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Abstract
Optimization layers in deep neural networks have
enjoyed a growing popularity in structured learn-
ing, improving the state of the art on a variety
of applications. Yet, these pipelines lack inter-
pretability since they are made of two opaque
layers: a highly non-linear prediction model,
such as a deep neural network, and an optimiza-
tion layer, which is typically a complex black-
box solver. Our goal is to improve the trans-
parency of such methods by providing counter-
factual explanations. We build upon variational
autoencoders a principled way of obtaining coun-
terfactuals: working in the latent space leads to a
natural notion of plausibility of explanations. We
finally introduce a variant of the classic loss for
VAE training that improves their performance in
our specific structured context. These provide the
foundations of CF-OPT, a first-order optimiza-
tion algorithm that can find counterfactual expla-
nations for a broad class of structured learning ar-
chitectures. Our numerical results show that both
close and plausible explanations can be obtained
for problems from the recent literature.

1. Introduction
Recent studies have shown a surge of interest in developing
structured learning pipelines that combine machine learn-
ing and optimization (Amos & Kolter, 2017; Donti et al.,
2017). From the perspective of structured learning, opti-
mization layers translate a machine-learning prediction into
an output that maximizes a given objective while respect-
ing structural constraints. From an optimization perspec-
tive, machine-learning models can identify patterns in data
to optimize an objective function subject to uncertain pa-
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rameters. While these pipelines have shown great results in
many applications (Mandi et al., 2023; Sadana et al., 2023),
it is hard to justify their outputs since both their predic-
tion and optimization components are complex and opaque.
This lack of interpretability is hardly tackled, even though
it is likely to hinder the adoption of this type of solution.
We aim to explain the decision-making process of struc-
tured learning pipelines by providing counterfactual expla-
nations. Counterfactual explanations show the minimum
changes in a feature vector needed to lead the pipeline to
output a different decision. By contrasting the initial fac-
tual instance with its counterfactual explanation, they allow
users to understand the impact of features on the decision.
Indeed, identifying which features make a specific solution
optimal and establishing a link between changes in the fea-
tures and changes in the output are essential conditions for
the reliable use of a model.

(a) Initial map (b) Counterfactual map

Figure 1. (a) Initial and (b) counterfactual maps with their respec-
tive shortest path (initial and alternative solutions) shown in yel-
low. The explanation is given by CF-OPT. The corresponding
pipeline and experiment is detailed in Section 5.1 and will serve
as a guiding example in this work.

In this paper, we present CF-OPT, a method to obtain
counterfactual explanations for any deep learning model
concluded by a black-box linear optimization layer, called
thereafter structured learning pipeline. It is based on dif-
ferentiating a relaxed version of the explanation problem
and applying a first-order optimization method to obtain
a counterfactual. An example explanation provided by
CF-OPT is shown in Figure 1 for the shortest paths on
Warcraft maps structured learning pipeline, taken from
Vlastelica et al. (2019).

1



CF-OPT: Counterfactual Explanations for Structured Prediction

We make the following contributions:
(i) We present an efficient algorithm to provide counter-

factual explanations to structured learning pipelines that
combine a deep model and an optimization model. It is
based on an augmented Lagrangian relaxation of the expla-
nation problem and a first-order optimization algorithm.

(ii) We propose a new type of explanation that does not
require a target decision and can be used for local sensitiv-
ity analyses.

(iii) We highlight the sensitivity of structured learning
pipelines to subtle perturbations: for high-dimensional in-
puts, naive counterfactual explanations are equivalent to
adversarial attacks. As a consequence, we define a notion
of plausibility region and develop a method to obtain plau-
sible explanations even in high-dimensional settings thanks
to a Variational Auto-Encoder (VAE).

(iv) We take advantage of the prior imposed on the latent
space of the VAE in order to add a plausibility regulariza-
tion term to the explanation objective. Furthermore, we
modify the training objective of the VAE by introducing a
cost-aware loss, designed to account for the downstream
optimization task.

(v) We demonstrate the value of our method and ana-
lyze its principal components thanks to numerical experi-
ments. We show that we can compute explanations effi-
ciently, even for large problems.

2. Problem Statement
In this paper, we consider structured learning models of the
form

x 7−→ y∗(x) ∈ argmin
y∈Y

φ(x)⊤y, (1)

where x ∈ X ⊆ Rnx is a vector of features, equiva-
lently referred to as context or covariate. The prediction
model φ : X → Θ transforms x into an intermediate input
φ(x) = θ ∈ Θ ⊆ Rnθ . This intermediate input parameter-
izes the linear optimization layer, which returns the deci-
sion y∗ ∈ argminy∈Y θ

⊤y, where Y ⊆ Rny is the feasible
set. A schematic representation is given in Figure 2.

Prediction
model φ

Optimization
model

Covariate

x

Intermediate

input θ

Decision

y∗

Figure 2. Structured learning pipeline.

We focus on optimization layers of feasible set Y defined
by linear with possible integrality constraints, and make no
assumption on the solver used to compute y∗.

This setting encompasses a wide array of methods pro-
posed in recent years, used to make structured predictions
(Wilder et al., 2019; Vlastelica et al., 2019; Ferber et al.,
2020; Berthet et al., 2020; Niepert et al., 2021; Sahoo et al.,

2023; Stewart et al., 2023), to solve contextual stochas-
tic problems whose objective is linear in the uncertain pa-
rameters (Elmachtoub & Grigas, 2022; Jeong et al., 2022;
McKenzie et al., 2023), or to approximate hard optimiza-
tion problems by learning linear surrogate models (Dalle
et al., 2022; Ferber et al., 2023; Gupta & Zhang, 2024).
While these works differ in the way the models are trained,
the structure of the resulting pipeline, in particular the opti-
mization layer, is identical to the one in Figure 2. This work
thus allows to improve the interpretability of a large array
of recent methods. The only assumption we make on the
prediction model is that it is differentiable w.r.t to its input,
so that φ can typically be any state-of-the-art deep learning
model. Hence, our setting extends the one of Forel et al.
(2023), who provide explanations for a restricted type of
pipeline based on random forests and k-nearest neighbors.

2.1. Counterfactual Explanations of Decisions

Counterfactual explanations of decisions are based on con-
trasting a covariate with an alternative one. Suppose that,
at decision time, we observe covariate x0 and evaluate the
trained pipeline to obtain decision y0. Let yalt be an al-
ternative decision representing, for instance, the solution
usually chosen by an expert in context x0. We explain the
decision y0 by comparing its covariate x0 to an alternative
covariate xalt that we find, i.e., the counterfactual expla-
nation. Let θalt = φ(xalt) be the output of the prediction
model for this alternative covariate. Two types of explana-
tion have been introduced by Forel et al. (2023).
Definition 2.1. A covariate xalt is a relative explanation if
the decision yalt is at least as good as y0 in the context xalt,
that is: θalt⊤yalt ≤ θalt⊤y0.
Definition 2.2. A covariate xalt is an absolute explanation
if the decision yalt is optimal in the context xalt, that is:
yalt ∈ argminy∈Y θ

alt⊤y.

Definitions 2.1 and 2.2 require that the practitioner pro-
vides an alternative solution yalt. When such a solution is
not available, the decision-maker may be interested in ana-
lyzing the local sensitivity of the decision y0. To this end,
we propose a third, novel type of explanation, aiming at
finding a context xalt in which y0 is not optimal anymore.
To control the amount of suboptimality of the initial solu-
tion y0 in the new context xalt, we add a parameter ε.
Definition 2.3. A covariate xalt is an ε-explanation if
miny∈Y θ

alt⊤y + ε |miny∈Y θ
alt⊤y| ≤ θalt⊤y0, that is, y0

has a relative optimality gap (or relative regret) of at least ε
in the context xalt.
Remark 2.4. For the sake of clarity, we will consider
below that the costs of solutions are necessarily positive
(which is true, e.g., in our guiding example on Warcraft
maps). The condition for xalt being an ε-explanation then
reduces to (1 + ε)miny∈Y θ

alt⊤y ≤ θalt⊤y0.
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(a) Initial map and its associ-
ated shortest path

(b) Adversarial explanation
obtained with naive algorithm

(c) Magnified difference
(x10) between (a) and (b)

(d) Plausible explanation ob-
tained with CF-OPT

Figure 3. Naive counterfactual search in raw feature space leads to adversarial examples. CF-OPT recovers a plausible explanation,
using a VAE trained in a cost-aware fashion, and a latent hypersphere plausibility regularized objective (α = 2, β = 10).

In order to facilitate the understanding of these defini-
tions, we present several examples of relative, absolute
and ε-explanations obtained with CF-OPT for the Warcraft
Maps structured learning pipeline in Appendix C.

2.2. The Explanation Problem

Several desirable properties have been identified for coun-
terfactual explanations (Wachter et al., 2017; Verma et al.,
2020). Arguably, the two most important ones are prox-
imity and plausibility. The first property ensures that the
counterfactual is close to the initial context, and the latter
ensures that it is close to the data manifold.

We introduce the function h to measure the satisfaction of
the explanation criterion, that is:

h(x) =


φ(x)⊤

(
yalt − y0

)
for relative explanations,

φ(x)⊤
(
yalt − y∗(x)

)
for absolute explanations,

φ(x)⊤ ((1 + ε) y∗(x)− y0) for ε-explanations.

A context x is a valid explanation if h(x) ≤ 0. Without
loss of generality, we consider thereafter the explanation
constraint to be an equality, that is h(x) = 0, which is
always possible by introducing a slack variable.

Constrained optimization. Let ℓ be a differentiable func-
tion used to measure proximity in the contextual feature
space X , e.g., the squared Euclidean distance. A close and
plausible counterfactual explanation xalt is a solution to the
constrained optimization problem given by:

min
x∈X

ℓ(x0, x) (2a)

s.t. h(x) = 0, (2b)
x ∈ D (2c)

where D is a region of plausibility.

Region of plausibility The counterfactual explanation
literature has not converged on a definition of plausibil-
ity. We outline the following desirable properties for such

a region. (i) A region D that allows searching for close
explanations by having small expected distance to initial
contexts, i.e., Ex0∼Pdata [minx∈D ℓ(x0, x)] is small; (ii) A
low volume Leb(D) w.r.t the Lebesgue measure in order
to avoid the presence of low probability areas within D;
(iii) Respecting the symmetries of the problem: e.g, if Pdata
is isotropic, D should also be. The constraint x ∈ D there-
fore models the plausibility of the explanation, and is im-
plicit in the sense that the distribution Pdata is unknown.
However, it is critical to ensure that the explanation is not
an adversarial example as illustrated in Figure 3. We pro-
vide a method to build such a region in the next section.

The link between adversarial examples and counterfactual
explanations is well documented in the predictive setting,
where one aims to explain classifiers (Browne & Swift,
2020; Pawelczyk et al., 2022; Freiesleben, 2022). Both
consist in finding the closest input that flips a model’s pre-
diction and share the same optimization formulation. Our
setting is more complex since the model to be explained
is a structured learning pipeline and not a simple classifier.
Still, there are clear connections between explanations of
decisions and adversarial examples. Absolute explanations
present a constrained optimization formulation close to that
of white-box targeted adversarial attacks, that aim at find-
ing the closest input that makes the output probability of
a given class the highest one (Ma et al., 2021). Likewise,
ε-explanations are similar to untargeted adversarial attacks.

3. Modeling Plausibility with a Variational
Autoencoder

In CF-OPT, we use a VAE to get a meaningful and
tractable formulation of the plausibility constraint x ∈ D.
More precisely, (i) we reformulate the plausibility con-
straint in the latent space, and (ii) we relax it into a soft
constraint via a regularized objective. This strategy is made
even more efficient by (iii) tailoring the VAE learning algo-
rithm to obtain a model better adapted to modeling plausi-
bility in our structured setting.

3



CF-OPT: Counterfactual Explanations for Structured Prediction

Figure 4. Pipeline of CF-OPT for plausible explanations in high-dimensional spaces. The input x is encoded and decoded using a CA-
VAE. The reconstructed context x̃ is given to the prediction model φ, a CNN in our guiding example, to obtain the parameters θ. The
parameterized optimization model is finally solved to obtain the decision y∗.

Background. VAEs are probabilistic generative models
made of two components. First, an encoder eϕ parameter-
ized by ϕmaps any input x ∈ Rnx to a distribution eϕ(z|x)
over the latent space Z ⊆ Rnz , with nz ≪ nx. Then, a
decoder dψ parameterized by ψ maps any latent variable
z ∈ Rnz back to the feature space in the form of a dis-
tribution dψ(x|z). The interest of a VAE is to provide a
low-dimensional approximation of the unknown manifold
underlying the data. The encoder eϕ allows for represent-
ing x in a much lower dimensional latent variable z, and
the decoder dψ tries to reconstruct x from z. We will note
thereafter eϕ(x) = E [eϕ(z|x)] and dψ(z) = E [dψ(x|z)].

Training a VAE is usually done by maximizing the follow-
ing lower bound on its log-likelihood, called ELBO (for
Evidence Lower Bound, Kingma & Welling (2014)):

L(ϕ, ψ;xi) = Ez∼eϕ(z|xi) [log dψ(xi|z)]
−DKL (eϕ(z|xi)||p(z))

(3)

where xi is a sample from the training set, DKL is the
Kullback-Leibler (KL) divergence, and p(z) is a prior dis-
tribution over the latent variable. As is often done, we set
the latter to be an isotropic, centered, multivariate Gaussian
distribution: p(z) = N (z; 0, Inz ).

3.1. Latent Space Counterfactual Search

The VAE, once trained on the same dataset φ was trained
on, allows us to benefit from an approximation of the data
manifold by mapping its latent space Z back to feature
space via dψ . Thus, we reformulate the plausibility con-
straint x ∈ D of problem (2) in latent space, and state that
a close and plausible —latent— counterfactual explanation
zalt is a solution to the problem:

min
z∈Z

ℓ (x0, dψ(z)) (4a)

s.t. χ(z) = 0, (4b)
z ∈ DZ (4c)

where χ(z) = h ◦ dψ(z), and DZ is a region of plausi-
bility in latent space. We recover an explanation by taking
xalt = dψ(z

alt).

Remark 3.1. In several applications, the feature space X
might not be endowed with a meaningful metric to measure
the proximity of a tentative counterfactual xalt w.r.t x0. A
convenient substitute is then to measure this distance in the
latent space, and use ℓ(x0, zalt) = ||eϕ(x0)− zalt||22 as ob-
jective (Deudon, 2018).

3.2. DZ as a Latent Hypersphere

It turns out that defining a region of plausibility is easier
in the latent space. Indeed, we suggest using DZ as the
thickened hypersphere

DZ =
{
z ∈ Z : ∥z∥2 ∈ [Cnz − κ,Cnz + κ]}

with Cnz = Ez∼p(z) ||z||2 ≈
√
nz and κ > 0 a small con-

stant. Practically, to ease computations and avoid potential
infeasible problems, we use a soft version of the constraint
z ∈ DZ , leading to the counterfactual explanation problem

min
z∈Z

ℓ (x0, dψ(z)) + Ω(z) (5a)

s.t. χ(z) = 0, (5b)

with Ω(z) = β (||z||2 − Cnz )
2 being our proposed plausi-

bility regularization, and β > 0 a hyperparameter control-
ling its weight.

To understand our definition of DZ , recall that since the
KL divergence in Equation (3) forces the distribution of
latent codes to match that of the prior p(z), a standard
Gaussian is a good approximation of the push-forward of
Pdata through the encoder eϕ. In Appendix A.1, we pro-
vide numerical justifications for this approximation. The
Gaussian being isotropic, it is natural to define DZ as
{z ∈ Z : a ≤ ||z||2 ≤ b}. Besides, it is well known that the
ℓ2 norm of a high-dimensional standard Gaussian concen-
trates around its expectation (Biau & Mason, 2015), lead-
ing to our definition of DZ .

4



CF-OPT: Counterfactual Explanations for Structured Prediction

In Appendix A.2, we give theoretical insights into why this
region is optimal w.r.t the desirable properties we identi-
fied in Section 2.2. Moreover, as a benchmark, we ex-
perimentally show in Section 5.3 that using this hyper-
sphere instead of a centered ball leads to improved per-
formance (the corresponding region D̃Z being of the form
{z ∈ Z : p(z) ≥ δ} and the corresponding regularization
being Ω̃(z) = β||z||22).

3.3. Tailoring VAE Training with a Cost-Aware Loss

The costs predicted after VAE-reconstruction φ(x̃) can be
quite far from φ(x), as training a VAE to maximize the tra-
ditional ELBO is agnostic to the downstream task in our
specific setting. This is unfortunate since a poor accuracy
of the reconstructed costs reduces the quality of the ob-
tained counterfactuals: indeed, it can lead to perturbations
in the pipeline’s output associated to the initial context x0.

We adopt an empirical approach to this issue and penalize
the distance between predicted costs before and after re-
construction during training. More precisely, we suggest
using the following term for sample xi in the maximized
objective when training our VAE in a cost-aware fashion:

LCA(ϕ, ψ;xi) = L(ϕ, ψ;xi)
−α Ez∼eϕ(z|xi)

[
||φ(xi)− φ (dψ(z)) ||22

]
,

(6)

where L(ϕ, ψ;xi) is the ELBO traditionally used, and
α > 0 is a hyperparameter controlling the regularization
weight. Thus, this learning objective takes into account
the cost-reconstruction error, in addition to the traditional
feature-reconstruction error (the expectation term in Equa-
tion (3)). During training, this additional term is approxi-
mated using a Monte-Carlo estimate, as is already usually
done when approximating the feature-reconstruction loss
(naturally, we use the same samples to compute both).
Remark 3.2. We did not observe a significant impact of the
dimension of the latent space on the method, other than its
known impact on the ability of the VAE to generate high-
quality samples. Hence, the architectural choices follow
the usual concerns when training a VAE.

4. Computing Counterfactuals
In general, the explanation problem, whether formulated
in feature space or latent space, is non-convex and has no
closed-form solution. Our algorithm to obtain explana-
tions is based on constrained differential optimization and,
in particular, the modified differential method of multipli-
ers (MDMM) of Platt & Barr (1987).

Similarly to most works on end-to-end training, we also
need to propagate a gradient through a discrete optimiza-
tion layer. However, there is an important difference: the
pipeline is already trained. Thus, we compute a gradient

w.r.t the covariate’s features and not the model’s parame-
ters as is done when training the pipeline.

4.1. Augmented Lagrangian and its Gradient

The MDMM is based on the following relaxation of the
constrained optimization problem 5, called an energy func-
tion by Platt & Barr (1987), and commonly known as the
augmented Lagrangian (Boyd et al., 2011):

E(z, λ) = ℓ (x0, dψ(z))+Ω(z)+λχ (z)+
ρ

2
(χ (z))

2 (7)

where λ ∈ R is the dual variable of the explanation con-
straint and ρ > 0 is a constant hyperparameter, called the
damping term.

The idea of the MDMM is to perform a gradient descent
on E w.r.t z and a gradient ascent on E w.r.t λ in order
to reach a local minimum z∗ that satisfies the constraint
χ(z∗) = 0.

Remark 4.1. The primal variable z is initialized at
z(1) = eϕ(x0), which is the only time the encoder eϕ is
used per explanation task.

This algorithm is closely related to another first-order con-
strained optimization algorithm: the method of multipli-
ers (MoM) (Boyd et al., 2011). The main difference is that,
at each iteration, the optimization problem is solved to op-
timality instead of updating z with a gradient descent step.
The MDMM is more convenient in our setting since solv-
ing minz E(z, λ) for each λ is difficult.

As it involves the composition of complex deep architec-
tures (the decoder and the prediction model), the opti-
mization problem considered is highly non-convex. The
MDMM can therefore only provide convergence to a local
minimum, under rather technical assumptions on its ini-
tialization which need not be detailed here (Platt & Barr,
1987). However, our numerical experiments highlight that
it is very efficient at obtaining feasible and close solutions.

Gradients. We note x = dψ(z). The energy function E
is differentiable almost everywhere w.r.t z (everywhere in
the case of relative explanations, the problem coming from
differentiating y∗(x) when argminy∈Y φ(x)

⊤y contains
more than one element). Moreover, we have:

∇χ(z) =


Jφ◦dψ (z)

(
yalt − y0

)
(relative exp.)

Jφ◦dψ (z)
(
yalt − y∗(x)

)
(absolute exp.)

Jφ◦dψ (z) ((1 + ε) y∗(x)− y0) (ε-exp.)
(8)

These gradients can be derived easily since ∇xy∗(x) = 0
almost everywhere due to y∗ being piecewise constant, as
the solution of a linear optimization problem. The Jaco-
bian Jφ◦dψ (z) is computed via automatic differentiation
through decoder dψ and prediction model φ.
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Remark 4.2. If miny∈Y φ(x)
⊤y is negative, we only

have to change (1+ ε) to (1− ε) inside the expression of
the gradient for ε-explanations (see Remark 2.4).

4.2. Our Algorithm

Our algorithm is given in Algorithm 1 in Appendix D. The
parametersK and cmax are hyperparameters that define the
maximum number of iterations and the maximum number
of non-improving iterations. We define an iteration k as
improving if x(k) satisfies the explanation criterion, and if
ℓ(x0, x

(k)) + Ω(z(k)) ≤ u
(
ℓ(x0, x

(j)) + Ω(z(j))
)
, where

j is the index of the last improving iteration and u ∈ ]0, 1[
is an update tolerance hyperparameter.

If the plausibility of the explanation is not taken into ac-
count, the use of a VAE is not necessary and the feature
space formulation of CF-OPT is given in Algorithm 2.

The computational effort of finding an explanation of a de-
cision lies in computing the gradient in Equation (8). For
absolute and ε-explanations, the linear optimization prob-
lem miny∈Y φ(x

(k))⊤y is solved once per iteration. The
solution y∗(x(k)) is used twice at each iteration: to check
whether the explanation criterion is satisfied and to com-
pute the gradient∇zE . Relative explanations do not require
to solve this problem and are thus cheaper to compute.

5. Numerical Study
In this section, we evaluate the ability of CF-OPT to obtain
plausible explanations of decisions in a high-dimensional
setting. We focus on the problem of finding shortest paths
on Warcraft maps, which has been our guiding example
throughout the paper. Warcraft maps are 96× 96 RGB im-
ages with continuous color values. Every area is walkable,
and crossing them results in different costs. The true, un-
known costs can only take discrete values (associated with
the terrain being a forest, rock, water, etc.), but the Con-
volutional Neural Network (CNN) φ used to predict them
from the maps outputs continuous ones. The output of the
full structured learning pipeline is the shortest path from
the upper-left corner to the lower-right one.

Our experiments study the value of using the hypersphere
regularization and training a VAE in a cost-aware fashion.
We provide the details of our experimental setting, the ar-
chitecture of our models, as well as other results with low-
dimensional tabular data in Appendix B.

Our experiments are implemented in Python and run on
four cores of an Intel Core i7-8565U CPU @ 1.80GHz and
use 16GB RAM. The code used to generate all the results
in this paper is available publicly at https://github.
com/GermainVivierArdisson/CF-OPT under an
MIT license.

5.1. Experimental Setting

We follow the experimental setting of Vlastelica et al.
(2019) and used subsequently in several works (Dalle et al.,
2022; Tang & Khalil, 2022; McKenzie et al., 2023). The
training set {xi, θi, yi}Ni=1 is made of N = 10000 exam-
ples of Warcraft maps as well as their associated true costs
and shortest paths.

Relative regret metric. We introduce here the relative re-
gret metric, which is used in our experiments to quantify
the impact of both the cost-aware and plausibility regular-
ization. The relative regret reg(y, θ) of a feasible solution
y ∈ Y for a cost θ is defined as:

reg(y, θ) =
θ⊤y − θ⊤y∗(θ)
|θ⊤y∗(θ)|

, (9)

where θ is a cost vector and and y∗(θ) = argminy∈Y θ
⊤y

is the optimal solution associated to θ.

VAE models. All VAEs are implemented as CNNs with
convolutions for the encoder and transposed convolutions
for the decoder. The default latent space dimension is taken
to be 64.

Selection of explanation tasks. In our experiments, we re-
peatedly solve explanation problems using initial maps and
alternative paths to obtain Nexp explanations. The initial
maps are all different and never seen during the training
of any VAE. Further, to avoid trivial explanation tasks, the
alternative paths defining explanation problems are always
taken to be different from the shortest path associated to the
initial map.

5.2. Impact of Cost-Aware Training

First, we quantify the impact of the cost-aware regulariza-
tion in the training objective of the VAE in Equation (6) by
measuring the reconstruction of the optimal path after the
VAE. We measure this with three metrics:

(i) the relative regret reg (y∗(φ(xi)), φ(x̃i)) of the initial
optimal solution associated to xi in the reconstructed con-
text x̃i,
(ii) the relative regret reg (y∗(θi), φ(x̃i)) of the optimal

path associated to the true cost θi in the reconstructed con-
text x̃i,
(iii) the squared ℓ2 norm ||xi − x̃i||22, the natural metric

for evaluating the feature-reconstruction performances of
the VAE.
We train several VAEs, with varying cost-aware regular-
ization weight α. Notice that using α = 0 recovers the
traditional cost-agnostic VAE. All VAEs are trained until
convergence, with early stopping to avoid overfitting. Af-
ter training, we measure the average of each performance
metric over a test set of 1000 data points.

6

https://github.com/GermainVivierArdisson/CF-OPT
https://github.com/GermainVivierArdisson/CF-OPT


CF-OPT: Counterfactual Explanations for Structured Prediction

0 0.1 0.2 0.3 0.5 0.7 1 2 3 5 10
2

4

6

8

Cost-aware regularization weight α

R
el

at
iv

e
re

gr
et

(%
)

Rel. regret (true costs)
Rel. regret (predicted costs)

100

120

140

160

Sq
ua

re
d
ℓ2

re
co

ns
tr

uc
tio

n
er

ro
r

Rec. error

Figure 5. Comparison of VAE and Cost-Aware VAE for varying α

The results in Figure 5 show that the relative regret metrics
defined above clearly decrease when increasing the regu-
larization weight. Hence, introducing a cost-aware regu-
larization is very powerful to decrease cost-reconstruction
error, and to stabilize the optimal paths associated with the
Warcraft maps under VAE-reconstruction. As expected, the
relative regret is lower when taking the initial optimal path
associated with the costs predicted by φ rather than the true
ones. Figure 5 further shows that the reconstruction error
decreases for 0 < α ≤ 2. This result suggests that in-
creasing the regularization weight even guides the training
process and helps the model to reconstruct images. Conse-
quently, we set the cost-regularization parameter to α = 2
for the rest of the experiments.

To further highlight the impact of the cost-aware regu-
larization w.r.t the explanation problem, we analyze the
loss of obtained explanations when using trained Cost-
Aware VAEs with different regularization weights. For
each weight, we run CF-OPT on Nexp = 50 different abso-
lute explanation tasks. We use a step size γ = 0.003, max-
imum number of iterations K = 3000, maximum number
of non-improving iterations cmax = 50, and correspond-
ing update tolerance u = 0.9. We then measure the loss
of the best solution according to our best VAE using la-
tent hypersphere plausibility regularization with β = 10,
and a feature space objective. The loss is thus equal to
||xbest − x0||22 + 10 (||zbest||2 − C64)

2. As seen in Fig-
ure 6, Cost-Aware VAEs trained with α ≥ 0.5 lead to sig-
nificantly better counterfactual explanations in terms of the
resulting loss.
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Figure 6. Loss of the obtained explanations when using Cost-
Aware VAE with varying α

5.3. Impact of Plausibility Regularization

We now analyze the impact of the proposed latent hyper-
sphere regularization on the plausibility of the obtained
counterfactual explanations. Instead of relying only on sub-
jective visual comparisons of the results, we use two differ-
ent metrics to quantify plausibility.

Reconstruction error. First, we use a well-known metric
in outlier detection (An & Cho, 2015) measuring the re-
construction error of a VAE trained on the corresponding
dataset when evaluated on the potential outlier. We select
Nexp = 40 absolute explanation tasks as above and run
CF-OPT with the same hyperparameters but varying the
weight β of the latent hypersphere regularization. Then, we
measure the reconstruction error with a Cost-Aware VAE
trained on the Warcraft maps dataset with α = 2, when
evaluated on the returned best solutions xbest. The results
are displayed in Figure 7 and show that the proposed latent
hypersphere regularization leads to more plausible expla-
nations w.r.t this outlier detection metric.
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Figure 7. Reconstruction error of a Cost-Aware VAE (α = 2) on
the best solution obtained xbest, with varying latent hypersphere
regularization weight β.

Decision-focused reconstruction error. Our second met-
ric is specifically designed for our setting. Instead of sim-
ply measuring the reconstruction error in the feature space
as above, we measure the stability of the optimal path asso-
ciated to the returned best solution xbest under reconstruc-
tion with a Cost-Aware VAE. This metric is more suited
to detect adversarial explanations since adversarial pertur-
bations tend to simply vanish when passing them through
a VAE, due to the information compression aspect of the
model (which then acts as a denoising model), thus lead-
ing to a small reconstruction error. To do so, we measure
the relative regret reg (y∗(φ(xbest)), φ(x̃best)) of the short-
est path associated with xbest in the reconstructed context
x̃best when using a Cost-Aware VAE trained with α = 2.
This metric extends the idea of reconstruction error to the
entire data-driven optimization pipeline.

We obtain Nexp = 40 absolute explanations using a latent-
space search with CF-OPT, and Nexp = 40 other counter-
factuals using a naive search (i.e., adversarial explanations

7
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(a) Reconstruction error (b) Decision-focused recon-
struction error

Figure 8. (a) Task-agnostic reconstruction error and (b) decision-
focused reconstruction error for detecting adversarial explana-
tions.

as in Figure 3). For CF-OPT, the VAE used for optimiza-
tion is not cost-regularized (α = 0) in order to avoid biases
since the proposed metric is computed using a Cost-Aware
VAE itself. As shown in Figure 8, our decision-focused
metric is more efficient at differentiating between adver-
sarial and plausible explanations than the classical recon-
struction error.

Hence, we use this metric to measure the plausibility of ex-
planations obtained with CF-OPT and latent hypersphere
regularization for varying regularization weight β. Notice
again that β = 0 recovers the unregularized explanation
objective. Similarly to the experiment shown in Figure 8,
the decision-focused reconstruction error is computed on
Nexp = 40 absolute explanation tasks. Our results in Fig-
ure 9 show that the latent hypersphere regularization also
improves the reconstruction of the pipeline’s output associ-
ated with the produced counterfactuals.
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Figure 9. Decision-focused reconstruction error measured with an
α = 2 Cost-Aware VAE, for varying latent hypersphere regular-
ization weight β.

Comparison of latent hypersphere and log-likelihood
regularizations. We now investigate the value of the pro-
posed latent hypersphere regularization Ω, compared to the
log-likelihood regularization Ω̃ (both introduced in Sec-
tion 3.2). We select Nexp = 40 absolute explanation tasks
and run CF-OPT on each explanation task with a Cost-
Aware VAE trained with α = 2. We measure the loss of the

best solution found with latent hypersphere regularization
and with log-likelihood regularization for varying regular-
ization weight β.

The proximity metric used is the squared euclidean dis-
tance in feature space, so that the corresponding loss is
||xbest − x0||22 + β (||zbest||2 − C64)

2 for the latent hyper-
sphere regularization, and ||xbest − x0||22 + β||zbest||22 for
the log-likelihood regularization. As can be seen in Fig-
ure 10, the latent hypersphere regularization does not sig-
nificantly impact the loss of the obtained counterfactual,
contrary to the log-likelihood regularization which leads to
an exponential increase in the loss as β increases.
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Figure 10. Loss of the obtained explanations with latent hyper-
sphere (Ω) and log-likelihood (Ω̃) regularizations, with varying
weight β.

6. Related Literature
This work lies at the intersection of end-to-end learning,
generative models, and explainable machine learning. We
briefly outline some relevant literature.

End-to-end learning and optimization. Integrating op-
timization into learning pipelines has received a lot of at-
tention. The main challenge is to train the pipeline in an
end-to-end fashion, that is, to propagate the loss associ-
ated to the objective function of the pipeline’s optimization
component back to its predictive component. This requires
differentiating through the pipeline, particularly through
the argmin operation of the optimization component. Sev-
eral approaches have been proposed based, for instance, on
implicit differentiation (Amos & Kolter, 2017; Donti et al.,
2017), using a convex surrogate loss (Elmachtoub & Gri-
gas, 2022), or perturbed optimizers (Berthet et al., 2020;
Dalle et al., 2022). We refer to the survey of Mandi et al.
(2023) and Sadana et al. (2023) for further details.

Counterfactual explanations. Counterfactual explana-
tions have received significant attention to explain learning
models (Wachter et al., 2017; Verma et al., 2020), espe-
cially in the classification setting, where they translate as
the smallest alteration in the input features that changes the
output’s label into another, predefined one.

8
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Generative models and plausible explanations. Gener-
ative models are also used to provide counterfactual ex-
planations that adhere to the data manifold in the predic-
tive setting, that is when the model to be explained is a
classifier. Pawelczyk et al. (2020) use a modified version
of the VAE, dubbed C-CHVAE, and randomly sample la-
tent codes on a sphere centered at the latent embedding of
the initial context until the explanation condition is met.
This would be very algorithmically inefficient in our set-
ting because of the combinatorial aspect of the problem:
there tends to be an exponential number of (feasible) deci-
sions even for simpler linear problems such as the shortest
path, compared to the reasonable number of classes in the
predictive setting. This also prevents using methods that
train separate VAE models for each class, such as the one
presented by Barr et al. (2021). Liu et al. (2019) mini-
mize a relaxed objective inside the latent space of a trained
generative adversarial network (GAN) using gradient de-
scent. Since GANs are implicit likelihood models, one can
not derive a regularization on the plausibility of the gen-
erated counterfactual as easily as we did with a VAE in
Section 3.2.

7. Conclusions
This paper presented an approach to obtain counterfactual
explanations of the decisions of end-to-end optimization
pipelines. It focuses on obtaining plausible explanations in
high-dimensional settings such as when the input are im-
ages. One limitation of the current approach is that the co-
variates x must be made of continuous features. Extending
the work to categorical or discrete features is a promising
research direction. A central component of the method is
the use of a VAE, which are especially relevant in our set-
ting because of the smaller dimension of the latent space.
Another interesting direction for future work is to investi-
gate the use of other generative models such as diffusion
models.

Impact Statement
This paper presents work whose goal is to advance the
field of Machine Learning. It highlights the vulnerabil-
ity of structured learning pipelines to adversarial exam-
ples. It then provides an efficient algorithm to obtain plau-
sible explanations. This has several potential beneficial im-
pacts. Explanations can improve the transparency of these
pipelines, build trust in their decisions, and highlight po-
tential biases.
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A. Numerical and Theoretical Justifications for the Plausibility Regularization
A.1. Numerical Validation of the Approximation of the Encoded Data Distribution by the Prior

An important assumption we make in order to derive the plausibility region DZ and the corresponding plausibility regu-
larization Ω in Section 3.2 is that the prior over the latent codes p(z) = N (0, Inz ) is a good approximation of the true
encoded data distribution, which can be thought of as the push-forward of Pdata through the trained encoder eϕ of the VAE.

This approximation is motivated by the fact that the KL divergence in the training objective of the VAE forces the dis-
tribution of the latent codes to match that of the prior p(z). This same approximation is made when using trained VAEs
for traditional generative modeling, as the prior is used to sample new data points before passing them through the trained
decoder dψ .

To verify quantitatively if this assumption holds, we compare the percentage of points that should belong to the plausibility
region according to the prior (that is, the mass of the region w.r.t p(z)) and the percentage of training data points that are
actually embedded in the region (that is, the mass of the region w.r.t the empirical encoded data distribution). The table
below shows the percentage of plausible points for varying thickness κ (in Euclidean distance) of the thickened hypersphere
of radius C64 when using a VAE with 64-dimensional latent space.

Table 1. Comparison of prior and empirical encoded data distribution

κ = 0.0 κ = 0.25 κ = 0.5 κ = 0.75 κ = 1.0 κ = 1.25 κ = 1.5 κ = 1.75 κ = 2.0

Prior (%) 0.0 27.6 52.1 71.2 84.4 92.4 96.7 98.7 99.5
Empirical (%) 0.0 27.8 52.1 71.2 84.8 93.0 97.0 99.1 99.8

Thus, the empirical percentages of training data points embedded in the chosen plausibility region closely match those
computed with the statistics of the prior, which further justifies its use as an approximation of the encoded data distribution.

A.2. Latent Hypersphere as Optimal Plausibility Region

Let p(z) = N (0, Inz ) be the prior over the latent codes. We use it to approximate the true encoded data distribution, as
explained and numerically justified in Appendix A.1. We want to find a plausibility region DZ ⊆ Z = Rnz with minimal
(i) expected distance to latent codes, and (ii) volume, or Lebesgue measure.

These two objectives are conflicting: indeed, the optimal region with respect to the first one only is the whole space, and
the optimal region with respect to the second one only is any region that is negligible with respect to the Lebesgue measure.
Thus, they cannot be jointly minimized, so we consider the following problem:

DZ = argmin
D⊆Z

Ez∼p(z) [ℓ(z,D)] + η Leb(D),

where η > 0 is a trade-off coefficient, and ℓ(z,D) = minz′∈D{∥z − z′∥22} is the squared Euclidean distance of latent
vector z to region D.

We assumeDZ to be an isotropic region to respect the symmetries of the encoded data distribution (which is approximated
by the isotropic centered Gaussian p(z)). Thus, one can parameterize it as a union of spheres DZ =

{
z ∈ Z : ∥z∥2 ∈ R

}
,

where R ⊆ R+ is the set of radii of the spheres. If we further assume DZ to be connected, which appears logical as p(z)
is unimodal, one has that R is an interval of R+, which we consider to be closed. These assumptions allow us to consider
the following simplified optimization objective:

argmin
a, b∈R+

Ez∼p(z)
[
ℓ(z,Dba)

]
+ η Leb(Dba) (10)

s.t. a ≤ b,

where Dba =
{
z ∈ Z : ∥z∥2 ∈ [a, b]

}
. Thus, the only candidate regions left are either centered balls (when a = 0),

centered hyperspheres (when a = b), and thickened centered hyperspheres (when 0 < a < b).

For η large enough in Problem (10), the weight of the second term of the optimization objective forces the optimal region
to have approximately zero Lebesgue volume. Thus, we can approximate it as Daa (that is, to be a centered, non-thickened
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hypersphere of radius a), and the problem can be approximated as:

argmin
a∈R+

Ez∼p(z)(a− ||z||2)2, (11)

which is equivalent to:
argmin
a∈R+

EX∼χnz (a−X)2,

where χnz is a Chi distribution with nz degrees of freedom since p(z) is a standard nz-dimensional Gaussian. Thus, the

solution is the expectation of the χnz distribution, a = Cnz =
√
2
Γ(nz+1

2 )
Γ(nz2 )

≈ √nz , and we find the centered hypersphere
of radius Cnz as optimal plausibility region.

Numerical valdiation. We investigate the validity of this approximation numerically. On the one hand, we have:

Leb(Dba) =
π
nz
2

Γ(nz/2 + 1)
(bnz − anz ),

and on the other hand:

Ez∼p(z)
[
ℓ(z,Dba)

]
=

∫ a

0

(a− r)2(2π)−
nz
2 e−

r2

2 Snz−1rnz−1dr +

∫ +∞

b

(r − b)2(2π)−
nz
2 e−

r2

2 Snz−1rnz−1dr

(where Snz−1 =
2π

nz
2

Γ
(
nz
2

) is the surface of the hypersphere of dimension nz − 1 and radius 1)

= a2 P (z ∈ B(0, a)) + b2 P (z ∈ B(0, b)c)

− 2a

∫ a

0

(2π)−
nz
2 e−

r2

2 Snz−1rnzdr +

∫ a

0

(2π)−
nz
2 e−

r2

2 Snz−1rnz+1dr

− 2b

∫ +∞

b

(2π)−
nz
2 e−

r2

2 Snz−1rnzdr +

∫ +∞

b

(2π)−
nz
2 e−

r2

2 Snz−1rnz+1dr

= a2 P

(
nz
2
,
a2

2

)
+ b2Q

(
nz
2
,
b2

2

)
− 2

√
2

Γ
(
nz
2

) [a(Γ(
nz + 1

2

)
− Γ

(
nz + 1

2
,
a2

2

))
+ bΓ

(
nz + 1

2
,
b2

2

)]
+

2

Γ
(
nz
2

) [Γ(nz
2

+ 1
)
− Γ

(
nz
2

+ 1,
a2

2

)
+ Γ

(
nz
2

+ 1,
b2

2

)]
,

where Γ(· , ·) is the upper incomplete gamma function, and Q(s, x) = Γ(s,x)
Γ(s) = 1 − P (s, x) with P (s, x) being the

cumulative distribution function of a gamma random variable with shape parameter s and scale parameter 1.

Putting all the pieces together, we have:

Ez∼p(z)
[
ℓ(z,Dba)

]
+ η Leb(Dba) = a2 P

(
nz
2
,
a2

2

)
+ b2Q

(
nz
2
,
b2

2

)
− 2
√
2
Γ
(
nz+1

2

)
Γ
(
nz
2

) [
aP

(
nz + 1

2
,
a2

2

)
+ bQ

(
nz + 1

2
,
b2

2

)]
+ nz

[
P

(
nz
2

+ 1,
a2

2

)
+Q

(
nz
2

+ 1,
b2

2

)]
+ η

π
nz
2

Γ(nz/2 + 1)
(bnz − anz ).

Using the analytical expressions derived above, we verify that our reasoning holds by solving Problem (10) numerically.
To do so, we compute Γ(·), P (· , ·) and Q(· , ·) using the functions special.gamma, special.gammainc, and
special.gammaincc, respectively, taken from the scipy.special package. We conduct a simple grid search, by
taking 104 values for a and b between 0 and 10, discarding couples such that a > b. For nz = 64, we find that the

hypersphere of radius C64 =
√
2
Γ( 65

2 )
Γ( 64

2 )
≈ 7.97 is indeed optimal for η ≥ 10−16.
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B. Supplementary Material: Numerical Study
In this appendix, we provide background details on VAEs as well as the architecture of the VAEs used in our experiments
in Appendix B.1, and additional experiments on tabular data in Appendix B.2.

B.1. VAE: Background and Detailed Architecture

B.1.1. BACKGROUND ON VAES

The encoder eϕ is chosen to output a Gaussian distribution with a diagonal covariance matrix, that is:

eϕ(z|x) = N
(
z; µϕ(x), Diag

[
σ2
ϕ(x)

])
,

where µϕ(x), log σ2
ϕ(x) = log(σ2

ϕ(x)) ∈ Rnz (log being applied element-wise) are the outputs of the encoder neural
network for the input x ∈ Rnx . We choose the decoder to output an isotropic Gaussian distribution, that is:

dψ(x|z) = N (x; µψ(z), Inx)

where µψ(z) ∈ Rnx is the output of the decoder neural network for the input z ∈ Rnz .

Because of our choices for the encoder and decoder, the term inside the expectation in the ELBO 3 is equal to
− 1

2 ||xi − µψ(z)||
2
2, and the KL divergence has a closed-form expression, so that we have (see Odaibo (2019) for a guided

derivation):

L(ϕ, ψ, xi) = −
1

2
Ez∼eϕ(z|xi)

[
||xi − dψ(z)||22

]
+

1

2

nz∑
k=1

[
1 + log σ2

ϕ(x)k − σϕ(x)2k − µϕ(x)2k
]
.

The expectation in this expression, known as the reconstruction loss (or feature-reconstruction loss to be more precise in
our setting), is approximated via a Monte-Carlo estimate during training.

B.1.2. ARCHITECTURE FOR THE WARCRAFT MAP EXPERIMENTS

All VAEs used in our experiments are implemented in Pytorch.

The encoder’s architecture is the following:
• Convolutional Layers:

– conv1: A 2D convolutional layer with 32 filters, a kernel size of 4x4, a stride of 2, and padding of 1. It processes
the input data, of size (Batch-size× 3× 96× 96) and produces feature maps.

– conv2: Another 2D convolutional layer with 64 filters, same kernel size, stride, and padding. It further extracts
features.

– conv3: A 2D convolutional layer with 128 filters, same parameters as above.
– conv4: The final 2D convolutional layer with 256 filters, again with the same settings.

• Fully Connected Layers:
– fc1: A fully connected layer with 512 output neurons. It processes the flattened feature maps from the last

convolutional layer.
– fc21 and fc22: These fully connected layers produce two vectors: µϕ(x) and log σ2

ϕ(x) (representing the log
variance). These vectors are used to sample points in the latent space.

• Activation Functions: we use ReLU activation functions after each layer except after fc21 and fc22.
The decoder’s architecture is the following:

• Fully Connected Layers:

– fc10: A fully connected layer with 512 output neurons, that takes the latent vector as input and produces a
feature representation.

– fc20: Another fully connected layer that expands the feature representation back to the original flattened shape
(6x6x256).

• Transposed Convolutional Layers (also known as deconvolutional layers):

13



CF-OPT: Counterfactual Explanations for Structured Prediction

– deconv1: A transposed 2D convolutional layer with 128 filters, kernel size 4x4, stride 2, and padding 1. It
upsamples the feature maps.

– deconv2: Another transposed 2D convolutional layer with 64 filters, same parameters.
– deconv3: A transposed 2D convolutional layer with 32 filters, same settings.
– deconv4: The final transposed 2D convolutional layer with 3 filters (giving RGB channels), same parameters.

It generates the reconstructed data.
• Activation Functions: we use ReLU activation functions after each layer except after deconv4, where we use a

Sigmoid function.

B.2. Repeated Experiments on Tabular Data

Experimental setting. We perform repeated experiments generating counterfactual explanations of decisions and mea-
sure the sensitivity of our method to changes in the problem settings. We measure the total number of iterations of CF-OPT
when varying the number of features, the number of decision variables, and the complexity of the prediction model.

Remark B.1. We do not measure the sensitivity of our method to the number of training points in the dataset since
the computational complexity of calculating an explanation with CF-OPT does not increase with the size of the training
dataset. This is a clear improvement compared to Forel et al. (2023).

B.2.1. SHORTEST PATHS ON A GRID.

We apply our explanation method to the shortest-path problem on a square grid introduced by Elmachtoub & Grigas (2022)
and used in several other works (Elmachtoub et al., 2020; Tang & Khalil, 2022). The structured learning pipeline consists
of a contextual vector x ∈ Rnx , a linear regression model φ predicting costs φ(x) = θ ∈ Rny on the edges of a (N ×N)
grid, so we have ny = 2N(N − 1), and a linear optimization model computing the shortest path from the upper left node
to the lower right node of the grid. The optimization problem is still cast as a linear program and solved with Gurobi.

The data is generated following Tang & Khalil (2022). The cost of an edge of the graph representing the square grid is
given by

(θi)j =

[
1

3.54

(
1
√
nx

(Bxi)j + 3

)4

+ 1

]
· ϵij , (12)

where B ∈ Rny×nx is a random matrix whose each element follows a Bernoulli distribution with parameter 0.5, and
ϵij ∼ U(0.5, 1.5). The contextual vectors xi follow a standard multivariate Gaussian N (0, Inx).
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Figure 11. Experiment results with tabular data on the shortest paths on a grid problem, showing the sensitivity of our algorithm to the
number of (a) features, (b) decisions, and (c) layers

Sensitivity to contextual dimension. First, we analyze the effect of the number of contextual features on the computation
time for each explanation type. For each number of contextual features nx ∈ {5, 10, 25, 50, 100, 500}, we generate data:
contextual vectors (xi)2000i=1 , associated costs (θi)2000i=1 and shortest paths (yi)2000i=1 . The grid size if fixed to (5× 5) (that is,
N = 5 and ny = 40). Then, we train a linear regression model with the SPO+ loss (Elmachtoub & Grigas, 2022) for 70
epochs (until convergence) on the 1000 first data (train set), with Adam (Kingma & Ba, 2015) and a 3×10−4 learning rate.
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In each setting, we perform 100 explanations of each type, on 100 random pairs (xi, yj), belonging to the 1000 last
generated data (test set). xi plays the role of x0 (initial context), and yj plays the role of yalt (alternative solution). We
check that yi ̸= yj for relative and absolute explanations to ensure that the explanation problem is not trivial (ε-explanations
do not require an yalt anyway). ε-explanations are performed with ε = 1. We use a step size γ = 0.1, maximum number of
iterationsK = 6000, maximum number of non-improving iterations cmax = 10, and update tolerance u = 0.9. The results
are displayed in Figure 11a, and show that explanations can be obtained efficiently even for large numbers of features.

Sensitivity to decision dimension. We now analyze the effect of the size of the costs grid (and thus the number of
decision features ny) on the computational time for each explanation type. The data generation and training processes are
unchanged w.r.t. the above experiment. We choose a fixed number of contextual features nx = 10, and experiment for
N ∈ {2, 3, 4, 5, 7, 10} (corresponding to ny ∈ {4, 12, 24, 40, 84, 180}). The results are shown in Figure 11b. The figure
shows that obtaining relative and ε-explanations scales well in the number of decisions, contrary to absolute explanations.
This is caused by the fact that the grid size is the source of the combinatorial explosion of the number of solutions.

Sensitivity to prediction model’s complexity. Then, we analyze the effect of the prediction model’s complexity, by
using a fully connected feed-forward ReLU neural network as φL, and observing the evolution of computation times for
different numbers of layers (denoted L). The number of contextual features is fixed to nx = 10, and the grid size to (5×5)
(that is, N = 5 and ny = 40). The first layer has input dimension nx and output dimension nx (ny if L = 1, which boils
down to the linear regression model), and all other layers have input and output dimension equal to nx except the output
layer, which has output dimension ny . The train/test dataset is generated only once, with 10000 data points in the first and
1000 in the latter. For L ∈ {1, 2, 3, 4, 5}, we train φL, whose architecture is described above, until convergence (before
overfitting) on the train set with Adam and a 3× 10−4 learning rate. The results are shown in Figure 11c, and the number
of iterations needed to obtain explanations is almost independent of the model complexity for relative and ε explanations.

Varying ε for ε-explanations. We finally analyze the effect
of ε on ε-explanation tasks by observing the distance of the
obtained explanation to the initial context ||xalt − x0||22. We
use a single dataset (train and test), generated with nx = 10
contextual features, a (5 × 5) grid (that is, N = 5 and
ny = 40), and the same generating routine as before. The
linear regression model is trained with the same process as
described above. For ε ∈ {0.2, 0.5, 0.7, 1, 1.5, 2, 3}, we per-
form 100 ε-explanations on 100 random initial contexts x0,
taken from the test dataset. The results are displayed in Fig-
ure 12 and show, as expected, that ε-explanations move away
from the initial context as ε increases.
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Figure 12. Proximity of ε-explanation xalt
ε to initial

context x0 for varying ε, measured with squared ℓ2.

B.2.2. CONTEXTUAL MULTI-DIMENSIONAL KNAPSACK

We evaluate our approach on the contextual multi-dimensional knapsack problem presented in Tang & Khalil (2022), in
which the decision-maker maximizes the expected rewards of items to select subject to weight constraints. The relationship
between the features and rewards is also given by Equation (12). The structured learning pipeline is identical to the one
in the previous experiment. The optimization model is formulated as a binary model, in which each variable indicates
whether an item is selected or not, cast as an integer linear program and solved using Gurobi.

Sensitivity to contextual dimension. First, we analyze the effect of the number of contextual features on the
computation time for each explanation type on the knapsack problem. For each number of contextual features
nx ∈ {2, 3, 5, 7, 10, 12, 15, 20, 25, 30}, we generate data: contextual vectors (xi)

6000
i=1 , associated rewards (θi)

6000
i=1 and

optimal solutions (yi)
6000
i=1 . The number of items is fixed to m = 16. Then, we train a linear regression model with the

SPO+ loss (Elmachtoub & Grigas, 2022) for 30 epochs (until convergence) on the 5000 first data (train set), with Adam
(Kingma & Ba, 2015) and a 1× 10−3 learning rate.

In each setting, we perform 100 explanations of each type, on 100 random pairs (xi, yj), belonging to the 1000 last
generated data (test set). xi plays the role of x0 (initial context), and yj plays the role of yalt (alternative solution). We
check that yi ̸= yj for relative and absolute explanations to ensure that the explanation problem is not trivial (ε-explanations
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Figure 13. Experiment results with tabular data on the contextual multi-dimensional knapsack problem, showing the sensitivity of our
algorithm to the number of (a) features, (b) items, and (c) layers

do not require an yalt anyway). ε-explanations are performed with ε = 0.1. We use a step size γ = 0.01, maximum number
of iterations K = 6000, maximum number of non-improving iterations cmax = 10, and corresponding update tolerance
u = 0.9. The results are displayed in Figure 13a. They show once again that explanations can be obtained efficiently even
for a larger number of features. The absolute explanations, however, require more iterations on average when the number
of features is very low: this is caused by the fact that the prediction model being linear, the set of rewards it can span is
limited by its rank (and thus by its input dimension), leading to infeasible absolute explanation tasks which increase the
average computation time by taking K = 6000 iterations (the maximum) to stop.

Sensitivity to the number of items. We now analyze the effect of the number of items m on the computational time for
each explanation type. The data generation and training processes are unchanged w.r.t. the above experiment. We choose
a fixed number of contextual features nx = 5 and experiment for m ∈ {5, 6, 7, 8, 9, 10, 15, 20, 25, 30}. The results are
shown in Figure 13b. The figure highlights that obtaining relative and ε-explanations scales well in the number of items,
contrary to absolute explanations This is caused by the fact that the number of items greatly improves the combinatorial
difficulty of the problem.

Sensitivity to the prediction model’s complexity. Then, we analyze the effect of the prediction model’s complexity
by using a fully connected feed-forward ReLU neural network as φL, and observing the evolution of computation times
for different numbers of layers (denoted L). The architecture is similar to the one used in the shortest paths on a grid
experiment. The train/test dataset is generated only once, with 5000 data points in the first and 1000 in the latter. For
L ∈ {1, 2, 3, 4, 5}, we train φL, whose architecture is described above, until convergence (before overfitting) on the train
set with Adam and a 1× 10−3 learning rate.

The results are shown in Figure 13c, which shows that the number of iterations needed to obtain explanations for the
knapsack problem is almost independent of the model complexity when the number of layers exceeds one. When only one
layer is used (the predictor then boils down to a linear regression), the average number of iterations required is significantly
lower for all types of explanations.

Varying ε for ε-explanations. We finally analyze the ef-
fect of ε on ε-explanation tasks for the knapsack problem by
observing the distance of the obtained explanation to the ini-
tial context ||xalt − x0||22. We use a single dataset (train and
test) generated with nx = 5 contextual features, m = 16
items, and the same generating routine as before. The lin-
ear regression model is trained using the same process as de-
scribed above. For ε ∈ {0.2, 0.5, 0.7, 1, 1.5, 2, 3}, we per-
form 100 ε-explanations on 100 random initial contexts x0,
taken from the test dataset. The results are displayed in Fig-
ure 14 and show, as expected and as for the shortest paths on
a grid experiment, that ε-explanations move away from the
initial context as ε increases.
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Figure 14. Proximity of ε-explanation xalt
ε to initial

context x0 for varying ε, measured with squared ℓ2.
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C. Examples of Explanations for the Shortest Paths on Warcraft Maps Pipeline
We display several examples of counterfactual explanations for the shortest paths on Warcraft maps structured pipeline.
All of them are obtained with a VAE trained in a cost-aware fashion with α = 2 and latent hypersphere regularization
with β = 10. We show examples of relative and absolute explanations in Figure 15 and Figure 16 respectively, and show
examples of ε-explanations for varying ε in Figure 17.

Consider, for instance, the first row of Figure 15. The initial map on the left shows that the shortest path goes along the gray
mountain until the bottom of the map. We ask what a close Warcraft map would be, such that a path crossing the mountain
diagonally (i.e., the given alternative solution yalt) is shorter than the initial one, y0. The computed relative explanation,
shown in the 3rd column together with its alternative path yalt, extends the mountain to cover the bottom of the map. Notice
that the rest of the image is not modified: this small change is sufficient to render the alternative path less costly than the
initial one.

Similarly, the mountain is extended to the top of the image in the second row of Figure 16. Again, the rest of the map is
unchanged, and this small modification is enough to make the alternative diagonal path optimal (and not just shorter than
the initial one, since we now ask for an absolute explanation). The explanations are not only adding mountain areas to
increase travel times. They adequately capture the dataset’s structure and its impact on the decision-making process. In the
second row of Figure 15, for instance, the explanation is obtained by removing the forest on the left edge of the map.

Counterfactual explanations provide a sensitivity analysis of the pipeline that is both local (i.e., tailored to a specific input)
and decision-focused. They allow the user to contrast two decisions in the feature space and to identify what specific
features drive the decision-making process.

The novel type of explanation introduced in our paper (ε-explanations) is especially suitable for identifying features whose
small variations will most impact the decision. Consider the example given in Figure 17. Figures (c) to (h) show that the
central region of the map is the most sensitive: small changes in the forest blocks make the current decision sub-optimal by
a factor of 30%, 50%, and up to 70%. In practice, this could be used as a mechanism to tell decision-makers what features
should be given special attention, for instance, to verify that their values are correctly measured.
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(a) Initial map x0 and associ-
ated shortest path y0

(b) Initial predicted costs
φ(x0)

(c) Counterfactual map xalt

and alternative path yalt
(d) New predicted costs
φ(xalt)

Figure 15. Example of relative explanations: explanations such that the given alternative path yalt is shorter than the initial shortest one
y0 on the counterfactual map xalt.
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(a) Initial map x0 and associ-
ated shortest path y0

(b) Initial predicted costs
φ(x0)

(c) Counterfactual map xalt

and alternative path yalt
(d) New predicted costs
φ(xalt)

Figure 16. Example of absolute explanations: explanations such that the given alternative path yalt is optimal on the counterfactual
map xalt.
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(a) Initial map x0 and associ-
ated shortest path y0

(b) Initial predicted costs
φ(x0)

(c) ε-explanation with ε=0.3
and associated shortest path

(d) Corresponding predicted
costs (ε = 0.3)

(e) ε-explanation with ε=0.5
and associated shortest path

(f) Corresponding predicted
costs (ε = 0.5)

(g) ε-explanation with ε=0.7
and associated shortest path

(h) Corresponding predicted
costs (ε = 0.7)

(i) ε-explanation with ε=1
and associated shortest path

(j) Corresponding predicted
costs (ε = 1)

(k) ε-explanation with ε=2
and associated shortest path

(l) Corresponding predicted
costs (ε = 2)

Figure 17. Example of ε-explanations with varying ε: explanations such that the initial shortest path y0 has relative regret of at least ε
on the counterfactual map xalt.
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D. Supplementary Material: Algorithms
The latent-space and feature-space formulations of CF-OPT are given in Algorithm 1 and Algorithm 2 respectively.

Algorithm 1 Counterfactual Explanations through First-Order Optimization - Latent Space Formulation

Initialize: z(1) = eϕ (x0), λ(1) = 0, c = 0, xbest = None, lbest =∞
for k = 1 to K do
x(k) ← dψ

(
z(k)

)
if c = cmax then

Return: xbest
end if
/*** Check if improvement ***/
if x(k) satisfies the explanation criterion then

if ℓ(x0, x(k)) + Ω(z(k)) < u · lbest then
Store best solution: xbest ← x(k)

Store best loss: lbest ← ℓ(x0, x
(k)) + Ω(z(k))

Reset counter: c← 0
else

Increase counter: c← c+ 1
end if

end if
/*** Update variables ***/
Update latent code: z(k+1) ← z(k) − γ∇zE(z(k), λ(k))
Update Lagrange multiplier:
λ(k+1) ← λ(k) + γ∇λE(z(k), λ(k))

end for
Return: xbest
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Algorithm 2 Counterfactual Explanations through First-Order Optimization - Feature Space Formulation

Initialize: x(1) = x0, λ(1) = 0, c = 0, xbest = None
for k = 1 to K do

if c = cmax then
Return: xbest

end if
/*** Check if improvement ***/
if x(k) satisfies the explanation criterion then

if ℓ(x0, x(k)) < u · lbest then
Store best solution: xbest ← x(k)

Store best loss: lbest ← ℓ(x0, x
(k))

Reset counter: c← 0
else

Increase counter: c← c+ 1
end if

end if
/*** Update variables ***/
Update covariate: x(k+1) ← x(k) − γ∇xE(x(k), λ(k))
Update Lagrange multiplier:
λ(k+1) ← λ(k) + γ∇λE(x(k), λ(k))

end for
Return: xbest
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