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ABSTRACT

With the increase in the number of parameters in large language models, the
process of pre-training and fine-tuning increasingly demands larger volumes of
GPU memory. A significant portion of this memory is typically consumed by the
optimizer state. To overcome this challenge, recent approaches such as low-rank
adaptation (LoRA (Hu et al., 2021)), low-rank gradient projection (GaLore (Zhao
et al., 2024a)), and blockwise optimization (BAdam (Luo et al., 2024)) have been
proposed. However, in all these algorithms, the effective rank of the weight updates
remains low-rank, which can lead to a substantial loss of information from the
gradient. This loss can be critically important, especially during the pre-training
stage. In this paper, we introduce FRUGAL (Full-Rank Updates with GrAdient
spLitting), a new memory-efficient optimization framework. FRUGAL leverages
gradient splitting to perform low-dimensional updates using advanced algorithms
(such as Adam), while updates along the remaining directions are executed via state-
free methods like SGD or signSGD (Bernstein et al., 2018). Our framework can be
integrated with various low-rank update selection techniques, including GaLore
and BAdam. We provide theoretical convergence guarantees for our framework
when using SGDM for low-dimensional updates and SGD for state-free updates.
Additionally, our method consistently outperforms concurrent approaches across
various fixed memory budgets, achieving state-of-the-art results in pre-training and
fine-tuning tasks while balancing memory efficiency and performance metrics.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) such as GPT (OpenAI, 2023) and LLaMA-3
Dubey et al. (2024) have demonstrated remarkable performance across various disciplines (Brown,
2020b; Yang et al., 2024; Romera-Paredes et al., 2024). However, a critical factor in achieving
these results is the size of these models (Hoffmann et al., 2022). A larger number of parameters not
only increases computational cost but also significantly raises memory requirements. For instance,
training an 8 billion parameter LLaMA model in a 16-bit format necessitates each parameter to
occupy 2 bytes, resulting in 16GB for storing the parameters and an additional 16GB for gradients.
Utilizing the Adam optimizer (Kingma, 2014), which is standard for pre-training and fine-tuning
LLMs, adds a further 32GB of memory to store the m and v statistics, resulting in 64GB total amount
of memory. Furthermore, to achieve higher-quality results, training in pure 16-bit format is often
insufficient (Zamirai et al., 2020). This necessitates storing master weights and optimizer statistics in
32-bit format, leading to total memory demands that exceed the capacity of cutting-edge graphics
cards, such as the A100-80GB.

Numerous research projects have been aimed at reducing these significant costs. These approaches
include engineering solutions like gradient checkpointing Chen et al. (2016) and memory offloading
(Rajbhandari et al., 2020), which do not change the training trajectory. There are also methods
that adjust the training algorithm by decreasing the number of trainable parameters (Frankle &
Carbin, 2018; Wang et al., 2023; Sreenivasan et al., 2022; Horváth et al., 2024) or their bit precision
(Wortsman et al., 2023), as well as optimizer statistics (Dettmers et al., 2021; Shazeer & Stern, 2018;
Zhang et al., 2024c). In this work, we concentrate on the latter category.

Parameter-Efficient Fine-Tuning (PEFT) methods, such as LoRA (Hu et al., 2021), Dora (Liu et al.,
2024), and BitFit (Zaken et al., 2021) reduce memory costs by training a relatively small number of
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Figure 1: FRUGAL reduces memory
usage by splitting gradient updates
into low-dimensional updates with
advanced optimizers (e.g., AdamW)
and using state-free methods (e.g.,
SignSGD and SGD) for the rest.

Algorithm 1 FRUGAL (State-Full, State-Free)

Input: model fθ(·) with p parameters {θi ∈ Rdi}pi=1, loss L,
gradient projectors Pk,i for i ∈ [p], number of steps K.

1: for k = 1, 2, . . .K do
2: get data batch (x, y)
3: compute ℓ← L(fθ(x), y) ▷ Forward
4: for gi =

∂ℓ
∂θi

from Backward do
5: gfull,i ← Pk,i(gi), ▷ Project Grad
6: gfree, i ← gi − P−1

k,i (gfull,i) ▷ Residual
7: sθi ← [Pk,i(P

−1
k−1,i(s), s ∈ sθi ]▷ Project State s

8: ufull, i ← State-Full.update(θi, gfull,i,sθi)
9: ufree, i ← State-Free.update(θi, gfree,i)

10: θi ← θi + P−1
k,i (ufull,i) + ufree, i

11: end for
12: end for

parameters compared to the size of the original model, while the remaining modules are frozen. This
approach has proven effective for the task of efficient fine-tuning of pre-trained language models.
However, PEFT methods have a fundamental limitation: parameter updates always lie in a low-
dimensional subspace L, which prevents the use of these methods for pre-training (Lialin et al., 2023)
and may constrain their capabilities in fine-tuning (Zhang et al., 2024a).

Recent works, such as GaLore (Zhao et al., 2024a), ReLoRA (Lialin et al., 2023), BAdam (Luo
et al., 2024) and BlockLLM (Ramesh et al., 2024), offer a solution to this problem. These methods
enable higher-dimensional full-parameter learning by periodically changing the optimizable low-rank
subspace L. However, even though these methods result in overall parameter changes that are
high-dimensional, the updates in each step remain low-dimensional. The dimensionality of the frozen
subspace dimM = dimL⊥ significantly exceeds dimL. The remaining information contained in
the gradient is not utilized for parameter updates. Nevertheless, this information can still be leveraged
to train the model.

We present the FRUGAL framework, designed to bridge this gap. Our approach stems from a crucial
observation: although memory constraints prevent using optimizers with auxiliary optimizer state —
such as Adam (Kingma, 2014) — in the remaining subspace M , one still can update M using state-
free optimization algorithms like Stochastic Gradient Descent (SGD) or signSGD (Bernstein et al.,
2018). This solution allows for high-dimensional updates, which provides additional opportunities to
explore the parameter space and improves convergence. We will further refer to subspaces L and M
according to the types of optimizers used for their updates - state-full and state-free.

Contributions. We summarize the main contributions of our work as follows:

• We present a new memory-efficient optimization framework that combines the use of advanced
optimization algorithms for the state-full subspace with state-free algorithms for the complementary
subspace. The framework supports various types of state-full optimizers, state-free optimizers, and
different methods for projecting the gradient onto the state-full subspace.

• We provide theoretical convergence guarantees for our framework. In the proof, we consider the
case where SGDM acts as the state-full optimizer and SGD as the state-free optimizer, and we
show that FRUGAL matches the best-known convergence rate in many scenarios.

• To verify the practical applicability of FRUGAL, we conduct extensive experiments in popular real-
world scenarios.1 In these experiments, we pre-train LLaMA-like models (up to 1B parameters) on
the Colossal Clean Crawled Corpus (C4) dataset (Raffel et al., 2020) and fine-tune RoBERTa (Liu,
2019) on the GLUE benchmark (Wang, 2018). The results show that our method significantly
outperforms previous memory-efficient algorithms while using the same memory budget.

• We demonstrate that only the Logits layer in transformer-like models requires advanced optimizers
like Adam, while other modules (including Embeddings and RMSNorms) can use simpler methods

1The code is available at https://anonymous.4open.science/r/frugal-666D.
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like signSGD without significant performance loss. This opens new possibilities for memory-
efficient training and provides crucial insights into the learning dynamics of Transformers.

2 RELATED WORK

Memory-efficient full-parameter learning. Recent research has focused on reducing the memory
footprint of LLMs by decreasing the size of optimizer states while maintaining their performance.
Low-rank adaptation methods, such as LoRA (Hu et al., 2021), inject trainable rank decomposition
matrices into each layer of the model, reducing memory requirements by optimizing only a few
learnable adapters. ReLora (Lialin et al., 2023) builds upon this by merging low-rank adaptations
into the main model weights during training, potentially increasing the total rank of the update.
BAdam (Luo et al., 2024) leverages Block Coordinate Descent for full-parameter training by switch-
ing active blocks during fine-tuning. MicroAdam (Modoranu et al., 2024) compresses gradient
information before feeding it into the optimizer state, significantly reducing memory footprint while
enabling full parameter learning through error feedback mechanisms. GaLore (Zhao et al., 2024a)
maintains full parameter learning by projecting gradients onto a low-rank subspace using truncated
SVD decomposition, storing optimizer states in this reduced space. Notably, GaLore achieves good
results in pre-training, with performance close to that of Adam. However, while these methods
effectively reduce memory overhead, they all perform low-rank updates at each iteration. In contrast,
our approach utilizes all available gradient information to perform full-dimensional updates at each
optimizer step, offering a novel perspective on memory-efficient optimization for LLMs.

Other memory-efficient optimization. Several other methods have been proposed to reduce the
memory footprint of optimizers. AdaFactor (Shazeer & Stern, 2018) attempts to mimic Adam’s
behavior while reducing memory usage through factorization of the variance matrix v. Adam-
mini (Zhang et al., 2024c) further reduces memory by storing only one value v per block. Dettmers
et al. (2021) and Li et al. (2024) decrease memory footprint by quantizing optimizer states to the
lower-precision representations. Lv et al. (2023) proposed to reduce weight gradient memory by
fusing the backward operation with the optimizer update. Notably, these approaches are orthogonal
to our method FRUGAL and can be combined with it for further memory efficiency.

Block Coordinate Descent. Block Coordinate Descent (BCD) is a well-established optimization
method with a rich history in mathematical optimization (Ortega & Rheinboldt, 2000; Tseng, 2001;
Richtárik & Takáč, 2014; 2015b; Richtárik & Takác, 2016; Takáč et al., 2013; Richtárik & Takáč,
2015a). In recent years, a specific instance of BCD, known as layer-wise learning, has been applied
to deep learning. Notable examples include (Luo et al., 2024; Pan et al., 2024), which leverage
this approach for LLM fine-tuning. To the best of our knowledge, our work presents the first
theoretical analysis of an extended BCD framework (Section 5) where the remaining coordinates are
also updated using a different algorithm. This novel approach extends traditional BCD techniques,
opening new avenues for full model optimization in deep learning.

Sign-based methods for training language models. Since its introduction, Adam has become
the de facto primary optimization algorithm, demonstrating superior practical results compared to
SGD-based algorithms across various deep learning tasks. This difference is particularly noticeable
when training Transformers on language tasks. While Zhang et al. (2020) hypothesized that Adam
outperforms SGD in this setup due to the heavy-tailed distribution of sampling-induced errors,
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Figure 2: Histograms of principal angle cosines. The first three are taken between Pt and Pt′

from different iterations t and t′. P is obtained from the truncated SVD decomposition of the
gradient G of the Key projection from the 5th layer. The last histogram is taken between two random
semi-orthogonal projections R and R′ for comparison.
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Table 1: Comparison of different projection and state-free subspace optimization strategies on
pre-training LLaMA-130M on C4 with Adam as the state-full algorithm.

Projection Optimizes state- Validation perplexity after iterations ↓
type free subspace 4k 20k 40k 100k 200k

SVD No 39.75 26.35 24.38 22.30 21.11
Random No 42.31 25.99 23.55 21.33 20.01
Random Yes 37.26 23.46 21.53 19.66 18.64

SVD Yes 33.96 22.54 21.01 19.30 18.35
RandK Yes 36.38 23.02 21.25 19.70 18.63

Blockwise Yes 37.20 23.34 21.42 19.59 18.60
Adam 33.95 21.90 20.56 18.97 18.13

Kunstner et al. (2023) demonstrated that this superiority persists even in full-batch training. They
proposed a new hypothesis suggesting that Adam’s key success factor is related to its similarity to
signSGD (Balles & Hennig, 2018; Balles et al., 2020), and both Kunstner et al. (2023) and Zhao
et al. (2024b) showed that signed descent with momentum reduces the performance gap with Adam.
In contrast, to the best of our knowledge, we are the first to train the majority of language model’s
parameters using signSGD without momentum, achieving minimal loss in quality. This approach
further demonstrates the effectiveness of sign-based methods for LLM training, paving the way for
more efficient and scalable optimization strategies in deep learning.

3 EMPIRICAL ANALYSIS AND MOTIVATION

In this section, we present empirical evidence that motivates our approach. First, we show that
access to the whole parameter space is crucial during training. Then, we show how utilizing full-rank
updates can significantly improve model performance.

3.1 THE IMPORTANCE OF EXPLORING THE ENTIRE SPACE DURING THE TRAINING PROCESS

In recent work, Zhao et al. (2024a) proposed GaLore, an optimization method based on projecting the
gradient matrix G of each Linear layer2 onto a low-dimensional subspace. To obtain the projection
matrix P , they use SVD decomposition of Gt, which is recomputed with frequency T . The vectors
or rows of G are projected onto the first r left or right singular vectors, respectively. This approach
has theoretical foundations: the first r singular vectors correspond to the first r singular values and,
therefore, should better utilize information from the spectrum of G.

The authors pointed out that calculating the SVD decomposition results in extra computational
overhead, which can be as much as a 10% increase as the hidden size of the model grows. To
minimize this cost and examine the significance of using SVD decomposition, one may wonder about
the possibility of employing a random semi-orthogonal projection matrix R instead of projecting
onto the first r singular columns with P . Surprisingly, while SVD decomposition provides better
initial performance, random projection proves superior in long-term training, yielding significant
improvements. As an illustration, we took the pre-training3 of a 130M model with LLaMA-like
architecture on the C4 dataset (Raffel et al., 2020). The results are presented in the first part
of Table 1 (Optimizes state-free subspace= No), where we compare SVD and Random
projections. The ranks of both projections P and R are equal to 192.

To investigate this phenomenon, we pre-trained the LLaMA-60M model and collected gradients Gt

from different iterations t for examination. Following the setup from GaLore (Zhao et al., 2024a), we
computed SVD decompositions and extracted projections Pt with a rank of 128. We evaluated the
similarity of the projection matrices by calculating the principal angles between different projections
Pt at different steps. Similarly to the observations in Q-Galore (Zhang et al., 2024d), we found that
these projections show minimal change during the training period; see Figure 2.

2Since Linear layers contain most parameters and require most memory, we primarly focus on them.
3See Section 6.1 for a detailed description and discussion on the experimental setup.
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Here, we take the projection matrix corresponding to the 5-th layer and plot histograms of the cosine
of the principal angles between pairs Pt and Pt′ from different iterations. For comparison, we
also include the random projections on the right. As can be seen, the distributions of cosines differ
significantly for the Pt and for the random projections. While Rt feature no angles with cosines
higher than 0.9, the top 57 cosines for Pt surpass 0.9, even for gradients 1000 steps apart.

This leads to the conclusion that although SVD decomposition generally better captures the informa-
tion contained in the Gt, the original GaLore algorithm updates weights only in a small subspace. We
hypothesize that training with random projections yields superior results due to the more extensive
investigation of the optimizable space during the training process. This finding indicates that to
achieve better convergence, it is important to seek out optimization algorithms that explore the entire
space during the training process.

3.2 ADVANTAGE OF THE FULL-RANK UPDATES

The insight from the Section 3.1 suggests that the training of language models performs significantly
better when the entire parameter space is utilized during the training process. Given the importance
of updating parameters in all directions, this poses the question: Is it optimal to use low-rank
updates, as employed by methods such as GaLore (Zhao et al., 2024a), ReLoRA (Lialin et al., 2023),
and BAdam (Luo et al., 2024)? Using low-rank updates means the effective rank of the update is
significantly smaller than the full dimensionality of the parameter space, inevitably leading to a loss
of valuable information contained in the gradient.

However, the method to leverage the full-rank gradient for updating parameters is not readily obvious.
Using algorithms like Adam (Kingma, 2014) is not an option due to the memory overhead they
introduce, which is precisely what we aim to avoid. An alternative approach is to use state-free
optimizers such as SGD or signSGD (Bernstein et al., 2018). Unfortunately, SGD have been shown
to be ineffective for training transformer models, as shown in Zhang et al. (2020); Pan & Li (2023).

Nevertheless, a recent study Zhao et al. (2024b) suggests a promising methodology: while SGDM
doesn’t generally work well with transformers, using SGDM for the majority of parameters and Adam
for a selected subset can lead to effective training. This raises the question: could a hybrid approach
using SGD or signSGD instead of SGDM be viable? If the key subset of parameters is handled by
advanced algorithms, can the other parameters be trained effectively with state-free optimizers?

To address this question, we conducted an experiment on LLaMA-130m, where we utilized the
Adam (Kingma, 2014) for state-full parameters and signSGD (Bernstein et al., 2018) for state-
free parameters. A detailed description of the experimental setup can be found at Appendix A.1.
Once again we used Random projection and highlighted the result in the second part of Table 1
(Optimizes state-free subspace = Yes). Full-rank updates significantly enhance per-
formance, approaching the efficiency of the memory-intensive Adam optimizer, which serves as a
upper bound in terms of performance. These findings underscore the potential of state-free algorithms
for updating a substantial portion of the parameter space, paving the way for efficient, scalable
optimization methods that deliver high performance without the significant memory costs traditionally
associated with state-of-the-art optimizers.

4 FRUGAL: FULL-RANK UPDATES WITH GRADIENT SPLITTING

General framework. The setup outlined at the conclusion of the Section 3.2 results in a general
framework for memory-efficient optimization. It operates as follows: the entire space is partitioned
into state-full and state-free subspaces. The state-full subspace is updated using advanced algorithms,
while the state-free subspace is updated using a state-free method. After a certain number of steps, the
state-full subspace is changed to better explore the optimization space. A formal description of the
final algorithm is presented in Algorithm 1. We note that this framework allows for variation not only
in the State-Full optimizer but also in the choice of projection and State-Free optimizer.

However, determining the optimal state-free optimizer and the projection method onto the state-full
subspace is not readily apparent. In this section, we strive to find the optimal configuration.

State-free optimizer. We conducted a preliminary experiment updating all parameters using state-
free algorithms to choose between SGD and signSGD (Bernstein et al., 2018). Table 8 presents these
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Algorithm 2 FRUGAL (SGDM, SGD)

Input: momentum weight β ∈ [0, 1), initialization x1 ∈ Rd and m0 = 0, step sizes {αk > 0}Kk=1,
momentum set Jk ⊂ [d] for k = 1, 2, . . ..

1: for k = 1, 2, . . . do
2: Compute stochastic gradient g̃k ← ∇fζk(xk);

3: Update momentum vector m̃k
j ← (1− β)g̃kj + β

{
m̃k−1

j if j ∈ Jk,

0 otherwise;

4: Compute update vector ũk
j ←

{
m̃k

j if j ∈ Jk,

g̃kj otherwise;
5: Update iterate xk+1 ← xk − αkũk;
6: end for

results. After testing various learning rates, we found that signSGD consistently outperforms SGD,
leading us to favor signSGD. We attribute this performance to the similarities between signSGD
and Adam (Kingma, 2014), as noted in Balles & Hennig (2018); Balles et al. (2020); Kunstner et al.
(2023). Additionally, signSGD produces updates of similar magnitude to those generated by Adam,
which simplifies the calibration of the learning rate for state-free parameters.

Projection type. When selecting a projection method, it is crucial to strike a balance between quality
and memory efficiency. When using SVD decomposition for projection matrices, as in GaLore (Zhao
et al., 2024a), the method better preserves the information embedded in the gradient but requires
additional memory for storing projection matrices and computational resources for performing the
SVD. To reduce computational demands, one could employ random coordinate projection denoted as
RandK, but this requires additional memory or recomputation4. A more structured alternative is to
select not random entries but entire random columns or rows. The most aggressive approach follows
the method from BAdam, wherein an entire block is chosen as the state-full subspace.

The performance results obtained with all these variants are presented in the second part of Table 1.
SVD outperforms both RandK and Block projections, demonstrating comparable performance. The
superior performance of SVD projection can be explained by its ability to extract the principal
information from the gradient. Nonetheless, a downside is the increased compute and memory
demand from SVD. Therefore, we opt for the blockwise selection, as it is the most memory-efficient
— requiring only the storage of active block indices.

In our experiments, we use a specific variant with Adam as the State-Full optimizer and signSGD
as the State-Free optimizer. We primarily employ blockwise projection but switch to column-wise
projection when the number of parameters in any single block exceeds memory budget, as detailed
in Section 6.2. In addition, PyTorch-like pseudocode of our framework is presented in Appendix G.

For Line 7, state projection, in Algorithm 1, we note that if the projection does not change, i.e.,
Pk,i = Pk−1,i, then Pk,i(P

−1
k−1,i(s)) = s. Thus, we only need to project states when the projection

changes from one round to another. However, our preliminary experiments with RandK selection
showed that resetting states performs comparably to projection. Therefore, we could replace this
projection with state resetting when the projection changes, which also aligns with blockwise subspace
selection. However, either resetting or projecting states is important since we want projected gradients
and optimizer states to reside in the same space. For instance, GaLore ignores this step, which leads
to degraded performance when projections are updated frequently; see Appendix C for details.

5 THEORETICAL RESULTS

For the theoretical analysis, we consider the case where the State-Free optimizer is SGD and the
State-Full optimizer is SGD with momentum (SGDM). For the projection, we use coordinate-
wise projection. This special case of FRUGAL is provided in Algorithm 2. We minimize the objective

minx∈Rd

{
f(x) := Eζk [fζk(x)]

}
, (1)

where we access f via a stochastic oracle that takes x as input and returns (fζk(x),∇fζk(x)).

4See Appendix B for discussion on the memory requirements for different projection methods.
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5.1 NOTATION AND PRELIMINARIES

We use ∥·∥ for the vector ℓ2-norm, and ⟨·, ·⟩ stands for the dot product. Let gk denote the full gradient
of f at xk, i.e., gk := ∇f(xk), g̃k denote the stochastic gradient g̃k = ∇fζk(xk) for random sample
ζk, and f∗ := minx∈Rd f(x). We use subscript j to denote the j-th coordinate. We call a function
L-smooth if it is continuously differentiable and its gradient is Lipschitz continuous:

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥. (2)
Assumption 1. We make the following assumptions, which are standard in non-convex stochastic
optimization; see (Liu et al., 2020).

1. Smoothness: The objective f(x) in equation 1 is L-smooth (eq. (2)).

2. Unbiasedness: At each iteration k, g̃k satisfies Eζk [g̃k] = gk.

3. Independent samples: The random samples {ζk}∞k=1 are independent.

4. Bounded variance: The variance of g̃kj with respect to ζk satisfies Varζk(g̃kj ) = Eζk [∥g̃kj −
gkj ∥2] ≤ σ2

j for some σ2
j > 0. We denote σ2 =

∑d
j=1 σ

2
j .

Finally, we define the probability that index j ∈ Jk is selected, conditioned on the prior iteration
k − 1, as pkj := Prk−1[j ∈ Jk]. Other useful quantities are pkmax := maxj∈[d]{pkj } and pkmin :=

minj∈[d]{pkj }.

5.2 CONVERGENCE OF ALGORITHM 2

Below, we present the main convergence theorem.

Theorem 1. Let Assumption 1 hold and αk = α ≤ 1−β
L(4−β+β2) . Then, the iterates of Algorithm 2

satisfy

1
k

∑k
i=1 E[∥gi∥2] = O

(
f(x1)− f∗

kα
+ Lασ2

(
1 +

p̂kmax(1− p̄kmin)β

(1− β)

))
, (3)

where p̄kmin = 1
k

∑k
i=1 p̄

i
min and p̂kmax = maxi∈[k]{pimax}.

The proof is deferred to Appendix E. Let us analyze the obtained result. Firstly, if Jk = [d] or
Jk = ∅, Algorithm 2 becomes SGDM and SGD, respectively. In this case, we have p̄kmin = 1 for
SGDM and p̂kmax = 0 for SGD. Therefore, the resulting rate isO

(
1/kα + Lασ2

)
, which recovers the

best-known rate for both SGD and SGDM under these assumptions Liu et al. (2020). Furthermore, if
at each step each coordinate is sampled independently with probability p, we have p̄kmin = p̂kmax = p.
Therefore, we recover the same rate if p = O (1− β) or p = O (β). Finally, in the worst case (e.g.,
Jk is deterministic and 0 < |Jk| < d), we have p̄kmin = 0 and p̂kmax = 1. Thus, the rate becomes
O
(
1/kα + Lασ2

/1−β
)
, which is worse by a factor of 1/1−β. However, this is expected since the bias

from momentum is not outweighed by the variance reduction effect, as only the coordinates with
momentum enjoy reduced variance; see Lemmas 1 and 2 in the appendix for details.

6 EXPERIMENTS

This section presents the main experimental results of the paper. To evaluate the performance of
FRUGAL, we conducted experiments both on the pre-training and fine-tuning of language models.

6.1 PRE-TRAINING EXPERIMENTS

Setup. The core setup for pre-training is taken from the Zhao et al. (2024a). We utilize LLaMA-
based (Touvron et al., 2023a) model architectures with up to 1B parameters and train them on the
Colossal Clean Crawled Corpus (C4) dataset (Raffel et al., 2020). The C4 dataset is intended for pre-
training, making this setup a good approximation of real-world applications. A detailed description
of the setup can be found in Appendix A.1. However, we made several modifications that we would
like to discuss in detail below.
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Table 2: Comparison of validation perplexity and memory estimation for various optimization
methods across LLaMA model scales trained on C4. We also indicate the additional memory
overhead introduced by the optimization algorithm. The values are calculated assuming that each
float value occupies 4 bytes (float32). ρ denotes the proportion of the Linear layer parameters in the
state-full subspace. Note that Embeddings, RMSNorms, and Logits are always trained with Adam.

60M 130M 350M 1B
Adam 22.73 (0.43G) 18.13 (1.00G) 14.43 (2.74G) 12.02 (9.98G)
GaLore, ρ = 0.25 25.68 (0.30G) 21.11 (0.54G) 16.88 (1.10G) 13.69 (3.41G)
BAdam, ρ = 0.25 24.86 (0.29G) 20.34 (0.52G) 16.41 (1.05G) 13.75 (3.23G)
FRUGAL, ρ = 0.25 23.59 (0.29G) 18.60 (0.52G) 14.79 (1.05G) 12.32 (3.23G)
FRUGAL, ρ = 0.0 24.06 (0.24G) 18.90 (0.37G) 15.03 (0.49G) 12.63 (0.98G)

Training tokens 20B 20B 24B 30B
Number of iterations 200k 200k 240k 300k

• Training Duration. The training approach in Zhao et al. (2024a) aligns with the empirical rule
from scaling laws (Hoffmann et al., 2022), which suggests using approximately 20 times the model
size in tokens for training. However, this number of tokens is far from achieving convergence. In
practice, models are typically trained for significantly longer periods (Touvron et al., 2023b; Zhang
et al., 2024b). One reason for this discrepancy is that the original scaling laws do not account for
the inference of the model after training. Adjustments to scaling laws considering this parameter
are discussed, for example, in (Sardana & Frankle, 2023). For our experiments we chose 200k
steps for the 60M and 130M models, 240k for 350M model and 300k for the 1B model.

• Learning Rate. The authors of GaLore suggested using different learning rates for fixed un-
projectable parameters (Embeddings, RMSNorms (Zhang & Sennrich, 2019), Logits) and the
remaining projectable parameters (attention and FFN weights modules weights). However, in-
troducing additional hyperparameters complicates the use of the algorithm. Since both sets of
parameters are state-full and trained using the same optimization algorithm, we always used the
same learning rate for them in FRUGAL and BAdam. For GaLore learning rate see Section 6.1.

• Mixed Precision instead of the pure bfloat16 training. Pure 16-bit training has been shown to
potentially compromise model convergence and accuracy (Zamirai et al., 2020). This degradation
stems from storing both the model weights and optimizer statistics in reduced precision formats
such as float16 or bfloat16. However, these formats often lack sufficient precision in representing
floating-point numbers. Consequently, mixed precision training has become a more common
approach for training language models (Le Scao et al., 2023; Almazrouei et al., 2023)). While
training in pure 16-bit format is also possible, stochastic rounding (Gupta et al., 2015; Zamirai
et al., 2020) is often employed to mitigate the aforementioned issue. Given that the goal of this
research is to identify the optimal optimization algorithm, we deemed it more appropriate to
compare optimizers in a transparent and stable setup that does not require auxiliary tricks. Hence,
we primarily used Mixed Precision training for its illustrative value in understanding each method’s
potential. However, for completeness, we also conducted experiments in pure bfloat16 format,
detailed in our ablation study Section 6.1.2.

6.1.1 COMPARISON TO EXISTING MEMORY-EFFICIENT ALGORITHMS

To begin, we present the results of comparing FRUGAL with existing memory-efficient methods
across four sizes of LLaMA-based architectures: 60M, 130M, 350M, and 1B5.

Baselines. We use the following methods as baselines for our approach:

• Full-rank Training. Training using memory-inefficient Adam. Weights, gradients, and statistics
are stored and computed for all parameters. This serves as an upper bound for model performance.

• GaLore. Zhao et al. (2024a) proposed GaLore, a memory-efficient optimization algorithm that
uses a low-rank projection of gradient matrices G. Every T steps, the current gradient matrix Gt is

5See preliminary experimental results with LLaMA 7B in Appendix D
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Table 3: Perplexity of LLaMA-130M models pre-trained on C4 for 100k iterations (10B tokens). The
leftmost column indicates the modules moved to the state-free set and trained using signSGD. The
results show that Logits, unlike Embeddings and RMSNorms, are exceptionally responsive to the
choice of optimization algorithm from Adam to signSGD.

State-free modules Perplexity ↓
Linear (corresponds to the FRUGAL with ρ = 0.0 from Table 2) 20.02

Linear, RMSNorms 20.07
Linear, Embeddings 20.48

Linear, Embeddings, RMSNorms 20.55
Linear, Logits 34.66

used to compute the projection matrix P via SVD decomposition. The gradient is then projected
onto the low-rank space, where the optimization step is performed. Subsequently, the resulting
low-rank update is projected back into the full-rank space and added to the weights W .

• BAdam. Luo et al. (2024) proposed a block coordinate descent (BCD)-type optimization method
termed BAdam. The parameters are divided into blocks, which are then updated one by one using
Adam. Similar to GaLore, the optimized block is updated every T steps. Although this method
was initially proposed only for fine-tuning, it is the closest method to our FRUGAL. Unlike BAdam,
in our algorithm, state-free blocks are not frozen but are updated using signSGD.

• Other Algorithms. Among other relevant methods, ReLoRA (Lialin et al., 2023) and Mi-
croAdam (Modoranu et al., 2024) can also be highlighted. However, we did not include them for
comparison in this paper for the following reasons: 1. ReLoRA was evaluated in (Zhao et al.,
2024a), where it significantly underperformed compared to GaLore with the same memory budget.
2. MicroAdam. Its current implementation only supports bfloat16 master weights, whereas our
main experiments conducted with mixed precision.

Main results. The results of our experiments are presented in Table 2, which includes both validation
perplexity and memory footprint estimations for each method. We compared all memory-efficient
methods under the same memory budget with a density ρ = 0.25. Here, ρ refers to the proportion
of Linear layer parameters in the state-full subspace. Similarly to GaLore, non-Linear modules
(Embeddings, RMSNorms, Logits) are optimized with Adam. See Appendix A.1 for details.

We conducted a grid search to determine the optimal learning rate for Adam, which we then applied
uniformly to FRUGAL and BAdam (Luo et al., 2024). For GaLore (Zhao et al., 2024a), we found that
using this same learning rate produced better results than the rate originally suggested in their paper.
This discrepancy might be attributed to our experiments involving a significantly larger number of
training steps than those for which GaLore’s original learning rate was optimized.

Table 2 demonstrates that FRUGAL significantly outperforms the memory-efficient baselines across
all model sizes with the same memory budget, coming close to the performance of Adam.

Zero-density training. Table 2 also reveals a surprising result: FRUGAL with ρ = 0.0 outperforms
both GaLore and BAdam, even when these competing methods use a higher density of ρ = 0.25.
Essentially, for FRUGAL with ρ = 0.0, the parameters are divided into two parts — a state-full part
consisting of the Embeddings, RMSNorms, and Logits, and a state-free part consisting of all other
parameters. This division remains fixed throughout the training. We conducted additional experiments
to determine the maximum subset of parameters that can be trained with a state-free optimizer without
significant quality degradation. We systematically moved different combinations of the Embeddings,
RMSNorms, and Logits from the state-full to the state-free set and observed the results during
the training of LLaMA-130M. Table 3 reveals that the Logits demonstrates a dramatically higher
sensitivity, with changes to its optimizer resulting in severe performance degradation. This finding
aligns with results from (Zhao et al., 2024b), where the authors demonstrated that most parameters
can be trained using SGDM, but the Logits require training with Adam.

6.1.2 ABLATION STUDY

We also conducted additional experiments to verify the robustness of our framework to various
hyperparameters. Firstly, an ablation study on the state-full subspace update frequency T in Table 10
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shows that the performance keeps improving up to T = 200. We note that, unlike in Zhao et al.
(2024a), the perplexity does not significantly decrease even when reducing the update frequency to
T = 10 (∼ 0.2 drop vs. ∼ 4. drop for GaLore). A detailed explanation for this result can be found
in Appendix C. Second, when using other schedulers, the performance gap between FRUGAL and
baselines remains consistent, as shown in Tables 5 and 6. Then, the results of training in pure
bfloat16 are presented in Table 7, demonstrating consistency with our main experiments in Table 2,
i.e., FRUGAL significantly outperforms the baselines across these variations. We also conducted
experiments to show how perplexity changes with varying ρ, and the results are presented in Table 11.
Finally, we conducted an experiment to compare different strategies for selecting state-full blocks
during training. The results in Table 9 show that there is no significant difference between random
and structured block selection.

6.2 FINE-TUNING EXPERIMENTS

Table 4: Evaluating FRUGAL for memory-efficient fine-tuning RoBERTa-Base on GLUE benchmark. Results
represent the mean and standard deviation across 3 independent runs. Upper ↑ is better.

Method Modules Rank CoLA STS-B MRPC RTE SST2 MNLI QNLI QQP Avg

Full-parameter — — 63.6 91.2 90.2 78.7 94.8 87.6 92.8 91.9 86.4
LoRA QV 8 63.8±.6 90.9±.1 89.1±.4 79.2±1.1 94.8±.2 87.6±.2 93.1±.1 90.6±.0 86.1

GaLore All 8 60.0±.2 90.8±.1 89.0±.7 79.7±.9 94.9±.5 87.6±.1 93.3±.1 91.1±.1 85.8

GaLore QV 8 56.1±.8 90.8±.2 88.1±.3 74.7±1.9 94.3±.1 86.6±.1 92.6±.1 89.4±.1 84.1
FRUGAL QV 8 64.5±.7 91.1±.1 89.2±.3 82.4±.9 94.8±.2 87.4±.1 92.8±.1 91.4±.1 86.7
FRUGAL None 0 64.8±.5 91.1±.1 89.1±.3 81.6±.6 94.9±.2 87.3±.1 92.8±.1 91.3±.1 86.6

We evaluated the performance of our framework in the context of memory-efficient fine-tuning
using the GLUE benchmark (Wang, 2018), a widely-used collection of tasks for evaluating language
models. Following the approach from Zhao et al. (2024a), we fine-tuned RoBERTa-base (Liu, 2019)
using LoRA (Hu et al., 2021) and GaLore as baselines for comparison. We adhered to the setup
described in LoRA, where low-rank updates of rank 8 were applied only to the Q and V matrices.
For a detailed description of the experimental setup, see Appendix A.2.

However, this comparison required a minor modification to FRUGAL compared to the pre-training
phase. Instead of selecting active parameters blockwise, we opted for columnwise selection in each
matrix. This adjustment was necessary to ensure a fair comparison within a similar memory budget,
as the number of trainable parameters in LoRA with rank 8 is approximately 2.5 times fewer than
the number of parameters in any RoBERTa matrix. This transition from blockwise to columnwise
selection allowed us to maintain comparable memory usage across methods. For the same reason, we
did not include comparisons with BAdam (Luo et al., 2024) in this setup.

The results are presented in Table 4. Since the LoRA setup adds trainable adapters only to the Q
and V matrices, while the GaLore code uses all modules as projectable parameters, we conducted
experiments in both setups. The Full-parameter results are taken from the prior works. The results
demonstrate that FRUGAL significantly outperforms GaLore and shows comparable results to LoRA.

As in Section 6.1.1, we conducted additional experiments with FRUGAL using ρ = 0.0. In this setup,
only the classification head is trained using Adam, while the embedding parameters remain frozen,
and the remaining parameters are trained using signSGD. The results demonstrate that this training
approach barely compromises performance compared to FRUGAL with rank 8, and still outperforms
GaLore. Similar to our findings in Section 6.1.1, we observe that the classification head parameters
are particularly sensitive to the choice of optimizer, which can be seen in Table 13 where the model’s
performance significantly deteriorates when using signSGD for classification head optimization.

7 CONCLUSION

In this work, we introduce a new memory-efficient optimization framework, FRUGAL. Within this
framework, the optimization space is divided into two subspaces: the first is updated using a state-full
algorithm such as Adam, while the second is updated using a state-free algorithm such as signSGD.
We prove theoretical convergence guarantees for our framework with SGDM serving as the state-full
algorithm and SGD as the state-free algorithm. In experiments involving pre-training and fine-tuning
of language models, FRUGAL outperforms other approaches while using the same or smaller memory.
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Martin Takáč, Avleen Bijral, Peter Richtárik, and Nathan Srebro. Mini-batch primal and dual methods
for svms. In In 30th International Conference on Machine Learning, ICML 2013, 2013.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Paul Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization.
Journal of optimization theory and applications, 109:475–494, 2001.

Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understanding.
arXiv preprint arXiv:1804.07461, 2018.

Hongyi Wang, Saurabh Agarwal, Yoshiki Tanaka, Eric Xing, Dimitris Papailiopoulos, et al. Cuttlefish:
Low-rank model training without all the tuning. Proceedings of Machine Learning and Systems, 5:
578–605, 2023.

Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, Ari Morcos, Ali Farhadi, and Ludwig Schmidt.
Stable and low-precision training for large-scale vision-language models. Advances in Neural
Information Processing Systems, 36:10271–10298, 2023.

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming Jiang, Shaochen
Zhong, Bing Yin, and Xia Hu. Harnessing the power of llms in practice: A survey on chatgpt and
beyond. ACM Transactions on Knowledge Discovery from Data, 18(6):1–32, 2024.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Pedram Zamirai, Jian Zhang, Christopher R Aberger, and Christopher De Sa. Revisiting bffloat16
training. 2020.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural
Information Processing Systems, 32, 2019.

Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan Firat. When scaling meets llm finetuning: The
effect of data, model and finetuning method. arXiv preprint arXiv:2402.17193, 2024a.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances in Neural
Information Processing Systems, 33:15383–15393, 2020.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024b.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Yinyu Ye, Zhi-Quan Luo, and
Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. arXiv preprint arXiv:2406.16793,
2024c.

Zhenyu Zhang, Ajay Jaiswal, Lu Yin, Shiwei Liu, Jiawei Zhao, Yuandong Tian, and Zhangyang
Wang. Q-galore: Quantized galore with int4 projection and layer-adaptive low-rank gradients.
arXiv preprint arXiv:2407.08296, 2024d.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024a.

Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. Deconstructing
what makes a good optimizer for language models. arXiv preprint arXiv:2407.07972, 2024b.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL SETUPS

This section describes the main setups used in the experiments and presents additional experiments.

To begin, we introduce the hyperparameter density ρ. This hyperparameter represents the fraction of
the total space in Linear layers that is updated with a stateful optimizer. For GaLore, this parameter
is equal to ρ = r/h, where r is the projection rank, and h is the hidden size of the model. For
RandK projection, this parameter can be expressed as 1− s, where s means sparsity. For BAdam and
FRUGAL with the blockwise update, this parameter denotes the ratio of the number of active blocks
ablock to the total number of blocks p, i.e., ρ = ablock/p. When using FRUGAL with the column-wise
update, as in Section 6.2, ρ is equal to the ratio of the number of active columns acolumn to their total
number h, i.e., ρ = acolumn/h.

A.1 PRE-TRAINING SETUP

We adopt a LLaMA-based architecture with RMSNorm and SwiGLU (Wang, 2018) activations on the
C4 dataset. Following Zhao et al. (2024a), we trained using a batch size of 512 sequences, sequence
length of 256, weight decay of 0, and no gradient clipping. We used T5 tokenizer, since it also was
trained on C4 with dictionary size equal to 32k. The update frequency T is set to 200.

Since, unlike GaLore, we consider not only matrix projections, we decided to generalize the concept
of rank r. Instead, we use density ρ, which represents the proportion of Linear layer parameters in the
state-full subspace. Thus, for SVD-like projection as in GaLore, the density equals ρ = r/h, where h
denotes the hidden dimension of the model. We also should point out that similarly to Zhao et al.
(2024a), we keep Embeddings, RMSNorms (Zhang & Sennrich, 2019), and Logits in the state-full
subspace throughout the training and don’t reset the optimizer state for them.

We used standard Adam hyperparameters: β1 = 0.9, β2 = 0.999, ε = 1e− 8. For all the methods
except GaLore, we selected the learning rate equal to the optimal learning rate for Adam, which we
determined through a grid search among values [1e− 4, 3e− 4, 1e− 3, 3e− 3]. FRUGAL’s learning
rate for the state-free optimizer was set equal to that for the state-full optimizer for simplicity and
ease of tuning. For a fair comparison with GaLore (Zhao et al., 2024a), we conducted experiments
with two learning rate values: 1) the one specified by the authors in the original paper, and 2) the
optimal learning rate for Adam, as used for other methods. We did this because the learning rate in
the original paper could have been optimized for a different number of iterations.

To match the learning rate changes in the first steps of our training with Zhao et al. (2024a), we used
a cosine learning rate schedule with restarts, with a warmup of 10% of the steps in a cycle length, and
decay of the final learning rate down to 10% of the peak learning rate. To verify that our results are
not sensitive to the choice of scheduler, we repeated the experiments for LLaMA-130M with other
schedulers. Results for constant with warm-up and cosine (one cycle) with warm-up schedulers can
be found in Tables 5 and 6.

Table 5: Perplexity of LLaMA-130M models
pre-trained on C4 using constant scheduler with
warm-up at various training iterations.

Method 100k 200k
Adam 19.51 18.51
GaLore, ρ = 0.25 22.63 21.03
BAdam, ρ = 0.25 22.31 20.66
FRUGAL, ρ = 0.25 19.97 18.85
FRUGAL, ρ = 0.0 20.33 19.14

Table 6: Perplexity of LLaMA-130M models
pre-trained on C4 using cosine scheduler with
warm-up at various training iterations.

Method 100k 200k
Adam 19.38 17.95
GaLore, ρ = 0.25 22.30 20.60
BAdam, ρ = 0.25 22.35 20.07
FRUGAL, ρ = 0.25 19.62 18.16
FRUGAL, ρ = 0.0 19.83 18.34

A.2 FINE-TUNING SETUP

The batch size and learning rate values used for FRUGAL in the experiments from Table 4 are
presented in Table 12. In all experiments, we set the learning rate for the state-free optimizer to 1/10
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Table 7: Perplexity of LLaMA-130M models
pre-trained on C4 using pure bfloat16 format
both for model weights and optimizer statistics.

Method 100k iterations
Adam 21.88
GaLore, ρ = 0.25 24.19
BAdam, ρ = 0.25 25.03
FRUGAL, ρ = 0.25 23.17
FRUGAL, ρ = 0.0 22.64

Table 8: Perplexity of LLaMA-130M models
pre-trained on C4 for 20k iterations (2.1B to-
kens) using SGD and signSGD with different
learning rates. ∞ means that run diverged. LR
stands for learning rate.

SGD signSGD
LR Perplexity LR Perplexity
0.1 184.83 3e-4 40.22
0.3 91.23 1e-3 41.18
1.0 ∞ 3e-3 109.32

Table 9: Perplexity of LLaMA-130M mod-
els pre-trained on C4 for 200k iterations using
FRUGAL with ρ = 1/3 and different Block up-
date strategy, taken from Luo et al. (2024).

Method Perplexity
Random 18.50
Ascending 18.54
Descending 18.50

Table 10: Perplexity of LLaMA-130M models
pre-trained on C4 for 200k iterations (20B to-
kens) using FRUGAL with ρ = 0.25 and differ-
ent update frequency T .

Update frequency T Perplexity
10 18.82
20 18.73
50 18.69
100 18.65
200 18.60
500 18.60

1000 18.61

Table 11: Perplexity of LLaMA-130M models pre-trained on C4 for 200k iterations (20B tokens)
using FRUGAL with different density ρ.

FRUGAL

ρ 1.0 (Adam) 0.5 0.33 0.25 0.125 0.0625 0.0 signSgd
Perplexity 18.13 18.40 18.50 18.63 18.71 18.80 18.90 33.22

of the learning rate of the state-full optimizer. Other hyperparameters, such as scheduler, number of
epochs, maximum sequence length, and warmup ratio, were taken from Hu et al. (2021).

We also present a comparison between fine-tuning using FRUGAL with ρ = 0.0 and full fine-tuning
using signSGD. Essentially, the only difference is that in the second case, the classification head is
updated with signSGD instead of Adam. The results in Table 13 show that the classification head
is extremely sensitive to the optimizer type, and switching the optimizer significantly drops the
accuracy.

B MEMORY ESTIMATION

In this section, we will examine memory requirements for different projection types using the LLaMA-
like architecture as an example and show that RandK, column-wise, and blockwise projections result
in approximately the same amount of additional memory for a given density value ρ Appendix A. In
contrast, the semi-orthogonal projection matrix (GaLore-like) requires a slightly larger value in this
setup. Recall that we follow the setup from Zhao et al. (2024a), where Embeddings, RMSNorms, and
Logits remain in the state-full subspace throughout the training, so the projection does not interact
with them, and they give the same memory overhead for all projection methods.

Let the number of parameters in the remaining projectable parameters be P . Then, training using
Adam gives an additional overhead of 2P float values for storing m and v for each parameter. Now,
let’s consider blockwise and column-wise projections and suppose we want to achieve a density ρ.
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Table 12: Hyperparameters of fine-tuning RoBERTa-base for FRUGAL.

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch Size 128 128 16 256 256 128 32 16
State-full Learning Rate 5E-05 5E-05 2E-04 5E-04 1E-04 5E-05 2E-04 1E-04
State-free lr multiplier 0.1

Rank/Density r = 8 / r = 0 (ρ = 0)

Table 13: Results of fine-tuning RoBERTa-Base on several tasks from GLUE. The left column
indicates which modules were trained using the state-full optimizer Adam. The remaining modules,
except for the frozen Embedding layer, were trained using the state-free signSGD.

Method SST2 QNLI QQP

Classification head (corresponds to the FRUGAL with ρ = 0.0) 94.9±.2 92.8±.1 91.3±.1

None (corresponds to the fine-tuning using signSGD) 89.7 81.6 74.3

For blockwise, we take round(ρ ·L) layers, where L is the total number of transformer layers, and for
column-wise, we take round(ρ · k) columns for each matrix of size n× k. Since the memory required
to store block or column indices is negligible compared to other costs, we find that the total size of
the optimizer state when using Adam as a state-full optimizer will be 2ρ · P , with an adjustment for
rounding.

In the case of RandK projection, we have the same 2ρ · P float values M and V in the optimizer
state. However, we must also know the current indices corresponding to these values. On the other
hand, it is widely known that if one needs to save a set of random values, they don’t need to store all
these values - it’s sufficient to store only the seed from which they were generated. Thus, for RandK,
the total memory also equals 2ρ · P .

If we recalculate this considering a specific LLaMA-like architecture, each layer consists of 7
matrices: 4 matrices of size h× h (Query, Key, Value, Output) and 3 matrices of size h× hff (Gate,
Down, Up), where h is the hidden size of the model, and hff is the FFN hidden size. In the LLaMA
architecture, it’s typically:

hff = 4h · 2
3
=

8

3
h.

Then, the amount of memory for RandK projection (and consequently for all others mentioned above)
is:

2 · (4 · (ρh2) + 3 · (ρ · h · hff )) = 2 · (4 · ρh2 + 3 · (8
3
ρ · h2)) = 24ρ · h2

for each layer on average (2 corresponds to the number of matrices M and V ).

In the case of a GaLore-like semi-orthogonal projection matrix, the situation is as follows. We have
projections onto a low-rank subspace of rank r, where r = round(ρ · h). Then, for Query, Key,
Value, and Output projections, we need to store P ,M ,V ∈ Rh×r, and for Gate, Down and Up
projections either P ∈ Rh×r,M ,V ∈ Rhff×r, or P ∈ Rhff×r,M ,V ∈ Rh×r. Since the second
option requires less memory, it is used by default in (Zhao et al., 2024a) and, therefore, in FRUGAL,
too. Then, the total memory requirements are:

4 · (3 · rh) + 3 · (2 · r · h+ r · hff ) = 12rh+ 6rh+ 3rhff = (12 + 6 + 3 · 8
3
)rh = 26ρh2.
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To sum up, RandK, column-wise and blockwise projection requires 2ρP additional memory, while
semi-orthogonal projection (GaLore-like) requires 26

24 · 2ρP = 13
12 · 2ρP additional memory.

Let’s recall that in addition to this, SVD requires additional computation, which can take up to 10%
as the model size increases (Zhao et al., 2024a). Therefore, for our method, we settled on blockwise
projection.

C OPTIMIZER STATE MANAGEMENT

In this section, we would like to propose some modifications to the GaLore algorithm. These
modifications are also used in our framework as SVD projection.

Specifically, we want to consider the projection of the state when changing the active subspace. In
GaLore (Zhao et al., 2024a), when updating the projection, the optimizer states M and V do not
change. This results in new projected gradients and old M and V being in different subspaces. This
implementation has little effect on the result with large values of update frequency T , as the values
of M and V from the previous subspace decay exponentially quickly. However, more frequent
changes T significantly affect the result. We hypothesize that this is why in Zhao et al. (2024a) the
model quality degraded so significantly when T was decreased, while as seen in Table 10, FRUGAL
experiences much less degradation.

There are two different ways to overcome this obstacle: either project the state back to full-rank space
or reset the state before a new round. However, the first option may be challenging in the case of
arbitrary projection. Specifically, while it’s possible to project momentum back to full-rank space (see
Alg. 2 in Hao et al. (2024)), the same cannot be easily done with variance because its values depend
quadratically on the projection matrix. However, the projection of variance will also be trivial if the
set of basis vectors for the projection is fixed, which is true, for example, for coordinate projection
with RandK.

0 25 50 75 100 125 150 175 200
Iteration

10 1

100

101

Lo
ss

GaLore-like SGDM, rank 3
 GaLore-like SGDM with Momentum re-projection, rank 3
GaLore-like SGDM, rank 6
 GaLore-like SGDM with Momentum re-projection, rank 6

Figure 3: Toy example of solving quadratic minimization problem with GaLore-like SGDM with and
without re-projection of optimizer state. Algorithm with re-projection converges much faster.

To demonstrate the effectiveness of this improvement, we provide a toy example. We consider a
quadratic minimization problem of ∥W∥2,W ∈ R10×10. For optimization, we use GaLore-like
SGDM and GaLore-like SGDM with Momentum state projection. This projection is similar to Alg. 2
from (Hao et al., 2024), except we additionally normalize the new momentum by the ratio of norms
before and after re-projection to preserve momentum mass. We use ranks of 3 and 6, and an update
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Table 14: Pre-training LLaMA 7B on C4 dataset for 120K steps. Validation perplexity is reported.
40K 80K 120K

8-bit Adam 18.09 15.47 14.83
8-bit GaLore 17.94 15.39 14.95
FRUGAL, ρ = 0.0 17.56 14.50 13.49
Tokens (B) 5.2 10.5 15.7

frequency T = 10 and plot mean and standard deviation across 5 independent runs. The results are
presented in Figure 3. As can be seen, the variant with state projection converges much faster.

D LLAMA 7B PRE-TRAINING RESULTS.

In this section, we present the results of pre-training a LLaMA 7b model on the C4 dataset for 120k
iterations on 12B tokens. See results in Table 14. We conducted the training in pure bfloat16 with
the density ρ = 0.0. We used learning rate 0.0005 for state-full optimizer and 0.00015 for state-free
optimizer. However, unlike Zhao et al. (2024a), we didn’t use Adam8bit for state-full parameters
but rather Adam, so it may not be an entirely fair comparison. Nevertheless, the results show that
FRUGAL has the potential for scaling up to 7B parameter models.
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E CONVERGENCE THEORY

Firstly, we provide ommited definition of L-smooth function.
Definition 1. We say that f : Rd → R is L−smooth with L ≥ 0, if it is differentiable and satisfies

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2,∀x, y ∈ Rd .

Below, we provide an equivalent formulation of Algorithm 2 that enables us to use the proof of the
similar structure to SGDM momentum analyis of Liu et al. (2020).

Algorithm 3 FRUGAL(SGDM, SGD): Equivalent to Algorithm 2 for constant step isze
Input: momentum weight β ∈ [0, 1), initialization x1 ∈ Rd and m0 = 0, step sizes {αk := α >
0}Kk=1, momentum set Jk ⊂ [d] for k = 1, 2 . . ..

1: for k = 1, 2, . . . do
2: Compute stochastic gradient g̃k ← ∇fζk(xk);

3: Update momentum vector m̃k
j ← (1− β)g̃kj + β

{
m̃k−1

j if j ∈ Jk,

0 otherwise;
4: Update iterate xk+1/2 ← xk − αm̃k;

5: xk+1
j ←

x
k+1/2
j

1−β −
βxk

j

1−β if j /∈ Jk+1,

x
k+1/2
j otherwise;

6: end for

Next, we present several key ingredients of the proof. Firstly, we can express the momentum term
m̃k

j as

m̃k
j = (1− β)

k∑
i=tkj

βk−ig̃ij , (4)

where tkj := maxt≤k{j /∈ Jt}, i.e., the last time when the momentum buffer was released. We denote

mk
j = (1− β)

k∑
i=tkj

βk−igij , (5)

Using this notation, we proceed with two lemmas, one showing variance reduction effect of momen-
tum, the other boundess of momentum bias.
Lemma 1. Under Assumption 1, the update vector m̃k in Algorithm 3 satisfies

E
[∥∥m̃k −mk

∥∥2] ≤ 1− β

1 + β
σ2.

Proof. Since m̃k
j = (1− β)

∑k
i=tkj

βk−ig̃ij , we have

E
[∥∥m̃k −mk

∥∥2] = ∑
j∈[d]

E
[∥∥m̃k

j −mk
j

∥∥2]

≤ (1− β)2
∑
j∈[d]

E


∥∥∥∥∥∥

k∑
i=tkj

βk−i(g̃ij − gij)

∥∥∥∥∥∥
2
 .

Moreover, since ζ1, ζ2, ..., ζk are independent random variables (item 3 of Assumption 1), we can
use conditional expectation to show that E

[
(g̃i1j − gi1j )(g̃i2j − gi2j )

]
= 0 for i1 ̸= i2. Therefore,
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E
[∥∥m̃k −mk

∥∥2] ≤ (1− β)2
∑
j∈[d]

E

 k∑
i=tkj

β2(k−i)∥g̃ij − gij∥2


≤ 1− β

1 + β

∑
j∈[d]

E
[
(1− β2(k−tkj+1))

]
σ2
j

≤ 1− β

1 + β

∑
j∈[d]

σ2
j =

1− β

1 + β
σ2.

Lemma 2. Under Assumption 1, the update vector m̃k in Algorithm 3 further satisfies

E

∑
j∈Jk

(1− βkj )2

∥∥∥∥∥ mk
j

(1− βkj )
− gkj

∥∥∥∥∥
2
 ≤ pkmaxE

[
k−1∑
i=1

ak,i∥xi+1 − xi∥2
]
,

where kj = k − tkj + 1, and

ak,i = L2βk−i

(
k − i+

β

1− β

)
. (6)

Proof. Let Prk−1[j ∈ Jk] = pkj and pkmax := maxj∈[d]{pkj }. Then,

E

∑
j∈Jk

(1− βkj )2

∥∥∥∥∥ mk
j

(1− βkj )
− gkj

∥∥∥∥∥
2
 = E

∑
j∈Jk

(1− βkj )2

∥∥∥∥∥∥ 1− β

1− βkj

k∑
i=tkj

βk−i(gij − gkj )

∥∥∥∥∥∥
2


= (1− β)2E

∑
j∈Jk

k∑
i,l=tkj

⟨βk−i(gkj − gij), β
k−l(gkj − glj)⟩


≤ (1− β)2E

∑
j∈Jk

k∑
i,l=1

β2k−i−l

(
1

2
∥gkj − gij∥2] +

1

2
∥gkj − glj∥2

)
= (1− β)2E

∑
j∈Jk

k∑
i=1

(
k∑

l=1

β2k−i−l

)
1

2
E[∥gkj − glj∥2


+ (1− β)2E

∑
j∈Jk

k∑
l=1

(
k∑

i=1

β2k−i−l

)
1

2
[∥gkj − gij∥2


= (1− β)2E

∑
j∈Jk

k∑
i=1

βk−i(1− βkj )

1− β
∥gkj − gij∥2


≤ (1− β)E

∑
j∈Jk

k∑
i=1

βk−i∥gkj − gij∥2
 ,

≤ (1− β)pkmaxE

[
k∑

i=1

βk−i∥gk − gi∥2
]
,

where we applied Cauchy-Schwarz to the first inequality.
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By applying triangle inequality and the smoothness of f (item 1 in Assumption 1), we further have

E

∑
j∈Jk

(1− βkj )2

∥∥∥∥∥ mk
j

(1− βkj )
− gkj

∥∥∥∥∥
2
 ≤ (1− β)pkmaxE

[
k∑

i=1

βk−i(k − i)

k−1∑
l=i

∥gl+1 − gl∥2
]

≤ E

[
k−1∑
l=1

(
(1− β)pkmaxL

2
l∑

i=1

βk−i(k − i)

)
∥xl+1 − xl∥2

]
.

Therefore, by defining a′k,l = (1− β)L2
∑l

i=1 β
k−i(k − i), we get

E

∑
j∈Jk

(1− βkj )2

∥∥∥∥∥ mk
j

(1− βkj )
− gkj

∥∥∥∥∥
2
 ≤ pkmaxE

[
k−1∑
l=1

a′k,l∥xl+1 − xl∥2
]
. (7)

Furthermore, a′k,j can be calculated as

a′k,l = L2βk

(
−(k − 1)− 1

1− β

)
+ L2βk−l

(
k − l +

β

1− β

)
. (8)

Notice that

a′k,l < ak,l := L2βk−l

(
k − l +

β

1− β

)
. (9)

Combining this with equation 7, we arrive at

E

∑
j∈Jk

(1− βkj )2

∥∥∥∥∥ mk
j

(1− βkj )
− gkj

∥∥∥∥∥
2
 ≤ pkmaxE

[
k−1∑
i=1

ak,i∥xi+1 − xi∥2
]
,

where

ak,i = L2βk−i

(
k − i+

β

1− β

)
.

From Lemma 2, we know that the distance of the non-stochastic momentum from gk is bounded by
the weighted sum of past successive iterate differences. Furthermore, the coefficients ak,i decays
exponentially in β.

Therefore, we use the following Lyapunov function

Lk =
(
f(zk)− f⋆

)
+

k−1∑
i=1

ci∥xk+1−i − xk−i∥2. (10)

for some positive ci that we specify later. As it is common for convergence theory of SGDM to
analyze an auxiliary sequence zk defined as

zkj =

{
xk
j k = 1,
1

1−βx
k−1/2
j − β

1−βx
k−1
j k ≥ 2,

(11)

which behaves more like an SGD iterate, although the stochastic gradient g̃k is not taken at zk.
Lemma 3. Let xk’s be iterates of Algorithm 3, then zk defined in equation 11 satisfies

zk+1 − zk = −αg̃k.

Proof. We have to consider two different cases. Firstly, if k = 1 or j /∈ Jk, then

zk+1
j − zkj =

x
k+1/2
j

1− β
−

βxk
j

1− β
− xk

j =
xk
j − αm̃k

j − βxk
j − (1− β)xk

j

1− β
= −

α(1− β)g̃kj
1− β

= −αg̃kj .
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Secondly, if k ≥ 2, j ∈ Jk, then

zk+1
j − zkj =

1

1− β
(x

k+1/2
j − x

k−1/2
j )− β

1− β
(xk

j − xk−1
j )

=
1

1− β
(x

k+1/2
j − xk

j )−
β

1− β
(xk

j − xk−1
j )

=
1

1− β
(−αm̃k

j )−
β

1− β
(−αm̃k−1

j )

=
1

1− β
(−αm̃k

j + αβm̃k−1
j ) = −αg̃kj .

Before procceding with the main convergence theory, we require one more proposition that shows
descent in objective value.
Proposition 1. Take Assumption 1. Then, for zk defined in equation 11, we have

E[f(zk+1)] ≤ E[f(zk)] +
(
−α+

1 + β2

1− β
Lα2 +

1

2
Lα2

)
E[∥gk∥2]

+

(
β2

2(1 + β)
+

1

2

)
Lα2σ2 +

Lα2

1− β
E

∑
j∈Jk

(1− βkj )2

∥∥∥∥∥ mk
j

(1− βkj )
− gkj

∥∥∥∥∥
2
 .

(12)

Proof. The smoothness of f yields

Eζk [f(zk+1)] ≤ f(zk) + Eζk [⟨∇f(zk), zk+1 − zk⟩] + L

2
Eζk [∥zk+1 − zk∥2]

= f(zk) + Eζk [⟨∇f(zk),−αg̃k⟩] + Lα2

2
Eζk [∥g̃k∥2],

(13)

where we have applied Lemma 3 in the second step.

For the inner product term, we can take full expectation E = Eζ1 ...Eζk to get

E[⟨∇f(zk),−αg̃k⟩] = E[⟨∇f(zk),−αgk⟩],
which follows from the fact that zk is determined by the previous k−1 random samples ζ1, ζ2, ...ζk−1,
which is independent of ζk, and Eζk [g̃k] = gk.

So, we can bound

E[⟨∇f(zk),−αg̃k⟩] = E[⟨∇f(zk)− gk,−αgk⟩]− αE[∥gk∥2]

≤ α
ρ0
2
L2E[∥zk − xk∥2] + α

1

2ρ0
E[∥gk∥2]− αE[∥gk∥2],

where ρ0 > 0 can be any positive constant (to be determined later).

Combining equation 13 and the last inequality, we arrive at

E[f(zk+1)] ≤ E[f(zk)] + α
ρ0
2
L2E[∥zk − xk∥2]

+ (α
1

2ρ0
− α)E[∥gk∥2] + Lα2

2
E[∥g̃k∥2].

By construction, zkj − xk
j = − β

1−βαm̃
k−1
j for j ∈ Jk, 0 otherwise. Consequently,

E[f(zk+1)] ≤ E[f(zk)] + α3 ρ0
2
L2(

β

1− β
)2E

∑
j∈Jk

∥m̃k−1
j ∥2


+ (α

1

2ρ0
− α)E[∥gk∥2] + Lα2

2
E[∥g̃k∥2].

(14)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Let kj = k − tk−1
j + 1. Then, from Lemma 1 we know that

E

∑
j∈Jk

∥m̃k−1
j ∥2

 ≤ 2E

∑
j∈Jk

∥m̃k−1
j −mk−1

j ∥2
+ 2E

∑
j∈Jk

∥mk−1
j ∥2


≤ 2

1− β

1 + β
E

∑
j∈Jk

σ2
j + 2

∑
j∈Jk

∥mk−1
j ∥2


E

∑
j∈Jk

∥mk−1
j ∥2

 = E

∑
j∈Jk

(1− β(k−1)j )2

∥∥∥∥∥ mk−1
j

(1− β(k−1)j )

∥∥∥∥∥
2


≤ 2E

∑
j∈Jk

(1− β(k−1)j )2

∥∥∥∥∥ mk−1
j

(1− β(k−1)j )
− gkj

∥∥∥∥∥
2
+ 2E

∑
j∈Jk

∥∥gkj ∥∥2


E
[
∥g̃k∥2

]
≤ σ2 + E[∥gk∥2].

(15)

Putting these into equation 14, we arrive at

E[f(zk+1)] ≤ E[f(zk)] +
(
− α+ α

1

2ρ0
+ 2α3ρ0L

2

(
β

1− β

)2

+
Lα2

2

)
E[∥gk∥2]

+

(
α3ρ0L

2

(
β

1− β

)2
1− β

1 + β
σ2 +

Lα2

2
σ2

)

+ 2α3ρ0L
2

(
β

1− β

)2

E

∑
j∈Jk

(1− β(k−1)j )2

∥∥∥∥∥ mk−1
j

(1− β(k−1)j )
− gkj

∥∥∥∥∥
2
 .

Notice that if j ∈ Jk, then (k − 1)j = kj − 1. Therefore,

E

∥∥∥∥∥ mk
j

(1− βkj )
− gkj

∥∥∥∥∥
2
 = E

∥∥∥∥∥βm
k−1
j + (1− β)gkj
(1− βkj )

− gkj

∥∥∥∥∥
2


= β2E

( (1− βkj−1)

(1− βkj )

)2
∥∥∥∥∥ mk−1

j

(1− β(k−1)j )
− gkj

∥∥∥∥∥
2
 .

Substituting the above into the last inequality produces

E[f(zk+1)] ≤ E[f(zk)] +
(
− α+ α

1

2ρ0
+ 2α3ρ0L

2(
β

1− β
)2 +

Lα2

2

)
E[∥gk∥2]

+

(
α3ρ0L

2(
β

1− β
)2
1− β

1 + β
σ2 +

Lα2

2
σ2

)

+ 2α3ρ0L
2

(
1

1− β

)2

E

∑
j∈Jk

(1− βkj )2

∥∥∥∥∥ mk
j

(1− βkj )
− gkj

∥∥∥∥∥
2
 .

(16)

Finally, ρ0 = 1−β
2Lα gives

E[f(zk+1)] ≤ E[f(zk)] +
(
−α+

1 + β2

1− β
Lα2 +

1

2
Lα2

)
E[∥gk∥2]

+

(
β2

2(1 + β)
+

1

2

)
Lα2σ2 +

Lα2

1− β
E

∑
j∈Jk

(1− βkj )2

∥∥∥∥∥ mk
j

(1− βkj )
− gkj

∥∥∥∥∥
2
 .
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E.1 CONVERGENCE OF ALGORITHM 3

Firstly, by combining results from prior section, we can bound our Lyapunov function Lk defined in
equation 10.

Proposition 2. Let Assumption 1 hold and α ≤ 1−β

2
√
2L
√

pk
max

√
β+β2

in Algorithm 3. Let {ci}∞i=1 in

equation 10 be defined by

c1 =

β+β2

(1−β)3L
3α2

1− 4α2 β+β2

(1−β)2L
2
, ci+1 = ci −

(
4c1α

2 +
Lα2

1− β

)
βi(i+

β

1− β
)L2 for all i ≥ 1.

Then, ci > 0 for all i ≥ 1, and

E[Lk+1 − Lk] ≤
(
−α+

3− β + β2

2(1− β)
Lα2 + 4c1α

2

)
E[∥gk∥2]

+

(
β2

2(1 + β)
Lα2σ2 +

1

2
Lα2σ2 + 2c1α

2σ2

)
.

(17)

Proof. Recall that Lk is defined as

Lk = f(zk)− f∗ +

k−1∑
i=1

ci∥xk+1−i − xk−i∥2,

Therefore, by equation 16 we know that

E[Lk+1 − Lk] ≤

(−α+
1 + β2

1− β
Lα2 +

1

2
Lα2)E[∥gk∥2]

+

k−1∑
i=1

(ci+1 − ci)E[∥xk+1−i − xk−i∥2] + c1E[∥xk+1 − xk∥2]

+

(
β2

2(1 + β)
+

1

2

)
Lα2σ2 +

Lα2

1− β
E

∑
j∈Jk

(1− βkj )2

∥∥∥∥∥ mk
j

(1− βkj )
− gkj

∥∥∥∥∥
2
 .

(18)

To bound the c1E[∥xk+1 − xk∥2] term, we need the following inequalities, which are obtained
similarly as equation 15.

E[∥m̃k∥2] ≤ 2
1− β

1 + β
σ2 + 2E[∥mk∥2]

E[∥mk∥2] ≤ 2E

∑
j∈Jk

(1− βkj )2

∥∥∥∥∥ mk
j

(1− βkj )
− gkj

∥∥∥∥∥
2
+ 2E

[∥∥gk∥∥2]
E[∥g̃k∥2] ≤ σ2 + E[∥gk∥2].

(19)

Let Prk−1[j ∈ Jk] = pkj and pkmin := minj∈[d]{pkj }. Then, c1E[∥xk+1 − xk∥2] can be bounded as

c1E[∥xk+1 − xk∥2] = c1α
2E[∥ũk∥2] = c1α

2E

∑
j∈Jk

∥m̃k
j ∥2 +

∑
j /∈Jk

∥g̃kj ∥2


≤ c1α
2E
[
∥m̃k∥2 + (1− pkmin)∥g̃k∥2

]
≤ c1α

2

((
2
1− β

1 + β
+ 1− pkmin

)
σ2 + 5E[∥gk∥2]

)

+ 4c1α
2E

∑
j∈Jk

(1− βkj )2

∥∥∥∥∥ mk
j

(1− βkj )
− gkj

∥∥∥∥∥
2
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Combine this with equation 18, we obtain

E[Lk+1 − Lk]

≤ (−α+
1 + β2

1− β
Lα2 +

1

2
Lα2 + 5c1α

2)E[∥gk∥2] +
(

β2

2(1 + β)
+

1

2
+

c1
L

(
2
1− β

1 + β
+ 1− pkmin

))
Lα2σ2

+

k−1∑
i=1

(ci+1 − ci)E[∥xk+1−i − xk−i∥2]

+

(
4c1α

2 +
Lα2

1− β

)
E

∑
j∈Jk

(1− βkj )2

∥∥∥∥∥ mk
j

(1− βkj )
− gkj

∥∥∥∥∥
2
 .

(20)

In the rest of the proof, let us show that the sum of the last two terms in equation 20 is non-positive.

First of all, by Lemma 2 we know that

E

∑
j∈Jk

(1− βkj )2

∥∥∥∥∥ mk
j

(1− βkj )
− gkj

∥∥∥∥∥
2
 ≤ E

[
pkmax

k−1∑
i=1

ak,i∥xi+1 − xi∥2
]
,

where

ak,i = L2βk−i

(
k − i+

β

1− β

)
.

Or equivalently,

E

∑
j∈Jk

(1− βkj )2

∥∥∥∥∥ mk
j

(1− βkj )
− gkj

∥∥∥∥∥
2
 ≤ E

[
k−1∑
i=1

pkmaxak,k−i∥xk+1−i − xk−i∥2
]
,

where

ak,k−i = L2βi

(
i+

β

1− β

)
.

Therefore, to make the sum of the last two terms of equation 20 to be non-positive, we need to have

ci+1 ≤ ci −
(
4c1α

2 +
Lα2

1− β

)
L2pimaxβ

i

(
i+

β

1− β

)
for all i ≥ 1. To satisfy this inequality, we choose

ci+1 = ci −
(
4c1α

2 +
Lα2

1− β

)
L2βipimax

(
i+

β

1− β

)
for all i ≥ 1, which implies that

ci = c1 −
(
4c1α

2 +
Lα2

1− β

)
L2

i−1∑
l=1

βipimax

(
i+

β

1− β

)
.

To have ci > 0 for all i ≥ 1, we can set c1 as

c1 =

(
4c1α

2 +
Lα2

1− β

)
L2p̂kmax

∞∑
i=1

βi

(
i+

β

1− β

)
.

where, p̂kmax = maxi∈[k]{pimax}. Since

j∑
i=1

iβi =
1

1− β

(
β(1− βj)

1− β
− jβj+1

)
,
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we have
∑∞

i=1 iβ
i = β

(1−β)2 and

c1 =

(
4c1α

2 +
Lα2

1− β

)
L2p̂kmax

β + β2

(1− β)2
,

which implies that

c1 =
α2L3p̂kmax

β+β2

(1−β)3

1− 4α2 β+β2

(1−β)2 p̂
k
maxL

2
. (21)

Notice that α ≤ 1−β

2
√
2L
√

p̂k
max

√
β+β2

ensures c1 > 0.

Therefore,

E[Lk+1 − Lk] ≤
(
−α+

3− β + 2β2

2(1− β)
Lα2 + 5c1α

2

)
E[∥gk∥2]

+

(
β2

2(1 + β)
Lα2σ2 +

1

2
Lα2σ2 + c1α

2σ2

(
2
1− β

1 + β
+ 1− pkmin

))
.

By telescoping equation 17, we obtain the convergence bound of our proposed algorithm under
nonconvex settings.

Theorem 2. Let Assumption 1 hold and αk = α ≤ 1−β
L(4−β+β2) . Then, the iterates of Algorithm 3

satisfy

1

k

k∑
i=1

E[∥gi∥2] ≤ O
(
f(x1)− f∗

kα
+ Lασ2

(
1 +

p̂kmax(1− p̄kmin)β

(1− β)

))
, (22)

where p̄kmin = 1
k

∑k
i=1 p̄

i
min and p̂kmax = maxi∈[k]{pimax}.

Proof. From equation 17 we know that

E[Lk+1 − Lk] ≤ −R1E[∥gk∥2] +Rk
2 , (23)

where

R1 = −α+
3− β + β2

2(1− β)
Lα2 + 4c1α

2,

R2 =
β2

2(1 + β)
Lα2σ2 +

1

2
Lα2σ2 + c1α

2σ2

(
2
1− β

1 + β
+ 1− pkmin

)
.

We further define

R̄2 =
β2

2(1 + β)
Lα2σ2 +

1

2
Lα2σ2 + c1α

2σ2

(
2
1− β

1 + β
+ 1− p̄kmin

)
,

where p̄kmin = 1
k

∑k
i=1 p̄

i
min.

Telescoping equation 23 yields

L1 ≥ E[L1 − Lk+1] ≥ R1

k∑
i=1

E[∥gi∥2]−
k∑

k=1

Rk
2 ,

and therefore

1

k

k∑
i=1

E[∥gi∥2] ≤ L1

kR1
+

R̄2

R1
. (24)

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

In the rest of the proof, we will appropriately bound R1 and R̄2.

First, let us show that R1 ≥ α
2 and α ≤ min

{
1−β

L(4−β+β2) ,
1−β

2
√
2L
√

p̂k
max

√
β+β2

}
.

From equation 21 we know that

c1 =
α2L3p̂kmax

β+β2

(1−β)3

1− 4α2 β+β2

(1−β)2L
2p̂kmax

.

Since α ≤ 1−β

2
√
2L
√

p̂k
max

√
β+β2

, we have

4α2 β + β2

(1− β)2
L2p̂kmax ≤

1

2
.

Thus,

c1 ≤ α2L3p̂kmax

β + β2

(1− β)3
≤ L

8(1− β)
.

Therefore, in order to ensure R1 ≥ α
2 , it suffices to have

3− β + β2

2(1− β)
Lα+

αL

2(1− β)
≤ 1

2

which is equivalent to our condition α ≤ 1−β
L(4−β+β2) .

For R̄2, we can upperbound c1 using our condition α ≤ 1−β
L(4−β+β2) . Thus,

c1 ≤ α2L3p̂kmax

β + β2

(1− β)3
≤ p̂kmaxβL

2(1− β)
.

Therefore,

R̄2 =
β2

2(1 + β)
Lα2σ2 +

1

2
Lα2σ2 + c1α

2σ2

(
2
1− β

1 + β
+ 1− p̄kmin

)
≤ β2

2(1 + β)
Lα2σ2 +

1

2
Lα2σ2 +

p̂kmaxβLα
2σ2

(1 + β)
+ Lα2σ2p̂kmax(1− p̄kmin)

β

1− β

≤
(
2β2 + 8p̂kmax

2(1 + β)
+

1

2
+

p̂kmax(1− p̄kmin)β

8(1− β)

)
Lα2σ2.

By putting them all together, we obtain

1

k

k∑
i=1

E[∥gi∥2] ≤
2
(
f(x1)− f∗)

kα
+

(
2β2 + 8p̂kmax

2(1 + β)
+

1

2
+

p̂kmax(1− p̄kmin)β

8(1− β)

)
Lασ2

= O
(
f(x1)− f∗

kα
+ Lασ2

(
1 +

p̂kmax(1− p̄kmin)β

(1− β)

))
.
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Table 15: Comparison of different projection and state-free subspace optimization strategies for
different values density ρ on pre-training LLaMA-130M on C4 with Adam as the state-full algorithm.

Density Projection Optimizes state- Validation perplexity after iterations ↓
ρ type free subspace 4k 20k 40k 100k 200k

0.5

SVD No 36.15 23.85 22.09 20.32 19.30
Random No 38.52 23.91 21.89 19.97 18.90

Blockwise Yes 34.80 22.59 21.27 19.38 18.40
SVD Yes 34.18 22.45 20.85 19.23 18.30

0.333

SVD No 38.00 25.18 23.31 21.42 20.31
Random No 40.30 25.00 22.78 20.65 19.46

Blockwise Yes 35.77 22.81 21.28 19.50 18.50
SVD Yes 34.33 22.54 20.91 19.25 18.33

0.125

SVD No 44.48 29.24 26.80 24.37 22.91
Random No 48.65 28.90 25.78 22.94 21.35

Blockwise Yes 37.21 23.70 21.69 19.76 18.71
SVD Yes 34.95 22.83 21.16 19.44 18.48

0.0625

SVD No 51.05 33.01 29.88 26.84 25.07
Random No 60.54 35.64 29.02 25.30 23.41

Blockwise Yes 37.94 23.54 21.53 19.90 18.80
SVD Yes 35.18 22.93 21.24 19.56 18.56

F ADDITIONAL EXPERIMENTS

In this section we present additional experiments.

Connection between density and type of the projection. First, we present the results of the
experiments that follow the setup of Table 1 but explore different density ρ values: 0.0625, 0.125,
0.333, and 0.5 (while in Table 1 we use ρ = 0.25). The results, presented in Table 15, align with
our findings from Table 1. Specifically, training with random projection significantly outperforms
SVD projection when training without optimizing the state-free subspace. When state-free subspace
optimization is employed, SVD projections marginally outperform their Blockwise counterparts.

Different state-full and state-free optimizers. Next, we conducted experiments for other state-full
and state-free optimizers. We explored two variations: 1. replacing AdamW with Lion (Chen
et al., 2024) as the state-full optimizer, and 2. substituting signSGD with SGD as the state-free
optimizer. We pre-trained LLaMA-130M on C4 for 200k steps with the hyperparameters specified
in Appendix A.1. We approached the Lion experiments in the same way as the Adam experiments:
first finding the optimal learning rate for the original algorithm through grid search, then using that
same learning rate for both GaLore and FRUGAL. For SGD experiments, we kept state-full Adam’s
learning rate constant while only adjusting the learning rate for the state-free optimizer.

The results are presented in tables Table 16 and Table 17. As observed, the results for Lion are similar
to those obtained with AdamW - the additional optimization of the state-free subspace significantly
improves performance, resulting in FRUGAL significantly outperforming GaLore (Zhao et al., 2024a).
While training with SGD as the state-free optimizer shows somewhat lower performance compared
to signSGD, it still significantly outperforms both GaLore and BAdam (Luo et al., 2024). However,
we would like to note that unlike signSGD, hyperparameter tuning for SGD training is considerably
more challenging. This is because, unlike signSGD, whose update magnitudes approximately equal
to those of popular Adam-like algorithms, the magnitude of updates (essentially, gradients) in SGD
differs substantially, necessitating learning rates that deviate significantly from those used with the
state-full optimizer. Furthermore, successful training with SGD absolutely requires gradient clipping,
while the absence of such clipping is not a critical impediment for signSGD.
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Table 16: Perplexity of LLaMA-130M models
pre-trained on C4 with Lion as state-full opti-
mizer for 200k steps.

Method 200k
Adam 18.13
Lion 18.55
GaLore (+ Lion), ρ = 0.25 21.65
FRUGAL (+ Lion), ρ = 0.25 18.89

Table 17: Perplexity of LLaMA-130M models
pre-trained on C4 for 200k steps with different
state-free optimizers for FRUGAL.

Method State-free Validation
optimizer perplexity

Adam — 18.13
GaLore, ρ = 0.25 — 21.11
BAdam, ρ = 0.25 — 20.34
FRUGAL, ρ = 0.25 signSGD 18.60
FRUGAL, ρ = 0.25 SGD 19.11

Table 18: Validation perplexity of GPT-2 124M model pre-trained on C4 for 200k steps with various
optimization methods and different combinations of sequence length (SL), batch size (BS).

Method {SL, BS} = {256, 512} {SL, BS} = {512, 256}
Adam 21.94 21.90
GaLore, ρ = 0.25 25.84 26.90
BAdam, ρ = 0.25 25.43 26.23
FRUGAL, ρ = 0.25 23.23 23.13
FRUGAL, ρ = 0.0 25.04 24.51

Different architectures. We have conducted additional experiments on pre-training GPT-2 124M to
further strengthen our findings. We followed the setup described in Appendix A.1, except for the
tokenizer. We utilized the GPT-2 original tokenizer, with 50257 vocabulary size.

Note, that we have tried two configurations: 1. with sequence length of 256 and batch size of 512
sequences (setup from Zhao et al. (2024a), that we used in our previous experiments), 2. with
sequence length of 512 and batch size of 256 sequences (original sequence length of GPT-2).

See results in Table 18. Similarly to experiments with LLaMA, we found that FRUGAL significantly
outperforms GaLore and BAdam.

Computational time. We present the average computational time of the optimizer step for different
sizes of LLaMA models in Table 19. Time is presented in milliseconds. The measurements for
memory-efficient methods were made with density ρ = 0.25 and update gap T equal to 200. We
report the average time over 200 steps (to capture exactly one step with the state-full subspace update).
Measurements were conducted on a single A100-80G GPU using PyTorch 2.4.1. We note that these
experiments were conducted without using torch.compile.

Table 19: Average computational time of optimizer step averaged by 200 steps with update gap 200
for memory-efficient optimizers. We use ρ = 0.25 for FRUGAL, Badam and GaLore. Measurements
were conducted on a single A100-80G GPU using PyTorch 2.4.1 without torch.compile. Time
is presented in milliseconds.

Method 60M 130M 350M 1B 3B

Adam 3.09 6.62 17.88 62.20 124.63
GaLore 19.50 37.06 107.11 473.72 1063.31
BAdam 39.58 29.51 63.35 71.37 123.86
FRUGAL, RandK 18.16 29.65 54.94 136.55 310.11
FRUGAL, Blockwise 6.70 9.76 17.49 47.49 93.49

The results show that memory-efficient methods requiring gradient projection within each Linear layer
matrix (GaLore, RandK) stand out negatively. GaLore requires more time than RandK due to SVD de-
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Table 20: Pre-training LLaMA 3B on C4 dataset for 300K steps. Validation perplexity for different
iterations is reported. * indicates runs, that are still in progress.

Method 60k 120k 180k 240k 300k
Adam 15.56 13.31 12.38 * *
GaLore, ρ = 0.25 17.37 14.94 * * *
BAdam, ρ = 0.25 18.65 15.61 14.30 * *
FRUGAL, ρ = 0.25 15.51 13.26 12.30 * *
FRUGAL, ρ = 0.0 15.68 13.39 * * *

Training tokens 6B 12B 18B 24B 30B

composition. As model size increases, blockwise-projection methods even start outperforming Adam,
despite being implemented through a for-loop over all parameters, while PyTorch uses an efficient
Adam implementation by stacking updates into a single shared tensor (flag foreach=True) to bet-
ter utilize the parallelization capabilities of modern GPUs. This occurs because Adam’s update step
requires significantly more operations than the state-free step in FRUGAL. Therefore, approximately
75% of updates in FRUGAL’s for-loop require significantly less time.

LLaMA 3b experiments. To evaluate how our method scales to larger model sizes, we conducted
pre-training experiments with LLaMA 3B on the C4 dataset. Given the substantial computational
costs associated with 3B model experiments, we performed a single run using a uniform learning rate
of 1.6e-4 across all methods (learning rate taken from Brown (2020a) Table 2.1), training for 300k
steps with gradient clipping set to 1.0 and using a cosine scheduler with 30k warmup steps. Other
hyperparameters remain consistent with Appendix A.1. Preliminary results are presented in Table 20.

The results demonstrate that FRUGAL scales excellently to 3B-parameter models, while GaLore and
BAdam show significantly inferior performance. Surprisingly, FRUGAL with ρ = 0.25 even outper-
forms Adam. While these results are encouraging, we acknowledge that this performance difference
might be attributed to suboptimal hyperparameter selection that potentially favors Linear weights
training through signSGD over Adam. For instance, similar to the setup described in Appendix A.1
which we adopted from GaLore, we use a weight decay value of 0.0, which may not be optimal.
Despite this caveat, we believe this experiment demonstrates the remarkable potential of FRUGAL for
large-scale training.

G SIMPLIFIED ALGORITHMS PSEUDOCODE
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Algorithm 4 FRUGAL step pseudocode, PyTorch-like
1: def svd or randk step(self):
2: for param in self.params:
3: grad = param.grad
4: param state = self.state[param]
5: # update projector if necessary
6: if self.step % self.update gap == 0:
7: param state["projector"] = self.update proj(grad)
8: projector = param state["projector"]
9: # obtain state-full grad and state-free grad

10: grad full = projector.proj down(grad)
11: grad free = grad full - projector.proj up(grad full)
12: # reset state-full optimizer state if necessary
13: if self.step % self.update gap == 0:
14: param state["exp avg"] = torch.zeros like(grad full)
15: param state["exp avg sq"] = torch.zeros like(grad full)
16: # state-full subspace update
17: self.step += 1
18: update full = self.state full step(grad full, param state)
19: update full = projector.proj up(update full)
20: # state-free subspace update
21: update free = self.state free step(grad free)
22: # perform resulting update
23: update = update full + update free
24: param.add (update)
25:
26: def block step(self):
27: # change state-full and state-free blocks if necessary
28: if self.step % self.update gap == 0:
29: indices full = self.update indices(indices full)
30: for idx, param in enumerate(self.params):
31: grad = param.grad
32: param state = self.state[param]
33: if idx in indices full:
34: # reset state-full optimizer state
35: param state["exp avg"] = torch.zeros like(grad)
36: param state["exp avg sq"] = torch.zeros like(grad)
37: param state["full subspace"] = True
38: else:
39: # free state-full optimizer state to save memory
40: param state.clear()
41: param state["full subspace"] = False
42: # perform updates
43: for param in self.params:
44: grad = param.grad
45: param state = self.state[param]
46: # choose the optimizer depending on the block type
47: if param state["full subspace"]:
48: update = self.state full step(grad, param state)
49: else:
50: update = self.state free step(grad)
51: # perform resulting update
52: param.add (update)
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Algorithm 5 Examples of state-full and state-free steps for Algorithm 4
1: def state full adam step(self, grad, param state):
2: exp avg = param state["exp avg"]
3: exp avg sq = param state["exp avg sq"]
4: step = self.step
5: beta1, beta2 = self.betas
6: exp avg.mul (beta1).add (grad, alpha=1.0-beta1)
7: exp avg sq.mul (beta2).addcmul (grad, grad, value=1.0-beta2)
8: denom = exp avg sq.sqrt()
9: step size = self.lr full

10: if self.correct bias:
11: bias correction1 = 1.0 - beta1 ** step
12: bias correction2 = 1.0 - beta2 ** step
13: step size = self.lr full / bias correction1
14: bias correction2 sqrt = math.sqrt(bias correction2)
15: denom.div (bias correction2 sqrt)
16: denom.add (self.eps)
17: update full = exp avg / denom * (-step size)
18: return update full
19:
20: def state free signsgd step(self, grad):
21: update free = -self.lr free * grad.sign()
22: return update free

H LIMITATIONS

We would also like to acknowledge the limitations of this work. Due to computational constraints, we
were unable to conduct experiments on pre-training 7B+ LLMs, which is crucial for understanding the
potential of our approach when scaling. Furthermore, our experiments are limited to training language
models, although memory-efficient optimization could also be beneficial for training diffusion models.
Finally, there may be a better method for selecting the next state-full subspace during the training.
We leave the exploration of more sophisticated selection strategies for future work.
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