Under review as a conference paper at ICLR 2026

STABLE-LORA: STABILIZING FEATURE LEARNING OF
LOW-RANK ADAPTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-Rank Adaption (LoRA) is a widely adopted parameter-efficient method for
fine-tuning Large Langauge Models. It updates the weight matrix as W =
Wy + sBA, where W, is the original frozen weight, s is a scaling factor and
A,B are trainable low-rank matrices. Despite its robust empirical effectiveness,
the theoretical foundations of LoRA remain insufficiently understood, particu-
larly with respect to feature learning stability. In this paper, we first establish
that, LoRA can, in principle, naturally achieve and sustain stable feature learn-
ing (i.e., be self-stabilized) under appropriate hyper-parameters and initializations
of A and B. However, we also uncover a fundamental limitation that the neces-
sary non-zero initialization of A compromises self-stability, leading to suboptimal
performances, while neither hyper-parameter tuning nor alternative initializations
can resolve this instability. To address this challenge, we propose Stable-LoRA,
a weight-shrinkage optimization strategy that dynamically enhances stability of
LoRA feature learning. By progressively shrinking A during the earliest training
steps, Stable-LoRA is theoretically proved and empirically validated to effectively
eliminate instability of LoRA feature learning while preserving the benefits of
the non-zero start. Experiments show that Stable-LoRA consistently outperforms
other baselines across diverse models and tasks, with no additional memory usage
and only negligible computation overheads.

1 INTRODUCTION

Low-Rank Adaption (LoRA) (Hu et al.;[2022) is an effective and widely adopted parameter-efficient
method for fine-tuning large language models (LLMs). Unlike full fine-tuning, which updates all
model parameters, LORA freezes the original weight matrix W}, and introduces two low-rank train-
able matrices, A and B, with the weight matrix updated by the multiplication of A and B. Formally,

W — WO + SBA,WO E RW},XW/,A E RT‘X'IL7B E RHLXT‘

where s is a scaling factor. By choosing » << min(m,n), the number of trainable parameters is
reduced from mn to (m -+ n)r, substantially lowering computation and memory overhead while
retaining strong learning capacity.

The effectiveness of LORA has been demonstrated through massive experiments across various mod-
els and tasks, and recent studies (Hayou et al.,|2024b; Zhang & Pilancil [2024; | Kalajdzievski, [2023))
have also begun to theoretically explore the fine-tuning dynamics of LoRA. However, no prior work
has established a theoretical explanation for such robust effectiveness. In this paper, we first provide
a theoretical analysis showing that, with appropriate hyper-parameters and initializations of A and
B, LoRA can naturally achieves stable feature learning with respect to model width n (informally,
the learned features scale as @(no)). Furthermore, once this stability is achieved, it will be sus-
tained throughout the entire training process. Such self-stabilizing property provides a theoretical
foundation for the observed effectiveness and robustness of LoRA.

According to the analysis, the ideal initialization for ensuring self-stabilization is to set both A
and B to zero. However, this leads to practical issues of saddle-point halting (Zhang & Pilanci,
2024), information loss and gradient vanishing/explosion (He et al. [2015). The mostly-adopted
and theoretically proven-effective (Hayou et al., [2024a) solution is to initialize only B to zero and
A non-zero. Nevertheless, we both theoretically and empirically demonstrate that such a non-zero

Under review as a conference paper at ICLR 2026

. stable < false

r
Py for each step t:
Frozen + if not stable and W > %:
Weights +si| B x A + Ap — (l —)\)At
W € Rmx» + else: stable < true

:’1/ S fl/ —]}-(/4/\
Bi.q1 <+ By //gﬁ;

Figure 1: Illustration of Stable-LoRA. The weight-shrinkage operation is emphasized as a patch to
the gradient-descent procedure.

initialization Ay compromises stable feature learning and hence causes suboptimal performances,
while tuning hyper-parameters or altering initial values cannot resolve it. This observation motivates
the design of novel LoRA optimization strategies that must go beyond tuning or initialization.

To address this problem, we propose Stable-LoRA, a weight-shrinkage strategy for LoRA opti-
mization that dynamically enhances the stability of feature learning. We observe from theoretical
perspectives that the initialization-induced instability is a long-term problem whereas others are
short-termed. Therefore, Stable-LoRA adopts the non-zero Ay for its benefits and progressively
shrinks A as training proceeds. Specifically, a shrinkage ratio A (0 < A < 1) is applied to A in the
earliest steps of training, updating A according to
Appr = (1= NA; —ngly

(as shown in Figure [I).This exponential decay diminishes the instability introduced by A, while
still preserving its advantages for early training. Shrinkage stops once the stability condition is
satisfied—specifically, when the average norm of A becomes no larger than that of B (see Sectionf4)).
We also theoretically proved that sufficient shrinkage of A guarantees the prevention of potential
instability, thereby ensuring stable feature learning throughout training.

We evaluated Stable-LoRA across different model architectures and tasks, where it uniformly out-
performs AdamW and other baselines. Importantly, Stable-LoRA incurs no additional memory
usage and introduces only negligible computational overhead—properties that are particularly im-
portant in the resource-constrained scenarios where LoRA is most commonly applied.

2 PRELIMINARY

2.1 FEATURE LEARNING OF LORA

Consider training a weight matrix W with input Z, such that the outputis Y = WZ. In LoRA, the
original weight is frozen as Wy and two low-rank trainable matrices A and B are introduced, so that
the updated weight becomes W = W, + sBA, where s is a scaling factor. Given a learning rate 7,
the parameter updates at training step ¢ are:

Apr = A —ng'y, By = By — gl
, where g4 and gp are the optimizer-processed gradients. The change in output after these updates
is given by:
AY, = s(Ay —nga) (Bt — n19p)Z — sA B Z 0
= —sngpArZ — snBiga Z + s0’ 9594 Z
. We are particularly interested in the properties of AY%, as it serves as the “learned feature” at step

t. Specifically, AY; directly influences the inputs to downstream layers and ultimately the model’s
output, representing the contribution of LoRA updates to the model.

2.2 STABLE FEATURE LEARNING

As neural networks continue to scale, understanding their training dynamics with respect to param-
eter growth becomes increasingly important (Hayou et al., 2024bj Zhang & Pilanci, [2024; Hayou

Under review as a conference paper at ICLR 2026

et al., 2019). Much of this analysis has focused on the regime of model width, since in most archi-
tectures the parameter count is dominated by width, while depth (i.e., the number of layers) plays
a comparatively smaller role. In this regime, a desirable property is that learned features remain
“stable” as width increases—they neither explode nor vanish numerically. Such stability is crucial
for ensuring meaningful representations can be learned, thereby allowing the model to achieve its
full performance potential upon trained tasks.

In the context of LoRA, stable feature learning requires that the output update AY; does not scale
positively or negatively with model width n, otherwise it would explode or vanish as n increases.
Formally, this requirement can be expressed as AY; = O(n%) = O(1).

Definition 1. (LoRA stable feature learning) LoRA feature learning is stable, if AY; = ©(1) for all
training steps t.

Note that Definition [I]is slightly different from similar concepts in prior works (Hayou et al.| [2024b;
Zhang & Pilancil [2024). It does not require intermediate representations (e.g. A;7) to individually
scale as ©(1), but only constrains the final output update. This relaxation is motivated by practical
considerations: for an actual (finite) n, the scale of intermediate representations can compensate for
each other through multiplicative interactions and yield an overall stable output. For example, it is
acceptable for components of AY; to scale as U = O(n) and V = O(n~!), as long as AY; =
UV = ©O(1) is ensured.

2.3 ~y-FUNCTION

For convenience of notation, we introduce ~y-function to characterize the scaling behavior of vari-
ables with respect to the model width n. It is defined as follows: for a real-valued scalar variable
v, we have v = ©(n[*!). For a k-dimensional tensor variable 7 = (vg,--- ,vx_1), we define
~[?] := max(v;,0 < i < k), which captures the dominant scaling behavior among its components.

By definition, «-function obeys the following properties under element-wise operations:
Multiplication: For two real-valued variables v and v/, y[v X v'] = y[v] + [v']
Addition: For two real-valued variables v and v/, y[v 4+ v'] = max(y[v], y[v])

With this notation, the condition for stable feature learning can be succinctly expressed as y[AY] =
0.

2.4 OPTIMIZED GRADIENT

Modern optimizers such as Adam and AdamW (Kingma & Bal 2014])) are generally preferred over
Stochastic Gradient Descent (SGD) in fine-tuning scenarios. These optimizers typically normal-
ize gradients through momentum mechanisms (e.g., exponential moving averages in Adam), which
effectively prevents the entries of gradients from becoming excessively small or large. In the fol-
lowing analysis, we assume that the normalized gradients have all entries to be ©(1), a condition
theoretically justified by the internal dynamics of such optimizers and commonly observed in prac-
tice (Hayou et al.,|2024b)). In the context of LoRA, this assumption applies individually to optimized
gradients of each low-rank matrices, i.e., ga,95 = ©(1).

3 LORA IS SELF-STABILIZED

In this section, we present a theoretical analysis of LoRA fine-tuning dynamics, showing that LoRA
is self-stabilized with potential appropriate choices of hyper-parameters and initializations Ay and
By.

Recall from Definition [I] and Equation (IJ) that stable feature learning requires all 3 components
of AY to be ©(1). Formally, using the multiplication property of y-function and the results that
v[ga] = vlgs] = 0 (as established in Section[2.4), we have the following contraints:

vls] +] + 4[4 Z] =0 (61 =©(1))
vlsl 4+ [l + (B + g4 Z] =0 (52 = ©(1)) 2)
v[sl +2v[n] + (g4 Z] =0 (05 = ©(1))

Under review as a conference paper at ICLR 2026

Readers may notice that it is sufficient for AY; = ©(1) if just one component is ©(1) and the others
are o(1). As y[61] > v[63] and [d2] > (8] always hold (later explained in Section[3.1)), it suffices
to only justify why d; and d5 are restricted to be O(1):

Assume that §; = o(1). To maintain AY; = ©(1), we must have o = O(1), implying that
the output update is dominated by J,. This situation corresponds to fixing the matrix B and only
training A (g = 0 in Equation (I))), which is clearly suboptimal compared to training with both
matrices. The same argument applies if 4o = o(1). Therefore, for effective and balanced learning,
both d; and J; must scale as ©(1).

Now we focus on the value of v[A;Z], v[B;] and ~[¢% Z|, which ultimately correlate to the choices
of s and 7.

3.1 VALUE OF v[¢% Z], 7[A:+Z] AND v[By].

We begin by stating an assumption on the value of v[g%, Z] and some clarification of its soundness.
Assumption 1. With optimized gradient g, € R"*™ and input Z € R™**, we have v[¢",Z] = 1.

For Stochastic Gradient Descent (SGD), this claim holds as g%, Z = %Z = (d(AZ) x 2)Z =

O(n). We leave the detailed explanation for other optimizers in Appendix [B|and use the conclusion
directly afterwards. Equation (2)) is then refined as:

Vsl + Il +~[AZ] =
Vsl +) +[Be] + 1 = 3)
Vsl + 2y +1=0

Next, we analysis the value of y[A,;Z] and ~[B,] by induction. Recall from Section [2.1| and the
addition property of y-function, we have

{V[AtZ]maX(v[At—lz], Y+ 1), = [A
V[Bi] = max(y[Bi-1],v[n]), = 7[Bi] = 7[1]

, which immediately implies that y[d1] > ~[d3] and v[d2] > 7[53] (used as a conclusion above). It
is quite intuitive that 3 is less significant than §; and ds, as d3 is quadratic in the typically small
learning rate 7; indeed, this term is often even neglected in some prior analysis (e.g., [Yen et al.
(2025)).

Z] >y +1 @

3.2 IMPACT OF Ag AND By.

Based on the induction relations of Equation (), we have the following two equivalent condition

pairs:

VNAZ] =yl +1 <= y[AoZ] <[] +1

_ &)
V[Bi] = v[n] <= ~[Bo] < ~[n]

, which indicates that the ~y-values of the components are closely related to the initializations Ay and

By.

Importantly, to satisfy Equation (3) , Equation (3)) must both hold or neither: if only one of them
is an equation, then we will definitely have y[A;Z] # ~[B] + 1, which leads to an undesirable
situation that y[d1] # [d2]. Hence, there are only two acceptable cases for Ay and By:

* Case 1. 7[AoZ] < v[n] + 1 and v[By] < v[n]
» Case 2. y[A0Z] > v[n] + 1 and y[Bo] > v[n)

Among them, Case 2 is undesirable because the initial values dominate the training results, over-
riding contributions from learned updates. In contrast, Case 1 ensures that gradient-based updates
govern the learning process. More importantly, if Case 1 is satisfied, the left-hand side conditions
of Equation (3)) are also satisfied, which in turn ensures that all constraints in Equation (3] are met
simultaneously. This leads to a unified expression of Js:

Y[01] = v[d2] = [83] = v[s] + 2v[n] + 1 (6)

Under review as a conference paper at ICLR 2026

Therefore, with appropriate initializations satisfying Case 1, tuning s and 7 such that y[s] + 2v[n] +
1 = O results in y[AY;] = 0, and stable feature learning will be naturally (without any extra opera-
tions) achieved and sustained throughout training, validating its empirical robust effectiveness.

Theorem 3.1. (Self-stability of LORA) LoRA can naturally achieve and sustain stable feature learn-
ing, if the hyper-parameters s and 1 are tuned such that v[s] + 2v[n] + 1 = 0, and the initializations
Ao and By satisfy y[AoZ] < v[n] + 1 and v[By) < v[n).

4 STABLE-LORA

Case 1 suggests that an ideal initialization strategy is to set both Ag and By to zero, ensuring that
~v[Ao] = v[Bo] = —o0o, which guarantees the satisfaction of Case 1 with arbitrary . However,
while stable feature learning is a necessary condition for effective training, it is not sufficient on
its own. With setting By = 0 feasible, initializing Ay = 0 introduces two empirical issues: (1) the
combination A = 0 and B = 0 is a saddle point with zero gradient, leading to halting of training; (2)
the initial input to B is AgZ = 0, resulting in complete information loss for learning B and possible
gradient vanishing/explosion. The common solution is to set By = 0 and sample the entries of Ag
from a distribution with 02 = n~!, which addresses both issues and has been theoretically (Hayou
et al.,[2024a) and empirically (He et al., 2015) shown to be beneficial.

From the perspective of feature learning, this initialization yields v[By] = —oo < [n] for arbitrary
7. According to Theorem 3.1} we must also have v[A¢Z] < 7[n] + 1 to ensure stability. However,
due to the non-zero entries in Ay, this condition imposes a lower bound on 7: it cannot be arbitrarily
small, but must be sufficiently large to absorb the magnitude of AqZ. In practical scenario where
learning rate is usually small, this condition on 7 is typically violated (as supported by empirical
results in Section [5.2). Moreover, this issue cannot be resolved solely by altering initialization
or tuning hyper-parameters: adjusting Ag cannot reduce AgZ uniformly across the batch, since
Z varies while Ay is fixed; tuning s is also ineffective since s is not involved in the condition.
Consequently, these limitations motivate the development of novel optimization strategies.

We discover that the problem of instable feature learning is fundamentally different from other
issues: it is a long-term problem whereas others are short-termed. While the saddle-point and
gradient-vanishing/explosion issues arise only at the beginning of training, they naturally resolve
as training proceeds with parameters moving away from the saddle point and meaningful signals be-
ing propagated to B. In contrast, feature-learning instability occurs at the start if y[4gZ] > vy[n] +1
and persists throughout training due to the induction in Equation (). This leads to a key idea: in-
stead of modifying Ay from the beginning (which would exacerbate the other two problems), we
can gradually reduce its negative impact as the training proceeds. The solution would be optimal if
Ay can serve its early-stage positive role while its adverse effects diminish to a desirable level over
time.

Based on this, we propose Stable-LoRA, a weight-shrinkage optimization strategy applied to matrix
A in earliest steps of training, to mitigate instability of LoRA feature learning. An overview of
Stable-LoRA is shown in Figure[I] and the detailed procedure is provided in Algorithm[I] Specifi-
cally, at an early step ¢, before parameter updates, A first shrinks as

Appr = (1=XNA —ngly

where A (0 < X < 1) is the shrinkage ratio, after which A continues to be updated with gY.
Shrinkage is applied at every step until a stable condition is met: A achieves a comparable average
norm scale to B, i.e. ||A||r/n < ||B||z/m (with r in denominators canceled). The design of stable
condition is motivated by the terms &§; = sngly A;Z and 62 = snB; g%, Z, which reach similar scales
when A; and B; do. Since v[d3] = 0 is always ensured, satisfying this condition also guarantees
~[d1] = 0. The practical effectiveness of this stable condition has been demonstrated in Section

Stable-LoRA can robustly prevent instable feature learning for any learning rate n: after IV steps of
shrinking, we have

Under review as a conference paper at ICLR 2026

Ay =(1-NAn_1 —ngh*
(1= A)2An_a — (1= N)ngh 2 —ngy !

=1 -4 —ngl T =@ =NgY T+ + (1 -2V 1h)
=(1=NV40—ngVt—nA

With y[(1 — A\)*] < 4[1] = 0 forall k € Z*, we have 7[AZ] < v[¢g%,Z] = 1. Therefore,

YANZ] = max(N[1 — A +v[Ao Z],v[n] + [}~ Z], 7] +~[AZ))
= max(Nv[1 — A +~[4oZ],~7[n] +1)

With N and/or \ sufficiently large, Ny[1 — A] 4+ v[AoZ] will finally drop below ~[n] + 1, and
hence stable feature learning is achieved from step N + 1 onward and persists throughout the rest
of training.

Stable-LoRA is orthogonal to existing optimization strategies such as gradient optimization (like
AdamW) and weight decay, as formally described in Algorithm More importantly, Stable-
LoRA incurs negligible overheads during training: it requires no additional memory usage, since the
shrinkage operation can be done in-place (and should be, for acceleration) with the pre-shrinkage
value no longer used after that. This property is particularly crucial since LoRA is commonly used in
memory-constrained scenarios. Computation overhead arising from computing the Frobenius norms
||| 7 and performing shrinkage is negligible (as shown in Table[d)), as it is (1) relatively light-weight
compared to other operations and (2) limited to the earliest shrinkage steps.

5 EXPERIMENTS

We evaluated Stable-LoRA and other baselines under these experimental settings:

Datasets. The tasks involve two fine-tuning scenarios: multi-choice question answering (QA) and
chain-of-thought (CoT) reasoning. The QA datasets include HellaSwag (Zellers et al., 2019), So-
ciallQa (Sap et al.l 2019), OpenbookQA, ARC-Easy and ARC-Challenge. For CoT reasoning, we
focus on mathematical tasks where models are trained on MetaMathQA (Yu et al.,|2023) and evalu-
ated on GSM8K (Cobbe et al.,|2021). The exact match accuracy is used as evaluation metric for all
tasks.

Models. The experiments are conducted on the 0.5B and 1.5B models from Qwen-2 (Yang et al.,
2024) and 1B and 3B models from LLaMA-3.2 (Dubey et al., 2024), for demonstrating the broad
effectiveness of our method.

Baselines. Besides AdamW, we compared our proposed method against several other baselines,
including stable feature learning methods of LoRA+ (Hayou et al.,|2024b)) and Riemann Precondi-
tioned Optimization (Zhang & Pilanci, |2024)), and a newly-introduced optimizer LoORA-RITE (Yen
et al., 2025). LoRA+ claims to achieve stable feature learning by setting learning rate of B larger
than A. Riemann Preconditioned Optimization adopts matrix preconditioning on g4 and gp. LoRA-
RITE achieves invariant transformation equilibration of LoRA using unmagnified gradients.

Configurations. Unless otherwise stated, we use the following training configurations. We
train g,,; and v,.,; of the attention block with rank r = 8. We conducted careful tuning of
hyper-parameters by searching 7 from 5e-5 to 8e-4 and s from 2.0 to 64.0. Each value of Ag
is sampled from [—1/n,1/n] following (He et al) [2015) and By, = 0. For LoRA+, we set
np = 4na following its recommendation for decoder-only models. We search the shrinkage ratio
over A € [0.001,0.002, 0.005] and report the best result (results for each value of A are in Table .
AdamW is adopted as the gradient optimizer. Each reported accuracy is the mean of 3 random runs.
More detailed configurations are specified in corresponding subsections or Table [6]

Under review as a conference paper at ICLR 2026

Model Method HellaS. SIQA ObQA ARC-E ARC-C Avg.

AdamW 64.11 67.04 63.00 66.92 47.10 61.63

LoRA+ 6340 6791 6440 67.72 46.33 61.95

0.5B Riemann 59.93 66.27 63.60 66.84 47.27 60.66
LoRA-RITE 62.22 66.53 6520 66.84 4522 61.20
Stable-LoRA 66.62 67.98 66.27 68.62 48.41 63.58

AdamW 82.33 70.88 72.27 75.42 50.85 70.35

LoRA+ 8226 71.08 71.93 75.88 51.11 7045

1B Riemann 7741 7037 69.00 73.99 4898 67.95
LoRA-RITE 81.43 70.68 68.80 76.05 5230 69.85
Stable-LoRA 83.80 71.92 7280 77.20 54.44 72.03

AdamW 8790 76.66 8220 85.77 69.97 80.50

LoRA+ 8792 77.18 8220 85.77 69.80 80.57

1.5B Riemann 86.46 7651 82.00 85.56 68.94 79.89
LoRA-RITE 87.70 76.25 8220 8590 68.94 80.20
Stable-LoRA 88.41 77.35 83.53 86.68 71.47 81.49

AdamW 9326 79.73 81.80 87.67 7224 82.94

LoRA+ 93.19 79.94 82.80 87.79 71.93 83.13

3B Riemann 9225 79.38 80.80 87.25 7125 82.19
LoRA-RITE 92.87 79.69 83.40 88.01 71.08 83.01
Stable-LoRA 93.51 80.07 83.60 88.29 73.04 83.70

Table 1: Task accuracies of models on question-answering tasks.

5.1 MAIN RESULTS

5.1.1 RESULTS OF MULTI-CHOICE QUESTION ANSWERING

Table [T] presents the results on the QA datasets. As demonstrated, Stable-LoRA consistently out-
performs other methods across models and datasets, achieving up to a 3.59% increase in accuracy.
While other baselines may boost performances on specific tasks or models, the improvements are
inconsistent and the results occasionally fall below AdamW, indicating that the instability issue re-
mains not fully resolved. In contrast, Stable-LoRA offers not only improved accuracies but also
greater robustness across tasks and models.

5.1.2 RESULTS OF CHAIN-OF-THOUGHT REASONING

Chain-of-Thought (CoT) is a widely used approach in tasks that require multi-step reasoning. We
trained models to learn to reason in CoT format spontaneously without explicit prompting (i.e.,
giving the question directly without instructing the model to “think step by step”). We used math-
reasoning datasets as representative reasoning tasks. The results in Table [2| show that Stable-LoRA
again outperforms all baselines, maintaining its performance advantages in CoT tasks.

5.1.3 ABLATIONS

We conducted ablation studies about target modules of training. The results of training
Qprojs Kprojs Uprojs Oproj Of the 0.5B model is in Table [3] and that of 1B in Table E} All the results
show that Stable-LoRA can robustly increase task accuracies under different LoRA configuration
settings.

5.2 DYNAMIC ANALYSIS

Figure 2 provides a dynamic analysis of the training process by visualizing the change of Frobenius
norms ||- || p of matrices A and B. During training with AdamW (A = 0), || B||r grows rapidly from
small values (¢ is large and B is small), while || A|| p increases steadily but remains larger (g4 small
and A large), causing output changes induced by d; to dominate over J5. This phenomenon indicates
that the problem of v[A:Z] > ~[n] + 1 does occur in practice. Stable-LoRA declines ||A||r

Under review as a conference paper at ICLR 2026

Methods 1B,1000 steps 1B,2000 steps 3B,1000 steps 3B,2000 steps

AdamW 22.57 26.56 51.25 53.26
LoRA+ 22.14 25.55 50.49 53.07
Riemann 19.56 21.68 49.73 51.33
LoRA-RITE 21.68 25.02 50.27 53.25
Stable-LoRA 23.43 27.22 51.93 54.06

Table 2: Task accuracies of models on (mathematical) chain-of-thought reasoning tasks.

Targets Method HellaS. SIQA ObQA ARC-E ARC-C Avg.

AdamW 67.12 6796 64.67 6747 46.33 62.17
LoRA+ 66.86 68.01 65.60 68.06 48.42 63.39
Riemann 63.31 67.5 6480 6835 4795 62.38
LoRA-RITE 63.81 6740 64.80 67.59 47.01 62.12
Stable-LoRA 68.42 68.49 6633 69.28 49.17 64.34

gkvo

Table 3: Task accuracies of training ¢pro;, Kproj, Vproj, Oproj Of the 0.5B model on QA datasets.

while keeping || B||r unaffected, confirming our claim that the benefit of non-zero Ay is preserved.
Furthermore, ||A||r never drops below its initial value, indicating that the negative influence of
initialization persists throughout training.Stable-LoRA effectively suppresses this effect and hence
promotes more stable feature learning.

5.3 MEMORY AND COMPUTATIONAL COSTS.

Stable-LoRA introduces no additional memory usage compared to LoRA, as the shrinkage operation
is conducted in-place. Table 4] compares the training time of Stable-LoRA with baseline methods.
The results show that Stable-LoRA incurs only a marginal (0.6%) increase in training time, indi-
cating that the scalar-matrix multiplication involved in shrinkage is far less costly than gradient
computation and parameter updates. Moreover, since this extra computation occurs only during the
earliest training steps (with a sufficiently large \), the overall overhead is even more negligible.

5.4 JUSTIFICATION FOR THE STABLE CONDITION.

To justify the stable condition, we conducted experiments where the stable condition is removed and
A shrinks whenever || A||p/n > || B||r/m. Table[5|compares task accuracies with and without stop-
ping at the stable condition, and the results show that further shrinkage beyond the stable condition
does not lead to noticeable improvements and can even degrade performances, which aligns with
our previous analysis.

6 RELATED WORKS

6.1 STABLE FEATURE LEARNING.

There are existing works established upon initialization schemes for stable feature learning, from
the perspective of width and depth. In scenario of width, (Glorot & Bengio} 2010) proposed Xavier
initialization to stabilize the variance of activations, and (He et al., |2015)) improved it for non-linear
activation functions (like leaky ReLu). (Yang & Hul 2021) introduced pP parameterization for
ensuring feature learning in the infinite-width scenario. Related literature about the depth limit in-

Method AdamW LoRA+ Riemann LoRA-RITE Stable-LoRA

Time(s) 217.4 217.4 235.5 317.3 218.8
+% - +0.0% +8.3% +46.0% +0.6%

Table 4: Comparison of training time of different methods on 0.5B and HellaSwag.

8

Under review as a conference paper at ICLR 2026

0.25 1 0.251
0.204 0.20 -
m 0.15 m 0.151
[} [}
— —
o o
2 2
B 0.10 < 0.104 &
0.05 - 0.05 -
0.00lA —— 0.005A
0.001B ----- 0.005 B
: : — 0.002 A — 0.0A
0.004 0.004 < e 0.002B -+ 0.0B
T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Training steps Training steps
(@) gproj (b) vproj

Figure 2: Averaged norm of A and B on the 0.5B model and HellaSwag. While the scale of B
is smaller, it grows more rapidly than A (|gg| > |gal), indicating a practical violation of feature
learning stability.

Method HellaS. SIQA ObQA ARC-E ARC-C Avg.

Stable-LoRA 66.62 67.98 6627 68.62 4841 63.58
Stable-LoRA™ 66.60 67.84 65.67 68.77 48.81 63.54

Table 5: Task accuracies of Stable-LoRA with/without the stable condition. * represents “without
the stable condition™.

cludes (Hayou, [2022; [Schoenholz et al.,[2016; | Yang,[2019) etc.. Stable-LoRA is specifically targeted
at width scenario, so it is theoretically discussed upon the width-related initialization method of (He
et al.,[2015) and shows empirically strong results.

6.2 STABLE FEATURE LEARNING FOR LORA.

The concept of LoRA stable feature learning originates from LoRA+ (Hayou et al., |2024b), which
suggests choosing a larger learning rate for B than A (ng > n4). (Zhang & Pilanci, 2024)) proposed
a matrix-preconditioned optimizer to achieve stabilization. Beyond width-related stability, (Kala-
jdzievskil 2023) studies the stability with respect to rank r and recommends using scaling factor
s = a4/ rather than a;/r. Our definition of stable feature learning is slightly different from the
above-mentioned work, where we do not demand intermediate states to be ©(n°) due to practical
considerations.

7 CONCLUSION

This paper addresses the challenge of stabilizing feature learning in Low-Rank Adaptation (LoRA).
We first establish that, under appropriate hyper-parameters and initializations of A and B, LoRA
can in principle be self-stabilized during the training process regardless of model width, which
provides a theoretical foundation for the robustness and effectiveness of LoORA. However, we further
reveal that the non-zero Ay compromises this self-stability which leads to performance degradation.
Stable-LoRA is hence proposed as a weight-shrinkage strategy that mitigates instability caused by
Ap while preserving its benefits. Stable-LoRA shows superiority over various tasks and models,
with no additional memory usage and only marginal computation overhead.

Under review as a conference paper at ICLR 2026

REFERENCES

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and

statistics, pp. 249-256. JMLR Workshop and Conference Proceedings, 2010.

Soufiane Hayou. On the infinite-depth limit of finite-width neural networks. arXiv preprint
arXiv:2210.00688, 2022.

Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. On the impact of the activation function on
deep neural networks training. In International conference on machine learning, pp. 2672-2680.
PMLR, 2019.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. The impact of initialization on lora finetuning dynamics.
Advances in Neural Information Processing Systems, 37:117015-117040, 2024a.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
In International Conference on Machine Learning, pp. 17783-17806. PMLR, 2024b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026—-1034, 2015.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Zhigiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Lee. LIm-adapters: An adapter family for parameter-efficient fine-tuning of large
language models. In Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 5254-5276, 2023.

Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora. arXiv preprint
arXiv:2312.03732, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social iga: Common-
sense reasoning about social interactions. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 4463-4473, 2019.

Samuel S Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information
propagation. arXiv preprint arXiv:1611.01232, 2016.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jin-
gren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin
Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao,
Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wen-
bin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng
Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu,
Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024. URL
https://arxiv.org/abs/2407.10671.

10

https://arxiv.org/abs/2407.10671

Under review as a conference paper at ICLR 2026

Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior,
gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760,
2019.

Greg Yang and Edward J Hu. Tensor programs iv: Feature learning in infinite-width neural networks.
In International Conference on Machine Learning, pp. 11727-11737. PMLR, 2021.

Liu Yang, Steve Hanneke, and Jaime Carbonell. A theory of transfer learning with applications to
active learning. Machine learning, 90(2):161-189, 2013.

Jui-Nan Yen, Si Si, Zhao Meng, Felix Yu, Sai Surya Duvvuri, Inderjit S Dhillon, Cho-Jui Hsieh, and
Sanjiv Kumar. Lora done rite: Robust invariant transformation equilibration for lora optimization.
In The Thirteenth International Conference on Learning Representations, 2025.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. In The Twelfth International Conference on Learning Representations,
2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 4791-4800, 2019.

Fangzhao Zhang and Mert Pilanci. Riemannian preconditioned lora for fine-tuning foundation mod-
els. In Proceedings of the 41st International Conference on Machine Learning, pp. 59641-59669,
2024.

11

Under review as a conference paper at ICLR 2026

A DETAILS OF ALGORITHM

Algorithm [T| shows the detailed procedure of Stable-LoRA, where the orthogonality of our method
to gradient optimizers and weight decay is demonstrated.

Algorithm 1 Stable-LoRA

Input: Learning rate 7, shrink rate A\, weight decay rate w, initializations Ag, By
Shrink A if the stable condition is not satisfied

stable < false

for training step ¢ do

if not stable and W > % then

Ay =(1-MNA,
else

stable < true
end if

Update parameters with optimized gradients and weight decay
At+1 =A; — 7792 - UwAt, Bt+1 =B, - 779% —nwbB,
end for

Note that Stable-LoRA is conceptually different from weight decay from several perspectives:

* Theoretical motivation and formulation. Weight decay is based on a Bayesian prior
assuming that model weights follow a Gaussian distribution centered at zero. It introduces
an additional regularization term in the loss function, so the rate w is multiplied by 7 and
then applied to the parameters.

A=A—-—nqwA=(1-nw)A

In contrast, Stable-LoRA directly shrinks the weights using A which is independent of the
learning rate:
A=A-)DMA=(1-NA

With << 1 in almost all cases, Stable-LoRA results in significantly faster decay com-
pared to weight decay.

* Scope of application. Weight decay is applied uniformly to all trainable parameters, and
Stable-LoRA targets only at the matrix A, with the explicit purpose of reducing the influ-
ence of Ay.

* Application schedule. Weight decay is applied throughout the entire training process,
while Stable-LoRA is only applied before the stable condition achieved.

B PROOF OF ASSUMPTION

Assumption [I] has been well-studied and adopted in existing works (Hayou et al.l 2019; [Zhang &
Pilanci, 2024; [Hayou et al.| 2024b)), yet we show the explanation of its rationality below.

Assumption. With optimized gradient g'y € R™™" and input Z € R™**, we have v[¢g",Z] = 1.
Consider an extremely simplified optimizer, which normalizes each entry of the gradient to its sign,
ie.,
oL
t : t
= sign(—),

where %LAf denotes the raw (non-optimized) gradient of A at step ¢. By the chain rule, we have

oL
an =sBTdY, x Z,
where dY; is the gradient of the output Y;. Define

St = sBldy;,

12

Under review as a conference paper at ICLR 2026

so that the gradient becomes

oL

TAt = S'%x Z =(8{Z;);
Therefore we have

g4 = sign(%) = sign(S" x Z) = sign(S*) x sign(2)

Hence,
947 = (sign(S?) x sign(Z))Z = (sign(Z)" Z)sign(S"?)

Since sign(Z)TZ = ©(n) always holds and S* = ©(1) if it is a stable gradient, we conclude that
¢4"Z = O(n), the same as v[¢}, Z] = 1.

As more sophisticated optimizers generally preserve the sign of gradient (Yang et al., 2013)), this
assumption is well justified and serves as a foundation for our subsequent analysis.

C DETAILS OF EXPERIMENTS

C.1 HYPER-PARAMETERS

The hyper-parameters of experiments (except for specified ones) are listed in Table[6] To find the
optimal combination, n and s are thoroughly searched across wide ranges. The weight decay ratio
w is set to 0.01 to prevent overfitting, and the dropout ratio is 0.0 as setting a non-zero value of it
cannot boost performance in our experiments.

Hyper-parameter Value
Learning rate n [5e-5,1e-4,2e-4,3e-4,4e-4,6e-4,8e-4]
Scale factor s 2.0 to 64.0 (interval 2.0)
Target modules dproj, Vproj
Rank r 8
Weight decay ratio w 0.01
Dropout ratio 0.0
Batch size 16
Training steps 1000
Learning rate scheduler linear
Warm-up steps 100
AdamW 61, ﬁg 09, 0.999

Table 6: Hyper-parameters.

C.2 DATASETS

Table [7l contains the detailed information of datasets. All datasets include test sets but no validation
sets; therefore we apply weight decay to mitigate overfitting. For the QA datasets, we use the
templated versions provided by LLM-Adapter (Hu et al., [2023)).

D ADDITIONAL RESULTS

D.1 RESULTS OF DIFFERENT AS

We show results of different As on QA datasets in Table |8} The results show that Stable-LoRA can
robustly out-perform AdamW with a variety of A\, demonstrating the principle effectiveness of the
method. A\ should be considered as a newly-introduced hyper-parameter, which could and should
be tuned for optimal performances. The results of A = 0.005 is often suboptimal, suggesting that
an excessively larger A could result in loss of information from previous training steps and hence
downgraded performances.

13

Under review as a conference paper at ICLR 2026

Dataset #Train #Test
HellaSwag 39905 10042
SIQA 33410 1954
ObQA 4957 500
ARC-E 2251 2376
ARC-C 1119 1172

MetaMathQA 40000 1319

Table 7: Detailed information about datasets.

Model Method HellaS. SIQA ObQA ARC-E ARC-C Avg.

AdamW 64.11 67.04 63.00 66.92 47.10 61.63
Stable-LoRA—.001 66.14 6736 65.73 68.62 48.41 63.25

0SB Giable-LoRAs_0002 6637 67.88 6627 6842 4824 63.44
Stable-LoRAs_o 00, 66.62 6798 6507 6817 4804 6318
AdamW 8233 7088 7127 7542 5085 70.15

g StbleLoRAy oon 8380 7192 7213 7720 5444 7190
Stable-LoRAs—0.000 83.66 7187 7233 7106 5435 7185
Stable-LoRA—0.00s 8370 7179 7200 7684 5384 7163
AdamW 8790 7666 8220 8577 6997 80.50

|sp StbleLoRAy oo 8841 7723 8353 8668 7147 8Ld6
SB Siable-LoRAy_o 00y 88.38 7721 8340 8662 7125 8137
Stable-LoRA—0.00s 8822 77.35 8333 8645 70011 8109
AdamW 9326 7973 8180 87.67 7224 8294

g SubleLoRAy oo 9348 7992 8327 8829 7304 83.60

Stable-LoRA—p.002 93.51 79.84 83.60 88.02 73.04 83.60
Stable-LoRA—0.005s 93.47 80.07 83.40 88.15 72.47 83.51

Table 8: Task accuracies of different As on QA datasets. The secondary best results are underlined.

D.2 MORE ABLATION STUDIES

Table@] shows the results of ablation studies on the gproj, Kprojs Uprojs Opro; Of the 1B model on QA
datasets, where Stable-LoRA shows uniform superiority of performances across the involved tasks.

Targets Method HellaS. SIQA ObQA ARC-E ARC-C Avg.

AdamW 84.21 7277 7440 7597 5154 71.78
LoRA+ 8443 73.08 73.80 75.80 5330 72.08
Riemann 82.15 7144 7340 75.51 51.28 70.76
LoRA-RITE 83.03 7236 69.80 76.56 5495 T71.34
Stable-LoRA 85.71 73.61 7440 77.92 55.75 73.46

gkvo

Table 9: Task accuracies of training ¢proj, Kproj, Uproj, Opro; of the 1B model on QA datasets.

E LIMITATIONS

Stable-LoRA has shown empirical superiority through extensive experiments on LoRA, while its
effectiveness on other variants of parameter-efficient fine-tuning methods remains uncertain. The
experiments adopted the commonly used initializations of Ay ~ [—1/n,1/n] and By = 0 rather
than other strategies. AdamW was employed as gradient optimizer while performances with other
optimizers have not been tested. These choices of experimental settings are all representatives of the
most common and relevant scenarios, reflecting our focus on practicability.

14

Under review as a conference paper at ICLR 2026

F DECLARATION OF LLM USAGE

LLMs have been used to polish the writing of this paper, while the core idea is fully originated from
human beings.

15

	Introduction
	Preliminary
	Feature learning of LoRA
	Stable feature learning
	-function
	Optimized gradient

	LoRA is self-stabilized
	Value of [gAtZ], [At Z] and [Bt].
	Impact of A0 and B0.

	Stable-LoRA
	Experiments
	Main results
	Results of multi-choice question answering
	Results of chain-of-thought reasoning
	Ablations

	Dynamic analysis
	Memory and computational costs.
	Justification for the stable condition.

	Related works
	Stable feature learning.
	Stable feature learning for LoRA.

	Conclusion
	Details of Algorithm
	Proof of assumption:gAZ
	Details of Experiments
	Hyper-parameters
	Datasets

	Additional results
	Results of different s
	More ablation studies

	Limitations
	Declaration of LLM usage

