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Abstract

Temporal point processes (TPP) are a natural tool
for modeling event-based data. Among all TPP
models, Hawkes processes have proven to be the
most widely used, mainly due to their adequate
modeling for various applications, particularly
when considering exponential or non-parametric
kernels. Although non-parametric kernels are an
option, such models require large datasets. While
exponential kernels are more data efficient and
relevant for specific applications where events
immediately trigger more events, they are ill-
suited for applications where latencies need to be
estimated, such as in neuroscience. This work
aims to offer an efficient solution to TPP infer-
ence using general parametric kernels with fi-
nite support. The developed solution consists of
a fast ℓ2 gradient-based solver leveraging a dis-
cretized version of the events. After theoretically
supporting the use of discretization, the statisti-
cal and computational efficiency of the novel ap-
proach is demonstrated through various numer-
ical experiments. Finally, the method’s effec-
tiveness is evaluated by modeling the occurrence
of stimuli-induced patterns from brain signals
recorded with magnetoencephalography (MEG).
Given the use of general parametric kernels, re-
sults show that the proposed approach leads to an
improved estimation of pattern latency than the
state-of-the-art.

1. Introduction
The statistical framework of Temporal Point Processes
(TPPs; see e.g., Daley & Vere-Jones 2003) is well adapted
for modeling event-based data. It offers a principled way
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to predict the rate of events as a function of time and the
previous events’ history. TPPs are historically used to
model intervals between events, such as in renewal the-
ory, which studies the sequence of intervals between suc-
cessive replacements of a component susceptible to fail-
ure. TPPs find many applications in neuroscience, in par-
ticular, to model single-cell recordings and neural spike
trains (Truccolo et al., 2005; Okatan et al., 2005; Kim
et al., 2011; Rad & Paninski, 2011), occasionally asso-
ciated with spatial statistics (Pillow et al., 2008) or net-
work models (Galves & Löcherbach, 2015). Multivari-
ate Hawkes processes (MHP; Hawkes 1971) are likely the
most popular, as they can model interactions between each
univariate process. They also have the peculiarity that a
process can be self-exciting, meaning that a past event will
increase the probability of having another event in the fu-
ture on the same process. The conditional intensity func-
tion is the key quantity for TPPs. With MHP, it is composed
of a baseline parameter and kernels. It describes the proba-
bility of occurrence of an event depending on time. The
kernel function represents how processes influence each
other or themselves. The most commonly used inference
method to obtain the baseline and the kernel parameters of
MHP is the maximum likelihood (MLE; see e.g., Daley &
Vere-Jones, 2007 or Lewis & Mohler, 2011). One alterna-
tive and often overlooked estimation criterion is the least
squares ℓ2 error, inspired by the theory of empirical risk
minimization (ERM; Reynaud-Bouret & Rivoirard 2010;
Hansen et al. 2015; Bacry et al. 2020).

A key feature of MHP modeling is the choice of ker-
nels that can be either non-parametric or parametric. In
the non-parametric setting, kernel functions are approxi-
mated by histograms (Lewis & Mohler, 2011; Lemonnier
& Vayatis, 2014), by a linear combination of pre-defined
functions (Zhou et al., 2013a; Xu et al., 2016) or, alterna-
tively, by functions lying in a RKHS (Yang et al., 2017).
In addition to the frequentist approach, many Bayesian
approaches, such as Gibbs sampling (Ishwaran & James,
2001) or (stochastic) variational inference (Hoffman et al.,
2013), have been adapted to MHP in particular to fit non-
parametric kernels. Bayesian methods also rely on the
modeling of the kernel by histograms (e.g., Donnet et al.,
2020) or by a linear combination of pre-defined functions
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(e.g., Linderman & Adams, 2015). These approaches are
designed whether in continuous-time (Rasmussen, 2013;
Zhang et al., 2018; Donnet et al., 2020; Sulem et al., 2021)
or in discrete-time (Mohler et al., 2013; Linderman &
Adams, 2015; Zhang et al., 2018; Browning et al., 2022).
These functions allow great flexibility for the shape of the
kernel, yet this comes at the risk of poor estimation of it
when only a small amount of data is available (Xu et al.,
2017). Another approach to estimating the intensity func-
tion is to consider parametrized kernels. Although it can
introduce a potential bias by assuming a particular ker-
nel shape, this approach has several benefits. First, it re-
duces inference burden, as the parameter, say η, is typically
lower dimensional than non-parametric kernels. Moreover,
for kernels satisfying the Markov property (Bacry et al.,
2015), computing the conditional intensity function is lin-
ear in the total number of timestamps/events. The most
popular kernel belonging to this family is the exponen-
tial kernel (Ogata, 1981). It is defined by η = (α, γ) 7→
αγ exp(−γt), where α and γ are the scaling and the de-
cay parameters, respectively (Veen & Schoenberg, 2008;
Zhou et al., 2013b). However, as pointed out by Lemon-
nier & Vayatis (2014), the maximum likelihood estimator
for MHP with exponential kernels is efficient only if the
decay γ is fixed. Thus, only the scaling parameter α is usu-
ally inferred. This implies that the hyperparameter γ must
be chosen in advance, usually using a grid search, a random
search, or Bayesian optimization. This leads to a computa-
tional burden when the dimension of the MHP is high. The
second option is to define a γ decay parameter common
to all kernels, which results in a loss of expressiveness of
the model. In both cases, the relevance of the exponential
kernel relies on the choice of the decay parameter, which
may not be adapted to the data (Hall & Willett, 2016). For
more general parametric kernels which do not verify the
Markov property, the inference procedure with both MLE
or ℓ2 loss scales poorly as they have quadratic computa-
tional scaling with the number of events, making their use
limited in practice (see e.g., Bompaire, 2019, Chapter 1).
Recently, neural network-based MHP estimation has been
introduced, offering, with sufficient data, relevant models
at the cost of high computational cost (Mei & Eisner, 2017;
Shchur et al., 2019; Pan et al., 2021). These limitations for
parametric and non-parametric kernels prevent their usage
in some applications, as pointed out by Carreira (2021) in
finance or Allain et al. (2021) in neuroscience. A strong
motivation for this work is also neuroscience applications.

The quantitative analysis of electrophysiological signals
such as electroencephalography (EEG) or magnetoen-
cephalography (MEG) is a challenging modern neuro-
science research topic (Cohen, 2014). By giving a non-
invasive way to record human neural activity with a high
temporal resolution, EEG and MEG offer a unique oppor-

tunity to study cognitive processes as triggered by con-
trolled stimulation (Baillet, 2017). Convolutional dictio-
nary learning (CDL) is an unsupervised algorithm recently
proposed to study M/EEG signals (Jas et al., 2017; Dupré la
Tour et al., 2018). It consists in extracting patterns of in-
terest in M/EEG signals. It learns a combination of time-
invariant patterns – called atoms – and their activation func-
tion to reconstruct the signal sparsely. However, while
CDL recovers the local structure of signals, it does not
provide any global information, such as interactions be-
tween patterns or how their activations are affected by stim-
uli. Atoms typically correspond to transient bursts of neu-
ral activity (Sherman et al., 2016) or artifacts such as eye
blinks or heartbeats. By offering an event-based perspec-
tive on non-invasive electromagnetic brain signals, CDL
makes Hawkes processes amenable to M/EEG-based stud-
ies. Given the estimated events, one important goal is to
uncover potential temporal dependencies between external
stimuli presented to the subject and the appearance of the
atoms in the data. More precisely, one is interested in
statistically quantifying such dependencies, e.g., by esti-
mating the mean and variance of the neural response la-
tency following a stimulus. In Allain et al. (2021), the
authors address this precise problem. Their approach is
based on an EM algorithm and a Truncated Gaussian ker-
nel, which can cope with only a few brain data, as opposed
to non-parametric kernels, which are more data-hungry.
Beyond neuroscience, Carreira (2021) uses a likelihood-
based approach using exponential kernels to model order
book events. Their approach uses high-frequency trading
data, considering the latency at hand in the proposed loss.

This paper proposes a new inference method – named
FaDIn – to estimate any parametric kernels for Hawkes pro-
cesses. Our approach is based on two key features. First,
we use finite-support kernels and a discretization applied to
the ERM-inspired least-squares loss. Second, we propose
to employ some precomputations that significantly reduce
the computational cost. We then show, empirically and the-
oretically, that the implicit bias induced by the discretiza-
tion procedure is negligible compared to the statistical er-
ror. Further, we highlight the efficiency of FaDIn in com-
putation and statistical estimation over the non-parametric
approach. Finally, we demonstrate the benefit of using a
general kernel with MEG data. The flexibility of FaDIn al-
lows us to model neural response to external stimuli with
a much better-adapted kernel than the existing method de-
rived in Allain et al. (2021).

2. Fast Discretized Inference for Hawkes
processes (FaDIn)

After recalling key notions of Hawkes processes, we intro-
duce our proposed framework FaDIn.
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2.1. Hawkes processes

Given a stopping time T ∈ R+ and an observation pe-
riod [0, T ], a temporal point process (TPP) is a stochas-
tic process whose realization consists of a set of distinct
timestamps FT = {tn, tn ∈ [0, T ]} occurring in continu-
ous time. The behavior of a TPP is fully characterized by its
intensity function that corresponds to the expected infinites-
imal rate at which events are occurring at time t ∈ [0, T ].
The values of this function may depend on time (e.g., inho-
mogeneous Poisson processes) or rely on past events such
as self-exciting processes (see Daley & Vere-Jones 2003 for
an excellent account of TPP). For the latter, the occurrence
of one event will modify the probability of having a new
event in the near future. The conditional intensity function
λ : [0, T ] → R+ has the following form:

λ (t|Ft) := lim
dt→0

P (Nt+dt −Nt = 1|Ft)

dt
,

where Nt :=
∑

n≥1 1tn≤t is the counting process asso-
ciated to the PP. Among this family, Multivariate Hawkes
processes (MHP; Hawkes, 1971) model the interactions of
p ∈ N∗ self-exciting TPPs. Given p sets of timestamps
F i

T = {tin, tin ∈ [0, T ]}N
i
T

n=1, i = 1, . . . , p , each process is
described by the following intensity function:

λi(t) = µi +

p∑
j=1

∫ t

0

ϕij(t− s) dN j
s , (1)

where µi is the baseline parameter, Nt = [N1
t , . . . , N

p
t ] the

associated multivariate counting process and ϕij : [0, T ] →
R+ the excitation function – called kernel – representing
the influence of j-th process’ past events onto i-th process’
future events. From an inference perspective, the goal is to
estimate the baseline and kernels associated with the MHP
from the data. In this paper, we focus on the ERM-inspired
least squares loss. Assuming a class of parametric kernel
parametrized by η, the objective is to find parameters that
minimize (see e.g., Eq. (I.2) in Bompaire, 2019, Chapter 1):

L (θ,FT ) =
1

NT

p∑
i=1

∫ T

0

λi(s)
2 ds− 2

∑
tin∈F i

T

λi

(
tin
) ,

(2)
where NT =

∑p
i=1 N

i
T is the total number of timestamps,

and where θ := (µ, η). Interestingly, when used with an
exponential kernel, this loss benefits from some precom-
putations of complexity O(NT ), making the subsequent it-
erative optimization procedure independent of NT . This
computational ease is the main advantage of the loss L
over the log-likelihood function. However, when using a
general parametric kernel, these precomputations require
O((NT )

2) operations killing the computational benefit of
the ℓ2 loss L over the log-likelihood. It is worth noting

that this loss differs from the quadratic error minimized be-
tween the counting processes and the integral of the inten-
sity function, as used in Wang et al. (2016); Eichler et al.
(2017) and Xu et al. (2018).

2.2. FaDIn

The approach we propose in this paper fills the need for
general parametric kernels in many applications. We pro-
vide a computationally and statistically efficient solver –
coined FaDIn – that works with many parametric kernels
using gradient-based algorithms. Precisely, it relies on
three key ideas: (i) the use of parametric finite-support ker-
nels, (ii) a discretization of the time interval [0, T ], and (iii)
precomputations allowing an efficient optimization proce-
dure detailed below.

Finite support kernels A core bottleneck for MLE or ℓ2
estimation of parametric kernels is the need to compute the
intensity function for all events. For general kernels, the
intensity function usually requires O((NT )

2) operations,
which makes it intractable for long-time-length processes.
To make this computation more efficient, we consider finite
support kernels. Using a finite support kernel amounts to
setting a limit in time for the influence of a past event on the
intensity, i.e., ∀t /∈ [0 ,W ] , ϕij(t) = 0, where W denotes
the length of the kernel’s support. This assumption matches
applications where an event cannot have influence far in
the future, such as in neuroscience (Krumin et al., 2010;
Eichler et al., 2017; Allain et al., 2021), genetics (Reynaud-
Bouret & Schbath) or high-frequency trading (Bacry et al.,
2015; Carreira, 2021). The intensity function (1) can then
be reformulated as a convolution between the kernel ϕij

and the sum of Dirac functions zi :=
∑

tin∈F i
T
δtin located

at the event occurrences tin:

λi(t) = µi +

p∑
j=1

ϕij ∗ zj(t), t ∈ [0 , T ] .

As ϕij has finite support, the intensity can be computed
efficiently with this formula. Indeed, only events in the
interval [t−W , t] need to be considered. See Section B.2
for more details.

Discretization To make these computations even more ef-
ficient, we propose to rely on discretized processes. Most
Hawkes processes estimation procedures involve a contin-
uous paradigm to minimize (2) or its log-likelihood coun-
terpart. Discretization has been investigated so far for non-
parametric kernels (Kirchner, 2016; Kirchner & Bercher,
2018; Kurisu, 2016). The discretization of a TPP con-
sists in projecting each event tin on a regular grid G =
{0,∆, 2∆, . . . , G∆}, where G =

⌊
T
∆

⌋
. We refer to ∆ as

the stepsize of the discretization. Here ⌊·⌋ denotes the floor
function. Let F̃ i

T be the set of projected timestamps of F i
T
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on the grid G. The intensity function of the i-th process of
our discretized MHP is defined as:

λ̃i[s] = µi +

p∑
j=1

∑
t̃jm∈F̃j

s∆

ϕij(s∆− t̃jm)

= µi +

p∑
j=1

L∑
τ=1

ϕ∆
ij [τ ]zj [s− τ ]︸ ︷︷ ︸
(ϕ∆

ij∗zj)[s]

, s ∈ J0 , GK , (3)

where L =
⌊
W
∆

⌋
denotes the number of points on the dis-

cretized support, ϕ∆
ij [s] = ϕij(s∆) is the kernel value on

the grid and zi[s] = #
{
|tin − s∆| ≤ ∆

2

}
denotes the num-

ber of events projected on the grid timestamp s. From now
and throughout the rest of the paper, we denote ϕij(·) :
R+ → R+ as a function while ϕ∆

ij [·] represents the dis-
crete vector ϕ∆

ij ∈ RL
+. Compared to the continuous for-

mulation, the intensity function can be computed more ef-
ficiently as one can rely on discrete convolutions, whose
worst-case complexity scales as O(NTL). It can also be
further accelerated using Fast Fourier Transform when NT

is large. Another benefit of the discretization is that for ker-
nels whose values are costly to compute, at most L values
need to be calculated. This can have a strong computational
impact when NT ≫ L as all values can be precomputed
and stored.

While discretization improves the computational effi-
ciency, it also introduces a bias in the computation of the
intensity function and, thus potentially, in estimating the
kernel parameters. The impact of the discretization on the
estimation is considered in Section 2.3 and Section 3.1.
Note that this bias is similar to the one incurred by quantiz-
ing the kernel as histograms for non-parametric estimators.

Loss and precomputations FaDIn aims at minimizing the
discretized ℓ2 loss, which approximates the integral on the
left part of (2) by a sum on the grid G after projecting times-
tamps of FT on it. It boils down to optimizing the follow-
ing loss LG

(
θ, F̃T

)
defined as:

1

NT

p∑
i=1

∆
∑

s∈J0 ,GK

(
λ̃i[s]

)2
− 2

∑
t̃in∈F̃ i

T

λ̃i

[
t̃in
∆

] . (4)

To find the parameters of the intensity function θ, FaDIn
minimizes LG using a first-order gradient-based algorithm.
The computational bottleneck of the proposed algorithm is
thus the computation of the gradient ∇LG regarding param-
eters θ. Using the discretized finite-support kernel, this gra-
dient can be computed using convolution, giving the same
computational complexity as the computation of the inten-
sity function O(NTL). However, gradient computation can
still be too expensive for long processes with many events

to get reasonable inference times. Using the least squares
error of the process (4), one can further reduce the com-
plexity of computing the gradient by precomputing some
constants Φj(τ ;G), Ψj,k(τ, τ

′;G) and Φj(τ ; F̃ i
T ) that do

not depend on the parameter θ. Indeed, by developing and
rearranging the terms in (4), one obtains:

NT LG

(
θ, F̃T

)
= 2∆

p∑
i=1

µi

p∑
j=1

L∑
τ=1

ϕ∆
ij [τ ]

(
G∑

s=1

zj [s− τ ]

)
︸ ︷︷ ︸

Φj(τ ;G)

+∆
∑
i,j,k

L∑
τ=1

L∑
τ ′=1

ϕ∆
ij [τ ]ϕ

∆
ik[τ

′]

(
G∑

s=1

zj [s− τ ] zk[s− τ ′]

)
︸ ︷︷ ︸

Ψj,k(τ,τ
′;G)

− 2

(
p∑

i=1

N i
Tµi +

∑
i,j

L∑
τ=1

ϕ∆
ij [τ ]

( ∑
t̃in∈F̃i

T

zj

[
t̃in
∆

− τ

])
︸ ︷︷ ︸

Φj(τ ;F̃i
T )

)
.

The term Ψj,k(τ, τ
′;G) dominates the computational cost

of our precomputations. It requires O(G) operations for
each tuples (τ, τ ′) and (j, k). Thus, it has a total complex-
ity of O(p2L2G) and is the bottleneck of the precomputa-
tion phase. For any m ∈ {1, . . . , p}, the gradient of the
loss w.r.t. the baseline parameter is given by:

NT
∂LG

∂µm
= 2Tµm − 2Nm

T +2∆

p∑
j=1

L∑
τ=1

ϕ∆
mj [τ ]Φj(τ ;G).

For any tuple (m, l) ∈ {1, . . . , p}2, the gradient of ηml is:

NT
∂LG

∂ηml
= 2∆µm

L∑
τ=1

∂ϕ∆
m,l[τ ]

∂ηm,l
Φl(τ ;G)

+ 2∆

p∑
k=1

L∑
τ=1

L∑
τ ′=1

ϕ∆
mk[τ

′]
∂ϕ∆

m,l[τ ]

∂ηm,l
Ψl,k(τ, τ

′;G)

− 2

L∑
τ=1

∂ϕ∆
m,l[τ ]

∂ηm,l
Φl(τ ; F̃

m
T ).

Gradients of kernel parameters dominate the computational
cost of gradients. The complexity is of O(pL2) for each
kernel parameter, leading to a total complexity of O(p3L2)
and is independent of the number of events NT . Thus, a
trade-off can be made between the precision of the method
and its computational efficiency when varying the size of
the kernel’s support or the discretization.
Remark 2.1. The primary motivation for the ℓ2 loss is
the presence of terms that can be precomputed in contrast
to the log-likelihood (Reynaud-Bouret & Rivoirard, 2010;
Reynaud-Bouret et al., 2014; Bacry et al., 2020). An ex-
periment is performed in Section B.1 where it is shown that
the statistical error of the ℓ2 loss and the log-likelihood
are equivalent. However, the computation time of FaDIn is
advantageous compared to the one with log-likelihood, as
FaDIn leverages efficient precomputations.
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Optimization The inference is then conducted using gra-
dient descent for the ℓ2 loss LG . FaDIn thus allows for very
general parametric kernels, as exact gradients for each pa-
rameter involved in the kernels can be derived efficiently
as long as the kernel is differentiable and has finite support.
Gradient-based optimization algorithms can, therefore, be
used without limitation, in contrast with the EM algorithm,
which requires a close-form solution to zero the gradient,
which is difficult for many kernels. A critical remark is that
the problem is generally non-convex and may converge to
a local minimum.

2.3. Impact of the discretization

While discretization allows for efficient computations, it
also introduces a perturbation in the loss value. In this sec-
tion, we quantify the impact of this perturbation on the pa-
rameter estimation when ∆ goes to 0. Through this section,
we observe a process FT whose intensity function is given
by the parametric form λ(·; θ∗). Note that if the process
FT ’s intensity is not in the parametric family λ(·; θ), θ∗ is
defined as the best approximation of its intensity function
in the ℓ2 sense. The goal of the inference process is thus to
recover the parameters θ∗.

When working with the discrete process F̃T , the events tin
of the original process are replaced with a projection on a
grid t̃in = tin + δin. Here, δin is uniformly distributed on
[−∆/2,∆/2]. We consider the discrete FaDIn estimator
θ̂∆ defined as θ̂∆ = argmin θLG(θ). We can upper-bound

the error incurred by θ̂∆ by the decomposition:∥∥∥θ̂∆ − θ∗
∥∥∥
2
≤
∥∥∥θ̂c − θ∗

∥∥∥
2︸ ︷︷ ︸

(∗)

+
∥∥∥θ̂∆ − θ̂c

∥∥∥
2︸ ︷︷ ︸

(∗∗)

, (5)

where θ̂c = argminθ L (θ) is the reference estimator for
θ∗ based on the standard ℓ2 estimator for continuous point
processes. This decomposition involves the statistical error
(∗) and the bias error (∗∗) induced by the discretization.
The statistical term measures how far the parameters ob-
tained by minimizing the ℓ2 continuous loss having access
to a finite amount of data are from the true ones. In contrast,
the term (∗∗) represents the discretization bias induced by
minimizing the discrete loss (4) instead of the continuous
one (2). In the following proposition, we focus on the dis-
cretization error (∗∗), which is related to the computational
trade-off offered by our method and not on the statistical
error of the continuous ℓ2 estimator (∗∗). Our work show-
cases that this disregarded estimator can be efficiently com-
puted, and we hope it will promote research to describe its
asymptotic behavior. We now study the perturbation of the
loss due to discretization.
Proposition 2.2. Let FT and F̃T be respectively a MHP
process and its discretized version on a grid G with step-

size ∆. Assume that the intensity function of FT pos-
sesses continuously differentiable finite support kernels on
[0,W ]. Thus, assuming ∆ < mintin,t

j
m∈FT

|tin − tjm|, for
any i ∈ J1 , pK, it holds:

λ̃i[s] = λi(s∆)−
p∑

j=1

∑
tjm∈Fj

s∆

δjm
∂ϕij

∂t
(s∆−tjm; θ)+O(∆2),

and

LG(θ) =
2

NT

∑
i,j

∑
tin∈F i

T

tjm∈Fj
s∆

(δjm − δin)
∂ϕij

∂t
(tin − tjm; θ)

+ L(θ) + ∆.h(θ) +O(∆2).

The technical proof is deferred to Section A.1 in the Ap-
pendix. The first result is a direct application of the Taylor
expansion of the intensity for the kernels. For the loss, the
first perturbation term ∆.h(θ) comes from approximating
the integral with a finite Euler sum (Tasaki, 2009) while
the second one derives from the perturbation of the inten-
sity. This proposition shows that, as the discretization step
∆ goes to 0, the perturbed intensity and ℓ2 loss are good es-
timates of their continuous counterpart. We now quantify
the discretization error (∗∗) as ∆ goes to 0.
Proposition 2.3. We consider the same assumption as
in Proposition 2.2. Then, if the estimators θ̂c =
argminθ L(θ) and θ̂∆ = argminθ LG(θ) are uniquely de-
fined, θ̂∆ converges to θ̂c as ∆ → 0. Moreover, if L is C2

and its hessian ∇2L
(
θ̂c

)
is positive definite with ε > 0 its

smallest eigenvalue, then
∥∥∥θ̂∆ − θ̂c

∥∥∥
2
≤ ∆

ε g
(
θ̂∆

)
, with

g
(
θ̂∆

)
= O(1).

This proposition shows that asymptotically on ∆, the es-
timator θ̂∆ is equivalent to θ̂c. It also shows that the dis-
crete estimator converges to the continuous one at the same
speed as ∆ decreases. This is confirmed experimentally by
results shown in Figure B.6 in the Appendix. Thus, one
would need to select ∆ so that the discretization error is
small compared to the statistical one. Notice that assump-
tions from Proposition 2.3 are not too restrictive. Indeed,
they require the existence of a unique minimizer of L, LG
and L. Moreover, if L is C2 in θ̂c, the previous hypothesis
also implies the strong local convexity at this point.

3. Numerical experiments
We present various synthetic data experiments to support
the advantages of the proposed approach. To begin, we
investigate the bias induced by the discretization in Sec-
tion 3.1. Afterwards, the statistical and computational effi-
ciency of FaDIn is highlighted through a benchmark with
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popular non-parametric approaches Section 3.2. Due to the
space limitation, sensitivity analysis regarding the parame-
ter W and additional non-parametric comparisons are pro-
vided in Appendices B.2 and B.3, respectively.

3.1. Consistency of Discretization

In order to study the estimation bias due to discretiza-
tion, we run two experiments and report the results in Fig-
ure 1 (details and further experiments are presented in Sec-
tion B.4 and Section B.5 in the Appendix).

The general paradigm is a one-dimensional TPP with in-
tensity parametrized as in (1) with a Truncated Gaussian
kernel of mean m ∈ R and standard deviation σ > 0, with
fixed support [0 ,W ] ⊂ R+, W > 0. It corresponds to
ϕ(·) = ακ(·), α ≥ 0 with

κ(·) := κ (·;m,σ,W ) =
1

σ

f
( ·−m

σ

)
F
(
W−m

σ

)
− F

(−m
σ

)10≤·≤W ,

where f (resp. F ) is the probability density function (resp.
cumulative distribution function) of the standard normal
distribution. Hence, the parameters to estimate are µ and
η = (α,m, σ).

In both experiments, for multiple process length T , the
discrete estimates are computed for varying grid step-
size ∆, from 10−1 to 10−3. The parameter W is set
to 1. The ℓ2 norm of the difference between estimates
and the true parameter values – the ones used for data
simulation – is computed and reported. We first com-
puted the parameter estimates with our FaDIn method for
T ∈ {103, 105, 104, 106}, for 100 simulations each time.
Second, since we wish to separate discretization bias from
statistical bias, we compute the estimates with an EM al-
gorithm, both continuously and discretely, and that for 50
random data simulations.

One can observe that the ℓ2 errors between discrete esti-
mates and true parameters tend towards zero as T increases.
For T fixed, one can see plateaus starting for stepsize val-
ues that are not particularly small, indicating that the dis-
cretization bias is limited. The second experiment with the
EM algorithm shows that when plateau is reached, it cor-
responds to some statistical error. In other words, even for
a reasonably coarse stepsize, the bias induced by the dis-
cretization is slight compared to the statistical error.

3.2. Statistical and computational efficiency of FaDIn

We compare FaDIn with non-parametric and parametric
methods by assessing approaches’ statistical and computa-
tional efficiency. To learn the non-parametric kernel, we
select various existing methods. The first benchmarked
method uses histogram kernels and relies on the EM al-
gorithm, provided in Zhou et al. (2013a) and implemented

in the tick library (Bacry et al., 2017). The kernel is set
with one basis function. The three other approaches involve
a linear combination of pre-defined raised cosine functions
as non-parametric kernels. The inference is made either
by stochastic gradient descent algorithm (Non-param SGD;
Linderman & Adams, 2014) or by Bayesian approaches
such as Gibbs sampling (Gibbs) or Variational Inference
(VB) from Linderman & Adams (2015). These algorithms
are implemented in the pyhawkes library1. In the fol-
lowing experiments, we set the number of basis to five for
each method. The parametric approach we compare with
is the Neural Hawkes Process (NeuralHawkes; Mei & Eis-
ner, 2017) where authors represents the intensity function
by a LSTM module. The latter is calculated on a GPU. The
experiment is conducted as follows. We simulate a two-
dimensional Hawkes process (repeated ten times) using the
tick library with baseline µ = [0.1, 0.2] and Raised Co-
sine kernels:

ϕi,j(·) = αi,j

[
1 + cos

(
· − ui,j

σi,j
π − π

)]
, (i, j) ∈ {1, 2}2

on the support [ui,j , ui,j + 2σi,j ] and zero outside with

parameters α =

[
1.5 0.1
0.1 1.5

]
, u =

[
0.1 0.3
0.3 0.3

]
and

σ =

[
0.3 0.25
0.3 0.3

]
. Further, we infer the intensity function

of these underlying Hawkes processes using FaDIn and the
four previously mentioned methods setting ∆ = 0.01 for
all these discrete approaches. The parameter W of FaDIn
is set to 1. This experiment is repeated for varying values
of T ∈ {103, 104, 105}. The averaged (over the ten runs)
normalized ℓ1 error on the intensity (evaluated on the same
discrete grid), as well as the associated computation time,
are reported in Figure 2. Due to the high computational
times of NeuralHawkes, this approach is performed once
and is not applied for T = 105.

From a statistical perspective, we can observe the advan-
tages of FaDIn inference for varying T over the bench-
marked methods. It is worth noting that this result is ex-
pected by a parametric approach when the used kernel be-
longs to the same family as the one with which events have
been simulated. Also, only one (long) sequence of data
has been used, explaining the poor statistical results of the
Neural Hawkes, which is efficient on many repetitions of
short sequences due to the massive amount of parameters
to infer. From a computational perspective, FaDIn is very
efficient compared to benchmarked approaches. Indeed, it
scales very well with an increasing time T and then with a
growing number of events. In contrast, other methods de-
pend on the number of events and scale linearly with the
time T .

1https://github.com/slinderman/pyhawkes
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Figure 1. Median and interquartile error bar of the ℓ2 norm between true parameters and parameter estimates computed with FaDIn (left)
and with EM algorithm (right), continuously and discretely, w.r.t. the stepsize of the grid ∆.
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Figure 2. Comparison of the statistical and computational efficiency of FaDIn with five benchmarked methods. The averaged (over ten
runs) statistical error on the intensity function (left) and the computational time (right) are computed regarding the time T (and thus the
number of events).

4. Application to MEG data
The response’s latency related to a stimulus has been iden-
tified as a Biomarker of ageing (Price et al., 2017) and
many diseases such as epilepsy (Kannathal et al., 2005),
Alzheimer’s (Dauwels et al., 2010), Parkinson’s (Tanaka
et al., 2000) or multiple sclerosis (Gil et al., 1993). There-
fore, obtaining information on such a feature after auditory
or visual stimuli is critical to characterize and eventually
detect the presence of a specific disease for a given subject.
FaDIn allows fitting a statistical model on this latency by
inferring a model on the latency of these responses through
Hawkes processes kernels (see Section B.6). This approach
characterizes the delays’ distribution more finely compared
to the latency estimates.

Electrophysiology signals recorded with M/EEG contain
recurring prototypical waveforms that can be related to hu-
man behavior (Shin et al., 2017). Convolutional Dictio-
nary Learning (CDL; Jas et al. 2017) is an unsupervised
method to efficiently extract such patterns and study them
in a quantitative way. With CDL, multivariate neural sig-
nals are represented by a set of spatio-temporal patterns,

called atoms, with their respective onsets, called activa-
tions. Here, we make use of the alphacsc software for
CDL with rank-1 constraint (Dupré la Tour et al., 2018),
as it includes physical priors for the patterns to recover,
namely that the spatial propagation of the signal from the
brain to sensors is linear and instantaneous. The schema in
the Appendix in Figure B.13 presents how CDL applies to
MEG recordings.

Experiments on MEG data were run on two datasets from
the MNE Python package (Gramfort et al., 2013; 2014): the
sample dataset and the somatosensory (somato) dataset2.

These datasets were selected as they elicit two distinct
types of event-related neural activations: evoked responses
which are time-locked to the onsets of the stimulation, and
induced responses which exhibit larger random jitters. The
sample dataset contains M/EEG recordings of a human
subject presented with audio and visual stimuli. This ex-
periment presents checkerboard patterns to the subject in
the left and right visual field, interspersed with tones to the

2Both available at https://mne.tools/stable/
overview/datasets_index.html
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Figure 3. Spatial and temporal patterns of 2 atoms from sample dataset, and their respective estimated intensity functions after a stimulus
(cue at time = 0 s), for auditory and visual stimuli with non-parametric (NP), Truncated Gaussian (TG) and Raised Cosine (RC) kernels.

left or right ear. The experiment lasts about 4.6min, and
approximately 70 stimuli per type are presented to the sub-
ject. For the somato dataset, a human subject is scanned
with MEG during 15min, while 111 stimulations of his
left median nerve were made. For both datasets, raw data
are first preprocessed as done by Allain et al. (2021), and
CDL is then applied: 40 atoms of duration 1 s each are
extracted on the sample dataset, and 20 atoms of duration
0.53 s for the somato dataset. Finally, each dataset is rep-
resented by two sets of Temporal Point Processes: a set of
stochastic ones representing atoms’ activations, and a set of
deterministic ones coding for external stimuli events.

The main goal of applying the TPP framework to such data
is to characterize directly when and how each stimulus is
responsible for the occurrence of neural responses, espe-
cially by estimating the distribution of latencies. We are
interested in the paradigm of Driven Point Process (DriPP;
Allain et al. 2021) and for every extracted atom, its inten-
sity function related to the corresponding stimuli is esti-
mated using a non-parametric kernel (NP) and two ker-
nel parametrizations: Truncated Gaussian (TG) and Raised
Cosine (RC). Results on the sample (resp. somato) dataset
are presented in Figure 3 (resp. Figure B.14 in the Ap-
pendix), where only the kernel related to each type of stim-
ulus is plotted, for the sake of clarity. See Appendix B.6.

Results show that all three kernels agree on a peak latency
around 90ms for the auditory condition and 190ms for the
visual condition. Due to the limited number of events, one
can observe that the non-parametric kernel estimated is less
smooth, with spurious peaks later in the interval. Overall,
these results on real MEG data demonstrate that our ap-
proach with a RC kernel parametrization can recover cor-

rect latency estimates even with the discretization of step-
size 0.02. Furthermore, the usage of RC allows us to have
sharper peaks in intensity compared to TG, enforcing the
link between the external stimulus and the atom’s activa-
tion. This difference mainly comes from the fact that RC
does not need pre-determined support. This advantage is
even more pronounced in the case of induced responses,
such as in the somato dataset (see Figure B.14), where the
range of possible latency values is more difficult to deter-
mine beforehand.

5. Discussion
This work proposed an efficient approach to infer general
parametric kernels for Multivariate Hawkes processes. Our
method makes the use of parametric kernels computation-
ally tractable, beyond exponential kernels. The develop-
ment of FaDIn is based on three key features: (i) finite-
support kernels, (ii) timeline discretization, and (iii) pre-
computations reducing the computational cost of the gradi-
ents. These allow for a computationally efficient gradient-
based approach, improving state-of-the-art methods while
providing flexible use of kernels well-fitted to the consid-
ered applications. Moreover, this work shows that the bias
induced by the discretization is negligible, both theoreti-
cally and numerically. By allowing the use of a general
parametric kernel in Hawkes processes, this contribution
opens new possibilities for many applications. This is the
case with M/EEG data, where estimating information about
the rate and latency of occurrences of brain signal patterns
is at the core of neuroscience questions. Therefore, FaDIn
makes it possible to use a Raised Cosine kernel, allowing
for efficient retrieval of these parameters.
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A. Technical details
This part presents proofs of the theoretical results proposed in the core paper.

A.1. Proof of Proposition 2.2

Recall that by definition,

λi(s∆) = µi +

p∑
j=1

∑
tjm∈Fj

s∆

ϕij(s∆− tjm),

and

λ̃i[s] = µi +

p∑
j=1

∑
t̃jm∈F̃j

s∆

ϕij(s∆− t̃jm)

= µi +

p∑
j=1

∑
tjm∈Fj

s∆

ϕij(s∆− tjm − δjm), (6)

where (6) is a consequence of hypothesis ∆ < mintin,t
j
m∈FT

|tin − tjm| which ensures that no event collapses on the same

bin of the grid and that F̃ j
s∆ = F j

s∆. Note that this hypothesis also implies that the intensity function is smooth for all
points on the grid G. Applying the first-order Taylor expansion to the kernels ϕij in s∆− tjm and bounding the perturbation
δin by ∆ yields the first result of the proposition.

For the perturbation of the loss LG , we have:

LG
(
θ, F̃T

)
=

1

NT

p∑
i=1

∆
∑

s∈J0 ,GK

(
λ̃i[s]

)2
− 2

∑
t̃in∈F̃ i

T

λ̃i

[
t̃in
∆

]
= L(θ) + 1

NT

p∑
i=1

(
∆

G∑
s=0

λ̃i[s]
2 −

∫ T

0

λi(t)
2dt︸ ︷︷ ︸

(∗)

−2
∑

tin∈F i
T

λ̃i

[
t̃in
∆

]
− λi

(
tin
)

︸ ︷︷ ︸
(∗∗)

)
.

The first term (∗) is the error of a Riemann approximation of the integral. Theorem 1.2 in Tasaki (2009) shows that
asymptotically with ∆ → 0,

∆
G∑

s=0

λ̃i[s]
2 −

∫ T

0

λi(t)
2dt = ∆.hi(θ) +O(∆2), (7)

where hi(θ) =
1
2

( ∫ T

0
|λi(t; θ)

∂λi

∂t (t; θ)|
1/2dt

)2
and we denote h(θ) = 1

NT

∑p
i=1 hi(θ).

For the second term (∗∗), we re-use the expression from (6) but use a Taylor expansion in tin − tjm. The perturbation
becomes δjm − δin,

∑
tin∈F i

T

λ̃i

[
t̃in
∆

]
− λi

(
tin
)
=

∑
tin∈F i

T

(
δin − δjm

) ∂ϕij

∂t

(
tin − tjm; θ

)
+O

(
∆2
)
. (8)

Summing (7) and (8) concludes the proof.

A.2. Proof of Proposition 2.3

We consider the two estimators θ̂∆ = argmin θLG(θ) and θ̂c = argmin θL(θ). With the loss approximation from

Proposition 2.2, we have a pointwise convergence of LG(θ) towards L(θ) for all θ ∈ Θ as ∆ goes to 0. By continuity of
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LG , we have that the limit of θ̂∆ when ∆ goes to 0 exists and is equal to θ̂c. This proves that the discretized estimator
converges to the continuous one as ∆ decreases.

We now characterize its asymptotic speed of convergence. The KKT conditions impose that:

∇LG
(
θ̂∆

)
= 0 and ∇L

(
θ̂c

)
= 0. (9)

Using the approximation from Proposition 2.2, one gets in the limit of small ∆:

∇LG
(
θ̂∆

)
= ∇L

(
θ̂∆

)
+∆.

∂h

∂θ

(
θ̂∆

)
+O

(
∆2
)
+

2

NT

p∑
i=1

∑
tin∈F̃ i

T

p∑
j=1

∑
tjm∈F̃j

s∆

(
δjm − δin

) ∂2ϕij

∂t∂θ

(
tin − tjm; θ̂∆

)
.

Combining this with (9), we get:

∇L
(
θ̂∆

)
= −∆.

∂h

∂θ

(
θ̂∆

)
+

2

NT

p∑
i=1

∑
tin∈F̃ i

T

p∑
j=1

∑
tjm∈F̃j

s∆

(
δin − δjm

) ∂2ϕij

∂t∂θ

(
tin − tjm; θ̂∆

)
+O

(
∆2
)
,

and

∥∥∥∇L(θ̂∆)−∇L
(
θ̂c

)∥∥∥
2
=

∥∥∥∥∥∥−∆.
∂h

∂θ

(
θ̂∆

)
+

2

NT

p∑
i,j=1

∑
tin∈F̃ i

s∆

∑
tjm∈F̃j

s∆

(
δin − δjm

) ∂2ϕij

∂t∂θ

(
tin − tjm; θ̂∆

)∥∥∥∥∥∥
2

+O
(
∆2
)

≤ ∆

∥∥∥∥∥∥∂h∂θ
(
θ̂∆

)
+

2

NT

p∑
i,j=1

∑
tin∈F̃ i

s∆

∑
tjm∈F̃j

s∆

∂2ϕij

∂t∂θ

(
tin − tjm; θ̂∆

)∥∥∥∥∥∥
2

+O
(
∆2
)

≤ ∆.g
(
θ̂∆

)
,

where g(θ) is equal to ∥∂h
∂θ (θ̂∆)+

2
NT

∑p
i,j=1

∑
tin∈F̃ i

s∆

∑
tjm∈F̃j

s∆

∂2ϕij

∂t∂θ (t
i
n−tjm; θ̂∆)∥2+O(∆). This function is a O(1).

Using the hypothesis that the hessian ∇2L(θ̂c) exists and is positive definite with smallest eigenvalue ε, we have:

ε
∥∥∥θ̂∆ − θ̂c

∥∥∥2
2
≤
∥∥∥∇L

(
θ̂∆

)
−∇L

(
θ̂c

)∥∥∥2
2

i.e.,
∥∥∥θ̂∆ − θ̂c

∥∥∥2
2
≤ ∆

ε
g
(
θ̂∆

)
.

This concludes the proof.

B. Additional Experiments
This section presents additional experimental results supporting the claims of the paper. We compare the ℓ2 loss involved
in FaDIn with the popular negative Log-Likelihood in Section B.1. A sensitivity analysis of the kernel length W is
provided in Section B.2. Additional comparisons with popular non-parametric approaches are presented in Section B.3.
The consistency of the discretization is supported in Section B.4 and Section B.5. Finally, we explain the methodology we
employed on real MEG data and provide complementary results in Section B.6.

B.1. Comparison of FaDIn with the negative log-likelihood loss

We compare both approaches’ statistical and computational efficiency to highlight the benefit of using the ℓ2 loss in FaDIn
over the log-likelihood (LL). Precisely, we compare the accuracy of the obtained parameter estimators from FaDIn and the
minimization of the negative log-likelihood in the same setting as our approach (discretization and finite-support kernels).
We conduct the experiment as follows. We place ourselves in the univariate setting for computational simplicity. We
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Figure B.1. Comparison of the statistical and computational efficiency of FaDIn with the Log-Likelihood loss. The averaged (over ten
runs) statistical error on the intensity function (left) and the computational time (right) are computed regarding the time T for the Raised
Cosine (top), the Truncated Gaussian (middle) and the Truncated Exponential (bottom).

sample a set of events in continuous time through the tick library. Three sets are sampled from the kernel shapes: Raised
Cosine, Truncated Gaussian, and Truncated Exponential. The parameters are set as µ = 0.3, α = 0.8, (u, σ) = (0.2, 0.3)
for the Raised Cosine, (m,σ) = (0.5, 0.3) for the Truncated Gaussian and γ = 5 for the Truncated Exponential. We set
the kernel length W to 1 for each setting. Further, we estimate the parameters of the intensity of sampled events using
both FaDIn and LL approaches. The experiment is repeated ten times. The median and 25-75% quantiles of the statistical
accuracy and the computation time are reported in Figure B.1 for the three different kernels. We can observe an equivalent
accuracy of the parameter estimation for both methods along the different kernels, stepsize and number of events. In
contrast, the computational performance of FaDIn outperforms the LL approach. Indeed, the computational time is divided
by ≈ 5 in a low data regime with T = 102 and by ≈ 1000 when ∆ = 0.01 and T = 105. This experiment clearly shows
the advantages of using the ℓ2 loss in FaDIn rather than the log-likelihood.

B.2. Kernel length on FaDIn estimates

To study the estimation bias induced by the finite support kernels, we conduct an experiment using FaDIn with a (Trun-
cated) Exponential kernel. The general framework is a one-dimensional TPP with intensity parametrized as in (1) with a
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Truncated Exponential kernel having a decay parameter γ, with fixed support [0 ,W ] ⊂ R+, W > 0. It corresponds to
ϕ(·) = ακ(·), α ≥ 0 with

κ(·) := κ (·; γ, a, b) = h (·)
H (b)−H (a)

1a≤·≤b,

where here h (resp. H) is the probability density function of parameter γ (resp. cumulative distribution function) of
the exponential distribution. Therefore, when W → ∞, this Truncated Exponential kernel converges to the standard
exponential kernel, i.e., t 7→ αγ exp(−γt). The parameters to estimate are µ and η = (α, γ). The experiment is conducted
as follows. We simulate events (10 repetitions) from a Hawkes process with baseline µ = 1.1 and a standard Exponential
kernel (non-truncated) with α = 0.8, γ = 0.5 for varying T ∈ {103, 104, 105, 106} using the tick Python library.
FaDIn is then computed on each of these sets of events using a Truncated Exponential kernel of length W ∈ [1, 100] and
a stepsize ∆ = 0.01. The averaged (over ten runs) and the 25-75% quantiles statistical ℓ2-error of parameters (left) and
computational time (right) are displayed w.r.t. the stepsize of the grid ∆ in Figure B.2. On the one hand, one can observe
that the ℓ2-error converges to a plateau once W > 10, i.e., the bias induced by the finite support length is reduced. On the
other hand, the computational time increase when W increases. Interestingly, for each T , the computational time is close
when W is high enough (close to 100). Indeed, optimizing the loss becomes the bottleneck of FaDIn since the grid size
(G = TL+ 1) only intervenes in the precomputation part.
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Figure B.2. Comparison of the influence of the kernel support size W on the parameter estimation of FaDIn for a Truncated Exponential
kernel. The averaged (over 10 runs) statistical ℓ2-error (left) and computational time (right) are displayed w.r.t. the stepsize of the grid
∆.

B.3. Statistical and computational efficiency of FaDIn

This part presents additional non-parametric comparisons.

B.3.1. QUALITATIVE COMPARISON WITH A NON-PARAMETRIC APPROACH

We compare FaDIn with the use of a non-parametric kernel by assessing the statistical and computational efficiency of
both approaches. To learn the non-parametric kernel, we select the EM algorithm, provided in Zhou et al. (2013a) and
implemented in the tick library (Bacry et al., 2017). The kernel is set with one basis function. In addition, we display
the running time when computing gradients using PyTorch and automatic differentiation applied to the LG discretized loss
(4).

The experiment is conducted as follows. We fix p = 1 for simplicity, set µ = 1.1 and choose a Raised Cosine kernel
defined by:

ϕ(·) = α

[
1 + cos

(
· − u

σ
π − π

)]
I {· ∈ [u; u+ 2σ]} ,

setting parameters α = 0.8, u = 0.2 and σ = 0.3. We simulate events in a continuous time using the tick library (Bacry
et al., 2017). FaDIn and the non-parametric kernel are optimized over 800 iterations (with an early stopping for the EM
algorithm). The RMSprop algorithm is used in FaDIn. The discretization size of the non-parametric kernel is settled as in
FaDIn. This experiment is done varying T ∈ {103, 105, 106}.
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On the one hand, in a relatively small data regime where T = 103, we evaluate the statistical accuracy of the estimated ker-
nel of both methods with the discretization parameter ∆ = 0.01. As we can see in Figure B.3 (top left), the non-parametric
approach fails to recover the structure of the kernel. The non-parametric approach results in noisy kernel estimates, with
probability mass where the kernel is zero. In contrast, FaDIn can recover the kernel parameters used to simulate data even
with a small number of events. On the other hand, we evaluate the computational times varying the discretization steps in
a large data regime where T = 105 and T = 106 with the same simulation parameters. Figure B.3 (bottom left) reports
the average computational times (over 10 runs) regarding the discretization stepsize ∆ and the dimension p. Although
both approaches can recover the kernel under which we simulate data (see Figure B.3, top right), FaDIn is a great deal
more computationally efficient than the non-parametric and the automatic differentiation implementations, improving the
computational speed by ≈ 100 when ∆ ∈ [0.1, 0.01] and by ≈ 10 when ∆ ≈ 0.001. The computation speed regarding the
dimension of the MHP is improved by ≈ 10. It is worth noting that the ℓ2-Autodiff explodes in memory when ∆ > 0.01
or when the dimension grows. Additional shapes of kernels are displayed in Figure B.4 for the Truncated Gaussian and in
Figure B.5 for the Truncated Exponential kernels.
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Figure B.3. Comparison between our approach FaDIn and non-parametric approach. Estimated kernels with ∆ = 0.01 in a relatively
small data setting with T = 103 (top left), in a large data setting with T = 106 (top right), and computation time in a large data setting
with T ∈ {105, 106} w.r.t. the stepsize ∆ (bottom left) and the dimension p (bottom right). In contrast to non-parametric kernels, FaDIn
estimates well the true kernel in a small regime while it is computationally faster than non-parametric kernels in a large regime.

B.4. Discretization on EM estimates (DriPP)

Figure B.6 displays the convergence of the estimator θ̂∆ towards θ̂c as ∆ goes to 0 in the same experimental setup as the
right part of Figure 1.

Figure B.7 presents the detailed results, i.e., parameter-wise, of the experiment shown in Figure 1 (right). In this experiment,
we are interested in the context of Driven PP (Allain et al., 2021) with an exogenous homogeneous PP. The simulation
parameter of the latter is set to 0.5, meaning that on average, 1 event occurs every 2 seconds on the driver.

Figure B.8 presents the results of the same experiment with Poisson parameter set to 0.1 which represents roughly five
times less events.
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Figure B.4. Comparison between our approach FaDIn and non-parametric approach for a Truncated Gaussian kernel. Estimated kernels
with ∆ = 0.01 and T ∈ {103, 104, 105, 106}. The true kernel, FaDIn and the non-parametric approach are depicted in black, orange
and blue, respectively.
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Figure B.5. Comparison between our approach FaDIn and non-parametric approach for a Truncated Exponential kernel. Estimated
kernels with ∆ = 0.01 and T ∈ {103, 104, 105, 106}. The true kernel, FaDIn and the non-parametric approach are depicted in black,
orange and blue, respectively.
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Figure B.6. Median and interquartile error bar of the ℓ2 norm between the parameters estimated computed with EM algorithm, contin-
uously and discretely, w.r.t. the stepsize ∆. This figure confirms the results from Proposition 2.2; that is, that the convergence of θ̂∆
towards θ̂c is linear with respect to ∆.
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Figure B.7. Median and interquartile error bar of the ℓ2 norm between true parameters and parameter estimates computed with EM
algorithm, continuously and discretely, w.r.t. the stepsize ∆.

B.5. Discretization effect on FaDIn estimates

This section presents additional results related to the Section 3.1. We reproduce the experiments of this section with FaDIn
and two other kernels: Raised Cosine and Truncated Exponential.
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Figure B.8. Median and interquartile error bar of the ℓ2 norm between true parameters and parameter estimates computed with EM
algorithm, continuously and discretely, w.r.t. the stepsize ∆.

The Raised Cosine kernel is defined by:

ϕ(·) = α

[
1 + cos

(
· − u

σ
π − π

)]
I {· ∈ [u; u+ 2σ]} .

The parameters to estimate are µ, α, u and σ. The Truncated Exponential kernel of decay parameter γ ∈ R+, with fixed
support [a , b] ⊂ R+, b > a is defined as ϕ(·) = ακ(·), α ≥ 0 with

κ(·) := κ (·; γ, a, b) = h (·)
H (b)−H (a)

1a≤·≤b,

where here h (resp. H) is the probability density function of parameter γ (resp. cumulative distribution function) of the
exponential distribution. The parameters to estimate are µ, α and γ.

Estimation results (median and 20-80% quantiles) are displayed in Figure B.9 and confirm the conclusion presented in
Section 3.1 about the consistency of the discretization for FaDIn. In addition, we display the quadratic error for each
parameter separately in Figure B.10 for the Truncated Gaussian, Figure B.11 for the Raised Cosine and Figure B.12 for the
Truncated Exponential kernels.
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Figure B.9. Comparison of the influence of the discretization on the parameter estimation of FaDIn for a Raised Cosine kernel (left) and
an Exponential kernel (right) w.r.t. the stepsize of the grid ∆.
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Figure B.10. Error on parameters for the Truncated Gaussian kernel as a function of T and ∆.
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Figure B.11. Error on parameters for the Raised Cosine kernel as a function of T and ∆.
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Figure B.12. Error on parameters for the Truncated Exponential kernel as a function of T and ∆.
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B.6. Other experiments on real data

After detailing the procedure we use in MEG experiments and adding extra information about used datasets, we provide a
second experiment on the somatosensory dataset.

Background on CDL The objective of CDL is to decompose a signal as the convolution between a translationally
invariant pattern called atom and its sparse activation vector (Grosse et al., 2007). To do this, we minimize the following
objective function:

min
Dk,zn

k

N∑
n=1

1

2

∥∥∥∥∥Xn −
K∑

k=1

znk ∗Dk

∥∥∥∥∥
2

F

+ λ

K∑
k=1

∥znk ∥1 , s.t. ∥Dk∥2F ≤ 1 and znk ≥ 0

where {Xn}Nn=1 ⊂ RP×T is the observed signals, {Dk}Kk=1 ⊂ RP×L is the dictionaries of atoms, {znk }
K
k=1 ⊂ RT̃ the

sparse activations associated with Xn, T̃ = T − L+ 1, and λ > 0 the regularization parameter. Here ∥·∥F stands for the
Frobenius norm.

In the application to M/EEG signals, we add a rank-1 constraint on the dictionary to account for the physics of the sig-
nals (Dupré la Tour et al., 2018): Dk = ukvk

⊤ ∈ RP×L, where uk ∈ RP is the pattern over the channels (sensors) and
vk ∈ RL the pattern over time. The new minimization problem is as follows:

min
uk,vk,zn

k

N∑
n=1

1

2

∥∥∥∥∥Xn −
K∑

k=1

znk ∗
(
ukv

⊤
k

)∥∥∥∥∥
2

F

+ λ

K∑
k=1

∥znk ∥1 , s.t. ∥uk∥22 ≤ 1, ∥vk∥22 ≤ 1 and znk ≥ 0

The optimization is done by block coordinate descent, alternating the optimization over atoms and activations. Figure B.13
presents in a schematic way the functioning of CDL on MEG data.

Figure B.13. Schematic operation of the CDL on MEG signals. Raw MEG signals alongside timestamps of external stimuli of type
visual and auditory (left). CDL output composed of a set of spatio-temporal atoms alongside their respective onsets (right). One may
claim to associate each atom to a physical phenomenom, i.e., heartbeat or eye blink artifact, auditory or visual neural response.

Extra information about used datasets Table B.1 presents the main information related to real MEG datasets that
we used, both available with the MNE Python package (Gramfort et al., 2013; 2014). Regarding the sample dataset, as
mentioned before, four external stimuli are presented to the subject during the MEG recording session: auditory left
and right and visual left and right. Each type of stimulus leads to a so-called “deterministic” point process, where each
event denotes the exact time the stimulus was presented to the subject. Once the CDL was applied, and 40 atoms of
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Dataset # Atoms
Duration of
Atoms (s.)

# Atom’s
events # Drivers

# Driver’s
events

Sequence
length (min.)

sample 40 1 ≈ 401.025 4 ≈ 72.25 4.6
somatosensory 20 0.53 10408 1 111 15

Table B.1. Statistics of each dataset. ≈ N denotes that N is the average number.

duration 1 s were extracted from the signal, a quick visual inspection of the atoms revealed that, among atoms that could
be linked to audio-visual stimuli, there were mostly bimodal atoms. Thus, this observation led us to consider both auditory
(resp. visual) stimuli as one, and the two corresponding point processes were merged. For the somatosensory dataset, as
previously mentioned, 20 atoms of duration 0.53 seconds are extracted from the MEG signal corresponding to 15 minutes
of recording during which the single subject has received 111 stimulations of his left median nerve at the hand level. For
both datasets, intensities functions for the EM with a Truncated Gaussian kernel were obtained similarly as Allain et al.
(2021), always between one atom’s point process and the considered stimuli. For the intensities with a Raised Cosine
kernel, however, they were obtained using the method presented in this paper, with a grid discretization ∆ equal to data
re-sampling rate of 150 Hz (i.e., ∆ = 1/150). Indeed, setting a ∆ smaller than the discretization imposed by the data would
not lead to better estimation. Finally, the intensities estimated with the non-parametric (NP) method were obtained using
Tick Python package (Bacry et al., 2017), with the same grid discretization parameters to have accurate comparisons.

Experiment on somatosensory dataset Figure B.14 presents results on three atoms estimated from the somato dataset.
All three atoms elicit classical induced responses and have waveforms with a prototypical µ-shape (sharp trough) (Hari,
2006). Remark that in the somato paradigm, the subject receives only one type of external stimulus. Similarly, as in Fig-
ure 3, for each atom, the intensity related to the stimulus is learned with a non-parametric kernel (NP) and two kernel
parametrizations: Truncated Gaussian (TG) and Raised Cosine (RC). The non-parametric kernel cannot characterize the
link between stimulus and neural response.
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Figure B.14. Spatial and temporal patterns of three µ-wave atoms from somato dataset, and their respective estimated intensity functions
following a stimulus (cue at time = 0 s), for somatosensory stimuli with non-parametric kernel (NP) and two parametrized kernels:
Truncated Gaussian (TG) and Raised Cosine (RC).
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