
- Check ”Transition object consistency”
Input: Frame 1, 6
Q: Aside from position difference, do Frame 1 and Frame 6 show the same ball?
Input: Frame 1, 11
Q: Aside from position difference, do Frame 1 and Frame 11 show the same ball?
- Check ”Other objects”
Input: Frame 1
Q: Is there a man with a ball in his hand in the image?
Input: Frame 1, 6, 11
Q: Do all the frames show the same man?
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Table 9: The third in-context exemplar for assertion generation.

In-context exemplars 3: A bench by a lake from foggy morning to sunny afternoon.
Transition object: background, start: foggy morning, end: sunny afternoon
Other objects: bench, lake
- Check ”Transition Completion”
Input: Frame 1
Q: Is the image showing a foggy morning?
Input: Frame 16
Q: Is the image showing a sunny afternoon?
Input: Frame 9
Q: Is the image showing a mix of foggy morning and sunny afternoon?
Input: Frame 1, 5, 9, 13, 16
Q: Has the background changed from foggy morning to sunny afternoon?
- Check ”Transition object consistency”
None: background is an abstract concept without a physical form
- Check ”Other objects”
Input: Frame 1
Q: Is there a bench by a lake in the image?
Input: Frame 1, 6, 11
Q: Do all the frames show the same bench and a lake?
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Figure 8: Additional qualitative examples of attribute transition of all T2V models on TC-Bench-T2V.
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Figure 9: Additional qualitative examples of object relation change of all T2V models on TC-Bench-
T2V.
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A forest changing from summer greenery to autumn foliage.
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Figure 10: Additional qualitative examples of background shifts of all T2V models on TC-Bench-
T2V.
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Figure 11: Additional qualitative comparison of attribute transition of direct T2V models and I2V
models on TC-Bench-I2V.
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VideoCrafter2

ModelScope

A bird holds a blue bottle cap and places it on the ground.

DynamiCrafter

SEINE

LaVie

Figure 12: Additional qualitative comparison of object relation change of direct T2V models and I2V
models on TC-Bench-I2V.
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A cartoon video of a purple bunny watching a rainbow streams from a bottle on the right to 
the left side, shaping as an arc above its head.
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Figure 13: Additional qualitative comparison of background shifts of direct T2V models and I2V
models on TC-Bench-I2V.
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Top Bottom
CLIP 0.2571 0.2496
ViCLIP 0.2970 0.2607
EvalCrafter -0.2738 -0.2740
UMT 4.0977 3.2676
TC No No
TC-Score 0.6777 0.8333
Human 2.333 3.0

An ice cream scoop melts from a round shape to a liquid puddle.

Figure 14: Additional qualitative comparison of different metrics on attribute transition.

Top Bottom
CLIP 0.2854 0.3293
ViCLIP 0.2726 0.2903
EvalCrafter -0.2738 -0.2721
UMT 4.0664 4.3867
TC No No
TC-Score 0.8333 0.5
Human 3.0 2.67

A woman picking an apple from a tree and placing it in a basket.

Figure 15: Additional qualitative comparison of different metrics on object relation change.
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Top Bottom
CLIP 0.2637 0.2200
ViCLIP 0.2263 0.2168
EvalCrafter -0.2800 -0.2833
UMT 4.1328 3.8301
TC No Yes
TC-Score 0.8333 1.0
Human 2.0 5.0

A forest changing from summer greenery to winter snow.

Figure 16: Additional qualitative comparison of different metrics on background shifts.
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