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Abstract—This article proposes a novel coordinate-descent
augmented-Lagrangian (CDAL) solver for linear, possibly
parameter-varying, model predictive control (MPC) problems.
At each iteration, an augmented Lagrangian (AL) subproblem is
solved by coordinate descent (CD), exploiting the structure of
the MPC problem. The CDAL solver enjoys three main properties:
1) it is construction-free, in that it avoids explicitly constructing
the quadratic programming problem associated with MPC; 2)
is matrix-free, as it avoids multiplications and factorizations of
matrices; and 3) is library-free, as it can be simply coded without
any library dependency, 90-lines of C-code in our implementation.
To favor the convergence speed, CDAL employs a reverse cyclic
rule for the CD method, the accelerated Nesterov’s scheme for
updating the dual variables, a simple diagonal preconditioner, and
an efficient coupling scheme between the CD and AL methods.
We show that CDAL competes with other state-of-the-art methods,
both in the case of unstable linear time-invariant and linear
parameter-varying prediction models.

Index Terms—Augmented Lagrangian (AL) method, coordinate
descent (CD) method, model predictive control (MPC).

I. INTRODUCTION

Model predictive control (MPC) has been widely used for decades to
control multivariable systems subject to input and output constraints [1].
Apart from small-scale linear time-invariant (LTI) MPC problems
whose explicit MPC control law can be obtained [2], deploying an
MPC controller in an electronic control unit requires an embedded
quadratic programming (QP) solver. In the past decades, the MPC
community has made tremendous research efforts to develop embedded
QP algorithms [3], based on interior-point methods [4], [5], active-set
algorithms [6], [7], gradient projection methods [8], the alternating
direction method of multipliers (ADMM) [9], [10], and other tech-
niques [11], [12], [13], [14], [15].

A demanding requirement for industrial MPC applications is code
simplicity, for easily being verified, validated, and maintained on
embedded platforms. In this respect, the interior-point and active-set
methods require more complicated arithmetic operations in their al-
gorithm implementations when compared to first-order optimization
methods like gradient projection and ADMM. The first-order opti-
mization methods are quite appealing in embedded MPC since their
embedded implementations could only involve additions and multipli-
cations (no divisions, square roots, etc.). However, most of the proposed
approaches require that the MPC-to-QP transformation is explicitly
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constructed for consumption by the solver, such as for preconditioning,
estimating the Lipschitz constant of the cost gradient, and factorizing
matrices. This may not be an issue for LTI MPC problems, in which
the MPC-to-QP construction and other operations on the problem
matrices can be done offline. But for some linear parameter-varying
(LPV) or for linear time-varying MPC problems in which the linear
dynamic model, cost function, and/or constraints change at run time,
an explicit online MPC-to-QP construction increases the complexity
of the embedded code and computation time. Avoiding an explicit
MPC-to-QP construction can be called as construction-free property
of an MPC solver. The barrier interior-point FastMPC solver [4] and
the active-set based bounded-variable least-squares (BVLS) solver [15]
are construction-free; they directly use the model and weight matri-
ces to define the MPC problem without constructing a QP problem.
Their complicated implementations are not matrix-free as involving
Cholesky or QR factorizations arithmetic operations during iterations.
The well-known simple and efficient first-order method OSQP [10] is
not construction-free and matrix-free when applied to solve LPV-MPC
problems, as it requires that matrix factorizations are computed and
cached on each sampling time. The OSQP utilizes its ownLDLT solver
to perform matrix factorizations, thus being library-free.

A. Contribution

By combining the coordinate descent (CD) and augmented-
Lagrangian (AL) methods, in this article, we develop a construction-
free, matrix-free, and library-free solver for LTI and LPV MPC prob-
lems that is particularly suitable for embedded industrial deployment.

Coordinate descent has received extensive attention in recent years
due to its application to machine learning [16], [17], [18]. In this article,
we will exploit the special structure arising from linear MPC formula-
tions when applying CD. In [19], [20], and [21], the authors also use
AL to solve linear MPC problems with input and state constraints using
the fast gradient method [22] to solve the associated subproblems. The
Lipschitz constant of the cost gradient and convexity parameters [19]
are needed to achieve convergence, and computing them requires in
turn the Hessian matrix of the subproblem, and hence constructing the
QP problem. As the Hessian matrix of the AL subproblem is close to a
block diagonal matrix, this suggests the use of the CD method to solve
such a QP subproblem, due to the fact that CD does not require any
problem-related parameter. Moreover, only small matrices are involved
in running the CD method, namely the matrices of the linear prediction
model and the weight matrices. As a result, the proposed CDAL
algorithm does not require the QP construction phase and is extremely
simple to implement. In addition, each update of the optimization vector
has a computation cost per iteration that is quadratic with the state and
input dimensions and linear with the prediction horizon.

To improve the convergence speed of CDAL, we propose four
techniques: a reverse cyclic rule for CD, Nesterov’s acceleration [22],
preconditioning, and an efficient coupling between CD and AL. While
the use of a reverse cyclic rule in CD still preserves convergence, when
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the MPC problem is solved by warm-starting it from the shifted previous
optimal solution, the gap between the initial guess and the new optimal
solution is mainly caused by the last block of variables, and computing
the last block at the beginning tends to reduce the overall number
of required iterations to converge, as we will verify in the numerical
experiments reported in this article. We employ Nesterov’s acceleration
scheme for updating the dual vector to improve computation speed
and a heuristic preconditioner that simply scales the state variables. In
addition, an efficient coupling scheme between CD and AL methods
is proposed to reduce the computation cost of each CD iteration. To
analyze the role of each component of CDAL and its computational per-
formance with respect to other solvers (FastMPC, μAO-MPC, OSQP,
and MATLAB’s quadprog), we conduct numerical experiments on an
ill-conditioned problem of LTI-MPC control of an open-loop unstable
AFTI-16 aircraft, and on LPV-MPC control of a continuously stirred
tank reactor (CSTR).

B. Notation

H � 0 (H � 0) denotes positive definiteness (semidefiniteness) of
a square matrix H , H ′ (or z′) denotes the transpose of matrix H (or
vector z), H_i, j denotes the element of matrix H on the ith row and
the jth column, andH_i, · and H_·, j denote the ith row vector and jth
column vector of matrix H , respectively. For a vector z, ‖z‖_2 denotes
the Euclidean norm of z and z_�= i is the subvector obtained from z by
eliminating its ith component z_i.

II. MPC

Consider the following MPC formulation for tracking problems:

min
1

2

T−1∑
t=0

‖Wy (yt+1 − rt+1)‖22 +
1

2
‖Wu (ut − ur

t )‖22

+
1

2
‖WΔuΔut‖22

s.t. xt+1 = Axt +But, t = 0, . . . , T − 1

yt+1 = Cxt+1, t = 0, . . . , T − 1

ut = ut−1 +Δut, t = 0, . . . , T − 1

xmin ≤ xt ≤ xmax, t = 1, . . . , T

umin ≤ ut ≤ umax, t = 0, . . . , T − 1

Δumin ≤ Δut ≤ Δumax, t = 0, . . . , T − 1

x0 = x̄0, u−1 = ū−1 (1)

in which xt ∈ Rnx is the state vector, ut ∈ Rnu is the input vector,
Δut = ut − ut−1 is the vector of input increments,yt ∈ Rny is the out-
put vector, rt and ur

t are the output and input set-points, and x̄0 and ū−1
denote the current state and the previous input vectors, respectively. We
assume that Wy = W ′

y � 0, Wu = W ′
u � 0, and WΔu = W ′

Δu � 0.
The formulation (1) could be extended to include time-varying bounds
on x and u along the prediction horizon, linear equality constraints or
box constraints on the terminal state xT for guaranteed closed-loop
convergence, as well as affine prediction models. To simplify the
notation, in the following, we consider the following reformulation
of (1):

min
1

2

T∑
t=1

x̂′t(Ĉ
′Ŵ Ĉ)x̂t − x̂′t(Ĉ

′Ŵ r̂t) +
1

2
û′t−1WΔuût−1

s.t. x̂t+1 = Âxt + B̂ût, t = 0, . . . , T − 1

x̂min ≤ x̂t ≤ x̂max, t = 1, . . . , T

ûmin ≤ ût ≤ ûmax, t = 0, . . . , T − 1

x̂0 =

[
x̄0

ū−1

]
(2)

where x̂t =

[
xt

ut−1

]
∈ Rn̂x , n̂x = nx + nu, ût = Δut ∈ Rnu , Â =[

A B
0 I

]
∈ Rn̂x×n̂x , B̂ =

[
B
I

]
∈ Rn̂x×nu , and Ĉ =

[
C 0
0 I

]
, Ŵ =[

Wy 0
0 Wu

]
, r̂t =

[
rt

ur
t−1

]
. The vector z of variables to optimize is

z =
[
û′0 x̂′1 û′1 . . . û′T−1 x̂′T

]′ ∈ RT (n̂x+nu).

The inequality constraints on state and input variables, whose number
is 2T (n̂x + nu), are

z ≤ z ≤ z̄ ⇔
{

x̂min ≤ x̂t ≤ x̂max ∀t = 1, . . . , T
ûmin ≤ ût ≤ ûmax ∀t = 0, . . . , T − 1

where x̂min =

[
xmin

umin

]
, x̂max =

[
xmax

umax

]
, ûmin = Δumin, and ûmax =

Δumax. At each sample step, the MPC problem (1) can be recast as the
following QP:

min
1

2
z′Hz + h′z

s.t. z ≤ z ≤ z̄

Gz = g (3)

whereH = H ′ � 0,H ∈ Rnz×nz ,nz = T (n̂x + nu), h ∈ Rnz ,G ∈
RTn̂x×nz , and g ∈ RTn̂x are defined as

H =

⎡
⎢⎢⎢⎢⎢⎣

R 0 . . . 0 0
0 Q . . . 0 0
...

...
. . .

...
...

0 0 . . . R 0
0 0 . . . 0 Q

⎤
⎥⎥⎥⎥⎥⎦
,

R = WΔu

Q = Ĉ ′Ŵ Ĉ

G =

⎡
⎢⎢⎢⎢⎣

B̂ −I 0 0 . . . 0 0 0

0 Â B̂ −I . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . Â B̂ −I

⎤
⎥⎥⎥⎥⎦

h =

⎡
⎢⎢⎢⎢⎣

−Ĉ ′Ŵ r̂1
−Ĉ ′Ŵ r̂2

...
−Ĉ ′Ŵ r̂T

⎤
⎥⎥⎥⎥⎦, g =

⎡
⎢⎢⎢⎣
−Âx̂0

0
...
0

⎤
⎥⎥⎥⎦.

Clearly, matrix G is full row-rank. Note that A,B,C,Wy,Wu,WΔu,
and the upper and lower bounds on x, u, and Δu in (1) may change at
each controller execution.

III. ALGORITHM

A. Augmented Lagrangian Method

We solve the convex QP problem (3) by applying the augmented
Lagrangian method. The bound-constrained Lagrangian function L :
Z ×RT×n̂x → R is given by

L(z,Λ) = 1

2
z′Hz + z′h+Λ′(Gz − g)

where Z = {z ≤ z ≤ z̄} and Λ ∈ RTn̂x is the vector of Lagrange
multipliers associated with the equality constraints in (3). The dual
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problem of (3) is

max
Λ∈RTn̂x

φ(Λ) (4)

where φ(Λ) = minz∈Z L(z,Λ). Assuming that Slater’s constraint
qualification holds, the optimal value of the primal problem (3) and of
its dual (4) coincide. However,φ(Λ) is not differentiable in general [23],
so that any subgradient method for solving (4) would have a slow
convergence rate. Under the AL framework, the augmented Lagrangian
function

Lρ(z,Λ) =
1

2
z′Hz + z′h+Λ′(Gz − g) +

ρ

2
‖Gz − g‖2 (5)

is used instead, where the parameter ρ > 0 is a penalty parameter. The
corresponding augmented dual problem is defined as

max
Λ∈RTn̂x

φρ(Λ) (6)

where φρ(Λ) = minz∈Z Lρ(z,Λ) is differentiable provided that H +
ρG′G � 0. The dual problem (4) and the augmented dual problem (6)
share the same optimal solution [24, see Ch. 2 subsection 2.2], and most
important dρ(Λ) is concave and differentiable, with gradient [23], [25]
∇φρ(Λ) = Gz∗(Λ)− g, where z∗(Λ) denotes the optimal solution
of the inner problem minz∈Z Lρ(z,Λ) for a given Λ. Moreover, the
gradient mapping ∇φρ : RT×n̂x → RT×n̂x is Lipschitz continuous,
with a Lipschitz constant given by Lφ = ρ−1 [26].

Let Fρ(z; Λ
k) = 1

2
z′HAz + (hk

A)
′z, where hk

A = 1
ρ
h+G′Λk −

G′g, and HA = 1
ρ
H +G′G has the block-sparse structure

HA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1 φ2 0 0 0 . . . 0 0 0
φ′2 φ3 φ4 φ5 0 . . . 0 0 0
0 φ′4 φ1 φ2 0 . . . 0 0 0
0 φ′5 φ′2 φ3 φ4 . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 . . . φ3 φ4 φ5

0 0 0 0 0 . . . φ′4 φ1 φ2

0 0 0 0 0 . . . φ′5 φ′2 φ6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and φ1 = 1
ρ
R+ B̂′B̂, φ2 = −B̂′, φ3 = 1

ρ
Q+ (I + Â′Â), φ4 =

Â′B̂, φ5 = −Â′, and φ6 = 1
ρ
Q+ I . Since G is full rank, matrix

HA � 0. According to [24], the AL algorithm can be formulated in
scaled form as follows:

zk+1 = argminz∈ZFρ(z; Λ
k) (7a)

Λk+1 = Λk + (Gzk+1 − g) (7b)

which involves the minimization step of the primal vector z and the
update step of the dual vector Λ. As shown in [24], the convergence
of AL can be assured for a large range of values of ρ. Typically, the
larger the penalty parameter, the faster the AL algorithm is to converge,
but the more difficult (7a) is to solve, due to a larger condition number
of the Hessian matrix of subproblem (7a). The convergence rate of
the AL algorithm (7) is O(1/k) according to [27]. To improve the
speed of the AL method, [28] proposed an accelerated AL algorithm,
whose iteration-complexity isO(1/k2) for linearly constrained convex
programs, by using Nesterov’s acceleration technique. The accelerated
AL algorithm is summarized in Algorithm 1.

For solving the strongly convex box-constrained QP (7a), the fast
gradient projection method was used in [19] and [21]. Inspired by the
fact that the Gauss–Seidel method in solving block tridiagonal linear
systems is efficient [29], in this article, we propose the use of the
cyclic CD method to make full use of block sparsity and avoid the
explicit construction of matrix HA. Note that in the gradient projection
method or fast gradient projection method [21], the Lipschitz constant
parameter deriving from matrix HA needs to be calculated or estimated
to ensure convergence. Therefore, for linear MPC problems that change

Algorithm 1: Accelerated Augmented Lagrangian Method [28].

Input: Initial guess z0 ∈ Z and Λ0; maximum number Nout of
iterations; parameter ρ > 0.

1. Set α1 ← 1; Λ̂0 ← Λ0;
2. for k = 1, 2, . . . , Nout do
2.1. zk ← argminz∈ZFρ(z; Λ̂

k−1);
2.2. Λk ← Λ̂k−1 + (Gzk − g);
2.3. if ‖Λk − Λ̂k−1‖22 ≤ ε, stop;

2.4. αk+1 ←
1+
√

1+4α2
k

2
;

2.5. Λ̂k ← Λk + αk−1
αk+1

(Λk − Λk−1);
3. end.

at runtime such methods would be less preferable than cyclic CD. In
this article, by making full use of the structure of the subproblem, we
will implement a cyclic CD method that requires less computations, as
we will detail in the next section.

B. Coordinate Descent Method

The idea of the CD method is to minimize the objective function
along only one coordinate direction at each iteration, while keeping the
other coordinates fixed [30]. In [31], the authors showed that the CD
method is convergent in convex differentiable minimization problems,
and the rate of convergence is at least linear. We first give a brief
introduction of the CD method to solve (7a). Under the assumption
that the set of optimal solutions is nonempty and that the objective
function Fρ is convex, continuously differentiable, and strictly convex
with respect to each coordinate, the CD method proceeds iteratively for
k = 0, 1, . . . , as follows:

choose ik ∈ {1, 2, . . . , nz} (8a)

zk+1
ik

= argminzik
∈ZFρ(zik , z

k
�=ik

; Λ̂k) (8b)

where, with a slight abuse of notation, we denote by Fρ(zik , z
k
�=ik

; Λ̂k)

the value Fρ(z; Λ̂
k) when z�=ik = zk�=ik

is fixed. The convergence of
the iterations in (8) for k →∞ depends on the rule used to choose
the coordinate index ik. In [31], the authors show that the almost cyclic
rule and Gauss–Southwell rule guarantee convergence. Here, we use the
almost cyclic rule that provides convergence according to the following
lemma:

Lemma 1 ([31]): Let {zk} be the sequence of coordinate-descent
iterates (8), where every coordinate index is iterated upon at least
once on every N successive iterations, N ≥ nz . The sequence {zk}
converges at least linearly to the optimal solution z∗ of problem (7a).

In this article, we will use the reverse cyclic rule

ik = nz − (kmodnz)

to exploit the fact that the shifted previous optimal solution is used
as a warm start. The chosen rule clearly satisfies the assumptions of
Lemma 1 for convergence. The implementation of one pass through
all nz coordinates using reverse cyclic CD is reported in Procedure 2.
In Procedure 2, the Lagrangian variable Λ̂ ∈ RT×n̂x is divided into
{λ̂0, . . . , λ̂t−1, . . . , λ̂T−1}, where λ̂t−1 ∈ Rn̂x . For a given symmetric
M ∈ Rns×ns � 0, d ∈ Rns , the operator CCD[s,s̄]{M,d} used in
Procedure 2 represents one-pass iteration of the reverse cyclic CD
method through all ns coordinates sns , . . . , s1 for the following box-
constrained QP:

min
s∈[s,s̄]

1

2
s′Ms+ s′d (9)
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Procedure 2 Full Pass of Reverse Cyclic Coordinate Descent on
All Block Variables

Input: Λ̂ = {λ̂0, . . . , λ̂T−1}, U = {û0, . . . , ûT−1},
X = {x̂0, x̂1, . . . , x̂T }; MPC settings Â, B̂, Q, R, ûmin,
ûmax, x̂min, x̂max; parameter ρ > 0.

1. σ ← 0;
2. {x̂T , σ} ← CCD

x̂T ∈[x̂min,x̂max]
{ 1
ρ
Q+ I,−λ̂T−1 − Âx̂T−1 −

B̂ûT−1 − Ĉ ′Ŵ r̂T , σ};
3. {ûT−1, σ} ← CCD

ûT−1∈[ûmin,ûmax]
{ 1
ρ
R+ B̂′B̂, B̂′(λ̂T−1 +

Âx̂T−1 − x̂T ), σ};
4. for t = T − 2, T − 3, . . . , 0 do
4.1. {x̂t+1, σ} ← CCD

x̂t+1∈[x̂min,x̂max]
{ 1
ρ
Q+ I + Â′Â,−(λ̂t +

Âx̂t + B̂ût) + Â′(λ̂t+1 + B̂ût+1 − x̂t+2)− Ĉ ′Ŵ r̂t, σ};
4.2. {ût, σ} ← CCD

ût∈[ûmin,ûmax]
{ 1
ρ
R+ B̂′B̂, B̂′(λ̂t + Âx̂t −

x̂t+1), σ};
5. end.
Output: Û , X̂ , σ.

Procedure 3 Evaluation of CCD in Step 4.2 of Procedure 2

Input: λ̂t, ût, x̂t, x̂t+1; MPC settings Â, B̂, R, ûmin, ûmax;
parameter ρ > 0; update amount σ ≥ 0.

1. V ← λ̂t + Âx̂t + B̂ût − x̂t+1;
2. for i = nu, . . . , 1 do
2.1. s← 1

ρ
Ri,·ût + (B̂·,i)′V ;

2.2. θ ← [ût,i − s
1
ρRii+(B̂′B̂)ii

]
ûmax,i

ûmin,i
;

2.3. Δ← θ − ût,i;
2.4. σ ← σ +Δ2;
2.5. ût,i ← θ;
2.6. V ← V +ΔB̂·,i;
3. end.
Output: ût, σ.

that is to execute the following ns iterations:

for i = ns, . . . , 1

si ←
[
si − 1

Mi,i
(Mi,·s+ di)

]s̄i
si

end

(10)

where [si]
s̄i
si

is the projection operator

[si]
s̄i
si

=

⎧⎨
⎩
s̄i if si ≥ s̄i
si if si < si < s̄i
si if si ≤ si.

(11)

Note that in Procedure 2, Steps 2, 3, 4.1, and 4.2 all involve the same
operator CCD. In Procedure 3, we exemplify an efficient way to evaluate
such an operator for Step 4.2 of Procedure 2, as the approach is similar
for evaluating Steps 2, 3, and 4.1, where σ records the sum of squared
coordinate variations.

C. Preconditioning

Preconditioning is a common heuristic for improving the com-
putational performance of first-order methods. The optimal design
of preconditioners has been studied for several decades, but such a
computation is often more complex than the original problem and may
become prohibitive if it must be executed at runtime. Diagonal scaling is
a heuristic preconditioning that is very simple and often beneficial [32],
[33]. In this article, we propose to make the change of state variables

Procedure 4 Modified Procedure 3 to Efficiently Couple CD and
AL

Input: λt, ût; MPC settings Â, B̂, R, ûmin, ûmax; parameter
ρ > 0; update amount σ ≥ 0.

1. for i = nu, . . . , 1 do
1.1. s← 1

ρ
Ri,·ût + (B̂·,i)′λt;

1.2. θ ← [ût,i − s
1
ρRii+(B̂′B̂)ii

]
ûmax,i

ûmin,i
;

1.3. Δ← θ − ût,i;
1.4. σ ← σ +Δ2;
1.5. ût,i ← θ;
1.6. λt ← λt +Δ · B̂·,i;
2. end.
Output: ût, λt, σ.

x̄ = Ex̂, where E ∈ Rn̂x×n̂x is a diagonal matrix whose ith entry is

Ei,i =
√

Qi,i + Â′·,iÂ·,i (12)

and replace the prediction model x̂t+1 = Âx̂t + B̂ût by

x̄t+1 = Āx̄t + B̄ût

where Ā = EÂE−1 and B̄ = EB̂. The weight matrix Q and con-
straints [x̂min, x̂max] are scaled accordingly by setting Q̄ = E−1QE−1

and x̄min = E−1x̂min, x̄max = E−1x̂max.

D. Efficient Coupling Scheme Between CD and AL Method

We are now ready to couple CD and AL to solve the posed MPC
problem (1) efficiently. We first note that updating ût and x̂t+1 for all t
involves computing a similar temporary vector V in Procedure 3. As V
is in fact the next update of the dual vectorΛ in Algorithm 1, we modify
Procedure 3 as shown in Procedure 4. The overall solution method
described in the previous sections is summarized in Algorithm 5, that
we call CDAL. Note that the main update of the Lagrangian variables
in Algorithm 5 is placed early in Step 5, unlike in Algorithm 1, due
to the use of the proposed efficient coupling scheme. The AL (outer)
iterations are executed for maximum Nout iterations, the CD (inner)
iterations for at most Nin iterations. The tolerances εout and εin are
used to stop the outer and inner iterations, respectively. Algorithm 5 is
matrix-free and library-free, and we could implement it in 90 lines of
C code.

IV. NUMERICAL EXAMPLES

We test the performance of the CDAL solver against other solvers in
two numerical experiments. The first one is the ill-conditioned AFTI-
16 control problem [34], [35] based on LTI-MPC, used in the Model
Predictive Control Toolbox for MATLAB [36]. The main goals of this
experiment include investigating whether our proposed simple heuristic
preconditioner, reverse cyclic rule, and Nesterov’s acceleration scheme
are helpful, and provide a detailed comparison with other solvers. The
second experiment demonstrates the benefits of the construction-free
property in LPV-MPC of a CSTR [37], in which the prediction model is
obtained by linearizing a nonlinear model of the process at each sample
step. The reported simulation results were obtained on a MacBook Pro
with 2.7 GHz 4-core Intel Core i7 and 16 GB RAM. Algorithm 5 is
executed in MATLAB via a C-mex interface.
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Algorithm 5: Accelerated Reverse Cyclic CDAL Algorithm for
Linear (or Linearized) MPC.

Input: primal/dual warm-start U = {û0, û1, . . . , ûT−1},
X = {x̂0, x̂1, . . . , x̂T }, Λ−1 = Λ0 = {λ0, λ1, · · · , λT−1};
MPC settings {Â, B̂, Ĉ, Wy , Wu, WΔu, Δumin, Δumax,
umin, umax, xmin, xmax}; Algorithm settings
{ρ,Nout, Nin εout, εin}

1. Obtain preconditioned X̄ = {x̄0, . . . , x̄T }, Ā, B̄, Q̄,
x̄min, x̄max according to Section III-C

2. α1 ← 1; Λ̂0 ← Λ0;
3. for k = 1, 2, . . . , Nout do
3.1. for t = 0, . . . , T − 1 do
3.1.1. λk

t = λ̂k−1
t + Āx̄t + B̄ût − x̄t+1;

3.2. for kin = 1, 2, . . . , Nin do
3.2.1. U, X̄, σ ← Procedure 2 with use of Procedure 4;
3.2.2. if σ ≤ εin break the loop;
3.3. if ‖Λk − Λ̂k−1‖22 ≤ εout stop;

3.4. αk+1 ←
1+
√

1+4α2
k

2
;

3.5. Λ̂k ← Λk + αk−1
αk+1

(Λk − Λk−1);

4. Recover X from X̄
5. end.

Output: U,X,Λ

A. AFTI-16 Benchmark Example

The open-loop unstable linearized AFTI-16 aircraft model reported
in [34] and [35] is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ =

⎡
⎢⎢⎣
−0.0151 −60.5651 0 −32.174
−0.0001 −1.3411 0.9929 0
0.00018 43.2541 −0.86939 0

0 0 1 0

⎤
⎥⎥⎦x

+

⎡
⎢⎢⎣
−2.516 −13.136
−0.1689 −0.2514
−17.251 −1.5766

0 0

⎤
⎥⎥⎦u

y =

[
0 1 0 0
0 0 0 1

]
x.

The model is sampled using zero-order hold every 0.05 s. The input
constraints are |ui| ≤ 25◦, i = 1, 2, the output constraints are −0.5 ≤
y1 ≤ 0.5 and−100 ≤ y2 ≤ 100. The control goal is to make the pitch
angle y2 track a reference signal r2. In designing the MPC controller,
we take Wy = diag([10, 10]), Wu = 0, WΔu = diag([0.1, 0.1]), and
the prediction horizon is T = 5.

To investigate the effects of the three techniques (reverse cyclic rule,
acceleration, and preconditioning) that we have introduced to improve
the efficiency of the CDAL algorithm, we performed closed-loop sim-
ulations on eight schemes with fixed ρ = 1. These are 0-CDAL, the
basic scheme, without acceleration and reverse cyclic rule; R-CDAL,
the scheme with the Reverse cyclic rule; A-CDAL, the accelerated
scheme; AR-CDAL, the accelerated scheme with the reverse cyclic
rule, and their respective schemes with preconditioners, namely P-0-
CDAL, P-R-CDAL, P-A-CDAL; and finally CDAL, that includes all the
proposed techniques. The stopping criteria are defined by εin = 10−6,
εout = 10−4, and Nout, Nin are set to the large enough value 5000 in
order to guarantee good-quality solutions.

The computational load associated with the above schemes is listed
in Table I, in which the last column represents the closed-loop perfor-
mance, which is the average value 1

T

∑T−1
t=0 ‖Wy(yt+1 − rt+1)‖22 +

‖Wu(ut+1 − ur
t+1)‖22 + ‖WΔuΔut‖22 of the MPC cost over the du-

ration T of the closed-loop simulation and is almost the same for all

TABLE I
COMPUTATIONAL PERFORMANCE OF DIFFERENT SCHEMES

Fig. 1. Linear AFTI-16 closed-loop performance.

schemes. The associated closed-loop trajectories are reported in Fig. 1,
which shows that the pitch angle correctly tracks the reference signal
from 0◦ to 10◦ and then back to 0◦, and that both the input and output
constraints are satisfied.

Since each MPC execution requires different numbers of inner and
outer iterations, the average (“avg”) and maximum (“max”) number
of iterations (or CPU time) are computed over the entire closed-loop
execution. It can be observed that the maximum and average number
of inner-loop iterations of R-CDAL are smaller than that of 0-CDAL
(especially the maximum number), while their outer-loop iterations are
almost the same, which shows that the reverse cyclic rule provides
a significant improvement. Although A-CDAL has fewer outer-loop
iterations, it has more inner-loop iterations than 0-CDAL on average. It
therefore does not result in a significant reduction in total computation
time. We can see that AR-CDAL achieves fewer iterations both in the
inner and outer loops and has better average and worst-case computation
performance. It can also be seen from Table I that preconditioning
significantly reduces the number of outer-loop iterations.

Next, we investigate the effect on computation efficiency of param-
eter ρ that we expect to tend to trade off feasibility versus optimality. In
particular, we expect larger values of ρ to favor feasibility, i.e., provide
more inner-loop iterations and less outer-loop iterations, and vice
versa. The computational performance results obtained by performing
closed-loop simulations using the final CDAL algorithm for different
values ofρ between 0.01 and 1 are listed in Table II. When the parameter
value is between 0.01 and 0.1, the CDAL algorithm has very similar
computational burden.

To further illustrate the efficiency of CDAL, Table II also lists the
results obtained by using other solvers. Here, the FastMPC solver is
also a construction-free solver that provides a free C-mex code. We
also made comparison with the μAO-MPC solver v1.0.0-beta [38],
which is based on an augmented Lagrangian method together with
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TABLE II
COMPUTATIONAL LOAD OF CDAL WITH DIFFERENT VALUES OF ρ AND

COMPARISON WITH OTHER SOLVERS

Nesterov’s gradient method. The μAO-MPC differs from CDAL in
the way the subproblems are solved, and the outer loop not involving
an acceleration scheme. The state-of-the-art first-order method for QP,
OSQP solver v0.6.2 [10], and MATLAB’s built-in QP solver (quadprog)
are also used for comparison. For a fair comparison, each solver setting
is chosen to at least ensure that each shares the same objective cost and
constraint violation. When the parameter ρ of the CDAL is 0.01, the
CDAL is faster than the other solvers. Regarding theμAO-MPC, OSQP,
and quadprog solvers, we split between QP problem construction time
(including the required matrix factorizations) and pure solution time.
Note that in this case, the controller is LTI-MPC, and hence, the MPC
problem construction and matrix factorizations required by these non-
construction-free solvers can be performed offline. On the other hand,
in the case of LPV-MPC problems, the total computation time would
be spent online and the embedded code would also include routines
for problem construction and matrix factorization functions. Instead,
CDAL does not require any construction nor factorizations, thus making
the solver very lean and fast also in a time-varying MPC setting, as
investigated next.

B. Nonlinear CSTR Example

To illustrate the performance of CDAL when the linear MPC for-
mulation (1) changes at runtime, we consider the control of the CSTR
system [37], described by the continuous-time nonlinear model

dCA

dt
= CA,i − CA − k0e

−EaR
T CA

dT

dt
= Ti + 0.3Tc − 1.3 T + 11.92k0e

−EaR
T CA

y = CA (13)

where CA is the concentration of reagent A, T is the temperature of the
reactor,CA,i is the inlet feed stream concentration, which is assumed to
have the constant value 10.0 kgmol/m3. The disturbance comes from the
inlet feed stream temperature Ti, which has fluctuations represented by
Ti = 298.15 + 5 sin(0.05t)K. The manipulated variable is the coolant
temperature Tc. The constants k0 = 34930800 and EaR = −5963.6
(in MKS units). The reactor’s initial state is at a low conversion rate, with
CA = 8.57 kgmol/m3 and T = 311 K. The goal is to adjust the reactor
state to a high reaction rate with CA = 2 kgmol/m3, which is a quite
large condition. The controller manipulates the coolant temperature

Fig. 2. Nonlinear CSTR closed-loop performance.

Tc to track a concentration reference as well as reject the measured
disturbance Ti. Due to its nonlinearity, the model in (13) is linearized
online at each sampling step:

dx

dt
≈ f(xt, ut−1, p) +

∂f

∂x

∣∣∣∣
xt,ut−1,p

(x− xt) +
∂f

∂u

∣∣∣∣
xt,ut−1,p

(u− ut−1)

where f(x, u, p) is the mapping defined in (13) for x =
[CA T ]′, u = Tc, p = [CA,i Ti]

′. By setting Ac =
∂f
∂x
|xt,ut−1,p, Bc =

∂f
∂u
|xt,ut−1,p, and ec = f(xt, ut−1, p)−Atxt −Btut−1, we get the

following linearized continuous-time model:

d

dt
x = Acx+Bcu+ ec.

We use the forward Euler method with sampling time Ts = 0.5 min to
obtain the following discrete-time model:

xt+1 = Adxt +Bdut + ed

where Ad = I + TsAc, Bd = TsBc, and ed = Tsec. Although held
constant over the prediction horizon, clearly matrices Ad and Bd and
the offset term ed change at runtime, which makes the controller
an LPV-MPC. Regarding the performance index, we choose weights
Wy = 1, Wu = 0, and WΔu = 0.1. The physical limitation of the
coolant jacket is that its rate of change ΔTc is subject to the constraint
[−1, 1] K when considering the sampling time Ts = 0.5 min. The
prediction horizon is T = 10 steps.

We compare again CDAL with FastMPC, μAO-MPC, OSQP, and
quadprog solvers in the LPV-MPC setting described above. CDAL
is run with εin = 10−6, εout = 10−4, ρ = 0.01, and Nout = Nin =
5000. For a fair comparison, each solver setting is chosen to at least
ensure each shares the same objective cost and constraint violation.
The closed-loop simulation results of CDAL and other solvers almost
coincide and are plotted in Fig. 2, from which it can be seen that CA

tracks the reference signal well, and the fluctuation of Ti is effectively
suppressed. The computational load and closed-loop performance as-
sociated with CDAL and other solvers are reported in Table III. In
this successive linearization-based MPC example, we found that the
problem-construction time has a comparable computation time to the
problem-solving time from the results of non-construction-free solvers.
If we only compare the solution time, CDAL is faster than other solvers
except for OSQP, but in fact the MPC construction time must be
included for comparison, which leads to CDAL being faster than OSQP.
Because of the construction-free, matrix-free, and library-free features,
CDAL has an advantage in industrial embedded deployment when the
optimization problem associated with MPC is constructed online and
this operation has a cost that is comparable to the solution time.
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TABLE III
COMPUTATIONAL PERFORMANCE OF CDAL AND OTHER SOLVERS

V. CONCLUSION

This article has proposed a construction-free, matrix-free, and
library-free MPC solver, based on a cyclic coordinate-descent method
in the augmented Lagrangian framework. We showed that the method
is efficient and competes with other existing methods, thanks to the
use of a reverse cyclic rule, Nesterov’s acceleration, a simple heuristic
preconditioner, and an efficient coupling scheme. Compared to many
QP solution methods proposed in the literature, CDAL avoids con-
structing the QP problem, which makes it particularly appealing for
some scenarios in which its online construction is required and has a
comparable computation time to solving itself.

The proposed algorithm can be immediately extended to handle
linear time-varying systems, in which the plant-model and/or cost-
function matrices are allowed to vary over the prediction horizon. Future
research will investigate the use of CDAL to solve nonlinear MPC
problems and data-driven MPC formulations in which the model is
adapted online by recursive system identification.
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[18] P. Richtárik and M. Takáč, “Distributed coordinate descent method
for learning with Big Data,” J. Mach. Learn. Res., vol. 17, no. 1,
pp. 2657–2681, 2016.

[19] S. Richter, C. N. Jones, and M. Morari, “Computational complexity certi-
fication for real-time MPC with input constraints based on the fast gradient
method,” IEEE Trans. Autom. Control, vol. 57, no. 6, pp. 1391–1403,
Jun. 2012.

[20] V. Nedelcu, I. Necoara, and Q. Tran-Dinh, “Computational complexity
of inexact gradient augmented Lagrangian methods: Application to con-
strained MPC,” SIAM J. Control Optim., vol. 52, no. 5, pp. 3109–3134,
2014.

[21] R. F. M. Kögel, “Fast predictive control of linear systems combining
Nesterov’s gradient method and the method of multipliers,” in Proc. IEEE
50th Conf. Decis. Control Eur. Control Conf., 2011, pp. 501–506.

[22] Y. Nesterov, “A method of solving a convex programming problem with
convergence rateO(1/k2),” Sov. Math. Dokl., vol. 27, no. 2, pp. 372–376,
1983.

[23] D. P. Bertsekas, “Nonlinear programming,” J. Oper. Res. Soc., vol. 48,
no. 3, pp. 334–334, 1997.

[24] D. P. Bertsekas, Constrained Optim. and Lagrange Multiplier Methods.
New York, NY, USA: Academic, 2014.

[25] Y. Nesterov, “Smooth minimization of non-smooth functions,” Math.
Program., vol. 103, no. 1, pp. 127–152, 2005.

[26] G. Lan and R. D. C. Monteiro, “Iteration-complexity of first-order aug-
mented Lagrangian methods for convex programming,” Math. Program.,
vol. 155, no. 1, pp. 511–547, 2016.

[27] B. He and X. Yuan, “On the acceleration of augmented Lagrangian
method for linearly constrained optimization,” Optim. Online, vol. 3, 2010.
[Online]. Available: https://optimization-online.org/2010/10/2760/

[28] M. Kang, M. Kang, and M. Jung, “Inexact accelerated augmented La-
grangian methods,” Comput. Optim. Appl., vol. 62, no. 2, pp. 373–404,
2015.

[29] P. Amodio and F. Mazzia, “A parallel Gauss–Seidel method for block
tridiagonal linear systems,” SIAM J. Sci. Comput., vol. 16, no. 6,
pp. 1451–1461, 1995.

[30] S. J. Wright, “Coordinate descent algorithms,” Math. Program., vol. 151,
no. 1, pp. 3–34, 2015.

[31] Z. Q. Luo and P. Tseng, “On the convergence of the coordinate descent
method for convex differentiable minimization,” J. Optim. Theory Appl.,
vol. 72, no. 1, pp. 7–35, 1992.

[32] P. Giselsson and S. Boyd, “Diagonal scaling in Douglas-Rachford splitting
and ADMM,” in Proc. IEEE 53rd Conf. Decis. Control, 2014, pp. 5033–
5039.

[33] R. Takapoui and H. Javadi, “Preconditioning via diagonal scaling,”
Oct. 2016, arXiv:1610.03871.

[34] P. Kapasouris, M. Athans, and G. Stein, “Design of feedback control
systems for stable plants with saturating actuators,” in Proc. IEEE 27th
Conf. Decis. Control, 1988, vol. 1, pp. 469–479.

[35] A. Bemporad, A. Casavola, and E. Mosca, “Nonlinear control of con-
strained linear systems via predictive reference management,” IEEE Trans.
Autom. Control, vol. 42, no. 3, pp. 340–349, Mar. 1997.

[36] A. Bemporad, M. Morari, and N. L. Ricker, Model Predictive Control
Toolbox: User’s Guide, Version 2. Natick, MA, USA: MathWorks, 2004.

[37] D.E Seborg, T. F. Edgar, D. A. Mellichamp, and F. J. Doyle III, Process
Dynamics and Control. Hoboken, NJ, USA: Wiley, 2016.

[38] P. Zometa, M. Kögel, and R. Findeisen, “μAO-MPC: A free code genera-
tion tool for embedded real-time linear model predictive control,” in Proc.
Amer. Control Conf., 2013, pp. 5320–5325.

Authorized licensed use limited to: MIT. Downloaded on May 15,2025 at 13:36:05 UTC from IEEE Xplore.  Restrictions apply. 

https://optimization-online.org/2010/10/2760/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


