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Abstract
Instruction following is crucial in contemporary
LLM. However, when extended to multimodal set-
ting, it often suffers from misalignment between
specific textual instruction and targeted local re-
gion of an image. To achieve more accurate and
nuanced multimodal instruction following, we in-
troduce Instruction-guided Visual Masking (IVM),
a new versatile visual grounding model that is
compatible with diverse multimodal models, such
as LMM and robot model. By constructing visual
masks for instruction-irrelevant regions, IVM-
enhanced multimodal models can effectively fo-
cus on task-relevant image regions to better align
with complex instructions. Specifically, we design
a visual masking data generation pipeline and cre-
ate an IVM-Mix-1M dataset with 1 million image-
instruction pairs. We further introduce a new
learning technique, Discriminator Weighted Su-
pervised Learning (DWSL) for preferential IVM
training that prioritizes high-quality data sam-
ples. Experimental results on generic multimodal
tasks such as VQA and embodied robotic con-
trol demonstrate the versatility of IVM, which
as a plug-and-play tool, significantly boosts the
performance of diverse multimodal models, yield-
ing new state-of-the-art results across challeng-
ing multimodal benchmarks. Code is available at
https://github.com/2toinf/IVM.

1. Introduction
Multimodal instruction following is a fundamental multi-
modal task, powering a wide-range of applications such
as visual question answering (VQA) (Goyal et al., 2017),
visual captioning (Achiam et al., 2023; Liu et al., 2024c),

1 AIR, Tsinghua University 2Sensetime Research 3MMLab,
CUHK 4Shanghai AI Lab. Correspondence to: Jin-
liang Zheng <zhengjl23@mails.tsinghua.edu.cn>, Jianxiong
Li <li-jx21@mails.tsinghua.edu.cn>, Xianyuan Zhan <zhanx-
ianyuan@air.tsinghua.edu.cn>.

Multi-modal Foundation Model meets Embodied AI Workshop @
ICML2024, Vienna, Austria. Copyright 2024 by the author(s).

and embodied robotic control (Driess et al., 2023). To effec-
tively solve this task, one critical capability required is nu-
anced image-language grounding, which current multimodal
models grow implicitly and slowly through data-intensive
end-to-end training without explicit grounding supervisions.
Two challenges emerge in this indirect learning of image-
instruction alignment: 1) How to accurately localize tar-
geted image regions that corresponds to a specific textual
instruction, as illustrated in Figure 1. 2) How to general-
ize to diverse visual representations (e.g., same object with
different colors, compositions, or backgrounds) that reflect
similar textual instruction (e.g., Q3 in Figure 1). Lacking an
effective and direct solution to these challenges, the most ad-
vanced Large Multimodal Models (LMMs) (Achiam et al.,
2023; Bai et al., 2023; Liu et al., 2024c; Driess et al., 2023)
still suffer from hallucinations even when trained with high-
quality data in the magnitude of billions (Li et al., 2023c).

We introduce Instruction-guided Visual Masking (IVM), a
versatile plug-and-play model designed to enhance multi-
modal instruction following via nuanced surgical visual
grounding. To eliminate the distraction of instruction-
irrelevant visual regions, IVM automatically masks out these
regions to sharpen the focus of instruction following, and
meticulously crops visual input to tailor for a specific in-
struction and enforce multimodal models to zoom in on
task-related visual content. Existing visual grounding meth-
ods are limited either to predefined object categories, which
cannot cover diverse instruction-related visual content; or
they subscribe to a fixed instruction format, which restricts
the expressiveness of instructions. As shown in Figure 2,
such simplistic grounding techniques often fail to compre-
hend complex instruction-following tasks. Learning an IVM
model requires pixel-level, fine-grained, instruction-guided
mask annotations that provide explicit grounding supervi-
sions. To create such a dataset, we build a LLM-empowered
Mixture of Expert pipeline with SOTA visual grounding
models (Sun et al., 2023; Shao et al., 2024; Lai et al., 2024;
Gupta et al., 2022) to efficiently create abundant reliable
labels. To compensate the noises in auto-generated labels,
we further manually label a smaller dataset with clean anno-
tations, and integrate the two into an IVM-Mix-1M dataset
that contains 1 million image-instruction pairs. To reduce
demand on costly human labels and ensure optimized utility
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Figure 1. The most advanced LMMs (e.g. GPT4-V) still fail on complex instruction following tasks. With IVM assistance to simplify
visual inputs, existing LMMs can gain significant improvement.

Figure 2. Comparison between IVM and Reasoning Segmentation (RS) (Lai et al., 2024). Traditional methods such as semantic
segmentation (Zhou et al., 2017) and referring expression comprehension (Yu et al., 2016) are limited to fixed categories or fixed
instruction formats, thus inapplicable to complex instruction following tasks. RS has reasoning ability, but only allows single object
localization. IVM, instead, is universally applicable to any instruction.
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Figure 3. Instruction-guided Visual Masking.

of machine-generated labels, we employ a Discriminator-
Weighted Supervised Learning (DWSL) framework for IVM
training, inspired by recent advances in offline imitation
learning (Xu et al., 2022). Specifically, we introduce a dis-
criminator to assign weights to masks, where high values are
assigned to high-quality annotations and vice versa. Thus,
these weights generated by the discriminator can naturally
act as a weighting function for the IVM training objective,
allowing for a preferential training process that prioritizes
learning from reliable samples and discards misleading ones.
Extensive experiments demonstrate great versatility of the
IVM model when integrated into existing multimodal chat-
bots (commercial and open-sourced) without fine-tuning.
Our IVM-enhanced LMMs gain significant performance
improvement across new challenging benchmarks such as
V*Bench (Wu & Xie, 2023), EgoThink (Cheng et al., 2024)
and POPE (Li et al., 2023c), achieving new state of the art.
IVM model also proves valuable in vision-language robotic
manipulation tasks, where data collection is notoriously
challenging and generalization is a major concern (Li et al.,
2024). With the integration of IVM, our enhanced robot
model exhibits boosted performance and better generaliza-
tion capabilities.

Our contributions are summarized as follows: 1) We pro-
pose Instruction-guided Visual Masking (IVM), a novel
approach that serves as a versatile plug-and-play module
to enhance multimodal models through visual grounding.
2) We introduce the IVM-Mix-1M dataset and propose an
LLM-empowered Mixture of Expert pipeline to create vi-
sual grounding labels. 3) We present the DWSL algorithm
for IVM training that automatically prioritizes high-quality
training samples.

2. Instruction-Guided Visual Masking
To help multimodal models focus on instruction-sensitive
image regions without distractions from irrelevant visual
elements, we introduce Instruction-guided Visual Masking
(IVM), a versatile plug-and-play model that enhances mul-
timodal instruction following via surgical targeted visual
grounding.

IVM aims to produce a heatmap H, given an image ximg

and a textual instruction xtxt. The heatmap H identifies the

critical image region to follow the instructions, as illustrated
in Figure 3, allowing multimodal models to easily zoom in
on targeted image regions while ignoring neighboring areas.

This formulation evokes the problem definition of Reason-
ing Segmentation (RS) (Lai et al., 2024). There are two
main differences: 1) IVM addresses a more challenging
problem. RS tries to target single objects from simple in-
structions, e.g., ”what is.., where is.., who is...”, while IVM
aims to include all instruction-related visual regions within
the image given any instruction, which demands advanced
and nuanced image-language grounding ability (as illus-
trated in Figure 2). 2) RS has clear ground truths but IVM
does not. The instructions in RS primarily correspond to
simple and semantic-meaningful objects that are straight-
forward for human annotations. IVM, however, deals with
broader and more ambiguous instruction-related regions
(e.g., the left bank regions in Figure 3), making the training
and annotating much more challenging.

For more details of data preparation and model training,
please refer to Appendix D E

3. Experiments
In this work, we employ LLaVA-7B (Liu et al., 2024b) as
the LMM and SAM-H (Kirillov et al., 2023) as the vision
backbone for our IVM model (Figure 8), which is trained
on the IVM-Mix-1M dataset using the proposed DWSL al-
gorithm. More details on the architecture and training can
be found in Appendix E. We conduct extensive experiments
to assess the effectiveness of the IVM model. Specifically,
we utilize the heatmap generated by the IVM for image
post-processing. These processed images can then be seam-
lessly fed into downstream multimodal models for diverse
tasks. Unless otherwise specified, we use the image post-
processing method of overlaying and cropping to discard
instruction-irrelevant image content. A detailed discussion
on post-processing methods is presented in Section F.1. We
also provide more evaluation results and analysis in Ap-
pendix F.

3.1. Main Results

Integration with Commercial Chatbot. We use GPT4-
V (Achiam et al., 2023) as the base model. Considering the
superior perception and reasoning capability of GPT4-V, we
evaluate IVM-enhanced GPT4-V on V*bench (Wu & Xie,
2023), a recently proposed challenging VQA-type bench-
mark characterized by images with abundant redundancies.
Results are presented in Table 1. The accuracy of the vanilla
GPT4-V is mediocre (55.0%). Our IVM model, however,
can significantly improve the performance (+26.2%) and
establish a new state of the art on this benchmark, even
surpassing the task-specialized SEAL (Wu & Xie, 2023)
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Table 1. V* bench results.
LMMs Attribute(%) Spatial(%) Overall(%)

Open-Sourced LMMs

BLIP2 (Li et al., 2023b) 27.0 53.9 37.7
MiniGPT-4 (Zhu et al., 2023) 30.4 50.0 38.2
InstructBLIP (Dai et al., 2023) 25.2 47.4 34.0
Otter (Li et al., 2023a) 27.0 56.6 38.7
LLaVA-1.5 (Liu et al., 2023a) 43.5 56.6 48.7

Commercial Chatbots

Bard (Manyika & Hsiao, 2023) 31.3 46.1 37.2
Gemini-Pro (Team et al., 2023) 40.9 59.2 48.2
GPT4-V (Achiam et al., 2023) 51.3 60.5 55.0

Specific Visual Search Models

SEAL (Wu & Xie, 2023) 74.8 (+23.5) 76.3 (+15.8) 75.4 (+20.4)

IVM-Enhanced GPT4-V 87.0 (+35.7) 72.4 (+11.9) 81.2 (+26.2) Figure 4. IVM can handle various instructions, ranging from
retaining entire images for captioning (row 1) to localizing
unique objects (row 2 and 3).

Table 2. Results on other multimodal benchmarks. MME* denotes the aggregate of scores from -p and -c.
LMMs #Param EgoThink POPE MME* GQA SQA VQAv2

InstructBLIP (Dai et al., 2023) 13B - 78.9 1212.8 49.5 60.5 -
Qwen-7B (Bai et al., 2023) 7B - - - 58.3 67.1 78.8
SEAL-7B (Wu & Xie, 2023) 7B - 82.4 1129 - - -
LLaVA-7B (Liu et al., 2023a) 7B 51.1 85.9 1748 62.0 70.2 78.5
LLaVA-13B (Liu et al., 2023a) 13B 55.2 85.9 1834 67.1 71.6 80.0

LISA (Lai et al., 2024)-Enhanced LLaVA-7B 20B 47.9 (-3.2) 80.0 (-5.9) 1560 (-188) 56.6 (-5.4) 69.3 (-0.9) 78.2 (-0.3)
IVM-Enhanced LLaVA-7B 14B 54.5 (+3.4) 87.2 (+1.3) 1806 (+58) 62.2 (+0.2) 70.2 (-) 79.0 (+0.5)

that requires a complex heuristic visual search pipeline.

Integration with Open-sourced LMMs. To demonstrate
the versatility of our IVM model, we further integrate it into
an open-sourced LMM, LLaVA-7B (Liu et al., 2023a). We
conduct extensive experiments across various benchmarks,
including EgoThink (Cheng et al., 2024), POPE (Li et al.,
2023c), MME (Fu et al., 2023), GQA (Hudson & Manning,
2019), SQA (Lu et al., 2022), and VQAv2 (Goyal et al.,
2017). As shown in Table 2, our IVM-enhanced LLava-
7B gains consistent performance improvements, achieving
comparable performance to (even surpassing) LLaVA-13B
on EgoThink, POPE and MME. Although IVM-enhanced
LLaVA-7B and LLaVA-13B (Liu et al., 2023a) have roughly
the same number of parameters, the latter integrates more
powerful pretrained foundation models. In contrast, our
IVM model allows the 7B model to outperform the 13B
model by merely simplifying visual input, further validating
the power of visual masking.

Meanwhile, IVM-enhanced LLaVA-7B does not show sig-
nificant gains on GQA, SQA and VQAv2, which is expected,
as these benchmarks do not heavily rely on grounding capa-
bilities: VQAv2 and GQA contain relatively simple visual
input where most regions of the images are instruction-
relevant, while SQA primarily focuses on assessing model

reasoning capability.

Comparison with Reasoning Segmentation Model. We
also compare against LISA (Lai et al., 2024), which is most
analogous to IVM. We provide carefully tailored prompts
like ”what should we focus on the image to follow the given
instruction? Give me the seg” to extend LISA into visual
masking task. However, even with larger 13B model and
extensive tuning of input prompt, masks generated by LISA
consistently result in severe performance degradation on all
tasks.

Evaluation on Real Robotic Control. We also plug the
IVM model into robot control tasks to help robot model im-
prove generalization. Specifically, we evaluate a language-
conditioned behavior cloning (LCBC) robot agent trained
with or without IVM masked images. Figure 5 clearly
demonstrates that without IVM assistance, the LCBC robot
agent suffers from severe performance drop when noticeable
distractions are applied. With IVM assistance, however, the
agent consistently pays close attention to correct instruction-
related image regions, performing robustly against diverse
distractions such as human disturbances and numerous task-
irrelevant objects of various colors and shapes. This demon-
strates promising potentials of using IVM to enhance embod-
ied agents to follow complex instructions in unseen scenes
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Figure 5. Real robot results with or without IVM assistance. IVM greatly helps LCBC agent to overcome major distractions, enjoying
better robustness and generalization. See Appendix E.6 for experiment setups.

with plenty distractions.

4. Conclusion
In this paper, we introduce Instruction-guided Visual Mask-
ing (IVM), a generic and powerful visual grounding method
that enhances broad multimodal instruction following tasks
in a plug-and-play way. By masking out all instruction-
irrelevant image regions, IVM effectively injects supe-
rior visual grounding ability to downstream LMMs non-
intrusively, significantly boosting both commercial and
open-sourced LMMs and achieving state-of-the-art results
across numerous challenging multimodal benchmarks. Real
robot experiments further demonstrate the versatility of
IVM, showcasing the potential to deploy IVM to embodied
robotic tasks where failures caused by distractions are long-
standing challenges. For further improvement, one promis-
ing direction is to finetune LMMs using IVM-generated
heatmap as an additional input channel to reduce suboptimal
heuristics caused by mask deployment methods. However,
due to resource limitation, we leave this for future work and
will release our IVM checkpoint as well as the IVM-Mix-
1M dataset to help the community further explore relevant
directions. More discussion on limitations and future direc-
tions can be found in Appendix B.
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A. Related Work
Large Multimodal Models. LLaVA (Liu et al., 2024c) first
demonstrates promising capabilities in following complex
instructions. Subsequent works such as LLaVA-1.5 (Liu
et al., 2023a), MiniGPT4 (Zhu et al., 2023) Qwen-VL (Bai
et al., 2023) and CogVLM (Wang et al., 2023), further
enhance LMMs via refined model design and enriching
the quality of training data, achieving state-of-the-art per-
formance on diverse downstream tasks including visual
grounding (Liang et al., 2019), visual reasoning (Thrush
et al., 2022), visual question and answering (Goyal et al.,
2017). Moreover, by integrating the robotics action modal-
ity, LMMs perform versatile planning and manipulation in
instruction-driven robotics tasks. Notable studies in this line
of inquiry include PaLM-E (Driess et al., 2023), the series of
RT models (Brohan et al., 2022; 2023; Vuong et al., 2023),
and text-guided video planning diffusion models (Du et al.,
2023; Yang et al., 2024; Black et al., 2024). Despite the
success, LMMs still struggle with complex visual grounding
challenges, often misreading instruction-irrelevant visual
contents (Figure 1). To address this, researchers have tried
to adapt existing visual modules to higher-resolution im-
ages to obtain better perception (Liu et al., 2024a), but with
limited improvement.

Visual Grounding Tasks. Visual grounding requires pre-
cisely localizing image regions corresponding to a referring
expression, among which the RefCOCO series (Yu et al.,
2016) is the most well-known benchmark, and numerous
public visual grounding data are available (Liang et al.,
2019; Young et al., 2014; Gupta et al., 2019). Recently,
LMMs incorporate these visual grounding data via visual-
instruction tuning (Liu et al., 2024c; 2023a; Zhu et al., 2023),
establishing new SOTA in this area (Shao et al., 2024). To
further broaden the reasoning ability of visual grounding,
LISA (Lai et al., 2024) introduces a new task, reasoning seg-
mentation, which demands higher capabilities in instruction
comprehension. However, visual grounding is still limited
to align simple instruction with specific objects, which can-
not adapt to more complex instruction following tasks (e.g.
Figure 2).

Visual Grounding Augmented LMMs. Recently, a se-
ries of visual grounding methods emerged to enhance the
performance of LMMs in complex visual scenes. V* (Wu
& Xie, 2023) employs a heuristic search strategy to search,
locate, and crop image areas relevant to instructions through
a multi-step iterative process. VisualCot (Shao et al., 2024)
is trained end-to-end with a customized dataset to achieve
target localization capabilities. These two methods allow
LMMs to dynamically focus on visual inputs until the cor-
rect answer is derived. However, these complex inference
pipelines lead to substantial computational overhead, and
their heuristic designs further hinder the extension beyond
VQA to other multimodal instruction following tasks such

as robotic control.

Besides these explicit strategies incorporating additional
visual grounding modules, other studies pursue refining
data or introducing extra training targets to enhance the
grounding capabilities of LMMs implicitly. ViGor (Yan
et al., 2024) proposes a fine-grained reward modeling to en-
hance visual grounding of LMMs, and SynGround (He et al.,
2024) introduces a pragmatic framework for image-text-box
synthesis tailored for visual grounding. These methods,
however, are primarily focused on the visual grounding task
itself, overlooking its influence on downstream multimodal
instruction following tasks. Distinct from previous efforts,
this paper introduces a generic visual grounding model that
is adaptable to any multimodal instruction following tasks,
and provides a systematic investigation into the advantages
of integrating an additional visual grounding model into
downstream applications.

B. Limitation and Future Work
Here, we discuss our limitations, potential solutions and
interesting future works.

1. Computational Overhead. Note that IVM intro-
duces additional parameters and computational over-
head to directly enhance visual grounding ability of
LMMs, which in turn indirectly improve the VQA per-
formances. However, more VQA performance gains
can be obtained if the same amount of additional
parameters are end-to-end trained directly on VQA
data (LLaVA-13B v.s IVM-Enhanced LLaVa-7B in
Table 2).

Solution and future work: Nevertheless, this is quite
reasonable because IVM primarily focuses on improv-
ing the visual grounding ability, but accurate VQA also
requires other abilities which can be learned through
end-to-end training. End-to-end training, however, re-
quires tremendous VQA data to implicitly and slowly
improve the visual grounding ability, which is quite
data-intensive. Both Table 1 and Figure 1 can show that
even trained on billions of data, GPT4-V still performs
subpar on tasks that require strong visual grounding
ability. IVM, instead, can significantly boost the visual
grounding ability of GPT4-V using just 7B parameters
and less computations. One promising and interesting
future direction is to include some auxiliary tasks to
directly absorb the strong visual grounding ability in
the IVM-Mix-1M dataset through end-to-end training
like (Wu et al., 2023).

2. Data Quality. Due to task complexity, the machine-
annotated data in IVM-Mix-1M inevitably includes
wrong labels that mistakenly exclude instruction-
sensitive image regions or suboptimal labels that not
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fully mask out all instruction-irrelevant areas. These
inaccuracies may lead to suboptimal IVM model. We
propose a DWSL framework to tackle this. However,
the DWSL framework relies on a learned discriminator
and a human-designed f(x) function, which may not
exclude all inaccuracies.

Solution and future work: We have clearly demon-
strated in Figure 11 that with a simple f(x) and a
lightweight discriminator, DWSL consistently out-
performs the naive Supervised Learning (SL), doing
pretty well on prioritizing good samples and mean-
while identifying inaccurate labels. To further en-
hance this, one can use other advanced techniques
such as Reinforcement Learning from Human Feed-
back (RLHF) (Ouyang et al., 2022; Bai et al., 2022; Hu
et al., 2024) to provide more fine-grained judgement on
annotation qualities, or resort a theoretical-soundness
f(x) (Xu et al., 2022) to achieve better results. In ad-
dition, one can also use our pretrained IVM model to
directly generate high-quality heatmaps to enhance the
machine annotations.

3. Mask Deployment Methods. In this paper, we di-
rectly use the simple post-processing method to apply
the IVM generated heatmaps on images, which then
are fed into LMMs to perform downstream tasks. How-
ever, these post-processing methods introduce some
heuristics, which may be suboptimal for downstream
LMMs. In addition, LMMs may not see many masked
images during pretraining, thus some distributional
shift may occur.

Solution and future work: Although these limitations
exist, IVM still obtain consistent improvements using
diverse mask deployment methods, as shown in Ta-
ble 6, which showcases the great versatility of IVM to
inject visual grounding abilities. To further improve
this, one strategy is employ some task-specialized vi-
sual search method (Wu & Xie, 2023), but will bring
many computational load during inference and limit
the versatility on embodied agents. Another promising
direction is directly using the IVM generated heatmaps
as an additional input channel to finetune the LMMs
like (Sun et al., 2023), which can fully eliminate the
heuristics of post-process methods, may bring larger
performance gains. Due to resources limits, we leave
this for a future work.

4. Fine-grained Heatmaps. Note that the IVM gener-
ated heatmaps cannot provide exact semantic object
segmentation with clear contours like reasoning seg-
mentation (Lai et al., 2024) offers.

Discussions: We want to clarify that this is an advan-
tage of the IVM model rather than a limitation. This

is because of the ambiguous nature of the visual mask-
ing task. For this task, the ground truth heatmaps are
mostly less semantic-meaningful for annotations as dis-
cussed in 2. So, we ensemble the annotation proposals
from different visual grounding methods for data anno-
tation, which will make the trained IVM model robust
to include instruction-relevant image areas, rather than
being aggressive to exclude some instruction-sensitive
pixels like reasoning segmentation (Lai et al., 2024)
does illustrated in Figure 2.

Overall, although some limitation exist, we have thoroughly
discussed potential solutions to these limitations. Moreover,
in this paper, we have demonstrated the superior effective-
ness and versatility of IVM to directly inject strong visual
grounding ability to downstream LMMs or embodied agents,
representing a pioneer effort to extend traditional visual
grounding methods towards a more complex and generic
setting that covers diverse multimodal instruction following
tasks.

C. Broader Impact
This paper aims to advance the field of artificial intelligence,
where no significant negative social impact is observed in
this paper. The IVM-Mix-1M may contain some potential
privacy issues and biases. However, in this paper, nearly all
data are collected from open-sourced data, which have been
well peer-reviewed, thus resolved this ethical concern.

D. Data Preparation
To train an IVM model, the first main challenge is the
scarcity of training data. Most existing Visual Grounding
(VG) datasets (Yu et al., 2016; Lai et al., 2024) typically
feature simple instructions focused primarily on prominent
objects within images, lacking both diversity and complex-
ity required for IVM. To tackle this, we compiled one mil-
lion data from various sources, including labeled visual
grounding, unlabeled multimodal instruction following, and
robotics data. As outlined in Section 2, scaling human an-
notations is challenging due to the high complexity of such
data. Therefore, we introduce an LLM-empowered Mixture
of Expert pipeline that integrates SOTA visual grounding
models to efficiently generate reliable annotations. We fur-
ther manually annotate a smaller dataset to compensate
inaccuracies in auto-generated labels. The resulted com-
bined dataset, IVM-Mix-1M, comprises one million data
samples ready for IVM training, which will be released for
future study upon acceptance.
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Figure 6. LLM-empowered Mixture-of-Expert pipeline for auto-annotation. (1) For labeled VG data, we utilize an LLM to generate
complex instruction annotations. (2) For unlabeled VIF or robot data, we first use an LLM to simplify the instruction and then leverage a
mixture of VG models to generate candidate labels.

D.1. LLM-empowered Mixture of Expert Annotation
Pipeline.

Leveraging the power of LLM, this pipeline can efficiently
generate high-quality annotation, which consists of two com-
ponents (Figure 6): 1) Labeled visual grounding data. We
collect 250K labeled VG data from multiple sources includ-
ing VG caption (Liang et al., 2019), Flickr30K (Young et al.,
2014), VSR (Alayrac et al., 2019), OpenImage (Kuznetsova
et al., 2020), and RefCoCo (Yu et al., 2016; Lin et al.,
2014), which provide bounding boxes with simple instruc-
tions for each image. To increase the diversity and com-
plexity of instructions, we utilize GPT-4 (Achiam et al.,
2023), known for its robust language understanding and
generation capabilities, to create diverse instruction-answer
pairs based on existing language instructions. 2) Unlabeled
Visual-Instruction-Following (VIF) and robotics data. We
sample a 700K subset from LLaVA-Instruction-tuning (Liu
et al., 2024c) for VQA-type data, and a 50K subset from
OpenX (Vuong et al., 2023) for robotics data. Given that
these data lack grounded labels but contain complex instruc-
tions, we use GPT-4 to simplify the language instructions by
prompting it to infer the names of targeted objects necessary
for following the instructions. These simplified instructions
then guide existing VG models to generate candidate labels.
To ensure the quality of these labels and compensate for the
ambiguous nature of the IVM task, we integrate proposals
from several VG experts, such as Grounding-Sam (Ren et al.,
2024), LISA (Lai et al., 2024), AlphaClip (Sun et al., 2023),

and OwlViT (Gupta et al., 2022), via an ensemble approach.

D.1.1. LABELED VISUAL GROUNDING DATA

For labeled visual grounding data, We provide the following
prompt to drive GPT-4 (Achiam et al., 2023) to generate
more complex instructions based on given language annota-
tions.

[Image Description] %s

[System] You are an AI visual assistant, and you
are seeing a single image. What you see are
part of the image and are provided with a sim-
ple phrase. Please generate any instructions that
can be executed based on the content of the pic-
ture described, including simple queries about the
content of the picture, such as the object types,
counting the objects, object actions, relative po-
sitions between objects, etc. Also consider more
complex questions that require reasoning. For
example, you can ask what time it is now for a
clock and what can I use to clean the room for
a broom. Ensure that the questions you ask can
be clearly answered only based on what you see.
Please generate as many five questions as possi-
ble and return them in a single line separated by
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’;’ and avoid any other output.

D.1.2. UNLABELED VISUAL INSTRUCTION FOLLOWING
DATA

For unlabeled visual instruction following data, we first try
to simplify complex instructions. Specifically, we employ
GPT-4 to infer the necessary object for executing the given
instructions based on these instructions and a simple image
caption. If the dataset lacks captions, they can be generated
using an existing caption model like BLIP-Caption (Li et al.,
2023b). Below, we outline the prompts specifically designed
for GPT-4.

[Image Caption] %s

[Instruction] %s

[System] You are an helpful AI assistant. I need
to reply to the previous instruction based on an
image, and I have a simple caption for the image.
Please note that there may be objects in the image
that I did not detect. Since you cannot view the
image, please list any potential objects that might
influence my responses, separated by semicolons,
in a single line without any additional output.
If you believe that the number of objects could
be too extensive and might hinder my judgment,
print ’None’.

With the simplified instruction, we can adopt existing visual
grounding models to generate the candidate label. Specif-
ically, we utilize four models: AlphaCLIP (Sun et al.,
2023), LISA (Lai et al., 2024), OwVIT (Gupta et al., 2022)
and Grounding-SAM (Ren et al., 2024) and the inference
pipelines are provided in the official implementation of these
models.

D.2. Manual Annotation

. Despite integrating the most advanced models, the auto-
generation design still faces challenges that can lead to
data inaccuracies. First, employing LLM to simplify or
complicate language annotations without considering image
content can introduce uncontrollable biases. Second, as the
task exceeds the capabilities of existing models, it becomes
impossible to totally exclude low-quality annotations that
contain irrelevant visuals or mistakenly filter out critical con-
tents. Thus, to enhance the overall quality of the dataset, we
further manually annotate a 10K subset of the constructed
dataset to inject human expert knowledge.

Figure 7. Data analysis on the IVM-Mix-1M dataset: data quantity
v.s percentage of instruction-related areas.

D.3. Data Analysis

. Here, we provide quantitative analysis on the IVM-
Mix-1M dataset. Figure 7 depicts the data quantities w.r.t
the percentage of annotated instruction-related image area.
Here, each ratio range is further categorized by different
data sources, where manually annotations are treated as a
separate category (Human), while all others are machine-
generated. Our analysis reveals that the instruction-related
image regions only occupy a small fraction of the total
image area (e.g. most data have less than 40% instruction-
relevant image regions), indicating that most visual contents
may cause distraction and corroborating the necessity of
visual masking for instruction following tasks.

E. Training and Evaluation Details
E.1. Discriminator-Weighted Supervised Learning

Framework
The challenge now is to train the IVM model with a small
high-quality human-annotated dataset (De) as well as a
large but mixed-quality auto-generated dataset (Do). Train-
ing naively on the combined dataset may yield suboptimal
results due to inaccuracies in auto-generated labels, while
solely using limited human-annotated data is insufficient. In-
spired by recent advances in imitation learning using mixed-
quality data (Xu et al., 2022; Zhang et al., 2023), we employ
a Discriminator-Weighted Supervised Learning (DWSL)
framework to effectively leverage the strengths of both auto-
and human-annotated data.

Discriminator Training. Specifically, we introduce a dis-
criminator d optimized by Eq. (1) to assign high weights to
high-quality annotations and vice versa:

min
d

E(ximg,xtxt,H)∼De
[− log d(ximg,xtxt,H)] +

E(ximg,xtxt,H)∼Do
[− log(1− d(ximg,xtxt,H))] ,

(1)

where (ximg,xtxt,H) are image-instruction-heatmap pairs
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Figure 8. IVM model architecture. A frozen vision backbone and a LORA-tuned LMM are utilized to extract dense image features
and multimodal representations, respectively. These features are then fed into a generator for dense prediction and a discriminator for
generating training weights. See Appendix E.3 for more details.

sampled from Do and De datasets. Eq. (1) is similar to the
one in GAN (Goodfellow et al., 2014), but the ”fake” data in
(Goodfellow et al., 2014) is replaced by machine-generated
data from Do. After training with Eq. (1), the discriminator
d assigns high weights to high-quality human-annotated
data from De and relatively high values to similarly high-
quality data from Do that aligns with human preferences,
acting as a judge for annotation quality.

Discriminator-weighted IVM Training. Then, we apply
the trained discriminator as a weighting function for the
IVM training objective:

min
θ

E(ximg,xtxt,H)∼Do∪De[
f (d(ximg,xtxt,H))LIVM

θ (ximg,xtxt,H)
]
,

(2)

LIVM
θ (ximg,xtxt,H) =

λbceBCE(Ĥθ,H) + λdiceDICE(Ĥθ,H),
(3)

where λbce and λdice are set to 1.0 and 1.0 to balance the
binary cross-entropy loss (BCE) and the DICE loss for seg-
mentation (DICE) (Jadon, 2020), respectively. f(x) ≥ 0
can be any non-negative, non-decreasing function. For sim-
plicity, we set f(x) := min(max(0.1, x), 1). This allows
the weighting function f(d(·)) in Eq. (2) to dynamically
prioritize training with high-quality data determined by the
discriminator d. This approach maximizes the usage of re-
liable annotations in Do to compensate for the small De,
while minimizing the impact of low-quality data in Do, thus
optimizing performance.

E.2. Model Architecture

The overall model framework is illustrated in Figure 8. Due
to its complexity, IVM requires both reasoning and precise
localization of the target object, closely paralleling reason-
ing segmentation (Lai et al., 2024). Consequently, for the

heatmap generator, we adopt a model design similar to that
of LISA (Lai et al., 2024). Specifically, we first extract
dense image features using an isolated vision backbone and
multimodal representation from an LMM, which processes
image-instruction pairs. These two types of features are
then fed into a lightweight generator that integrates them to
produce a dense prediction.

For the discriminator, we deploy a lightweight discriminator
that encodes the segmentation map using a two-layer convo-
lution network. This discriminator interacts with the outputs
of the LMMs through multiple cross-attention operators and
finally outputs a quality score for each sample.

Trainable Parameters. To enhance training efficiency, we
freeze the pre-trained large foundation models and perform
LORA finetuning (Hu et al., 2022). The vision backbone,
inherited from Segment Anything Model (Kirillov et al.,
2023), is completely frozen, while the lightweight generator
and discriminator are fully finetuned. Notably, we utilize
a shared LMM for both the generator and discriminator
branches but employing separate LORA parameters to avoid
interference between the two tasks.

E.3. Architecture Details

In this section, we primarily focus on the architectural de-
sign of the lightweight generator and discriminator, as both
the Language Model Multitask (LMM) and the vision back-
bone are derived from the powerful foundation models
(LLaVA & SAM). Both the generator and discriminator
utilize the same transformer-based decoder block, as de-
picted in Figure 9. We employ two such blocks for both
the generator and discriminator. Specifically, the generator
produces dense predictions by upscaling the output features
of the decoder block through a straightforward upsampling
operation. In contrast, the discriminator first employs a
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two-layer convolutional downsampling network to encode
segmentation labels. This network, in conjunction with the
decoder block and a simple MLP (multi-layer perceptron)
head, outputs the weights.

Figure 9. Generator/Discriminator Architecture Details

E.4. Training Details

We adopt 8 NVIDIA 80G A100 GPUs and take 4 days to
train our IVM model. The training scripts are based on
deepspeed (Aminabadi et al., 2022) engine and the training
hyperparameters can be found in Table 3.

Table 3. Hyper-parameters for pretraining.

config value

training iteration 200K
optimizer AdamW (Loshchilov & Hutter, 2017)
learning rate 1× 10−5

batch size 32
weight decay 0
optimizer momentum β1, β2=0.9, 0.95
data augmentation RandomCropResize

E.5. Multimodal Benchmarks Evaluations

We evaluate our IVM on diverse multimodal benchmarks,
including general VQA (VQAv2 (Goyal et al., 2017),
GQA (Hudson & Manning, 2019), MME (Fu et al., 2023)),
first-person perspective QA (EgoThink (Cheng et al., 2024)),
scientific QA (SQA (Lu et al., 2022)), hallucination adver-
sarial QA (POPE (Li et al., 2023c)) and V* (Wu & Xie,
2023), a recently proposed challenging benchmark with
high-resolution and complex visual input.

Our evaluation employs a two-stage inference pipeline: the
image is firstly simplified by IVM-generated heatmap and
mask deployment methods; Subsequently, the simplified
image is fed into downstream LMMs(GPT4-V (Achiam
et al., 2023), LLaVA (Liu et al., 2023a)) without finetuning.

We adhere to the official procedures of each benchmark to
evaluate the output of LMMs and report the results.

E.6. Real Robot Evaluations

Task descriptions. The real robot experiments evaluate sev-
eral pick and place manipulation tasks that require
strong visual grounding abilities. Specifically, we evaluate
on 4 tasks as shown in Table 4, following the task defini-
tions in DecisionNCE (Li et al., 2024). For each task, we
collect around 100 demonstrations using the demonstration
collection system in BridgedataV2 (Walke et al., 2023). We
take both a side camera view and a wrist camera view as the
vision inputs, as shown in Figure 10. For each demonstra-
tion, the environmental steps are around 50 steps. During
data collection, the object and robot locations are randomly
initialized, and the scene also has lots of randomly located
distractors with varied shape and color.

Figure 10. Visual input view for LCBC policy.

Training details. Here, we train Language-Conditioned
Behavior Cloning (LCBC) policies using DDPM (Ho et al.,
2020) loss since diffusion policies are good at fitting com-
plex data distributions (Zheng et al., 2024; Walke et al.,
2023; Ajay et al., 2022), especially human demonstra-
tions (Chi et al., 2023). For model architecture, the side
and wrist images are augmented and then passed through a
shared ResNet50 (He et al., 2016) image encoder and get an
image embedding for each camera view, following (Walke
et al., 2023). As the downstream data is quite limited, we
load the ImageNet (Deng et al., 2009)-pretrained ResNet50
image encoder and further train it on the small robot data.
Meanwhile, the language instruction is passed through a
frozen T5 text-encoder (Raffel et al., 2020), which is fused
into the image encoder via Film conditioning layers (Perez
et al., 2018). Then, this language-conditioned image embed-
ding is passed through a MLPs with residual connections
similar to IDQL (Hansen-Estruch et al., 2023), which then
outputs the predicted noise in DDPM (Ho et al., 2020). To
obtain smoothed policy rollouts, we adopt Action Chunking
and Temporal Ensemble from ACT (Zhao et al., 2023) with
a chunking size 4 rather than 100 in (Zhao et al., 2023)
because the episode horizons in this paper are only around
50. The LCBC policies are trained either on the original
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Table 4. Real Robot Tasks
Environment ID Language Instruction

Red cup on silver pan Pick up the red cup and place it on the silver pan
Red cup on red plate Pick up the red cup and place it on the red plate
Duck on green plate Pick up the duck and place it on the green plate
Duck in pot Pick up the duck and place it in the pot

Table 5. Real robot LCBC training details

Backbones

Visual encoder Resnet50 (He et al., 2016) (ImageNet (Deng et al., 2009) pretrained)
text encoder T5 (Raffel et al., 2020) (frozen)

DDPM hyperparameters

noise schedule VP (Song et al., 2021)
denoising time steps 25

Other hyperparameters

Chunking size 4
Optimizer AdamW (Loshchilov & Hutter, 2017)
Learning rate 1e-4
Lr schedule cosine annealing
Warm up steps 2000
Batch size 64
Gradient Steps 200K
Augmentation Yes (Walke et al., 2023)

side camera view (without IVM assistance) or on the IVM-
masked side camera view (with IVM assistance) for 200K
steps with a batch size of 64. The training can be completed
on 2 NVIDIA RTX4090 GPU in 17h. All hyperparameters
are summarized in Table 5.

Evaluation details. We first evaluate the trained LCBC
policies without strong distractions, where no or only small
distractors appear in the image. Then, we add lots of dis-
tracting objects with varied shapes and colors, and even
introduce strong human disturbance to attack the LCBC
policies. For each score reported in Figure 5, we evaluate
10 episodes and report the success rates.

F. More result
F.1. Ablation

We ablate the key components of IVM and report overall
accuracy improvement(%) of IVM-Enhanced GPT4-V, eval-
uated on V* bench (Wu & Xie, 2023) due to its high demand
on precise visual grounding abilities.

Training Data. We investigate the impact of IVM-Mix
data characteristics on IVM performance from two key per-
spectives: 1) Large machine-annotated data volume clearly

enhances IVM model performance, as illustrated by the
progressive improvement in Figure 11 (a) with increased
machine-annotated data volume (red, blue and yellow line).
This demonstrates the effectiveness of our proposed LLM-
empowered Mixture-of-Expert pipeline in generating reli-
able data for IVM training. 2) Figure 11 (a) also reveals
that incorporating human annotations significantly boosts
training efficiency (red and blue v.s yellow line), highlight-
ing the critical role of introducing human preferences in
IVM-Mix-1M dataset, despite its relatively small volume
compared to machine-annotated data (only 1:100).

DWSL Framework. We also explore the efficacy of the
DWSL framework in Figure 11 (a) by comparing IVM
training using: 1) DWSL (red line), 2) traditional Super-
vised Learning (SL) without DWSL (blue line), and 3) SL
on limited human data (gray line). The results demon-
strate that DWSL effectively leverages both human- and
auto-annotated data, particularly as the volume of machine-
annotated data increases, enjoying higher asymptotic perfor-
mances. This is expected as machine-annotated data often
contain inaccuracies and training naively using all these
data can lead to suboptimal results. Meanwhile, the lim-
ited human data alone cannot provide satisfactory outcomes.
DWSL, however, addresses these challenges by dynamically
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Figure 11. Ablations on training data and the proposed DWSL framework.

Figure 12. Different mask deployment methods.

Table 6. Ablations on different mask deployment methods on
the V*bench.

Overlay Blur Gray-scale

w/ crop +26.2 +24.4 +22.1
w/o +19.1 +17.2 +10.2

prioritizing good samples and discarding misleading ones,
resulting in stable and improved results. This is further il-
lustrated in Figure 11 (b) which visualizes the outputs of
the discriminator for each sample, where the discriminator
can correctly retain good samples (e.g. Human) and filter
out low-quality data with lower weights.

Mask Deployment Strategy. We investigate the impact
of mask deployment strategy on downstream applications.
While more complex solutions such as visual search algo-
rithms (Wu & Xie, 2023) can be employed, our investigation
focuses solely on simpler approaches to understand the in-
trinsic capabilities of IVM model. Specifically, we examine
four basic masking methods: overlay, blur, grayscale, and
cropping, as illustrated in Figure 12. In particular, for the
crop method, we find the smallest area that retains all the
activated (¿0) values in the heatmap and crop it. Table 6
demonstrates that IVM maintains robustness across all sim-
ple post-processing methods, where overlay+crop enjoys
the most performance enhancement and thus is used as our
default mask deployment method.

F.2. Referring Expression Comprehension

As IVM is an extension of traditional visual grounding task,
we also evaluate our IVM on RefCoCo, RefCoCo+ and
RefCoCog (Yu et al., 2016). We reported the accuracy (IOU-

50%) on the validation split in Table 13. As a generalist
model capable of handling complex instructions, our IVM
achieves performance comparable to that of state-of-the-art
(SOTA) specialist models.

F.3. Visualization Result

In this section, we provide more visualization result in VQA-
type data as shown in Figure 14.

Failure Case. Although we observe numerous successful
instances, our IVM still faces significant challenges, as
illustrated in Figure 15. We summarize these challenges
into three categories: missing target, misguided target, and
insufficient reasoning.

(a) Missing Target: Challenges arise when target objects
are relatively small and scattered around many separate
image corners. In this case, accurately detecting all of the
targeted objects is quite difficult. Even specialized open
vocabulary detection models struggle with this task. For
example, the cup on the right in the image is masked by the
IVM mistakenly. However, we still observe that the IVM-
generated heatmap for the right cup is partially activated,
meaning that IVM have partially focus this regions. We
believe by providing more training data, IVM can handle
this better.
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Figure 13. result in REC

Methods RefCoCo RefCoCo+ RefCoCog

Specialist models

G-DINO-L (Liu et al., 2023b) 90.56 82.75 86.13

Generalist models

LLaVA-7B (Liu et al., 2024c) 76.29 66.76 70.4
IVM(Ours) 90.1 83.3 82.9

Figure 14. Visualization results of IVM generated masks.
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(b) Misguided Target: Accurately Localizing tiny target
objects is a recognized challenge (Wu & Xie, 2023), espe-
cially when similar but more obvious objects are present.
For instance, IVM incorrectly focuses on the more centrally
located shoes of another man, instead of the shoes of the
man wearing the red hat at the edge of the picture. How-
ever, this instruction is pretty challenging that at first glance,
even a human might struggle to spot the man with the red
hat in the left corner. We will leave challenge scenarios like
this for future research.

(c) Insufficient reasoning: The objective of the IVM task
is to assist LMMs in extracting visual features more effec-
tively to better follow instructions. Thus, the demands on
the model’s reasoning capabilities extend far beyond mere
object localization. Although IVM demonstrates strong per-
formance, it sometimes overlooks additional image content
necessary for accurately following instructions after cor-
rectly locating the target object. For instance, while IVM
successfully identified the braking motorcycle, it failed to
recognize that answering the question requires knowledge
of the positions of both motorcycles simultaneously. We
attribute this issue to biases in the training data. By incor-
porating more complex instructions and diversified labels,
we anticipate that our model will achieve improved perfor-
mance

F.4. Robotics Result

Here, we provide more evaluation rollouts of the IVM-
assisted LCBC agents under strong distractions. Figure 16
clearly demonstrates that even under strong distractions like
the background are full of distracting objects with similar
colors or shapes to the targeted objects, and strong human
disturbances that adversarially attack the robots, the IVM-
assisted LCBC agents can still complete the tasks pretty
well, enjoying high-level of generalization and robustness
thanks to the superior visual grounding ability injected by
IVM. More videos can be found in the supplementary mate-
rials.
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Figure 15. Some failure cases.
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Figure 16. Real robot LCBC results with IVM assistance.20


