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Abstract

Ensuring reliability of Large Language Models (LLMs) in clinical tasks is crucial. Our study
assesses two state-of-the-art LLMs (ChatGPT and LlaMA-2) for extracting clinical informa-
tion, focusing on cognitive tests like MMSE and CDR. Our data consisted of 135,307 clinical
notes (Jan 12th, 2010 to May 24th, 2023) mentioning MMSE, CDR, or MoCA. After applying
inclusion criteria 34,465 notes remained, of which 765 underwent ChatGPT (GPT-4) and
LlaMA-2, and 22 experts reviewed the responses. ChatGPT successfully extracted MMSE
and CDR instances with dates from 742 notes. We used 20 notes for fine-tuning and training
the reviewers. The remaining 722 were assigned to reviewers, with 309 each assigned to
two reviewers simultaneously. Inter-rater-agreement (Fleiss’ Kappa), precision, recall, true/
false negative rates, and accuracy were calculated. Our study follows TRIPOD reporting
guidelines for model validation. For MMSE information extraction, ChatGPT (vs. LIaMA-2)
achieved accuracy of 83% (vs. 66.4%), sensitivity of 89.7% (vs. 69.9%), true-negative rates
of 96% (vs 60.0%), and precision of 82.7% (vs 62.2%). For CDR the results were lower over-
all, with accuracy of 87.1% (vs. 74.5%), sensitivity of 84.3% (vs. 39.7%), true-negative rates
of 99.8% (98.4%), and precision of 48.3% (vs. 16.1%). We qualitatively evaluated the
MMSE errors of ChatGPT and LIaMA-2 on double-reviewed notes. LIaMA-2 errors included
27 cases of total hallucination, 19 cases of reporting other scores instead of MMSE, 25
missed scores, and 23 cases of reporting only the wrong date. In comparison, ChatGPT’s
errors included only 3 cases of total hallucination, 17 cases of wrong test reported instead of
MMSE, and 19 cases of reporting a wrong date. In this diagnostic/prognostic study of
ChatGPT and LlaMA-2 for extracting cognitive exam dates and scores from clinical notes,
ChatGPT exhibited high accuracy, with better performance compared to LIaMA-2. The use
of LLMs could benefit dementia research and clinical care, by identifying eligible patients for
treatments initialization or clinical trial enroliments. Rigorous evaluation of LLMs is crucial to
understanding their capabilities and limitations.
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Author summary

Large-scale language models (LLMs) have emerged as powerful tools in natural language
processing (NLP), capable of performing diverse tasks when prompted. Since reliable per-
formance of LLMs in clinical tasks is essential, our study evaluates two advanced LLMs—
ChatGPT and LlaMA-2—for their ability to extract clinical information from health rec-
ords, particularly cognitive test results: MMSE (Mini-Mental State Examination) and
CDR (Clinical Dementia Rating). We analyzed 765 clinical notes from over a decade,
focusing on how well these models could identify and date specific test mentions.
ChatGPT accurately extracted MMSE and CDR details from most notes, demonstrating
greater accuracy, sensitivity. Our findings also reveal common errors, with ChatGPT gen-
erally producing fewer inaccuracies. This research emphasizes the potential for LLMs to
enhance dementia research and patient care by improving the identification of eligible
patients for treatment or clinical trials. However, a thorough understanding of these mod-
els’ strengths and weaknesses is essential for their effective application in real-world clini-
cal settings.

Introduction

Large-scale language models (LLMs) [1-4] have emerged as powerful tools in natural language
processing (NLP), capable of performing diverse tasks when prompted [5,6]. These models
have demonstrated impressive clinical reasoning abilities [7], successfully passing medical
licensing exams [8-10] and generating medical advice on distinct subjects, including cardio-
vascular disease [11], breast cancer [12], colonoscopy [13], and general health inquiries [6,14-
16]. These models can produce clinical notes [16] and assist in writing research articles [16].
Medical journals have begun developing policies around use of LLMs in writing [17-22] and
reviewing. Examples of such LLMs include ChatGPT [1,2], Med-PALM-2 [3], LlaMA-2 [4],
and open-source models actively produced by the community [23].

In this study, we focus on evaluating information extraction abilities of Large Language
Models from clinical notes, specifically focusing on proprietary ChatGPT (powered by GPT-4
[2]), and open source LlaMA-2 [4] LLMs. Information extraction involves the retrieval of spe-
cific bits of information from unstructured clinical notes, a task historically handled by rule-
based systems [24-30] or language models explicitly trained on datasets annotated by human
experts [31-36]. Rule-based systems lack a contextual understanding and struggle with com-
plex sentence structures, ambiguous language, and long-distance dependencies, often leading
to high false positive rates and low sensitivities [37-40]. Additionally, training a new model for
this task can be computationally demanding and require substantial human effort. In contrast,
LLMs, such as ChatGPT or LlaMA-2, operate at “zero-shot” capacity [41-43], i.e., only requir-
ing a prompt describing the desired information to be extracted.

Despite their promise, LLMs also have a potential limitation—the generation of factually
incorrect yet highly convincing outputs, commonly known as “hallucination.” The massive
architectures and complex training schemes of LLMs hamper “model explanation” and the
ability to intrinsically guarantee behavior. This issue has been extensively discussed in the liter-
ature, emphasizing the need for cautious interpretation and validation of information gener-
ated by LLMs [2,44,45].

One area where LLMs may greatly benefit healthcare is in the identification of memory
problems and other symptoms indicative of Alzheimer’s Disease and Alzheimer’s Disease
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Related Dementias (AD/ADRD) within clinical notes. AD/ADRD is commonly underdiag-
nosed or diagnosed later in the disease trajectory, particularly in racial and ethnic minoritized
groups [46-51]. The precise extraction of cognitive test scores holds significant importance in
the development and clinical validation of tools that can facilitate early detection [52] of AD/
ADRD in the clinic. Earlier identification can lead to a host of benefits, including assisting
with advanced care planning, performing secondary cardiovascular disease prevention, which
may reduce worsening of cognitive impairment [53,54], identification for serving in research
trials [55-57], and with the rapid advancement in biologic therapeutics, the opportunity to
receive potentially disease modifying drugs [57,58]. Accurately extracting cognitive exam
scores (often buried in clinical notes and not documented in any structured field), enables vali-
dation, training and fine-tuning of models at a much larger scale in a clinical setting for a
much more racial/ethnically diverse patient population set compared to current research
cohorts.

The primary focus of this paper is therefore on the validation of two state-of-the-art LLMs
(ChatGPT powered by GPT-4, and LlaMA-2), for information extraction related to cognitive
tests, specifically the Mini-Mental State Examination (MMSE) [59] and Clinical Dementia Rat-
ing (CDR) [60], from clinical notes of a racially and ethnically diverse patient population. Our
objective is to accurately extract all instances of (the exam score, and the date when the exam
was administered) using these LLMs.

This study represents a large-scale formal evaluation of two state of the art LLMs (ChatGPT,
and LIaMA-2) performance in information extraction from clinical notes. Going forward, we
intend to employ this benchmark dataset to validate other (open or closed-source) LLMs. Fur-
thermore, we plan to adopt a similar approach to validate LLMs for information extraction
across various clinical use cases. By prioritizing prompt engineering with ChatGPT and
LIaMA-2 for extracting clinical information, this research aims to enhance our understanding
of the potential of LLMs in healthcare and facilitate the development of reliable and robust
clinical information extraction tools.

Methods

This study is approved under IRB i20-01095, “Understanding and predicting Alzheimer’s Dis-
ease.” NYU DataCore services were utilized to prepare the data as described below. A HIPAA-
compliant private instance of ChatGPT (Microsoft Azure OpenAl Service) was utilized for this
study. LlaMA-2 (“Llama-2-70b-chat” version) was evaluated on two A100 Nvidia GPUs on
our local high performance computing servers. This Diagnostic/Prognostic study designed to
validate the diagnostic accuracy of two LLMs (ChatGPT and LlaMA-2) in extracting cognitive
exam dates and scores, follows the TRIPOD Prediction Model Validation reporting guidelines
(S1 Checklist) [61].

Dataset

An original cohort of 135,307 clinical notes corresponding to inpatient, outpatient, and emer-
gency department visits between January 12th 2010 and May 24th 2023, which included any of
the following keywords (‘MMSE’, ‘CDR,’ or ‘MoCA’ case-insensitive) were identified (see

Fig 1). MMSE stands for Mini Mental State Exam, CDR stands for Cognitive Dementia Rating,
and MoCA stands for Montreal Cognitive Assessment [62]. These notes belonged to 52,948
patients. From among these patients, 26,355 had a non-contrast brain Magnetic Resonance
Imaging (MRI) in the system. Limiting the clinical notes to those who had an MRI in the sys-
tem resulted in 77,547 notes. After extracting the notes, we further excluded 43,082 notes that
only mentioned MoCA, yielding 34,465 clinical notes for analysis.
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Clinical notes containing keywords
‘MMSE’, ‘CDR’, “MoCA’
n = 135,307
(from n = 52,948 patients)

» Excluded notes:
* No non-contrast MRI (n =57,760)

v * Only flagged for ‘MoCA’ (n = 43,082)
Eligible notes
n = 34,465

Randomly selected notes
n =765

»| Excluded due to ChatGPT errors (n = 23):
* Azure content management violation (n =17)

\4 * APl timeout (n =5)

* Maximum length limit error (n = 1)

Used as tuning set (n = 20)

Notes evaluated by human
reviewers
n=722
(from n = 458 patients)

- l - l Excluded due to extensive
Single reviewer Two reviewers parsing issues with human-
n =413 n =309 created JSON output (n = 12)
» n=9
> n=3
v v
Single reviewer Two reviewers
n =404 n =306

v

Notes in final sample
n=710

Fig 1. Flowchart of clinical notes evaluated for inclusion in the final sample of GPT-analyzed notes.

https://doi.org/10.1371/journal.pdig.0000685.g001

The choice for requiring patients to have a brain MRI as well as MMSE and/or CDR enables
us to have a similar level of granularity as the Alzheimer’s Disease Neuro-Imaging Initiative
(ADNI) [63], which also uses MMSE and CDR for definition of mild cognitive impairment
and dementia stages. This further enables us to harmonize our clinical dataset with these large
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research cohorts. To elucidate the impact of this choice (restriction of cohort to those with
MRI) on the racial breakdown of our study, we include a demographics comparison between
the two sets (original 52,948 patients, and the 26,355 with an MRI) in S1 Section. Similarly, the
choice to ignore MoCA was due to the lack of inclusion of MoCA in standard definition for
stages of cognitive impairment in ADNI. The mild cognitive impairment and (mild, moderate
or severe) dementia definition criteria utilized in ADNI are included in S1 Table. Data harmo-
nization is beyond the scope of this paper, although information extraction plays a substantial
role in enabling it.

From among 34,465 notes that fit the inclusion criteria, a random selection of 765 notes
was identified to undergo information extraction via ChatGPT and manual evaluation. 765
was the total number of the notes needed to satisfy two conditions: 1) Each reviewer not being
assigned more than 50 notes to review, and 2) at least around 15 notes per reviewer being dou-
ble-reviewed by another random reviewer. From among these 765 notes, ChatGPT encoun-
tered application programming interface (API) errors in 23 cases (3%). These errors arose
from “Azure content management violations” [64] (17 cases), API timeouts (5 cases), and
maximum length limit errors (1 case). S2 Table includes a more detailed description of these
errors. The remaining 742 were considered for assignment to domain expert reviewers, and
underwent analysis by LlaMA-2.

Generative Al, ChatGPT

A private, HIPAA-compliant instance of ChatGPT (GPT-4, API version “2023-03-15-pre-
view”) was used on these 765 notes to extract all instances of the cognitive tests—MMSE and
CDR—along with the dates at which the tests were mentioned to have been administered.
Examples of our task are provided in the S2 Section. Inference was successful for 742 notes.
The complete API call, along with the exact prompt, the temperature, and other hyper-param-
eters are included in S3 Table. The prompt included a request to return these results in a JSON
format. ChatGPT’s response (full), as well as the JSON formatted dialogue response were
recorded in one session on June 9th 2023. The notes sent to ChatGPT were text-only, stripped
of the rich-text formatting (RTF) native to our EHR system (Epic Systems, Verona, WI). This
reduced token count by approximately ten-fold, enabling notes to fit into the GPT4-8K input
window and removing a substantial source of confusion for the LLM in prompt tuning. The
date that the encounter was recorded in Epic was appended at the beginning of the note, pro-
ceeding with a column (“:”) then the note text. See S3 Table for the API request, including the
prompt.

Generative Al, LlaMA-2

We used LIaMA-2 (version “Llama-2-70b-chat") on all the notes which ChatGPT produced
valid answer. All pre-processing steps on the notes were similar to that of ChatGPT. The con-
text window was limited to the first 3696 tokens. The complete API call, along with the exact
prompt, the temperature, and other hyper-parameters are included in S4 Table.

Hyper-parameter and prompt tuning

For both ChatGPT and LlaMA-2, we assigned 20 notes out of the 742 as our hyper-parameter
and prompt tuning set. For ChatGPT, an interactive cloud-based environment (i.e play-
ground) was utilized initially to fine-tune the prompt. After initial exploratory analysis using
these 20 notes, they were scored via the API using the best prompt and hyper-parameter found
in the interactive mode. For LlaMA-2, the exploration was performed locally, on the same 20
notes. For both models, we explored the following model parameters: max_token_length,
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temperature. All human expert reviewers (detailed below) were instructed to first review the
ChatGPT results of the 20 cases in a RedCap survey. The goal of this step was to train the
reviewers, refine the information presented in RedCap, improve clarification of the questions,
and potentially refine the prompt. These 20 notes were then excluded from any additional
analysis.

Human expert reviewers

Our team included 22 medically trained expert reviewers who volunteered and were trained to
review an (HTML formatted) note, provide ground truth, and judge the correctness and com-
pleteness of ChatGPT answers for each cognitive test. Fully (HTML) formatted notes were
pulled using an Epic web service, and were fed into the RedCap survey. Redcap survey ren-
dered the note’s HTML formatting, to ensure notes could be displayed to users in the same for-
mat as the readers are accustomed to seeing them clinically, rather than the text-only,
computer-friendly format provided to GPT. To generate ground-truth, the reviewers used
ChatGPT responses as the basis, and corrected any errors ChatGPT made.

For 21 of these reviewers, each reviewer was assigned approximately 50 clinical notes to
evaluate. From among each reviewer’s 50 assigned notes, about 15 notes were assigned to
another random reviewer. The assignment algorithm randomly selected a pair of reviewers for
each of our 309 double-reviewed notes and assigned the remaining notes to a randomly
selected reviewer until each reviewer reached 50 notes or we fully assigned all notes. This ran-
dom assignment was a necessary step for ensuring correctness of Fleiss’ Kappa [65] metric for
inter-rater-agreement. As a result, there was a slight variation in the total number of assigned
notes for each reviewer.

Overall, 722 notes were assigned to these 21 reviewers, of which 309 were double-reviewed
and 413 were solo-reviewed. The double-reviewed 309 notes were utilized in reporting inter-
rater-agreement metrics. After the review, 69 out of 309 notes had at least one disagreement
between the two reviewers based on one of the four questions: Whether ChatGPT’s response on
MMSE was correct; whether ChatGPT’s response on MMSE included all instances of MMSE
found in the clinical note; whether ChatGPT’s response on CDR was correct; and whether
ChatGPT'’s response on CDR included all instances of CDR found in the clinical note. A 22nd
reviewer was then tasked to review these 69 notes again to provide a third review. Majority
vote was then employed to identify the final answer and the ground truth provided by the
reviewer whose answer was in the majority vote was used to calculate detailed precision/recall
metrics. When both reviewers fully agreed and their JSON results were both valid for analysis,
we randomly selected one to compute the precision and recall. Details of the parsing of the
JSON result are included in the S3 Section. These expert-provided ground truth results were
the basis for evaluating LlaMA-2.

Statistical approach

We reported Fleiss’ Kappa [65] as a measure of inter-rater-agreement for double-reviewed
notes. We reported this metric for the four questions on ChatGPT-generated responses (Is
MMSE complete/correct, and is CDR complete/correct). Additionally, for double-reviewed
notes, we derived inter-rather-agreement by computing 2-way Fleiss’ Kappa for MMSE and
CDR lists of (outcome and date) tuples extracted from the JSON responses by expert reviewers.
Fleiss’ Kappa is useful when the assignment of a note to reviewer pairs has been random (uni-
form), and each note has been reviewed by a subset of reviewers [66,67]. Only exact outcome
and date tuple matches were considered to be in agreement between raters (i.e [MMSE-27/30,
date “10-10-2010”], with [MMSE-26/30, date “10-10-2010”] is just as bad as [MMSE-5/30, date
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“10-10-20127]). We also report a 3-way Fleiss’ Kappa on the entries of MMSE and CDR results
extracted from the JSON results, computing the joint agreement between the results of
ChatGPT and the results provided by two human reviewers.

We also report per test type (MMSE and CDR), Accuracy, True and False Negative Rates,
Micro- and Macro-Precision and Micro- and Macro-Recall for both ChatGPT and LlaMA-2.
Accuracy is defined as the percentage of correct results (at clinical note level), correct being
defined as the list of (Value/Date) tuples in the JSON entries for the LLM and Ground Truth
being fully identical. Macro-Precision for MMSE (or CDR) is the average (at the note level) of
percentage of correct MMSE (or CDR) tuples extracted (correct both in date and score values
compared to an entry mentioned in the ground truth for MMSE (or CDR)). Macro-Recall for
MMSE (or CDR) is the average (at the note level) of the percentage of the MMSE items in the
ground truth that are extracted by the LLM. Micro-precision is calculated as percentage of cor-
rect MMSE (or CDR) items extracted by the LLM, from among all extracted MMSE (or CDR)
items by that LLM, and is calculated as one number across all notes combining all notes’
entries. Micro-recall is similarly calculated as the percentage of all MMSE (or CDR) items
mentioned in the ground truth that were extracted by the LLM.

Results

ChatGPT analyzed 765 notes for extraction of Mini Mental Status Exam (MMSE) and Cogni-
tive Dementia Rating (CDR) scores and exam dates. Of these, 23 encountered API error (3%),
and 20 were used to fine-tune prompt and hyper-parameters. The remaining 722 notes were
assigned to human expert reviewers who manually reviewed (and provided ground truth for)
these notes. LlaMA-2 analyzed these 722 notes as well. Characteristics of these 722 notes and
associated patients are included in Table 1.

Of the double-reviewed 309 notes, 69 had at least one disagreement between the responses
to the four questions (if ChatGPT’s response for MMSE/CDR is correct/complete) and were
assigned to a new reviewer for a third opinion. Among the responses with disagreement, 9 dis-
agreed about correctness of MMSE answers, 40 disagreed about completeness of MMSE
answers, 17 disagreed about correctness of CDR answers, and 22 disagreed about completeness
of CDR answers. The average response (at the note level) by the included reviews for the four
yes/no questions are included in Table 2. Overall reviewers considered ChatGPT’s response to
be 96.5% and 98% correct for MMSE and CDR respectively. The assessment for whether
ChatGPT’s answers are also complete (i.e. they do not miss anything) was slightly lower aver-
aging about 84% and 83% for MMSE and CDR respectively.

The inter-rater-agreements between reviewers were calculated based on Fleiss’ Kappa and
are summarized in Table 3. In addition to measuring Fleiss’ Kappa between reviewers based
on double-reviewed notes (reported as 2-way Fleiss’ Kappa in Table 3), we also report agree-
ment between ChatGPT, and the two human reviewers (reported as 3-way Fleiss’ Kappa in
Table 3). The 2-way agreement on the yes/no questions was high (94% agreement between
reviewers for MMSE and 89% agreement for CDR). There was some disagreement in judging
the completeness of the answer, leading to a Kappa value of 75% for MMSE (and 85% for
CDR). More notably, when analyzing the elements of the ground truth JSON, the 2-way agree-
ment was excellent both for scores (83% for MMSE and 80% for CDR) and for dates (93% for
MMSE and 79% for CDR). When measuring the 3-way agreement, there was an increase in all
the metrics except MMSE dates. The accuracy and results of JSON formatting of the responses
are included in $4 Section.

ChatGPT had an excellent True Negative Rate—over 96% for MMSE and 100% for CDR in
double-reviewed notes (Table 4). Both results had high recall (sensitivity), reaching 89.7% for
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Table 1. Characteristics of 722 notes which are manually evaluated, and their corresponding patients.

Feature All notes (N = 722 notes from 458 | Double reviewed notes (N = 309 notes from
patients) 236 patients)

Patient demographics

Age at time of note (mean | 72.64 (14.01) 73.68 (14.01)

(sd))

Gender

Female (%) 242 (52.84%) 124 (52.54%)

Male(%) 216 (47.16%) 112 (47.46%)

Race

Asian 27 (5.90%) 10 (4.24%)

Black 39 (8.52%) 17 (7.20%)

White 334 (72.93%) 178 (75.42%)

American Indian 1(0.22%) 0 (0.00%)

Unknown 57 (12.45%) 31 (13.14%)

Note characteristics

Date ranges (min to max) | 2011/11/21 to 2023/05/10 2011/11/21 to 2023/05/10

Length (in words) (mean 8428.2 (3822.3) 8306.2 (3851.1)

(SD))

ChatGPT (Prompt Tokens) | 2212.93 (1002.9) 2174.9 (992.3)

ChatGPT (Completion 64.3 (49.6) 64.2 (46.5)

Tokens)

ChatGPT (Total Tokens) 2277.3(1017.9) 2239.1 (1005.0)

Llama2 (Prompt Tokens) 2860.8 (1224.2) 2810.4 (1208.4)

Llama2 (Completion 140.2 (112.8) 146.9 (125.3)

Tokens)

Llama2 (Total Tokens) 3000.9 (1276.7) 2957.4 (1270.8)

https://doi.org/10.1371/journal.pdig.0000685.t001

MMSE (macro-recall) and 91.3% for CDR (macro-recall). MMSE was more frequently men-
tioned in the notes and ChatGPT’s macro precision (PPV) was 82.7%. CDR, on the other
hand, was less frequent, and we observed that ChatGPT hallucinates (factitiously generates)
results occasionally leading to a macro precision of only 57.5%. LlaMA-2 results were signifi-
cantly lower than that of ChatGPT across all metrics. A detailed qualitative analysis of the
ChatGPT errors for both CDR and MMSE, and LlaMA-2 results for MMSE are included in
S5 Section. The majority of the errors corresponded to ChatGPT presenting results of another
test instead of the one indicated as the answer. LlaMA-2 had higher rate of unexplained hallu-
cinations. Taking positive and negative results into account, overall, ChatGPT had the highest
performance with MMSE and CDR results being 83% and 89% accurate according to the dou-
ble-reviewed notes.

Table 2. Average response (at the note level) of the responses of reviewers in judging if ChatGPT’s answers for
MMSE and CDR are correct and/or complete.

All notes (N = 722) Double reviewed notes (N = 309)

Is ChatGPT’s answer for MMSE correct? (%) 96.5 (sd 18.2) 96.4 (sd 18.5)
Is ChatGPT’s answer for MMSE complete? (%) 85.0 (sd 35.7) 84.7 (sd 36.0)
Is ChatGPT’s answer for CDR correct? (%) 98.0 (sd 13.7) 99.6 (sd 5.6)

Is ChatGPT’s answer for CDR complete? (%) 80.4 (sd 39.6) 83.4 (sd 37.1)

https://doi.org/10.1371/journal.pdig.0000685.t002
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Table 3. Fleiss’ kappa inter-rater-agreement metric between reviewers (2-way) and reviewers and ChatGPT
(3-way) over the double-reviewed notes.

2-way Fleiss’ kappa (Among human | 3-way Fleiss’ Kappa (between ChatGPT

reviewers) and two human reviewers)
On N = 309 double-reviewed notes, | On N = 309 double-reviewed notes, n = 21
n = 21 reviewers (%) reviewers (%)

Binary Questions

Is MMSE list generated by 94.2 NA

ChatGPT correct?

Is MMSE list generated by 75.2 NA

ChatGPT complete?

Is CDR list generated by 89.0 NA

ChatGPT correct?

Is CDR list generated by 85.8 NA

ChatGPT complete?

Individual (value/date) tuples from ChatGPT and Ground-Truth JSON results.

MMSE values (of the scoresin | 83.6 93.7

the note)

MMSE dates (of the scoresin | 93.3 87.2

the note)

CDR values (of the scores in 80.5 87.0

the note)

CDR dates (of the scores in the | 79.0 82.5

note)

https://doi.org/10.1371/journal.pdig.0000685.t003

Discussion

In this study, our primary objective was to evaluate the performance of two state of the art
LLMs (ChatGPT and LlaMA-2), in extracting information from clinical notes, specifically
focusing on cognitive tests such as the Mini-Mental State Examination (MMSE) and Clinical
Dementia Rating (CDR). Our results revealed that ChatGPT achieves high accuracy in extract-
ing relevant information for MMSE and CDR scores, as well as their associated dates, with
high recall, capturing nearly all of the pertinent details present in the clinical notes. The overall
accuracy of ChatGPT in information extraction for MMSE and CDR were 83% and 89%
respectively. The extraction was highly and had outstanding true-negative-rates. The precision
of the extracted information was also high for MMSE although in the case of CDR, we
observed that ChatGPT occasionally mistook other tests for CDR. Based on the ground-truth
provided by our reviewers, 89.1% of the notes included an MMSE documentation instance,
whereas only 14.3% of the notes included a CDR documentation instance. This, combined
with our analysis of the errors, explain lower precision in the CDR case, and suggest combin-
ing ChatGPT with basic NLP preprocessing may improve the LLM performance further. Com-
pared to ChatGPT, the open-source state of the art LLM (LlaMA-2) achieved lower
performance across all metrics. The substantial inter-rater-agreement among our expert
reviewers further supported the robustness and validity of our findings, and the reviewers con-
sidered ChatGPT’s responses correct and complete.

The findings of our study demonstrate that ChatGPT (powered by GPT-4), offer a prom-
ising solution for extracting valuable clinical information from unstructured notes. This
approach provides a more efficient and scalable approach compared to previous methods
that either rely on rigid rule-based systems or involve training resource intensive task spe-
cific models. Validated and accurate LLMs such as ChatGPT can be effortlessly applied to
enhance the value of clinical data for research, enable harmonization with disease registries
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Table 4. Aggregate Accuracy, True Negative Rate, (Micro- and Macro-) Precision and Recall for MMSE and CDR scores extracted by ChatGPT and LlaMA-2.

All notes with parsed JSON

Double-reviewed notes with

(N =710) parsed JSON
(N = 306)

ChatGPT | LlaMA-2 ChatGPT | LlaMA-2
MMSE
Total notes without any MMSE (in ground truth) 115 48
Total notes without any MMSE (in GPT results) 77 110 25 46
Total correctly predicted empty MMSEs 76 66 24 23
MMSE True Negative Rate (%) 98.7 60.0 96 50.0
MMSE False Negative Rate(%) 1.2 40.0 4 50.0
Remaining notes with un-empty GPT response undergone Precision/Recall calculation for MMSE | 633 600 281 260
Total MMSE instances predicted 831 957 366 410
MMSE Macro Precision (mean % (sd %)) 82.9 (sd 36.2) | 62.2(sd 45.5) 82.7 (sd 36.8) | 63.4 (sd 44.9)

MMSE Macro Recall (mean % (sd %))

87.8 (sd 30.4)

69.9 (sd 43.5)

89.7 (sd 28.3)

71.8 (sd 42.1)

MMSE Micro Precision (%)

83.8

57.7

84.1

59.3

MMSE Micro Recall (%) 83.7 68.1 87.5 69.0
Total notes with any error MMSE result 121 238 52 98
Overall accuracy of MMSE (%) 82.9 66.4 83.0 68.0
CDR

Total notes without CDR (in ground truth) 608 260

Total notes without CDR (in GPT results) 533 497 233 215
Total correctly predicted empty CDR 532 489 233 212
CDR True Negative Rate (%) 99.8 98.4 100 98.6
CDR False Negative Rate (%) 0.2 1.6 0 1.4
Remaining notes with un-empty GPT response undergone Precision/Recall calculation for CDR 177 213 73 153
Total CDR instances predicted 256 344 92 153

CDR Macro Precision (mean % sd %)

48.3 (sd 49.9)

16.1 (sd 35.5)

57.5 (sd 49.4)

18.1 (sd 36.9)

CDR Macro Recall (mean % sd %)

84.3 (sd 36.3)

39.7 (sd 48.7)

91.3 (sd 28.1)

43.5 (sd 49.6)

CDR Micro Precision (%) 36.3 12.0 51.0 13.2
CDR Micro Recall (%) 85.3 37.6 92.1 39.2
Total notes with any error CDR result 91 181 31 76

Opverall accuracy of CDR (%) 87.1 74.5 89.8 75.4

https://doi.org/10.1371/journal.pdig.0000685.t004

and biobanks, improve outreach programs within health centers, and contribute to the
advancement of precision medicine. Additionally, the availability of large labeled datasets
resulting from this information extraction process can also enable AI models to be trained
for a wide variety of tasks.

Furthermore, our findings have implications for future AD/ADRD research. Currently, the
majority of research in scalable development and validation of Al tools for early AD/ADRD
detection rely on research cohorts. These cohorts are overwhelmingly white (NACC cohort is
83% white [68] ADNI cohort is 92% white [63], and do not represent true at-risk populations
who tend to have higher comorbid disease burden [50]. Due to late detection and diagnosis of
AD/ADRD [46-49], clinical data often lacked the details necessary for accurate case identifica-
tion (i.e. structured data such as ICD codes would yield low sensitivities). Using LLMs to
extract data from clinical notes has the potential to improve the quality of clinical data, paving
the way for clinical validation and development of clinically applicable novel Al tools and per-
forming cognitive-health precision medicine at scale.
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Limitations

Our focus was on evaluating the information extraction capabilities of two current state of the
art LLMs, specifically ChatGPT powered by GPT-4, and LlaMA-2, rather than comparing it to
all other LLMs or NLP methods. We believe that our results may be enhanced with better
prompt engineering and combining LLMs with standard NLP. In the future, we hope to
include other LLMs to evaluate this task. One limitation during the labeling stage is that we
generated ChatGPT responses first before the experts review and correct to create the ground
truth. While this could introduce potential bias towards ChatGPT, we believed that ground
truth is still valid to evaluate other models. ChatGPT might also not be reliable 100% of the
time, as we have seen that it failed to generate responses for a small fraction of the notes. In
production, it is critical to have back-up plans in place such as alternative LLMs to ensure the
system can reliably extract scores for all notes. Additionally, we conducted a large-scale human
evaluation for a single dementia use case, prioritizing result reliability over assessing various
clinical scenarios. It is also important to note that our findings pertain specifically to informa-
tion retrieval from clinical notes and do not predict how LLMs will perform on medical tasks
requiring diagnosis, treatment recommendation, or summarization. For the scope of the
study, we focused on patients with an MRI exam, and we have seen that there is a distribution
difference in patients with an MRI than those tho do not (S1 Table). There might be a potential
difference on how clinicians document cognitive scores in the two populations. In future stud-
ies, we would like to explore how this difference could affect model performance. Finally, these
large language model requires extensive hardware resources, meaning carbon footprint is
larger compared to traditional NLP methods. However, as the scores were often discussed in
natural language, where the information (type of test, date of test, and test scores) can be far
apart from each other, traditional NLP methods are not viable for this particular task without
extensive efforts and large amount of training samples. We have included a few examples of
clinical texts in S2 Table to demonstrate the heterogeneity of the texts.

Conclusions

In this diagnostic/prognostic study of ChatGPT and LlaMA-2 for extracting cognitive exam
dates and scores from clinical notes, ChatGPT exhibited high accuracy in extracting MMSE
scores and dates, with better performance compared to LlaMA-2. The use of LLMs could bene-
fit dementia research and clinical care, by identifying eligible patients for treatments initializa-
tion or clinical trial enrollments. Rigorous evaluation of LLMs is crucial to understanding
their capabilities and limitations.
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S1 Checklist. TRIPOD checklist: Prediction model development.
(PDF)
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S2 Section. Examples of the notes and corresponding output that is produced by
ChatGPT.(Dates for each patient note and ChatGPT responses are shifted by a random
year and month, to preserve anonymous nature of notes. All note shifts for one patients are
consistent).

(DOCX)
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