
Translating Subgraphs to Nodes Makes Simple GNNs
Strong and Efficient for Subgraph Representation Learning

Dongkwan Kim 1 Alice Oh 1

Abstract
Subgraph representation learning has emerged
as an important problem, but it is by default ap-
proached with specialized graph neural networks
on a large global graph. These models demand
extensive memory and computational resources
but challenge modeling hierarchical structures of
subgraphs. In this paper, we propose Subgraph-
To-Node (S2N) translation, a novel formulation
for learning representations of subgraphs. Specifi-
cally, given a set of subgraphs in the global graph,
we construct a new graph by coarsely transform-
ing subgraphs into nodes. Demonstrating both
theoretical and empirical evidence, S2N not only
significantly reduces memory and computational
costs compared to state-of-the-art models but also
outperforms them by capturing both local and
global structures of the subgraph. By leveraging
graph coarsening methods, our method outper-
forms baselines even in a data-scarce setting with
insufficient subgraphs. Our experiments on eight
benchmarks demonstrate that fined-tuned mod-
els with S2N translation can process 183 – 711
times more subgraph samples than state-of-the-art
models at a better or similar performance level.

1. Introduction
Subgraph representation learning has been shown to be use-
ful for various real-world problems (Bordes et al., 2014;
Luo, 2022; Hamidi Rad et al., 2022; Maheshwari et al.,
2024). Current research uses the default data structures for
graph-level tasks, treating the subgraph as just a subset of the
global graph. Existing studies on subgraph representation
learning focus on developing graph neural networks special-
ized for subgraphs (Alsentzer et al., 2020; Wang & Zhang,

1School of Computing, KAIST, South Korea. Correspondence
to: Dongkwan Kim <dongkwan.kim@kaist.ac.kr>, Alice Oh
<alice.oh@kaist.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

2022). However, specialized models suffer from large mem-
ory and computational requirements from a large global
graph. Their complex operations also lead to limitations
in learning both local and global interactions of subgraphs.
Here, we address a fundamental yet underexplored question
in subgraph representation learning before model design:
How can we efficiently and effectively process subgraphs
as data for representation learning?

In this paper, we propose ‘Subgraph-To-Node (S2N)’, a
novel data structure to solve subgraph-level prediction tasks
efficiently. This data structure is a new graph translated from
the original global graph and subgraphs, where its nodes
are the original subgraphs, and its edges are the relations
among the original subgraphs. Then, we can get the results
of the subgraph-level tasks by performing node-level tasks
from these node representations.

For example, Alsentzer et al. (2020) introduces a fitness so-
cial network where subgraphs are users, nodes are workouts,
and edges indicate if multiple users complete workouts.
By using S2N translation, a new graph is created; users
become nodes, and edges express relations between them.
This graph directly shows the relationships between users,
following the conventional approach of describing social
networks where nodes are users. As seen in this example,
S2N can provide a more precise description of real-world
problems than a form of subgraphs.

The S2N translation enables efficient subgraph representa-
tion learning. The number of nodes in the S2N graph is
decreased to the number of original subgraphs. The edges
of the S2N graph are also significantly reduced, which we
theoretically prove and empirically confirm in real-world
datasets. We can load large batches of subgraphs on the
GPU memory and parallelize the training and inference.
Since S2N translation does not interfere with model selec-
tion, even simple GNNs without complex operations can
encode node representations in the S2N graph.

There can be various implementations of S2N translation,
and here, we create new edges as the number of shared edges
across a pair of subgraphs. Then, we normalize and sparsify
edges based on weights to approximate the structure of the
global graph. This process makes a coarse S2N graph carry

1

Translating Subgraphs to Nodes Makes Simple GNNs Strong and Efficient for Subgraph Representation Learning

sufficient information across subgraphs for the task. We
can additionally preserve structural information during S2N
translation using two strategies. First, we propose S2N that
retains internal structures in subgraphs. Second, we incorpo-
rate structural encoding into input node features (Dwivedi
et al., 2022). These enhancements require negligible re-
sources, as they are performed only once before training
and are efficiently performed with low complexity of com-
putation and space.

Furthermore, we address S2N’s challenge when there are
not sufficient samples available, specifically, representing
parts of the global graph not covered by existing subgraphs.
We introduce Coarsened S2N (CoS2N), which uses graph
coarsening to create ‘virtual’ subgraphs that summarize the
global structure. The CoS2N allows message-passing be-
tween distant subgraphs with labels without compromising
efficiency. We also theoretically show that CoS2N can re-
duce the approximation error in S2N’s representations.

We conduct experiments with four real-world and four syn-
thetic datasets to evaluate the classification performance as
well as efficiency, including throughput, latency, parameters,
and memory usage. We demonstrate that models using S2N
transformation are more efficient than existing approaches,
with similar or even better performance. Specifically, while
best-tuned models with S2N can process 183 – 711 times as
many samples, their classification performance shows 99.9
– 102.9% of the state-of-the-art model.

The rest of the paper is organized as follows. First, we
present a Subgraph-To-Node (S2N) translation, a novel way
to generate an efficient data structure for subgraph repre-
sentation learning (§3). This section includes Coarsened
S2N (CoS2N), the combination with graph coarsening to
tackle a data-scarce setting. Second, we theoretically show
that S2N reduces the computational complexity and approx-
imates subgraph representations from the original global
graph (§4). Third, we demonstrate the efficiency of S2N
compared to the state-of-the-art approaches, specifically en-
abling up to 711 times the throughput while maintaining the
performance of at least 99.9% (§5, §6).

2. Related Work
Our S2N translation tackles representation learning of sub-
graphs, and this is closely linked to graph coarsening. We
introduce these fields and their connection with our study.
We discuss more related work in Appendix B.

Subgraph Representation Learning Learning subgraph
representations has been beneficial across various real-world
problems. Researchers model higher-order interactions by
subgraphs that nodes, edges, and graphs cannot. For ex-
ample, diseases and patients in gene networks (Luo, 2022),
teams in collaboration networks (Hamidi Rad et al., 2022),

and communities in mobile game user networks (Zhang
et al., 2023) are represented by subgraphs. However, they
are specialized for each domain (Zhang et al., 2023; Li
et al., 2023; Trümper et al., 2023; Ouyang et al., 2024; Ma-
heshwari et al., 2024) or have strong assumptions about the
subgraph (Meng et al., 2018; Hamidi Rad et al., 2022; Kim
et al., 2022; Luo, 2022), making them difficult to general-
ize. The Subgraph Neural Network (SubGNN) (Alsentzer
et al., 2020) is the first general approach to subgraph rep-
resentation learning using topology, positions, and con-
nectivity. The GNN with LAbeling trickS for Subgraph
(GLASS) (Wang & Zhang, 2022) uses a labeling trick to dis-
tinguish nodes inside and outside the subgraph and enhance
the expressive power of representations. However, both Sub-
GNN and GLASS perform complex operations on a large
global graph, demanding high memory and computation
but not reflecting the layered structures of subgraphs. Our
method allows efficient learning of subgraph representations
without a complex model design.

Graph Coarsening Our S2N translation summarizes sub-
graphs into nodes, and in that sense, it is related to graph
coarsening (or summarization) methods (Loukas & Van-
dergheynst, 2018; Loukas, 2019; Deng et al., 2020; Cai
et al., 2021; Huang et al., 2021; Zhou et al., 2021; Jin et al.,
2022). These methods are similar to our work that aims to
handle large-scale graphs efficiently, but they have not been
applied to subgraph-level tasks. Moreover, the super-nodes
in coarse graphs are not given to existing graph coarsen-
ing methods; thus, algorithms to decide on super-nodes are
required. In S2N translation, we treat subgraphs as super-
nodes and can create coarse graphs with nominal costs.

3. Data Structures for Subgraph
Representation Learning

We introduce three data structures for subgraph represen-
tation learning including our proposed Subgraph-To-Node
(S2N) translation.

Notations We first summarize the notations in the sub-
graph representation learning for classification. Let G =
(V,A,X) be a global graph where V is a set of nodes
(|V| = N), A ∈ {0, 1}N×N is an adjacency matrix, and
X ∈ RN×F0 is a node feature matrix. A subgraph S =
(Vsub,Asub) is a graph formed by subsets of nodes and edges
in the global graph G. For the subgraph classification task,
there is a set of M(< N) subgraphs S = {S1,S2, ...,SM},
and for Si = (Vsub

i ,Asub
i), the goal is to learn its representa-

tion hi ∈ RF and the logit vector yi ∈ RC where F and C
are the numbers of hidden features and classes, respectively.

3.1. Conventional Data Structures
The existing GNN-based approach employs two types of
data structures when solving subgraph-level tasks. This pa-

2

Translating Subgraphs to Nodes Makes Simple GNNs Strong and Efficient for Subgraph Representation Learning

̂vi = Tv(𝒮i)

̂vj

𝒮i

𝒮j

̂eij = Te(𝒮i, 𝒮j)

𝒮k ̂vk

(a) The S2N translation. Subgraphs Si and Sj are trans-
formed into nodes v̂i and v̂j by Tv , and an edge êij be-
tween them is formed by Te.

X̂[i,:]

X̂[j,:]

X̂[k,:]

S2N Graph
Encoder

Node-level Encoder Prediction

Shared

Node-level Encoder

Node-level Encoder Ŷ = ĤW

(b) Models for graphs translated by S2N. We apply a node-level encoder
first (weighted sum for S2N+0 and GNN plus readout for S2N+A),
then an S2N graph encoder (GNN) to their outputs for the prediction.

Figure 1: Overview of the Subgraph-To-Node (S2N) translation and models for translated graphs.

per refers to these two as Separated and Connected forms.
The Separated form treats each subgraph as a separate graph,
applying the GNN instance-wise for each graph. Existing
studies express these separated graphs as standalone or seg-
regated graphs and use this separated form as the main
baseline. The Connected form represents subgraphs by ap-
plying the GNN on the whole global graph and pooling node
representations. The separated form preserves only internal
structures, and the connected form retains all information in
the global graph. For this reason, using the connected form
requires more memory and computational resources. Since
incorporating the structures in the global graph is essential
in learning subgraphs, we design a new data structure that
can approximate the global graph without significant costs.

3.2. Subgraph-To-Node (S2N) Translation

The S2N translation reduces memory and computational
costs by constructing a new coarse graph that summarizes
the original subgraph into a node. As in Figure 1a, for each
subgraph Si ∈ S in the global graph G, we create a node
v̂i = Tv(Si) in the translated graph Ĝ; for all pairs (Si,Sj)
of subgraphs in G, we assign an edge êij = Te(Si,Sj)

between corresponding nodes in Ĝ. Here, Tv and Te are
translation functions for nodes and edges in Ĝ, respectively.
Formally, the S2N translated graph Ĝ = (V̂, Â) where
|V̂| = M and Â ∈ RM×M , is defined by

V̂ = {Tv(Si) | Si ∈ S}, Â[i,j] = Te(Si,Sj). (1)

We can choose any function for Tv and Te. For example,
Te can be simple heuristics (e.g., the distance between sub-
graphs) or modeled with neural networks to learn the graph
structure (Franceschi et al., 2019; Kim & Oh, 2021; Fatemi
et al., 2021).

In this paper, we choose two versions of S2N functions with
negligible costs: S2N+0 and S2N+A. For both versions,
we use the same Te to make an edge and its weight as the
number of edges between two subgraphs Si and Sj , which
is defined as follows:

Te(Si,Sj) =
∑

vi∈Vsub
i

∑
vj∈Vsub

j
A[vi,vj]. (2)

When using edge weights as input, if the range of the values
is too wide, learning may be unstable. So, we normalize
and clamp the edge weights to between 0 to 1 by selecting
edges in a specific range of standard scores (a – b where a, b
are hyperparameters).

normalize(Â) = clamp
(

(Â−mean(Â))/std(Â)−a
b−a

)
where clamp(x) = max (0,min (1, x)) .

(3)

For Tv, we use different functions for S2N+0 and S2N+A.
The difference between the two is whether it maintains the
internal structures Asub

i of the subgraph Si = (Vsub
i ,Asub

i).
S2N+0 uses Tv that ignores Asub

i and treats the node as a set
(i.e., Vsub

i). In contrast, S2N+A’s Tv retains all information
of nodes and edges in the subgraph:

S2N+0: Tv(Si) = Vsub
i , S2N+A: Tv(Si) = (Vsub

i ,Asub
i). (4)

Note that their names originated from whether the adjacency
matrix is a zero matrix (0) or not (A).

We can enhance the input features X by incorporating struc-
tural encoding, thereby preserving more information when
S2N summarizes global structures. In this paper, we adopt
Random Walk Positional Encoding (RWPE) (Dwivedi et al.,
2022) that encodes the k-hop topology of the global graph
for each node. The efficiency of S2N is maintained since
RWPE is computed once before training and only requires
the space complexity of O(N).

3.3. Models for S2N Translated Graphs

We propose simple but strong models for S2N (Figure 1b):
node-level encoder ENCnode and S2N graph encoder ENCS2N.
First, ENCnode takes Tv(S) as an input and produces x̂i ∈
RF , input vector for the node in the S2N graph. Then,
ENCS2N takes X̂ = [x̂1, ..., x̂M]⊤ ∈ RM×F and Â as
inputs, and produces representations Ĥ = [ĥ1, ..., ĥM]⊤ ∈
RM×F and logits Ŷ = [ŷ1, ..., ŷM]⊤ ∈ RM×C .

3

Translating Subgraphs to Nodes Makes Simple GNNs Strong and Efficient for Subgraph Representation Learning

𝒮i

𝒮j

̂vi

̂vj
1. Virtual

Subgraphs by
Coarsening

2. Coarsened S2N

Input

Figure 2: Overview of Coarsened Subgraph-To-Node
(CoS2N) Translation with virtual subgraphs generated by
graph coarsening.

For ENCnode, we use different models for S2N+0 and
S2N+A. Since the node in S2N+0 is a set of original nodes
in Si, we take a set of node features in Vi as an input and
generate a weighted sum of them. For S2N+A, we apply a
GNN model to each subgraph as an individual graph, then
apply a weighted sum for readout. Formally,

S2N+0: x̂i =
∑

v∈Vsub
i
ωvi ·X[v,:],

S2N+A: x̂i =
∑

v∈Vsub
i
ωvi · GNNnode(X[Vsub

i ,:],A
sub
i)[v,:],

(5)

where ωvi is a weight corresponding to the node v and
the subgraph Si. These weights can be either learnable or
constants (e.g., ω = 1 means that x̂ is the sum of features).

Given Â and X̂ of S2N+0 and S2N+A, we apply the S2N
graph encoder ENCS2N which is another GNNS2N to gen-
erate the final node representations Ĥ and logits Ŷ for
prediction, That is, Ĥ = GNNS2N(X̂, Â) and Ŷ = ĤW
where W ∈ RF×C is a matrix of parameters. We can take
any GNNs that perform message-passing between nodes.
This node-level message-passing on translated graphs is
analogous to message-passing at the subgraph level in Sub-
GNN (Alsentzer et al., 2020).

3.4. Coarsened S2N for a Data-Scarce Setting

By design, the S2N graph Ĝ can approximate the global
graph G covered by subgraphs, but cannot reflect parts of G
where subgraphs do not exist. When a pair of subgraphs is
distant on the global graph, they exist as unconnected nodes
in S2N graphs as illustrated in Figure 2. These isolated
subgraphs are likely to occur when the subgraph samples
are scarce. In this case, GNNs cannot exchange supervised
signals between subgraphs.

To solve this problem, we apply graph coarsening methods
to the global graph G to generate a partition of nodes in G.
That is, graph coarsening summarizes a graph G by grouping
its nodes into super-nodes. Each node in G corresponds to
one super-node in the new graph Ĝ. We construct induced
subgraphs Sco = {Sco

1 ,Sco
2 , ...,Sco

M co} for each super-node

in the global graph. Here, we call them ‘virtual subgraphs.’
Using the original (labeled) subgraphs S as is, the virtual
subgraphs are merged with S to form the Coarsened S2N
(CoS2N) graph, formally,

Sco = Coarsening(G), Âco
[i,j] = Te(Si,Sj)

where (Si,Sj) ∈ (S ∪ Sco)× (S ∪ Sco).
(6)

Here, any algorithm that coarsens the graph can be used for
Coarsening(G) (See §2).

Training of CoS2N is done similarly to semi-supervised
node classification. The virtual (unlabeled) subgraphs act
as bridges to pass messages between labeled subgraphs.
These allow S2N to better approximate the global graph
that the existing set of subgraphs does not cover. We also
show that adding virtual subgraphs to S2N can reduce the
approximation error between representations of S2N and
the global graph (Proposition 4.3).

The graph coarsening does not impair the efficiency for
two reasons. First, it is performed only once before the
training. Second, we can create a small CoS2N graph by
tuning coarsening methods and their hyperparameters (e.g.,
the coarsening ratio).

4. Theoretical Analysis on S2N
This section analytically compares the efficiency and the
representation quality between S2N and the original graph.
We first show how much S2N reduces computational com-
plexity. Then, we analyze the error bound of representations
between S2N and the original graph. All proofs are provided
in Appendix D.

4.1. How Much Does S2N Reduce Computational
Complexity?

We introduce more notations for this analysis. For the global
graph G and the S2N graph Ĝ, the numbers of edges are E
and Ê. Across a set S of subgraphs, the average numbers
of nodes and edges are N sub and Esub. Note that N is the
number of nodes in G and M is the number of subgraphs.

In Proposition 4.1, we compare the time complexity of
single-layer GLASS (the state-of-the-art model) (Wang &
Zhang, 2022), Connected form, S2N+0, and S2N+A.
Proposition 4.1. The time complexity of the 1-layer GLASS,
Connected form, S2N+0, and S2N+A is

GLASS & Connected: O(EF +MN subF +NF 2), (7)

S2N+0: O(ÊF +MN subF +MF 2), (8)

S2N+A: O(ÊF +MEsubF +MN subF 2). (9)

Considering that N ≪ E in real-world graphs (Chung,
2010), the significant difference between baselines and S2N

4

Translating Subgraphs to Nodes Makes Simple GNNs Strong and Efficient for Subgraph Representation Learning

is that E becomes Ê. We can know that Ê cannot be higher
than M2. The smaller N sub, the smaller Ê since it lowers the
number of possible connections between nodes in subgraphs.
However, it is difficult to directly compare Ê and E without
assumptions of the global graph and subgraphs.

Thus, we investigate what Ê takes in the random graph
model as a global graph, specifically, the Configuration
Model (CM). The CM graph of N nodes is randomly gen-
erated from a given degree sequence [d1, d2, ..., dN] (New-
man, 2018). Note that CM can model graphs of arbitrary
degree distributions, so its assumptions are mild compared
to other models (See Appendix C for details). For the CM
global graph with independent and identically distributed
(i.i.d.) subgraphs, we analyze the distribution of S2N’s edge
weights (i.e., Â) and demonstrate the probability that an
edge weight is higher than a certain value. This probability
is proportional to the number of S2N edges after normaliza-
tion (Equation 3). The smaller this is, the smaller Ê.
Proposition 4.2. For Configuration Model as G and i.i.d.
sampled subgraphs where the average size is N sub, the prob-
ability that the weight Â[i,j] of an edge (i, j) in Ĝ is bigger

than c > 0 is P (Â[i,j] ≥ c) ≤ (N sub)2E[d]
cN where E[d] is an

average degree of G.

It is well-known that degrees follow a power-law distribution
in many real-world graphs (Barabási & Albert, 1999). Most
nodes have a low degree; thus, the average degree E[d] has
a small value. Proposition 4.2 implies that edges with small
weights are more likely to appear in S2N, and the edge
normalization can make the S2N graph sparse (i.e., small
Ê). We also empirically confirm that edges in S2N are fewer
than those of the global graph in Table 1.

4.2. How Does S2N Approximate Subgraph
Representations?

For this subsection, we define the mapping matrix M ∈
{0, 1}N×M , where M[v,i] is 1 if and only if the node v

belongs to the subgraph Si (i.e., Â = M⊤AM). Degree
matrices of G and Ĝ are D = diag(d1, d2, ..., dN) and D̂ =

diag(d̂1, d̂2, ..., d̂M). Also, ∥·∥ is the Frobenius norm.

This analysis aims to analytically compare node represen-
tations Ĥ ∈ RM×F of the S2N graph Ĝ and subgraph
representations of the global graph G. Since outputs of
GNN with the global graph are original nodes’ representa-
tions H ∈ RN×F , we apply the readout to pool nodes in
the subgraph where R ∈ RN×M is a readout matrix:

READOUT(H) = R⊤H ∈ RM×F . (10)

In this paper, we adopt a degree-dependent readout matrix
R inspired by configuration-based reconstruction (Zhou
et al., 2021; 2023), which is defined as follows:

R = D
1
2MD̂− 1

2 i.e., R[v,i] = (dv/d̂i)
1
2 . (11)

We now demonstrate that the S2N’s node representations
Ĥ approximate the global graph’s subgraph representations
R⊤H , particularly when the model is a single-layer GCN.
The error bound between Ĥ and R⊤H is introduced in
Proposition 4.3. We also conduct a similar analysis for
Graph Isomorphism Networks (Xu et al., 2019) in Corol-
lary D.6 (Appendix D).
Proposition 4.3. Using the single-layer GCN parametrized
by W , subgraph representations R⊤H of the global graph
G can be approximated by node representations Ĥ of the
S2N graph Ĝ, that is, Ĥ ≈ R⊤H . The error between two
representations is bounded by:

∥R⊤H − Ĥ∥ ≤ M
1
2 ∥X −RX̂∥ · ∥W ∥. (12)

The error between representations is bounded by the error
between input features X and RX̂ . As in Zhou et al. (2023),
if we use the initial features X̂ = R⊤X for S2N, RX̂ is
(RR⊤)X . The matrix RR⊤ ∈ RN×N has rank M(< N),
then RX̂ is a low-rank approximation of X . Since R is
given by subgraphs, RX̂ may not sufficiently approximate
X for the downstream task. In particular, when there are
only a few subgraph samples (i.e., very small rank M), the
expressiveness of S2N can be weakened. This theoretical
observation implies that the proposed CoS2N (§3.4) higher-
rank approximates X for a data-scarce setting.

5. Experiments
This section describes the experimental setup, including
datasets, training, evaluation, and models.

Datasets We use four real-world datasets (PPI-BP, HPO-
Neuro, HPO-Metab, and EM-User) and four synthetic datasets
(Density, Cut-Ratio, Coreness, and Component) introduced
in Alsentzer et al. (2020). The task is subgraph classifica-
tion, where the global graph G and subgraphs S are given.
The input node features X are pre-trained embedding from
Wang & Zhang (2022) for real-world datasets and constant
features for synthetic datasets. Dataset statistics and descrip-
tions are in Tables 4, 5, and Appendix E.

Training and evaluation In the original setting from
Alsentzer et al. (2020), evaluation (i.e., validation and test)
subgraphs cannot be seen during the training stage. Follow-
ing this protocol, we create different S2N graphs for each
stage using train and evaluation sets of subgraphs (Strain and
Seval). For the S2N translation, we use Strain only in the train-
ing stage and use both Strain ∪ Seval in the evaluation stage.
We predict unseen nodes based on structures translated from
Strain ∪ Seval in the evaluation stage. In this respect, node
classification on S2N-translated graphs is inductive.

Models We use two well-known GNNs for GNNS2N:
GCN (Kipf & Welling, 2017) and GCNII (Chen et al., 2020).

5

Translating Subgraphs to Nodes Makes Simple GNNs Strong and Efficient for Subgraph Representation Learning

Table 1: The number of nodes and edges of real-world
graphs before and after S2N translation. The number of
edges in S2N is averaged across all experiments.

PPI-BP HPO-Neuro HPO-Metab EM-User
Nodes Original 1.7× 104 1.5× 104 1.5× 104 5.7× 104

S2N 1.6× 103 4.0× 103 2.4× 103 3.2× 102

Edges Original 3.2× 105 3.2× 106 3.2× 106 4.6× 106

S2N 4.8× 103 6.3× 105 6.0× 104 3.0× 103

For the node-level encoder GNNnode in S2N+A, we use the
same kind of GNN as GNNS2N. See Appendix F for their
hyperparameters. We also test these models for connected
and separated forms.

Baselines We use basic and state-of-the-art models for
subgraph classification tasks as baselines: Sub2Vec (Ad-
hikari et al., 2018), GBDT, SubGNN (Alsentzer et al., 2020),
and GLASS (Wang & Zhang, 2022). We report the best per-
formance among the variants of Sub2Vec. All baseline
results are reprinted from Alsentzer et al. (2020) and Wang
& Zhang (2022).

Efficiency measurement We use each model’s best hy-
perparameters (including batch sizes) and take the mean
wall-clock time over 50 epochs. Throughput and latency are
all measured using training and validation sets for each stage.
We count the number of all trainable parameters, including
node embeddings. The maximum allocated GPU VRAM
is measured by the PyTorch API. We fix the computation
device as Intel(R) Xeon(R) CPU E5-2640 v4 and a single
GeForce GTX 1080 Ti in measuring efficiency metrics. We
describe details in Appendix G.

Data-scarce experiments Experiments in a data-scarce
setting are conducted on benchmarks with the smallest and
largest global graphs (PPI-BP and EM-User), and we set the
number of training samples per class to 10, 20, 40, and
80. To coarse the global graph, we employ the Variation
Edges method (Loukas, 2019) and select the coarsening
ratio that generates subgraphs smaller than average sizes.
All experiments use GCNII, which performs well across
datasets in a fully supervised setting.

6. Results and Discussions
We analyze the characteristics of S2N graphs and compare
our models and baselines on classification performance and
efficiency. We show that S2N translation results in graph
compression (§6.1), which results in better or similar clas-
sification accuracy (§6.2) but significantly improves effi-
ciency in terms of computation and memory (§6.3). Finally,
we study Coarsened S2N (CoS2N)’s performance and effi-
ciency in a data-scare setting (§6.4).

Table 2: Mean performance in micro F1-score on real-world
datasets over 10 runs. For the top 50% of results, the higher
the performance, the darker the blue color. The unpaired
t-test result with the best is denoted by superscripts at a
level of 0.01 (∗: significantly outperforms, ∼: no significant
difference). We mark with daggers reprinted results from
Alsentzer et al. (2020) (†) and Wang & Zhang (2022) (‡).

Model PPI-BP HPO-Neuro HPO-Metab EM-User
Sub2Vec† 30.9±2.3 22.3±6.5 13.2±4.7 85.9±1.4

GBDT‡ 44.6±0.0 51.3±0.0 40.4±0.0 69.4±0.0

SubGNN† 59.9±2.4 63.2±1.0 53.7±2.3 81.4±4.6

GLASS‡ 61.9±0.7 68.5±0.5 61.4±0.5 88.8±0.6

Sep. GCN 61.4±2.0 67.6±1.0 60.1±2.8 84.5±4.1

Sep. GCNII 61.3±1.2 67.7±0.6 59.4±2.7 84.7±4.1

Con. GCN 62.6±1.7 65.7±0.8 60.6±2.0 85.9±2.8

Con. GCNII 63.5±2.0 66.7±0.8 61.7±2.7 85.5±4.8

S2N+0 GCN 63.0∼±2.3 66.4±0.7 62.0∼±1.6 85.7±2.9

S2N+0 GCNII 63.5∼±2.4 66.4±1.1 61.6∼±1.7 86.5∼±3.2

S2N+A GCN 63.3∼±2.3 68.3∼±0.9 62.0∼±3.0 86.5±2.3

S2N+A GCNII 63.7∼±2.3 68.4∼±1.0 63.2∼±2.7 89.0∼±1.6

with RWPE
S2N+0 GCN 63.1∼±2.2 66.7±0.6 62.3∼±1.9 85.9±2.8

S2N+0 GCNII 63.5∼±1.7 66.7±0.6 62.3∼±1.1 86.5∼±4.7

S2N+A GCN 63.4∼±2.0 68.4∼±0.7 61.9∼±2.3 87.3∼±9.7

S2N+A GCNII 64.3∗±1.8 68.6∼±0.8 63.9∗±1.7 89.0∼±3.1

6.1. Analysis of S2N-Translated Graphs

Table 1 summarizes the number of nodes and edges be-
fore and after S2N translation. These statistics are from
S2N graphs (S2N+0 and S2N+A) tuned for the best per-
formance on GCN and GCNII. The translated graphs have
a smaller number of nodes (×0.006 – ×0.27) and edges
(×10−4 – ×0.45) than the original graphs. See Appendix H
for detailed discussion. We also find that they are non-
homophilous, meaning many connected node pairs differ in
their class. The edge homophily of S2N graphs is 0.25±0.01
for PPI-BP, 0.20 ± 0.03 for HPO-Neuro1, 0.24 ± 0.01 for
HPO-Metab, and 0.51± 0.01 for EM-User.

6.2. Performance

Real-World Datasets In Table 2, we report the micro F1-
score on real-world datasets. We confirm that S2N with
simple GNN models outperforms or is similar to GLASS,
the state-of-the-art model. In 16 experiments (4 datasets and
4 models), S2N models outperform GLASS in 9 cases and
SubGNN in all 16 cases. Moreover, S2N models are on par
with GLASS in 12 of 16 experiments; they have no signif-
icant difference at the level of 0.01. The best models with
S2N show 102.9% (PPI-BP), 99.9% (HPO-Neuro), 102.9%
(HPO-Metab), and 100.2% (EM-User) of GLASS’s perfor-

1We propose multi-label edge homophily for multi-label
datasets (HPO-Neuro). It generalizes the existing multi-class ho-
mophily, and we discuss more in Appendix I.

6

Translating Subgraphs to Nodes Makes Simple GNNs Strong and Efficient for Subgraph Representation Learning

Table 3: Mean performance in micro F1-score on synthetic
datasets over 10 runs. For the top 50% of results, the higher
the performance, the darker the blue color. The unpaired
t-test result between S2N and the best is denoted by super-
scripts (∼: no significant difference at a level of 0.01). We
mark with daggers the reprinted results from Alsentzer et al.
(2020) (†) and Wang & Zhang (2022) (‡).

Model Density Cut-Ratio Coreness Component
Sub2Vec‡ 45.9±1.2 35.4±1.4 36.0±1.9 65.7±1.7

SubGNN† 91.9±1.6 62.9±3.9 65.9±9.2 95.8±9.8

GLASS‡ 93.0±0.9 93.5±0.6 84.0±0.9 100.0±0.0

S2N+0 GCNII 67.2±2.4 56.0±0.0 57.0±4.9 100.0∼±0.0

S2N+A GCNII 93.2∼±2.6 56.0±0.0 85.7∼±5.8 100.0∼±0.0

with RWPE
S2N+0 GCNII 74.8±3.6 85.2±5.1 56.1±3.0 100.0∼±0.0

S2N+A GCNII 93.6∼±2.0 89.2±2.6 72.6±6.2 100.0∼±0.0

mances. We interpret that message-passing between sub-
graphs in S2N improves performance by capturing distant
interactions that cannot occur in message-passing between
nodes in the global graph. We also observe that RWPE
generally increases performance. S2N models with RWPE
are on par with GLASS in 14 cases and outperform in 13
cases. Plus, S2N+A outperforms S2N+0; internal structure
also contributes to subgraph representation. However, the
importance of internal structures varies across datasets. For
HPO-Neuro as an example, the performance improvement of
S2N+A over S2N+0 is high compared to other datasets.

Synthetic Datasets In Table 3, we summarize the per-
formance of S2N models with GCNII and baselines on
synthetic datasets. S2N+A performs better than or the same
as the state-of-the-art (GLASS) on Density, Coreness, and
Component. S2N+0 shows the same performance as GLASS
only in Component. We can explain these results through
known subgraph properties associated with synthetic labels
(Table 6). Because S2N compresses the global graph struc-
ture, it is challenging to learn Cut-Ratio, which requires exact
information about the global structure. Learning the density
and coreness of subgraphs requires their internal structures.
Therefore, S2N+0, which does not maintain internal struc-
ture, relatively underperforms baselines. RWPE allows S2N
to improve the performance of Density and Cut-Ratio signif-
icantly, but not of Coreness. We interpret that RWPE for
subgraphs can encode internal and border structures well but
cannot encode border positions. We leave the development
of structural encoding for S2N as future work.

6.3. Efficiency

In Figure 3, we show throughput, latency, the number of
parameters, and the maximum allocated GPU VRAM of
two models with three data structures and state-of-the-art
baselines. We cannot experiment on PPI-BP with SubGNN

since it takes more than 48 hours in pre-computation. We
make the following five observations from these results.

S2N models show significantly high throughput (Fig. 3a).
The best S2N models can process ×183 – ×711 more sam-
ples than the state-of-the-art model (GLASS) for the same
training time. At the evaluation stage, they show 7 – 56
times higher throughput than GLASS. This difference is not
as large as the training stage, but S2N is still significantly
more efficient than GLASS. In addition, S2N shows higher
training throughput than connected and separated forms.

S2N models even with full batch show lower latency than
others with small batch size (Fig. 3b). Comparing the
best S2N model and GLASS, the training latency is ×0.05 –
×0.17 and evaluation latency is ×0.16 – ×0.43. Note that
measuring latency ignores the parallelism from large batch
sizes. S2N’s superiority over other data structures can be
underestimated in latency rather than throughput because it
requires full batch computation. Note that existing models
need to use small batch sizes because of intensive memory
requirements (SubGNN) or model design (GLASS).

S2N models require less memory even with a similar
level of parameters (Fig. 3c). For a given dataset, the
number of parameters of each model does not vary much,
but the GPU VRAM in actual runtime varies by a large
margin. The best models with S2N need less memory (×0.2
– ×0.45) than GLASS except for HPO-Neuro. HPO-Neuro,
which has a large number of subgraphs, requires the same
level of memory (×1.05). In particular, since S2N does not
employ a large global graph, S2N works with only ×0.13
memory on average compared to the connected form.

S2N+A does not show a significant difference from
S2N+0 in efficiency. Recall that S2N+A differs from
S2N+0 by using the internal edges of subgraphs. How-
ever, the number of internal edges is negligible compared
to the original global edges, as in Table 4. Consequently,
the added internal edges require only a small amount of
additional computation and memory, allowing S2N+A to
perform training and inference efficiently.

Overall, S2N models outperform baselines in all compu-
tational and memory efficiency metrics. Models with
S2N process many samples faster (i.e., higher throughput
and lower latency), and require less GPU memory than other
data structures and state-of-the-art models. The separated
form, which does not use a global graph, shows a similar
level of efficiency as S2N in some experiments but loses
performance by completely ignoring the global structure.

7

Translating Subgraphs to Nodes Makes Simple GNNs Strong and Efficient for Subgraph Representation Learning

101 102 103 104 105

Train Throughput (#/s)

101

102

103

104

105

Ev
al

 T
hr

ou
gh

pu
t (

#/
s)

Dataset = HPO-Metab

101 102 103 104 105

Train Throughput (#/s)

Dataset = HPO-Neuro

101 102 103 104 105

Train Throughput (#/s)

Dataset = EM-User

101 102 103 104 105

Train Throughput (#/s)

Dataset = PPI-BP
Data structure

S2N+0
S2N+A
Connected
Separated
Baseline

Model
GCN
GCNII
SubGNN
GLASS

I
’ x12
I

+- !- - - -1- - - ..
■ x183

웅,' X14
I

+-

- - - !. ＿ __ L,
• x303

I x56

+--f---.i--- 』

x7마1

I

i
I

I

I

, x7
I-'- - - -1- - - ..

x205

(a) The throughput (the number of subgraphs / second) at training and evaluation stages. The higher, the better.

0.0 0.1 0.2 0.3 0.4
Train Latency (s/forward)

0.00

0.05

0.10

0.15

Ev
al

 L
at

en
cy

 (s
/fo

rw
ar

d)

Dataset = HPO-Metab

0.0 0.1 0.2 0.3 0.4
Train Latency (s/forward)

Dataset = HPO-Neuro

0.0 0.1 0.2 0.3 0.4
Train Latency (s/forward)

Dataset = EM-User

0.0 0.1 0.2 0.3 0.4
Train Latency (s/forward)

Dataset = PPI-BP
Data structure

S2N+0
S2N+A
Connected
Separated
Baseline

Model
GCN
GCNII
SubGNN
GLASS

x0 • 43--..
x0.1

7
’

I X0 • 36
x0.-11| ’

- -r. - ..- -
: x0 .16
I,

,- - - - - - -

x0 • 05 |
- - - - - - - - - I .. ,-,-

- - - - . - ..- --

’ x0 .26 x0 .07 - --

(b) The latency (seconds / forward pass) at training and evaluation stages. The lower, the better.

106 107

parameters

101

102

103

104

M
ax

 A
llo

ca
te

d
VR

AM
 (M

B)

Dataset = HPO-Metab

106 107

parameters

Dataset = HPO-Neuro

106 107

parameters

Dataset = EM-User

106 107

parameters

Dataset = PPI-BP
Data structure

S2N+0
S2N+A
Connected
Separated
Baseline

Model
GCN
GCNII
SubGNN
GLASS

+--
X0 • 45 I

�9- ..
xl.05

· -
I

I X0. 2
I

- ..

--
I

I X0. 2
I

- ..

(c) The number of parameters and maximum allocated GPU VRAM. The lower, the better.

Figure 3: Efficiency of S2N models and baselines on real-world datasets. The ratio of the best S2N model and the state-of-
the-art model for each metric is notated in the figure (dashed lines).

6.4. Performance and Efficiency in a Data-Scarce
Setting

In this section, we report the performance and efficiency of
S2N, Coarsened S2N (CoS2N), connected form, and sepa-
rated form. Figure 4 summarizes the performance, through-
put, and max allocated VRAM by the number of training
samples on PPI-BP. In Appendix L, we analyze similar re-
sults on the other dataset and the ablation study on the
coarsening ratio.

Virtual subgraphs created in Coarsened S2N contribute
to performance improvements of S2N (Figure 4a). We
observe that CoS2N consistently outperforms S2N in all
conditions. This implies that virtual subgraphs created
from graph coarsening in CoS2N enhance communica-
tions between subgraphs, leading to better representations.
CoS2N+A generally surpasses all other models, including
CoS2N+0 and the connected form. When the number of

training samples is extremely small, both S2N and CoS2N
demonstrate superior performance compared to both base-
line models. We confirm that the message-passing between
subgraphs is more effective when supervised signals are
scarce. In conclusion, CoS2N approximates representations
of the global graph well, even though the virtual subgraphs
created through coarsening do not follow the distribution of
real subgraphs.

CoS2N has higher throughput (Figures 4b, 4c) and uses
less memory (Figure 4d) than using the global graph.
Although the virtual subgraphs by coarsening are added,
both CoS2N methods show higher throughput than using
the global graph (i.e., the connected form). CoS2N+0 even
shows higher throughput than the separated form in all
stages. CoS2N+A shows higher throughput than the sep-
arated form in the evaluation stage, where there are more
subgraphs to be processed. The training throughput in-

8

Translating Subgraphs to Nodes Makes Simple GNNs Strong and Efficient for Subgraph Representation Learning

10 20 40 80
training samples / class

0.3

0.4

0.5

Pe
rfo

rm
an

ce

(a) Performance

10 20 40 80
training samples / class

103

104

Tr
ai

n
Th

ro
ug

hp
ut

 (#
/s

)
(b) Training Throughput

10 20 40 80
training samples / class

104

2 × 104

3 × 104

Ev
al

 T
hr

ou
gh

pu
t (

#/
s)

(c) Eval Throughput

10 20 40 80
training samples / class

101

102

103

M
ax

 A
llo

ca
te

d
VR

AM
 (M

B)

Data structure
S2N+0
S2N+A
CoS2N+0
CoS2N+A
Connected
Separated

(d) Max allocated VRAM

Figure 4: Performance and efficiency on PPI-BP of S2N, CoS2N, connected, and separated forms by the number of training
samples in a data-scarce setting.

creases as more training samples are used since the full
batch parallelization of GPUs can efficiently process addi-
tional samples.

Like computational requirements, CoS2N uses less memory
than the connected form. This is because graph coarsening
creates fewer subgraphs than the size of the global graph.
By the training set size, the memory consumption is con-
stant for the connected form and fluctuates for CoS2N. The
memory bottleneck of the connected form and CoS2N is
the largest component of each dataset: the global graph
and coarsened nodes, respectively. Adding training samples
does not substantially affect memory demand; instead, the
size of the coarse graph does for CoS2N.

7. Limitations and Future Work
This section discusses the limitations and future work. First,
a large S2N graph will be generated if there are excessive
subgraphs. This is because the current method translates all
subgraphs into nodes in the S2N graph. Future research is
needed to sample important subgraphs that sparsely summa-
rize the original global graph. Second, we can observe that
the performance of S2N varies depending on the dataset, but
this can be known once experiments are conducted. Practi-
tioners can only know which data structures or models are
appropriate for a given task by empirical experiments. We
leave it to future work to identify which subgraph charac-
teristics affect the performance of models, including S2N.
Lastly, we need synthetic tasks for better evaluation. For
synthetic datasets, labels are created by pre-designed rules
that depend only on structures (e.g., density, cut ratio, and
core numbers). These datasets reflect only a very narrow
aspect of a subgraph’s properties. However, the labels of
real-world subgraphs depend on various information about
the structures and features. This implies a gap between
synthetic and real-world subgraphs, and future studies are
required to develop more realistic synthetic tasks.

8. Conclusion
Subgraph-to-node (S2N) translation is a novel, efficient way
to learn representations of subgraphs. S2N takes the orig-
inal subgraphs and creates a new graph where the nodes
are the subgraphs, and the edges are the relations between
the subgraphs, thereby performing subgraph-level tasks as
node-level tasks. We empirically and theoretically show
that S2N translation significantly reduces memory and com-
putation costs without performance degradation. Specifi-
cally, the best-performing models with S2N on real-world
datasets show ×183−×711 of throughput and achieve at
least 99.9% of the state-of-the-art models for classification
performance.

Acknowledgements
This research was supported by the Engineering Research
Center Program through the National Research Foundation
of Korea (NRF) funded by the Korean Government MSIT
(NRF-2018R1A5A1059921)

Impact Statement
This paper aims to advance the field of graph representation
learning, and it is difficult to expect direct societal conse-
quences. Instead, we discuss a potential concern about bias
and fairness that has not been confirmed in theory or prac-
tice. Models with S2N pass messages between all samples
within the batch; thus, the majority in a batch can be over-
represented during prediction and the bias in representations
can be amplified. The tasks covered in this paper are unre-
lated to this, but practitioners should be aware of this for
tasks that contain sensitive attributes.

9

Translating Subgraphs to Nodes Makes Simple GNNs Strong and Efficient for Subgraph Representation Learning

References
Adhikari, B., Zhang, Y., Ramakrishnan, N., and Prakash,

B. A. Sub2vec: Feature learning for subgraphs. In Pacific-
Asia Conference on Knowledge Discovery and Data Min-
ing, pp. 170–182. Springer, 2018.

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.
Optuna: A next-generation hyperparameter optimization
framework. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery &
data mining, pp. 2623–2631, 2019.

Alsentzer, E., Finlayson, S. G., Li, M. M., and Zitnik, M.
Subgraph neural networks. Proceedings of Neural Infor-
mation Processing Systems, NeurIPS, 2020.

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler,
H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S.,
Eppig, J. T., et al. Gene ontology: tool for the unification
of biology. Nature genetics, 25(1):25–29, 2000.

Barabási, A.-L. Network science. Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 371(1987):20120375, 2013.

Barabási, A.-L. and Albert, R. Emergence of scaling in
random networks. science, 286(5439):509–512, 1999.

Bordes, A., Chopra, S., and Weston, J. Question answering
with subgraph embeddings. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 615–620, 2014.

Brody, S., Alon, U., and Yahav, E. How attentive are graph
attention networks? In International Conference on
Learning Representations, 2022.

Cai, C., Wang, D., and Wang, Y. Graph coarsening with neu-
ral networks. In International Conference on Learning
Representations, 2021. URL https://openreview.
net/forum?id=uxpzitPEooJ.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Sim-
ple and deep graph convolutional networks. In Interna-
tional Conference on Machine Learning, pp. 1725–1735.
PMLR, 2020.

Chung, F. Graph theory in the information age. Notices of
the AMS, 57(6):726–732, 2010.

Consortium, G. O. The gene ontology resource: 20 years
and still going strong. Nucleic acids research, 47(D1):
D330–D338, 2019.

Dehghani, M., Tay, Y., Arnab, A., Beyer, L., and Vaswani,
A. The efficiency misnomer. In International Conference
on Learning Representations, 2022. URL https://
openreview.net/forum?id=iulEMLYh1uR.

Deng, C., Zhao, Z., Wang, Y., Zhang, Z., and Feng, Z.
Graphzoom: A multi-level spectral approach for accurate
and scalable graph embedding. In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=r1lGO0EKDH.

Dong, Z., Cao, W., Zhang, M., Tao, D., Chen, Y., and Zhang,
X. Cktgnn: Circuit graph neural network for electronic
design automation. In The Eleventh International Confer-
ence on Learning Representations, 2023.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., and Bres-
son, X. Graph neural networks with learnable structural
and positional representations. In International Confer-
ence on Learning Representations, 2022.

Falcon, W. and The PyTorch Lightning team. PyTorch
Lightning, 3 2019. URL https://github.com/
PyTorchLightning/pytorch-lightning.

Fatemi, B., El Asri, L., and Kazemi, S. M. Slaps: Self-
supervision improves structure learning for graph neural
networks. Advances in Neural Information Processing
Systems, 34, 2021.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with PyTorch Geometric. In International Conference on
Learning Representations Workshop on Representation
Learning on Graphs and Manifolds, 2019.

Franceschi, L., Niepert, M., Pontil, M., and He, X. Learning
discrete structures for graph neural networks. In Interna-
tional conference on machine learning, pp. 1972–1982.
PMLR, 2019.

Hamidi Rad, R., Bagheri, E., Kargar, M., Srivastava, D., and
Szlichta, J. Subgraph representation learning for team
mining. In Proceedings of the 14th ACM Web Science
Conference 2022, pp. 148–153, 2022.

Hartley, T., Lemire, G., Kernohan, K. D., Howley, H. E.,
Adams, D. R., and Boycott, K. M. New diagnostic ap-
proaches for undiagnosed rare genetic diseases. Annual
review of genomics and human genetics, 21:351–372,
2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Huang, Z., Zhang, S., Xi, C., Liu, T., and Zhou, M. Scaling
up graph neural networks via graph coarsening. In Pro-
ceedings of the 27th ACM SIGKDD Conference on Knowl-
edge Discovery & Data Mining, pp. 675–684, 2021.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.

10

https://openreview.net/forum?id=uxpzitPEooJ
https://openreview.net/forum?id=uxpzitPEooJ
https://openreview.net/forum?id=iulEMLYh1uR
https://openreview.net/forum?id=iulEMLYh1uR
https://openreview.net/forum?id=r1lGO0EKDH
https://openreview.net/forum?id=r1lGO0EKDH
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning

Translating Subgraphs to Nodes Makes Simple GNNs Strong and Efficient for Subgraph Representation Learning

In International conference on machine learning, pp. 448–
456. PMLR, 2015.

Jin, W., Barzilay, R., and Jaakkola, T. Junction tree vari-
ational autoencoder for molecular graph generation. In
International conference on machine learning, pp. 2323–
2332. PMLR, 2018.

Jin, W., Zhao, L., Zhang, S., Liu, Y., Tang, J., and Shah,
N. Graph condensation for graph neural networks. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=WLEx3Jo4QaB.

Kim, D. and Oh, A. How to find your friendly neighbor-
hood: Graph attention design with self-supervision. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=Wi5KUNlqWty.

Kim, D., Jin, J., Ahn, J., and Oh, A. Models and bench-
marks for representation learning of partially observed
subgraphs. In Proceedings of the 31st ACM International
Conference on Information & Knowledge Management,
pp. 4118–4122, 2022.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations, 2017.

Köhler, S., Carmody, L., Vasilevsky, N., Jacobsen, J. O. B.,
Danis, D., Gourdine, J.-P., Gargano, M., Harris, N. L.,
Matentzoglu, N., McMurry, J. A., et al. Expansion of the
human phenotype ontology (hpo) knowledge base and
resources. Nucleic acids research, 47(D1):D1018–D1027,
2019.

Li, Q., Han, Z., and Wu, X.-M. Deeper insights into graph
convolutional networks for semi-supervised learning. In
Proceedings of the AAAI conference on artificial intelli-
gence, volume 32, 2018.

Li, S., Zheng, P., Pang, S., Wang, X. V., and Wang, L.
Self-organising multiple human–robot collaboration: A
temporal subgraph reasoning-based method. Journal of
Manufacturing Systems, 68:304–312, 2023.

Lim, D., Hohne, F., Li, X., Huang, S. L., Gupta, V.,
Bhalerao, O., and Lim, S. N. Large scale learning on
non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Pro-
cessing Systems, 34, 2021.

Loukas, A. Graph reduction with spectral and cut guarantees.
Journal of Machine Learning Research, 20:1–42, 2019.

Loukas, A. and Vandergheynst, P. Spectrally approximating
large graphs with smaller graphs. In International Con-
ference on Machine Learning, pp. 3237–3246. PMLR,
2018.

Luo, Y. Shine: Subhypergraph inductive neural network.
Advances in Neural Information Processing Systems, 35:
18779–18792, 2022.

Maheshwari, P., Ren, H., Wang, Y., Sosic, R., and Leskovec,
J. Timegraphs: Graph-based temporal reasoning. arXiv
preprint arXiv:2401.03134, 2024.

Meng, C., Mouli, S. C., Ribeiro, B., and Neville, J. Sub-
graph pattern neural networks for high-order graph evolu-
tion prediction. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

Mordaunt, D., Cox, D., and Fuller, M. Metabolomics
to improve the diagnostic efficiency of inborn errors of
metabolism. International journal of molecular sciences,
21(4):1195, 2020.

Newman, M. Networks. Oxford university press, 2018.

Ni, J., Muhlstein, L., and McAuley, J. Modeling heart rate
and activity data for personalized fitness recommenda-
tion. In The World Wide Web Conference, pp. 1343–1353,
2019.

Ouyang, S., Bai, Q., Feng, H., and Hu, B. Bitcoin money
laundering detection via subgraph contrastive learning.
Entropy, 26(3):211, 2024.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. In Advances in neural information
processing systems, pp. 8026–8037, 2019.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B.
Geom-gcn: Geometric graph convolutional networks. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=S1e2agrFvS.

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee,
S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy,
S. L., Golub, T. R., Lander, E. S., et al. Gene set enrich-
ment analysis: a knowledge-based approach for interpret-
ing genome-wide expression profiles. Proceedings of the
National Academy of Sciences, 102(43):15545–15550,
2005.

Trümper, L., Ben-Nun, T., Schaad, P., Calotoiu, A., and
Hoefler, T. Performance embeddings: A similarity-based
transfer tuning approach to performance optimization.
In Proceedings of the 37th International Conference on
Supercomputing, pp. 50–62, 2023.

11

https://openreview.net/forum?id=WLEx3Jo4QaB
https://openreview.net/forum?id=WLEx3Jo4QaB
https://openreview.net/forum?id=Wi5KUNlqWty
https://openreview.net/forum?id=Wi5KUNlqWty
https://openreview.net/forum?id=S1e2agrFvS
https://openreview.net/forum?id=S1e2agrFvS

Translating Subgraphs to Nodes Makes Simple GNNs Strong and Efficient for Subgraph Representation Learning

Wang, X. and Zhang, M. GLASS: GNN with label-
ing tricks for subgraph representation learning. In In-
ternational Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=XLxhEjKNbXj.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2019. URL https://
openreview.net/forum?id=ryGs6iA5Km.

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., and
Leskovec, J. Hierarchical graph representation learning
with differentiable pooling. Advances in neural informa-
tion processing systems, 31, 2018.

Zhang, M. and Li, P. Nested graph neural networks. Ad-
vances in Neural Information Processing Systems, 34:
15734–15747, 2021.

Zhang, X., Xu, S., Lin, W., and Wang, S. Constrained social
community recommendation. In Proceedings of the 29th
ACM SIGKDD conference on knowledge discovery and
data mining, pp. 5586–5596, 2023.

Zhou, H., Liu, S., Lee, K., Shin, K., Shen, H., and Cheng,
X. Dpgs: Degree-preserving graph summarization. In
Proceedings of the 2021 SIAM International Conference
on Data Mining (SDM), pp. 280–288. SIAM, 2021.

Zhou, H., Liu, S., Koutra, D., Shen, H., and Cheng, X. A
provable framework of learning graph embeddings via
summarization. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 37, pp. 4946–4953,
2023.

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., and
Koutra, D. Beyond homophily in graph neural networks:
Current limitations and effective designs. Advances in
Neural Information Processing Systems, 33:7793–7804,
2020.

Zitnik, M., Sosic, R., and Leskovec, J. Biosnap datasets:
Stanford biomedical network dataset collection. Note:
http://snap. stanford. edu/biodata Cited by, 5(1), 2018.

12

https://openreview.net/forum?id=XLxhEjKNbXj
https://openreview.net/forum?id=XLxhEjKNbXj
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

Translating Subgraphs to Nodes Makes Simple GNNs Strong and Efficient for Subgraph Representation Learning

A. Reproducibility Statements
To reproduce the results, we open our code public via the GitHub link2. Datasets, including the downloadable link
from Alsentzer et al. (2020), are described in Appendix E.

B. Discussion on Related Work
B.1. Detailed Comparison with State-of-the-Art Models: SubGNN and GLASS

SubGNN (Alsentzer et al., 2020), GLASS (Wang & Zhang, 2022), and S2N improve different parts of the machine learning
pipeline to solve subgraph-level tasks. SubGNN designs a whole model, GLASS augments input data through a labeling
trick, and S2N uses a new data structure.

SubGNN performs message-passing between subgraphs (or patches). Through this, the properties of internal and border
structures for three channels (position, neighborhood, and structure) are learned independently. To learn a total of 6 (2 × 3)
properties, SubGNN designs patch samplers, patch representation, and similarity (weights of messages) for each property
in an ad hoc manner. For example, SubGNN patches nodes inside the subgraph using its representation as a message and
distance-based similarity as weights to learn internal positions. By the complex model design, SubGNN requires a lot of
computational resources for data pre-processing, model training, and inference.

GLASS uses plain GNNs but labels input nodes as to whether they belong to the subgraph (the label of one) or not (the label
of zero). Separate node-level message-passing is performed for each label to distinguish the internal and border structures of
the subgraph. GLASS’s labeling trick is effective, but handling multiple labels from multiple subgraphs in a batch is hard.
Although the authors of GLASS propose a max-zero-one trick to address this issue, small batches are still recommended. In
addition, using a large global graph requires significant computational and memory resources.

S2N uses the new data structure that stores and processes subgraphs efficiently. By compressing the global graph,
computational and memory resource requirements are reduced. There are no restrictions on batch sizes; thus, we can train
S2N graphs in the full batch. Our contribution lies in addressing the current research direction in subgraph representation
learning, where enhancements in performance are often achieved by increasing model complexity. The S2N model challenges
it by demonstrating better or comparable performance through a more efficient approach. This efficiency does not merely
encompass computational resources. Still, it extends to ease of implementation and adaptability to diverse tasks, making it a
significant advancement over current state-of-the-art methods.

B.2. Detailed Comparison with Similar Architectures

Circuit Graph Neural Network (CktGNN) (Dong et al., 2023) and Nested Graph Neural Network (NGNN) (Zhang &
Li, 2021) are similar to our S2N+A in that they employ two-level GNNs, where the first GNN learns the embedding of
subgraphs, and the second GNN performs message-passing between subgraphs. However, our study differs from these in the
following aspects. First, they do not focus on subgraph-level tasks. CktGNN is applied for circuit design automation, and
NGNN is applied for graph regression and classification. They do not demonstrate how the two-level GNNs approach affects
subgraph representations rather than the whole graph. In contrast, we analyzed our S2N models empirically and theoretically
on subgraph representation learning. Second, they also make strong assumptions about subgraphs and cannot be generalized
to all subgraph-level tasks. Specifically, CktGNN uses a set of pre-designed subgraphs specialized for circuits. A subgraph
in NGNN is the rooted subgraph of each node in the given graph. For these two models, the subgraph has to be in a fixed
shape; thus, they cannot handle subgraphs of various structures and sizes.

Junction Tree Variational Autoencoder (JT-VAE) (Jin et al., 2018) decomposes a molecular graph into a junction tree, where
a node corresponds to the motif (particularly a ring of atoms), and edges link the nodes that share the nodes. This method is
a graph generation model to learn the ring substructure well in chemical tasks but has not been used in subgraph-level tasks.
Due to the nature of the Junction Tree algorithm, only the ring (or cycle) structure of input graphs is used as subgraphs,
and the output is restricted to trees, which leads to limited usage. Our proposed S2N’s primary contribution is to explore
the fundamental question of subgraph representation learning and propose a novel perspective. In addition, S2N can be
generally applied to graphs and subgraphs of any structure.

DiffPool (Ying et al., 2018) learns the hierarchy of a graph to obtain graph-level representations. DiffPool softly assigns

2https://github.com/dongkwan-kim/S2N

13

https://github.com/dongkwan-kim/S2N
https://github.com/dongkwan-kim/S2N

Translating Subgraphs to Nodes Makes Simple GNNs Strong and Efficient for Subgraph Representation Learning

each node to a cluster during training by optimizing the downstream task loss. To stabilize the soft clustering assignment, the
authors of DiffPool employ link prediction loss and entropy regularization loss. The problem is that the assignment matrix
must be maintained in GPU memory, which requires quadratic memory complexity regarding the number of nodes. In
other words, we cannot apply DiffPool to large graphs such as global graphs in our use cases. We aim to perform subgraph
representation learning efficiently by compressing data and reducing GPU load. Memory-intensive graph coarsening, such
as DiffPool’s soft clustering assignment, should not be used to keep CoS2N efficient. Instead, we can secure the efficiency
of CoS2N by performing graph coarsening before training the model, relying only on the structure of the global graph.

C. Justification for the Choice of the Random Graph Model
The configuration model (CM) only requires a degree sequence or a distribution. That means CM can also generate graphs
generated by other random graph models. For example, when the degree distribution is Poisson distribution, CM generates
graphs close to the Erdős–Rényi model. CM can also adopt other degree distributions, for example, power-law distributions.
See Newman (2018) for more details.

We also emphasize that the complexity of S2N strongly depends on the number of edges in S2N, that is, how many edges of
small weights are removed during normalization. Thus, we need a random graph model that can analytically calculate the
distribution of edge weights (i.e., the number of shared edges in two subgraphs). When using the CM, the distribution of
S2N’s edge weights can be derived from the degree distribution of the global graph. This is possible because CM calculates
the probability of edge existence through the degrees of a pair of nodes. Note that CM is frequently used in analytically
calculating numerous network measures (Barabási, 2013).

D. Proofs of Theoretical Analysis
This section describes proofs of theoretical claims in the paper: Propositions 4.1, 4.2, and 4.3. In addition, we analyze
the error bound between S2N and the global graph for a variant of Graph Isomorphism Networks (Xu et al., 2019) in
Proposition D.5 and Corollary D.6.

Proposition D.1 (Proposition 4.1). The time complexity of the 1-layer GLASS, Connected form, S2N+0, and S2N+A is
GLASS & Connected: O(EF +MN subF +NF 2), (13)

S2N+0: O(ÊF +MN subF +MF 2), (14)

S2N+A: O(ÊF +MEsubF +MN subF 2). (15)

Proof. Let G = (V,A,X) be a global graph where V is a set of nodes (|V| = N), A ∈ {0, 1}N×N is an adjacency matrix,
and X ∈ RN×F0 is a node feature matrix. A subgraph S = (Vsub,Asub) is a graph formed by subsets of nodes and edges
in the global graph G. For the subgraph classification task, there is a set of M subgraphs S = {S1,S2, ...,SM}, and for
Si = (Vsub

i ,Asub
i), the goal is to learn subgraph representations Ĥ ∈ RM×F .

Baselines and S2N models are computed by following steps:

• GLASS & Connected: Ĥ = R⊤GNN(X,A) where R ∈ RN×M is a readout matrix.

• S2N+0: Ĥ = GNNS2N(X̂, Â) where X̂[i] =
∑

v∈Vsub
i
ωvi ·X[v,:].

• S2N+A: Ĥ = GNNS2N(X̂, Â) where X̂[i] =
∑

v∈Vsub
i
ωvi · GNNnode(X[Vsub

i ,:],A
sub
i)[v,:].

Graph neural networks (GNNs) that use the message-passing mechanism to learn subgraph representations can be de-
composed into feature transformation (FT), feature propagation (FP), and subgraph-level readout (SR). Feature transfor-
mation requires O(the number of nodes × F 2) computations and feature propagation by sparse implementation requires
O(the number of edges × F) computations. Plus, for the readout of representations or input features, we need the computa-
tions of O(the total number of nodes in subgraphs × F).

• GLASS & Connected: O(EF) from FP, O(MN subF) from SR, and O(NF 2) from FT.

• GLASS: O(MN sub) from the node labeling trick (Wang & Zhang, 2022).

14

Translating Subgraphs to Nodes Makes Simple GNNs Strong and Efficient for Subgraph Representation Learning

• S2N+0: O(ÊF) from FP, O(MN subF) from SR, and O(MF 2) from FT.

• S2N+A: O(ÊF) and O(MEsubF) from FP in GNNS2N and GNNnode, O(MN subF) from SR, and O(MF 2) and
O(MN subF 2) from FT in GNNS2N and GNNnode.

By adding up all the terms, we can get the final result.

Proposition D.2 (Proposition 4.2). For Configuration Model as G and i.i.d. sampled subgraphs where the average size is

N sub, the probability that the weight Â[i,j] of an edge (i, j) in Ĝ is bigger than c > 0 is P (Â[i,j] ≥ c) ≤ (N sub)2E[d]
cN where

E[d] is an average degree of G.

Proof. We first note that the probability of edge (u, v) in the Configuration Model for large E is dudv

2E and E = 1
2

∑
k dk =

1
2NE[d] (Newman, 2018).

P (Â[i,j] ≥ c) ≤
E[Â[i,j]]

c
(∵ Markov’s inequality) (16)

=
E[
∑

u∈Vsub
i

∑
v∈Vsub

j
A[u,v]]

c
(17)

=
E[
∑

u∈Vsub
i

∑
v∈Vsub

j

dudv

2E]

c
(18)

=
E(i,j)∈S×S[

∑
u∈Vsub

i

∑
v∈Vsub

j
E[d]2]

2cE
(19)

=
(N subE[d])2

2cE
(20)

=
(N sub)2E[d]

cN
(21)

To prove Proposition 4.3, we first introduce Lemma D.3.

Lemma D.3.
R⊤D− 1

2AD− 1
2R = D̂− 1

2 ÂD̂− 1
2 (22)

Proof.

R⊤D− 1
2AD− 1

2R = (D
1
2MD̂− 1

2)⊤D− 1
2AD− 1

2D
1
2MD̂− 1

2 (23)

= D̂− 1
2M⊤D

1
2D− 1

2AD− 1
2D

1
2MD̂− 1

2 (24)

= D̂− 1
2M⊤AMD̂− 1

2 (25)

= D̂− 1
2 ÂD̂− 1

2 . (26)

Proposition D.4 (Proposition 4.3). Using the single-layer GCN parametrized by W , subgraph representations R⊤H of
the global graph G can be approximated by node representations Ĥ of the S2N graph Ĝ, that is, Ĥ ≈ R⊤H . The error
between two representations is bounded by:

∥R⊤H − Ĥ∥ ≤ M
1
2 ∥X −RX̂∥ · ∥W ∥. (27)

15

Translating Subgraphs to Nodes Makes Simple GNNs Strong and Efficient for Subgraph Representation Learning

Proof.

∥R⊤H − Ĥ∥ = ∥R⊤D− 1
2AD− 1

2XW − D̂− 1
2 ÂD̂− 1

2 X̂W ∥ (28)

= ∥R⊤D− 1
2AD− 1

2XW −R⊤D− 1
2AD− 1

2RX̂W ∥ (∵ Lemma D.3) (29)

= ∥R⊤(D− 1
2AD− 1

2)(X −RX̂)W ∥ (30)

≤ ∥R⊤∥∥D− 1
2AD− 1

2 ∥∥X −RX̂∥∥W ∥ (31)

≤ M
1
2 ∥X −RX̂∥ · ∥W ∥. (32)

Although Proposition 4.3 is analyzed using GCN models only, it is not limited to GCN in its applicability. Intuitively, when
sufficient subgraph samples are unavailable, message-passing in any GNNs fails in the global graph not covered by existing
subgraphs. Moreover, we can obtain theoretical results similar to Proposition 4.3 for other GNNs. However, we might not
get the approximation bound analytically depending on GNN architectures. For Graph Isomorphism Network (GIN) (Xu
et al., 2019) as an example, the non-linearity in multi-layer perceptron (MLP) makes it hard to analytically compare the GIN
outputs of S2N and the original graph. Instead, we introduce an approximation error bound on ‘GIN Sum-1-Layer’, a less
powerful variant of GINs that replaces MLP with single-layer perceptron (SLP).

GIN: H = MLP ((A+ (1 + ϵ) · I) ·X) , (33)
GIN Sum-1-Layer: H = SLP ((A+ (1 + ϵ) · I) ·X) . (34)

The error bound between S2N’s node representations and the global graph’s subgraph representations is demonstrated in
Proposition D.5. Here, we use the sum-readout READOUT(H) = M⊤H to get subgraph representations.

Proposition D.5. Using the single-layer GIN Sum-1-Layer parametrized by W , subgraph representations M⊤H of the
global graph G can be approximated by node representations Ĥ of the S2N graph Ĝ, that is, Ĥ ≈ M⊤H . The error
between two representations is bounded by:

∥M⊤H − Ĥ∥ ≤
(
(MN subE)

1
2 ∥X −MX̂∥+ (1 + ϵ)∥M⊤X − X̂∥

)
· ∥W ∥. (35)

Proof.

∥M⊤H − Ĥ∥ = ∥M⊤(A+ (1 + ϵ)IN)XW − (Â+ (1 + ϵ)IM)X̂W ∥ (36)

= ∥M⊤(A+ (1 + ϵ)IN)XW − (M⊤AM + (1 + ϵ)IM)X̂W ∥ (37)

= ∥M⊤A(X −MX̂)XW + (1 + ϵ)(M⊤X − X̂)W ∥ (38)

≤ ∥M⊤∥∥A∥∥X −MX̂∥∥W ∥+ (1 + ϵ)∥M⊤X − X̂∥∥W ∥ (39)

≤
(
(MN subE)

1
2 ∥X −MX̂∥+ (1 + ϵ)∥M⊤X − X̂∥

)
· ∥W ∥, (40)

where IN is an identity matrix of size N .

If we set the initial features of S2N as a sum of the original features (i.e., X̂ = M⊤X), Corollary D.6 then follows from
Proposition D.5.

Corollary D.6. Using the single-layer GIN Sum-1-Layer parametrized by W , subgraph representations M⊤H of the
global graph G can be approximated by node representations Ĥ of the S2N graph Ĝ, that is, Ĥ ≈ M⊤H . If the initial
feature matrix of S2N is X̂ = M⊤X , the error between two representations is bounded by:

∥M⊤H − Ĥ∥ ≤ (MN subE)
1
2 ∥X −MX̂∥ · ∥W ∥. (41)

16

Translating Subgraphs to Nodes Makes Simple GNNs Strong and Efficient for Subgraph Representation Learning

Table 4: Statistics of real-world datasets in original forms (before S2N translation).

PPI-BP HPO-Neuro HPO-Metab EM-User
nodes in G 17,080 14,587 14,587 57,333
edges in G 316,951 3,238,174 3,238,174 4,573,417
internal edges in subgraphs 9,627 217,555 390,450 86,648
subgraphs 1,591 4,000 2,400 324
Density of G 0.0022 0.0304 0.0304 0.0028
Average density of subgraphs 0.216±0.188 0.767±0.141 0.757±0.149 0.010±0.006

Average # nodes / subgraph 10.2±10.5 14.8±6.5 14.4±6.2 155.4±100.2

Average # components / subgraph 7.0±5.5 1.5±0.7 1.6±0.7 52.1±15.3

classes 6 10 6 2
Single- or multi-label Single-label Multi-label Single-label Single-label
Train/Valid/Test splits 80/10/10 80/10/10 80/10/10 70/15/15

E. Datasets
All real-world subgraph datasets (PPI-BP, HPO-Neuro, HPO-Metab, and EM-User) and synthetic subgraph datasets (Density,
Cut-Ratio, Coreness, and Component) are proposed in Alsentzer et al. (2020). They can be downloaded from the author’s
GitHub repository3. Pre-trained embeddings can be downloaded from the GitHub repository4 of Wang & Zhang (2022).
The following paragraphs describe their nodes, edges, subgraphs, tasks, and references. Note that the number of edges in
the real-world datasets compared to datasets referred to as large-scale (Lim et al., 2021) is at a similar level; thus, similar
scalability is required to model real-world graphs using GNNs.

E.1. Real-World Datasets

PPI-BP The global graph of PPI-BP (Zitnik et al., 2018; Subramanian et al., 2005; Consortium, 2019; Ashburner et al.,
2000) is a human protein-protein interaction (PPI) network; nodes are proteins, and edges are whether there is a physical
interaction between proteins. Subgraphs are sets of proteins in the same biological process (e.g., alcohol bio-synthetic
process). The task is to classify processes into six categories.

HPO-Neuro and HPO-Metab These two HPO (Human Phenotype Ontology) datasets (Hartley et al., 2020; Köhler et al.,
2019; Mordaunt et al., 2020) are knowledge graphs of phenotypes (i.e., symptoms) of rare neurological and metabolic
diseases. Each subgraph is a collection of symptoms associated with a monogenic disorder. The task is to diagnose the rare
disease: classifying the disease type among subcategories (ten for HPO-Neuro and six for HPO-Metab).

EM-User EM-User (Users in EndoMondo) dataset is a social fitness network from Endomondo (Ni et al., 2019). Here,
subgraphs are users, nodes are workouts, and edges exist between workouts completed by multiple users. Each subgraph
represents the workout history of a user. The task is to profile a user’s gender.

E.2. Synthetic Datasets

Density, Cut-Ratio, Coreness, and Component For these synthetic datasets, the task is to predict the properties of
subgraphs: density, cut ratio, average core number, and the number of components, respectively. Refer to Alsentzer
et al. (2020) for details on how to generate the synthetic graphs. We use a vector of 64 dimensions initialized to 1 or its
L1-normalized vector as input node embedding.

F. Models
We describe the hyperparameter details and the tuning method. All models are implemented with PyTorch (Paszke et al.,
2019), PyTorch Geometric (Fey & Lenssen, 2019), and PyTorch Lightning (Falcon & The PyTorch Lightning team, 2019).

3https://github.com/mims-harvard/SubGNN
4https://github.com/Xi-yuanWang/GLASS

17

https://github.com/mims-harvard/SubGNN
https://github.com/Xi-yuanWang/GLASS

Translating Subgraphs to Nodes Makes Simple GNNs Strong and Efficient for Subgraph Representation Learning

Table 5: Statistics of synthetic datasets in original forms (before S2N translation).

Density Cut-Ratio Coreness Component
nodes in G 5,000 5,000 5,000 19,555
edges in G 29,521 83,969 118,785 43,701
subgraphs 250 250 221 250
Density of G 0.0024 0.0067 0.0095 0.0002
Average density of subgraphs 0.232±0.146 0.945±0.028 0.219±0.062 0.150±0.161

Average # nodes / subgraph 20.0±0.0 20.0±0.0 20.0±0.0 74.2±52.8

Average # components / subgraph 3.8±3.7 1.0±0.0 1.0±0.0 4.9±3.5

classes 3 3 3 2
Single- or multi-label Single-label Single-label Single-label Single-label
Train/Valid/Test splits 80/10/10 80/10/10 80/10/10 80/10/10

Table 6: The attributes that affect the subgraph properties (labels) of synthetic datasets, introduced in Alsentzer et al. (2020).

Density Cut-Ratio Coreness Component
Internal structure Border structure Internal structure, border structure & position Internal & external position

We tune hyperparameters using TPE (Tree-structured Parzen Estimator) algorithm in Optuna (Akiba et al., 2019) by 400
trials: learning rate (5×10−4 – 10−2), weight decay (10−9 – 10−6), the number of layers in GNN (1 – 2), dropout of channels
and edges ({0.0, 0.1, ..., 0.5}), gradient clipping ({0.0, 0.1, ..., 0.5}), the readout matrix (ωvi = R[v,i] in Equation 11 or
ωvi = M[v,i]), and whether to use batch normalization (Ioffe & Szegedy, 2015) and skip-connection (He et al., 2016).
Hyperparameters specialized on GCNII are also tuned: α ({0.1, 0.2, ..., 0.9}), θ ({0.1, 0.2, ..., 2.0}), weight sharing (True
or False). For S2N translation, we tune edge normalization range (a and b = a+∆ in Equation 3, a ∈ {1.0, 1.25, ..., 4.0},
∆ ∈ {0.5, 1.0, 1.5, 2.0}). We add frozen Random Walk Positional Encoding (RWPE) (Dwivedi et al., 2022) to input features
for real-world datasets. For synthetic datasets, we allocate RWPE to 1/2 or 1/4 of the total embedding dimension.

All hyperparameters are reported in the code.

G. Efficiency Measurement
We compute throughput (subgraphs per second) and latency (seconds per forward pass) using the following equations. In
addition, we use torch.cuda.max memory allocated to measure the maximum allocated GPU VRAM5.

Training throughput =
of training subgraphs

training wall-clock time (seconds) / # of epochs
, (42)

Evaluation throughput =
of validation subgraphs

validation wall-clock time (seconds) / # of epochs
, (43)

Training latency =
training wall-clock time (seconds)

of training batches
, (44)

Evaluation latency =
validation wall-clock time (seconds)

of validation batches
. (45)

While throughput is a primary metric in practice, focusing solely on this metric is suboptimal for best model selection.
Specifically, we observed that connected forms suffer from extensive memory consumption, and separated forms exhibit
significant performance degradation compared to our proposed S2N models. The holistic evaluation of performance,
throughput, and memory requirements is crucial for practitioners to decide which models to employ based on their specific
constraints and requirements, as stated in Dehghani et al. (2022).

5https://pytorch.org/docs/1.9.0/generated/torch.cuda.max memory allocated.html

18

https://pytorch.org/docs/1.9.0/generated/torch.cuda.max_memory_allocated.html

Translating Subgraphs to Nodes Makes Simple GNNs Strong and Efficient for Subgraph Representation Learning

Table 7: Mean performance in micro F1-score over 10 runs. We mark with daggers the reprinted results from Alsentzer et al.
(2020) (†) and Wang & Zhang (2022) (‡).

Model Data Structure PPI-BP EM-User
Sub2Vec Best† 30.9±2.3 85.9±1.4

SubGNN† 59.9±2.4 81.4±4.6

GLASS‡ 61.9±0.7 88.8±0.6

GCNII Separated 61.3±1.2 84.7±4.1

GCNII Connected 63.5±2.0 85.5±4.8

GCNII S2N+0 63.5±2.4 86.5±3.2

GCNII S2N+A 63.7±2.3 89.0±1.6

GIN Separated 60.6±2.1 82.2±6.6

GIN Connected 61.0±3.3 83.7±4.8

GIN S2N+0 63.3±1.6 84.9±5.3

GIN S2N+A 62.2±1.9 83.1±1.6

GATv2 Separated 61.4±2.6 84.7±4.9

GATv2 Connected 61.0±1.5 OOM
GATv2 S2N+0 62.8±1.7 84.9±2.4

GATv2 S2N+A 62.6±1.4 86.7±3.2

H. Discussion on the Number of Nodes and Edges in S2N
The number of nodes in S2N+A in Table 1 only includes nodes translated from subgraphs. The total number of nodes in
S2N+A may be larger than the original global graph if we count all internal nodes in the subgraph. However, this is not
significantly related to actual efficiency. The reason is that in S2N+A, internal nodes in the subgraph are kept sparse (i.e.,
indexing) rather than dense embedding by implementation, so memory cost is low. Specifically, node indexing requires the
space complexity of O(N), and dense embedding requires O(NF), where N is the number of nodes and F is the number
of features. The dominant factors of computational and memory bottlenecks are the number of subgraphs (the number of
nodes in S2N), which determines the size of the final representation, and the number of edges, which determines the number
of message-passing, as illustrated in Table 1.

I. Generalization of Homophily to Multi-label Classification
Node (Pei et al., 2020) and edge homophily (Zhu et al., 2020) are defined by,

hedge =
|{(u, v)|(u, v) ∈ A ∧ yu = yv}|

|A|
, hnode =

1

|V|
∑
v∈V

|{(u, v)|u ∈ N (v) ∧ yu = yv}|
|N (v)|

, (46)

where yv is the label of the node v. In the main paper, we define multi-label node and edge homophily by,

hedge, ml =
1

|A|
∑

(u,v)∈A

|Lu ∩ Lv|
|Lu ∪ Lv|

, hnode, ml =
1

|V|
∑
v∈V

 1

|N (v)|
∑

u∈N (v)

|Lu ∩ Lv|
|Lu ∪ Lv|

 . (47)

If we compute r = |Lu∩Lv|
|Lu∪Lv| for single-label multi-class graphs, r = 1

1 = 1 for nodes of same classes, and r = 0
2 = 0 for

nodes of different classes. That makes hedge, ml = hedge and hnode, ml = hnode for single-label graphs.

J. Performance of Different GNN Layers
In Table 7, we demonstrate the performance of S2N models using additional GNN layers: Graph Isomorphism Networks
(GIN) (Xu et al., 2019) and Graph Attention Networks v2 (GATv2) (Brody et al., 2022) on PPI-BP and EM-User.

GIN and GATv2 (S2N+0 and S2N+A) outperform GLASS on PPI-BP but perform worse than on EM-User. We confirm
that S2N outperforms classic data structures: separated and connected forms. For GATv2, we cannot experiment with the

19

Translating Subgraphs to Nodes Makes Simple GNNs Strong and Efficient for Subgraph Representation Learning

Table 8: Mean performance in micro F1-score over 10 runs using GCNII models with different readout methods.

Data Structure Readout PPI-BP HPO-Neuro HPO-Metab EM-User

S2N+0

Sum 63.5±2.4 66.4±1.1 61.6±1.7 86.5±3.2

Mean 59.9±2.0 63.9±0.5 62.0±1.0 85.3±3.9

Max 48.6±2.8 54.1±1.0 51.8±2.2 72.2±7.1

Degree 60.3±2.2 65.6±1.0 58.8±2.3 83.1±2.9

S2N+A

Sum 63.7±2.3 68.4±1.0 63.2±2.7 88.8±2.1

Mean 59.6±1.5 66.6±1.0 60.8±1.1 88.0±3.2

Max 58.5±1.7 59.6±2.0 59.4±2.7 81.2±3.1

Degree 63.1±2.2 68.4±0.9 61.0±2.0 89.0±1.6

Table 9: Mean performance in micro F1-score over 10 runs using GCNII models with different numbers of layers of GNNS2N.

Data Structure # layers PPI-BP HPO-Neuro HPO-Metab EM-User

S2N+0

0 57.7±1.6 65.2±1.6 55.5±1.9 77.6±9.4

1 61.1±2.4 66.4±1.1 61.6±1.7 79.2±9.2

2 63.5±2.4 65.6±1.4 59.4±1.0 86.5±3.2

4 62.8±2.0 65.8±0.8 61.1±1.7 79.2±7.9

S2N+A

0 59.7±2.2 68.2±0.8 61.8±1.7 87.1±3.5

1 63.7±2.3 68.4±1.0 61.9±2.0 89.0±1.6

2 61.8±1.4 68.0±0.8 63.2±2.7 86.3±4.9

4 61.6±1.7 67.7±0.8 62.0±1.6 86.3±5.2

connected form on EM-User due to the requirements of large GPU memory. Nonetheless, all S2N models with GIN and
GATv2 outperform SubGNN on all datasets.

Compared to GCNII, which showed the best performance in our paper, GIN and GATv2 generally perform worse. This
implies that architectures designed for node or link-level tasks are sub-optimal for subgraph-level tasks. We suggest further
studies on model architectures for learning subgraph representations.

K. Ablation Study of Hyperparameters
We conduct ablation studies on the readout method (Equation 10) (sum, mean, max, and degree-dependent), the number
of layers in GNNS2N (0, 1, 2, 4), and the positional encoding (Dwivedi et al., 2022). We report the performance of S2N+0
and S2N+A with GCNII by the readout method in Table 8, the number of layers in Table 9, and the positional encoding in
Table 10.

Readout Generally, the sum-readout performs best, and the max-readout performs the worst, as illustrated in Table 8.
The performance of mean-readout and degree-dependent readout varies by dataset. In S2N+A, degree-dependent readout
performs similarly to sum-readout and slightly outperforms on EM-User.

The Number of Layers In Table 9, we find that using message-passing (i.e., the number of layers > 0) always increases
the performance on all datasets. That is, modeling the S2N graph structures helps to learn the representation of subgraphs.
The performance improvement by GNNS2N in S2N+0 is higher than in S2N+A, which leverages internal structures. The
performance decreases when we use a deeper GNNS2N than the optimum; that is, an over-smoothing effect exists in
GNNS2N (Li et al., 2018).

Positional Encoding In Table 10, we report the performance of GCNII models with Random Walk Positional Encoding
(RWPE) and Laplacian Positional Encoding (LapPE) (Dwivedi et al., 2022). We find that LapPE also contributes to
performance improvement in general, and there is no significant difference between RWPE and LapPE.

20

Translating Subgraphs to Nodes Makes Simple GNNs Strong and Efficient for Subgraph Representation Learning

Table 10: Mean performance in micro F1-score over 10 runs using GCNII models with different positional encoding.

Data Structure Positional Encoding PPI-BP HPO-Neuro HPO-Metab EM-User

S2N+0
None 63.5±2.4 66.4±1.1 61.6±1.7 86.5±3.2

RWPE 63.5±1.7 66.7±0.6 62.3±1.1 86.5±4.7

LapPE 63.9±2.4 66.1±0.8 61.9±1.7 87.3±2.5

S2N+A
None 63.7±2.3 68.4±1.0 63.2±2.7 89.0±1.6

RWPE 64.3±1.8 68.6±0.8 63.9±1.7 89.0±3.1

LapPE 64.2±1.9 68.8±0.9 63.7±1.4 89.0±3.2

10 20 40 80
training samples / class

0.5

0.6

0.7

0.8

0.9

Pe
rfo

rm
an

ce

(a) Performance

10 20 40 80
training samples / class

102

103

104

Tr
ai

n
Th

ro
ug

hp
ut

 (#
/s

)

(b) Training Throughput

10 20 40 80
training samples / class

102

103

104

Ev
al

 T
hr

ou
gh

pu
t (

#/
s)

(c) Eval Throughput

10 20 40 80
training samples / class

102

103

104

M
ax

 A
llo

ca
te

d
VR

AM
 (M

B)

Data structure
S2N+0
S2N+A
CoS2N+0
CoS2N+A
Connected
Separated

(d) Max allocated VRAM

Figure 5: Performance and efficiency on EM-User of S2N, CoS2N, connected, and separated forms by the number of training
samples in a data-scarce setting.

L. Performance and Efficiency of Coarsened S2N in a Data-Scarce Setting
For experiments in a data-scare setting, we narrow the search space of hyperparameters. Specifically, we fix to use batch
normalization but not skip-connections. We use a coarsening ratio that creates virtual subgraphs smaller than the average
size: [0.2, 0.3, 0.4, 0.5] for PPI-BP and [0.7, 0.8, 0.9] for EM-User. After graph coarsening, we remove subgraphs that consist
of a single node. We follow the same tuning procedures in Appendix F for the remaining details.

As stated in §6.4, we summarize performance and efficiency on EM-User in Figure 5. Overall, results on EM-User do not
show a notable difference from trends in data-scarce experiments on PPI-BP at §6.4. We can observe that (1) subgraphs
created by coarsening contribute to performance improvements of S2N, and (2) CoS2N has higher throughput and uses less
memory than using the global graph.

We report the performance on PPI-BP and EM-User by the coarsening ratio in Figure 6. Although there is no consistently
optimal coarsening ratio by the number of training samples, we can conclude that finding the optimal coarsening ratio for
each dataset can increase the performance.

21

Translating Subgraphs to Nodes Makes Simple GNNs Strong and Efficient for Subgraph Representation Learning

0.2 0.3 0.4 0.5
Coarsening ratio

0.4

0.5

Pe
rfo

rm
an

ce

samples / class = [10]

0.2 0.3 0.4 0.5
Coarsening ratio

samples / class = [20]

0.2 0.3 0.4 0.5
Coarsening ratio

samples / class = [30]

0.2 0.3 0.4 0.5
Coarsening ratio

samples / class = [40]

0.2 0.3 0.4 0.5
Coarsening ratio

samples / class = [80]

Data structure
CoS2N+0
CoS2N+A

(a) Performance on PPI-BP by coarsening ratio.

0.7 0.8 0.9
Coarsening ratio

0.7

0.8

Pe
rfo

rm
an

ce

samples / class = [10]

0.7 0.8 0.9
Coarsening ratio

samples / class = [20]

0.7 0.8 0.9
Coarsening ratio

samples / class = [30]

0.7 0.8 0.9
Coarsening ratio

samples / class = [40]

0.7 0.8 0.9
Coarsening ratio

samples / class = [80]

Data structure
CoS2N+0
CoS2N+A

(b) Performance on EM-User by coarsening ratio.

Figure 6: Performance of CoS2N on PPI-BP and EM-User by coarsening ratio.

22

