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Abstract

The demand for high-quality question-001
answering (QA) datasets has surged with002
the proliferation of language models and003
conversational agents in various emerging004
domains. As these models become ever005
more capable, the need for more challenging006
datasets for benchmarking and training is007
growing. Manual dataset annotation is costly008
and time-consuming, necessitating a more009
efficient approach. We propose a methodology010
to increase the difficulty of automatically011
generated questions using synthetic preference012
data, derived from SQuAD, to fine tune a013
question generation model using reinforcement014
learning. We empirically show an improvement015
in question difficulty and quality over a simple016
supervised-finetuned model and perform an017
extensive error analysis. We make all our code018
and results publicly available.019

1 Introduction020

Question-answering (QA) datasets serve diverse021

purposes, from providing educational materials022

for students (Das et al., 2021) to serving as cru-023

cial resources for model training and evaluation024

(Rajpurkar et al., 2016). As conversational assis-025

tants and the application of language models con-026

tinue to expand into new domains, the demand027

for creating challenging, high-quality datasets for028

these tasks has become increasingly evident. Diffi-029

cult datasets are crucial for advancing the capabil-030

ities of language models, pushing them to handle031

complex tasks and enhancing their performance in032

real-world, challenging scenarios. This growing033

need is underscored by the rapid proliferation of034

QA datasets, with over 80 new datasets emerging035

within the last two years alone (Rogers et al., 2023).036

One major challenge faced in developing QA037

datasets is cost. Annotation cost for QA datasets038

is especially high because of the time and cogni-039

tion required to write questions and validate them.040

To exemplify this, the popular question-answering 041

dataset SQuAD (Rajpurkar et al., 2016) recom- 042

mended workers to take 4 minutes for every 5 043

questions at a rate of $9/ hour. This amounts to 044

roughly $12,000 just to write the dataset’s 100,000 045

questions; moreover, the cost is likely much higher 046

when considering answer validation, and discarded 047

samples due to duplication or poor quality. 048

Automatic Question Generation (AQG) systems 049

present a remedy to these challenges given their 050

efficiency and scalability compared to human anno- 051

tators. Even in a zero-shot setting, language mod- 052

els are able to generate coherent questions (Sachan 053

et al., 2022; Wang et al., 2023b); as such, we ar- 054

gue that writing coherent questions is no longer 055

the main goal of AQG systems. Controlling more 056

abstract attributes such as question difficulty re- 057

mains challenging, as the concept is somewhat sub- 058

jective and hard to manipulate. However, recent 059

innovations in reinforcement learning for language 060

models now enable these human-like ideals to be 061

injected into the model learning process (Ouyang 062

et al., 2022). 063

Pinning down a definitive description of ques- 064

tion difficulty is near impossible as it depends on 065

many factors. Common syntactic measurements 066

of question difficulty include: question length; the 067

average frequency of question terms in the English 068

language (AlKhuzaey et al., 2023; Beinborn et al., 069

2014); and the syntactic difference between the 070

dependency parse trees of a question and answer 071

sentence (Rajpurkar et al., 2016). Semantic mea- 072

surements may consider the relatedness between an 073

answer span and the surrounding context (Beinborn 074

et al., 2015), or the cosine similarity between dis- 075

tractors and the correct answer (Hsu et al., 2018). 076

Moreover, we argue that difficult questions also 077

require: reasoning over long spans of text; dis- 078

ambiguation of entities; and the use of synonyms 079

to distance the question from the source text. A 080

combination of all of these features is incredibly 081
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challenging to directly incorporate into the model082

training process.083

We initially attempted to define such a task to084

encourage Large Language Models (LLMs) to rank085

samples with respect to difficulty. However, we086

found that there were always exceptions to our cri-087

teria, and that current zero-shot approaches simply088

lack the ability to capture such nuance. Instead,089

we therefore investigate whether we can learn from090

empirical evidence of difficulty and allow models091

to extract the relevant features for themselves.092

In this paper we present a methodology for in-093

creasing the difficulty of automatically generated094

questions using synthetic preference data. We095

derive this preference data from the ability of096

question-answering models to correctly identify an-097

swer spans in a subset of SQuAD, assigning to each098

question a score based on the number of models099

that incorrectly answered the question. We assume100

that more challenging questions are answered cor-101

rectly less frequently, and use this as the basis for102

our comparisons. In doing so, we also model these103

QA models as agents, identifying their weaknesses104

and generating questions to target them specifically.105

We summarise this paper’s contributions as fol-106

lows:107

1. A methodology for increasing the difficulty of108

automatically generated questions;109

2. Empirical evidence of the methodology’s effi-110

cacy;111

3. An in-depth error analysis and study of inter-112

esting phenomena that emerge as part of this113

approach.114

We release all code to recreate our work on115

GitHub.116

2 Related Work117

A similar question generation approach to ours118

is employed by Zhang et al. (2022) who adopt a119

pipeline structure. However, their primary objec-120

tive is to generate suitable questions rather than121

specifically focusing on difficulty. An important122

distinction lies in their extensive pre-processing ap-123

plied to identify candidate answers before feeding124

them to the question generation model. We argue125

that pre-identifying answers may limit diversity126

and prevent the inclusion of potentially complex127

and intriguing answer types.128

Analyzing and Controlling Question Difficulty 129

Understanding and managing question difficulty 130

holds significant importance, especially in tasks 131

involving the creation of exams and assessments 132

(AlKhuzaey et al., 2023). One approach, as pre- 133

sented by Loginova et al. (2021), involves mod- 134

elling the difficulty of multiple-choice questions 135

through the use of softmax scores obtained from a 136

pre-trained QA model. The variance in these scores 137

is then calculated, with higher variance indicating 138

greater difficulty. 139

Lin et al. (2015) controls the difficulty of quiz 140

questions through the selection of distractor an- 141

swers based on semantic similarity between linked 142

data items. This involves collecting both structured 143

RDF data and unstructured text, computing simi- 144

larity scores through K-means clustering, and gen- 145

erating questions and answers via template-based 146

methods. Importantly, the semantic similarity plays 147

a role in determining the difficulty level, with more 148

challenging questions featuring distractors exhibit- 149

ing higher semantic similarity. 150

Reinforcement Learning with Human Feedback 151

RLHF is a machine learning paradigm that com- 152

bines reinforcement learning with human-provided 153

guidance to steer language models to meet the 154

needs of users, finding frequent use in chatbot and 155

AI assistant settings (Ouyang et al., 2022). The 156

basis for most modern methods is the Proximal 157

Policy Optimisation (PPO) algorithm (Schulman 158

et al., 2017), which iteratively enhances the lan- 159

guage model’s policy to maximize cumulative re- 160

wards through interactions with a dataset or lan- 161

guage simulation. It collects experiences, eval- 162

uates advantages, and updates the policy with a 163

clipped surrogate objective to ensure stability, grad- 164

ually improving the model’s performance. PPO is 165

renowned for being unstable to train, which is ad- 166

dressed by Direct Preference Optimisation (DPO) 167

(Rafailov et al., 2023). DPO directly optimises 168

the policy model, converting the reward modelling 169

problem into a classification task over the prefer- 170

ence data. 171

Automatic Question Generation Chen et al. 172

(2019) introduce a cross-entropy loss with a rein- 173

forcement learning-based loss function when train- 174

ing a gated bi-directional neural network for ques- 175

tion generation. In this context, the reward model 176

is optimising the semantic and syntactic quality of 177

the question. BLEU-4, as a reward function, opti- 178

mises the model for the evaluation metrics and the 179
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negative Word Movers Distance component is used180

to ensure semantic quality by maximising the simi-181

larity between a generated sequence and a ground182

truth sequence. Although this method produces183

high quality questions, factors such as question184

difficulty are hard to control.185

Self-critic sequence training (SCST) (Rennie186

et al., 2017) uses a classical policy gradient method,187

REINFORCE, which is a Monte Carlo method.188

SCST computes rewards with n-gram token over-189

lap as sub-sentence level rewards. Since training190

sets often have limited questions, these training re-191

wards are arguably sparse, hindering the question192

generation model from extrapolating beyond the193

training distribution.194

Liu et al. (2019) adopt a two-component reward195

for refining ill-formed questions. Question word-196

ing is used as a measure of short-term reward, and197

alignment between the question and answer repre-198

sents a long-term component.199

3 Method200

To challenge the high cost of manual annotation201

while maintaining quality and increasing difficulty,202

we design and implement a robust system capable203

of generating contextually relevant, coherent, and204

challenging question-answer pairs from textual in-205

put. The process follows the core methodology206

of RLHF, deviating only in the use of synthetic207

preference data to train a reward model. Rather208

than explicitly defining the characteristics of diffi-209

culty and risking failure to capture certain aspects,210

we exploit the ability of leading question-answer211

models to derive which questions are challenging,212

and allow a reward model to extract the component213

features of the task.214

We task three models with answering all ques-215

tions in our validation split of SQuAD. These ques-216

tions are assigned a score based on the number of217

times they were answered incorrectly, which are218

in turn used to generate pairwise preference data.219

These pairwise samples enable the training of a220

reward model for use in fine-tuning a supervised221

model for the task of question generation.222

We embed this synthetic RLHF process into a223

greater pipeline for generating samples, shown in224

Figure 1. This ensures the quality of the final225

dataset. The pipeline consists of a set of rule-based226

critics which are used to exclude samples that are227

malformed and those with non-unique answers in228

the source text. Samples are then deduplicated229

using exact string matching. 230

The remainder of this section discusses each of 231

the relevant components of the pipeline and the 232

RLHF process. 233

3.1 Supervised Fine-Tuning 234

In our training process for question generation and 235

response formatting, we begin by employing a re- 236

formatted version of the SQuAD v1 training split 237

(see Table 1). The reformatting converts SQuAD 238

to the task of question-answer pair generation, as 239

shown in Figure 2. We select the "correct" answer 240

as the one that appears most frequently in the list 241

of answers for each question in the dataset, select- 242

ing randomly among the most common if there 243

is no victor. To ensure model robustness without 244

overfitting, the model undergoes a single epoch 245

of training, enabling it to effectively capture the 246

nuances of the task. 247

3.2 Reward Modelling 248

To control the difficulty of our model, we lever- 249

age the intrinsic properties present in challenging 250

questions from SQuAD. To extract these attributes, 251

we employ three question answering models that 252

almost match or exceed human performance on 253

SQuAD v2 to evaluate our development split: a 254

RoBERTa-large model1, a DeBERTa-large model2 255

and RetroReader (Zhang et al., 2020). Each ques- 256

tion is assigned a score based on the number of 257

models that failed to correctly answer the question. 258

These scores are used to place questions into a pair- 259

wise ranking setup against other questions for the 260

same input context. Where a question’s scores are 261

equal, they are considered ties, and no pairwise 262

sample is created. We also record the margin, de- 263

fined as the difference in score between the better 264

and worse sample, to experiment with the marginal 265

ranking loss, as defined in Touvron et al. (2023b). 266

3.2.1 Format Critics 267

To ensure the quality of the final dataset, we utilise 268

a collection of rule-based critics which we call 269

Format Critics. These critics have three main func- 270

tions: (i) they remove questions that don’t adhere 271

to the desired format of Q? (answer: A); (ii) they 272

filter out questions that contain the entire input text 273

in the question - a sign of degeneration during in- 274

ference; and (iii) they ensure the provided answer 275

1https://huggingface.co/deepset/
roberta-large-squad2

2deepset/deberta-v3-large-squad2
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Figure 1: Depiction of our dataset generation pipeline. Question-Answering models are first used to create pairwise
comparison data to train a reward model. An SFT model is trained on the train split of SQuAD and then fine-tuned
using the reward model, producing the RL model. When generating question-answer pairs for the final dataset,
generations are passed through the format critics to ensure data quality.

Instruction Write 1 answerable span extraction
question and provide the correct answer based on
the text.

Input ... Upon its arrival in Canberra, the
Olympic flame was presented by Chinese officials
to local Aboriginal elder Agnes Shea, of the Ngun-
nawal people. She, in turn, offered them a message
stick ...

Response Who received the flame from Chinese
officials in Canberra? (answer: Agnes Shea)

Figure 2: Example training sample from the reformatted
SQuAD dataset for use in supervised fine-tuning.

is unique in the text, minimising the number of276

ambiguous or impossible questions. Samples that277

pass these critics are then deduplicated using exact278

matching.279

3.3 Reinforcement Training280

We use Proximal Policy Optimisation (Schulman281

et al., 2017) with multiple sets of adapters to reduce282

the memory overhead during training, implemented283

using the Transformers Reinforcement Learning284

library (von Werra et al., 2020). A single base285

model is used with separate LoRA adapters for the286

policy, value and reward model components; each287

is switched to perform the relevant components of288

the reinforcement training process.289

4 Experimental Setup290

4.1 Models291

We conduct our experiments with the leading open-292

source language model, LLaMA2-7B-chat - the293

successor to LLaMA-7B (Touvron et al., 2023a)294

with instruction tuning applied on release. We ap-295

ply LoRA adapters to improve training times and296

reduce memory usage to enable training on a single 297

A100 80GB GPU. All LoRA adapters share the 298

same hyperparameters: LoRA rank of 16, α of 32, 299

dropout of 0.05, and no bias. 300

For all training procedures, we use Flash At- 301

tention 2 (Dao, 2023) in the BrainFloat (BF16) 302

datatype to improve training efficiency. For su- 303

pervised fine-tuning (SFT), we leverage sample 304

packing to reduce training times further. 305

4.2 Generation Settings 306

During generation, the model is tasked with produc- 307

ing a single output for each question in the training 308

set using nucleus sampling (Holtzman et al., 2020). 309

We maintain the original configurations of a repeti- 310

tion penalty of 1.1, top P of 0.7, and top K of 0 are 311

used but increase the temperature from 0.6 to 0.9 to 312

increase the diversity of generations. The model is 313

provided with the input data in the original LLaMa- 314

2 prompt format, using the same instructions as 315

during supervised fine-tuning. 316

4.3 Data Splits 317

We base our splits off the original SQuAD v2 to 318

minimise the risk of data leakage. We maintain the 319

full train split unchanged as any model previously 320

trained on SQuAD will have seen the full train split. 321

We extract a test split of 500 contexts from the 322

dev split, ensuring no contexts appear in both the 323

dev and test splits. In all cases, context-question 324

pairs were only kept if they fit into the context 325

length of LLaMa2 when formatted in the correct 326

prompt format. All samples were formatted into the 327

three instruction components: instruction, input, 328

response as shown in Figure 2. 329

Only the dev set of our SQuAD dataset was used 330

to derive difficulty comparison data, to ensure the 331

reward model never sees the samples used for eval- 332

uation. To evaluate the reward model, we extract 333
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Split # Contexts # Questions
Train 18,891 87,599
Dev 1,567 8,038
Test 500 2,532

Train comp. 1,107 8,394
Dev comp. 123 950

Table 1: Split of contexts and questions from SQuAD.
The comp. splits are derived from the dev split, used to
evaluate the performance of the reward model during
training.

10% of the comparison contexts. Full dataset statis-334

tics can be found in Table 1.335

4.4 Evaluation Metrics336

As our goal is to evaluate the difficulty of an-337

swerable questions, we develop an evaluation task338

which we supply to GPT-4-turbo3. In this task,339

we query whether the source text and generated340

question entail the generated answer. GPT-based341

evaluations have demonstrated a robust alignment342

with human preferences across various complex343

tasks in reference-free settings (Fu et al., 2023; Liu344

et al., 2023). However, as in Dettmers et al. (2023),345

we validate GPT’s alignment with human prefer-346

ence by manually annotating a subset of 50 samples347

extracted from SFT and RLHF. These samples are348

uniformly distributed with respect to GPT’s predic-349

tions, and alignment is calculated using Cohen’s350

κ.351

To assess the quality of generated questions rel-352

ative to our SQuAD test split, we intentionally353

avoid n-gram based metrics such as BLEU (Pa-354

pineni et al., 2002), ROUGE (Lin, 2004), and more355

modern alternatives such as Q-Metrics (Nema and356

Khapra, 2018), as we believe they restrict diversity357

of generation, constraining the model to reference358

questions and answers. We instead adopt the fol-359

lowing reference-free metrics:360

Syntactic Divergence was introduced in SQuAD361

v1 and provides a distance measure between two362

dependency paths. Word-lemma anchors, common363

to both the question and answer sentence, are first364

detected. A dependency path from the anchor to the365

interrogative word (who, what, etc.) in the question366

is compared to the dependency path between the an-367

chor and the answer span in the answer sentence us-368

ing Levenshtein distance (Levenshtein et al., 1966).369

Insertions and deletions have an edit score of 1 and370

3gpt-4-1106-preview as of 13th Dec. 2023

substitution operations have a score of 2. This acts 371

as a measure of difficulty, with harder questions 372

having a higher syntactic divergence. 373

RQUGE is a reference-free metric which cal- 374

culates an acceptability-score by generating an 375

answer for the candidate question and predicting 376

the semantic similarity between the predicted an- 377

swer and the gold answer provided by the user. 378

In our setup, this metric acts as an assessment of 379

both the question and the answer quality, as the 380

acceptability-score is dependent on both aspects 381

(Mohammadshahi et al., 2023). 382

QAScore is a reference-free metric which at- 383

tempts to align AQG evaluation to human judge- 384

ments by using the log-probabilities returned by 385

RoBERTa. For a given question-answer pair, the 386

metric provides RoBERTa with a set of inputs, 387

each prefaced with the context and question, where 388

each input masks a word in the answer. The log- 389

probabilities of the correct token in each of the 390

masked token positions for each input are summed 391

to arrive at the final statistic. QAScore claims to 392

show strong correlation with human judgement 393

(Spearman r = 0.864) (Ji et al., 2022). 394

Self-BLEU assesses how similar questions are to 395

other questions generated for a given context. Each 396

question is taken as a hypothesis and the others as 397

a reference for the BLEU calculation. The self- 398

BLEU is taken as the average BLEU for the ques- 399

tion collection. We adopt this metric at a document 400

level to measure the diversity of model generations 401

for each context (Zhu et al., 2018). 402

5 Results 403

To evaluate the number of answerable samples for 404

each set of generations, we employed our entail- 405

ment task on GPT-4-Turbo. We show that our 406

RLHF model increases the proportion of answer- 407

able questions from 83.7% for the SFT model to 408

87.3%. Based on our manual annotation of a uni- 409

formly selected set of samples from both SFT and 410

RLHF, we observer a substantial Cohen’s κ agree- 411

ment of 0.62. The GPT-4 predictions can be found 412

in in Table 3. 413

We apply each metric to our SQuAD test split, 414

generating 1 sample for every question in the test 415

set. We report the number of samples that were 416

considered valid: i.e. that met the formatting re- 417

quirements and were not duplicates. We conduct 418

our testing after all models have been trained, to 419
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Figure 3: Distribution of metrics results for each set containing all samples on our SQuAD test set.

Model Valid (↑) Syn. Div. (↑) RQUGE (↑) QAScore (↑) Self-BLEU (↓)
SQuAD 2,532 (-) 3.69 ± 2.00 4.67 ± 0.94 -0.35 ± 0.17 0.26 ± 0.11
SFT (all) 1,867 (0.74) 3.41 ± 1.96 4.10 ± 1.45 -0.32 ± 0.14 0.53 ± 0.22
RLHF (all) 1,354 (0.53) 4.21 ± 2.29 4.43 ± 1.27 -0.33 ± 0.15 0.75 ± 0.18
SFT (ans) 1563 (0.61) 3.09 ± 2.08 4.39 ± 1.22 -0.31 ± 0.14 0.53 ± 0.22
RLHF (ans) 1,182 (0.43) 4.21 ± 2.21 4.70 ± 0.91 -0.34 ± 0.15 0.75 ± 0.23

Table 2: Results of each approach on our SQuAD test split. We report number of unique, valid samples used in the
calculations for each set, the proportion of samples that were unique and valid, and the mean and standard deviation
for each metric. For syntactic divergence, we do not include samples for which a lexical path between question and
answer sentence could not be found in our calculations. Self-BLEU is calculated including all exact duplicates. ans
samples are calculated only across the samples deemed answerable by GPT4-Turbo.

ensure we are not optimising for the test data. The420

results of each set are displayed in Table 2 and the421

distributions are shown in Figure 3.422

We show that our RLHF model outperforms423

the SFT model across syntactic divergence and424

RQUGE and is close to SFT on QAScore. We also425

see that our RLHF model outperforms the SQuAD426

baseline on syntactic divergence, suggesting that427

the reward model was effective in identifying long-428

range dependencies and complex parse trees as a429

signifier of difficulty.430

6 Discussion431

We show significance in surpassing the scores432

of the SFT model with our RLHF model for433

syntactic divergence and RQUGE but not for434

QAScore or self-BLEU Using a Mann-Whitney435

U-test (Mann and Whitney, 1947), we disprove436

the null hypotheses that the RLHF samples score437

lower than or equal to the SFT samples, both with438

significance p ≪ 0.001 for Syntactic Divergence.439

For RQUGE we disprove that RLHF samples score440

lower with significance p < 0.002 and find p <441

0.003 for the case that they are equal. However, we442

do not find this same significance for QAScore and443

Model Valid Invalid Proportion
SFT 1,563 305 0.19
RLHF 1,182 172 0.15

Table 3: GPT-4-Turbo predictions of question answer-
ability based on entailment of source text and question
to answer.

self-BLEU. QAScore favours the SFT results with 444

significance p < 0.002 and p < 0.001 for equal 445

to and greater than respectively and self-BLEU 446

p ≪ 0.001 for both. The results tell much the same 447

story for the subset of answerable only questions. 448

QAScore proves less informative when compar- 449

ing AQG model outputs We find that the change 450

in score across syntactic divergence and RQUGE is 451

greater, providing a better insight into the variance 452

in performance of each model. We also find that 453

models perform better on QAScore than the human 454

written questions. This may be a result of using the 455

log-probabilities of one model to evaluate the gen- 456

erations of another model. The model generations 457

are likely to adopt a more similar distribution to the 458

evaluation model than those of human origin. 459
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Figure 4: Error distribution of questions for SFT and RLHF versions of LLaMa2-7b-chat.

Allowing models to learn the semantics of dif-460

ficulty is more effective than enforcing a defini-461

tion In a previous conception of this project, we462

attempted to use zero-shot Large Language Models463

(LLM) to define our pairwise samples for train-464

ing a reward model (Qin et al., 2023; Sun et al.,465

2023; Fu et al., 2023). This required us to fully466

define the meaning of difficulty in a manner that467

required no human intuition. Ultimately this ap-468

proach was flawed for two reasons: first, we always469

found counter-examples to our criteria based on hu-470

man preference; second, it seems from our results471

that language models do not yet possess the ability472

to reason over such complex requirements in the473

way that humans can. By leveraging the feature474

extraction abilities of transformer-based models,475

we relieve ourselves of this burden and show an476

effective increase in difficulty across the provided477

metrics.478

6.1 Error Analysis479

To understand our system’s deficiencies and iden-480

tify areas for improvement in the future, we criti-481

cally analyse the reasons for our critics rejecting482

samples, and analyse interesting patterns in the483

questions generated by each iteration of the model.484

The Issue of Non-Unique Answers As shown485

in Figure 4, the main cause for exclusion is that486

answers are not unique. This is because SQuAD487

does not require that an answer span appears only488

once in the source text. Where SQuAD has workers489

highlight the correct span, we use a language model490

to generate a question answer pair and thus can-491

not reliably expect the model to generate accurate492

start and end positions for the answer span. Future493

work could seek to remedy this with a classification494

model which predicts which instance of an answer495

span is most likely, although this may increase ac- 496

cumulated error. Another approach may be to apply 497

a fixed negative reward signal to penalise a model 498

for generating answer spans that appear multiple 499

times; however, this may limit the types and quality 500

of answers generated by the model. 501

Duplication Rate The other area for improve- 502

ment is reducing the rate of duplication among 503

generations. In identifying difficult questions, the 504

reward model has likely learned that particular se- 505

mantic structures are considered challenging from 506

the comparison data. The objective of question 507

generation is thus refined from simply generating a 508

question, to generating a question with those par- 509

ticular semantics. As such, the pool of optimal gen- 510

erations is reduced and particular question-answer 511

pairs become more probable. This is clearly seen in 512

increase in the number of duplicate samples, shown 513

in Figure 4. During generation, we opted for a high 514

temperature of 0.9 to try to combat this constric- 515

tion; however, future work could seek to address 516

this issue more holistically through augmentation 517

of training data or other such methods. 518

Positional Bias One interesting phenomenon is 519

the positional bias in where the model chooses to 520

generate answers. As seen in Figure 5, for SQuAD, 521

there is a subtle bias toward the beginning of the 522

text, which decays slightly as the text progresses. 523

This is expected as answers must become shorter 524

toward the end of the text as there are fewer char- 525

acters remaining. In the case of SFT, the model 526

selects nearly half of its answer spans from the first 527

half of the text. This is less severe for RLHF but the 528

bias remains evident. We can reasonably assume 529

that the positional bias in SQuAD has some impact 530

on the generative models, but given that positional 531
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Figure 5: Position of the start index of answers for each
dataset. SQuAD positions are selected from our test split
and answers are chosen to be the most common from the
list of suitable answers. Percentage is measurement of
how far through the source text the start index is. Exact
duplicate questions are not considered.

bias has been shown in LLM ranking (Wang et al.,532

2023a; Li et al., 2023) and introductory content533

is favoured in summarisation tasks (Ravaut et al.,534

2023), we can deduce this is an issue also present535

in this task. A potential remedy is to supply the536

model with a sliding window of sentences across537

the context paragraph to force the model to gener-538

ate questions throughout the text. While this would539

improve the diversity of a final dataset, it may have540

the adverse effect of limiting the range of dependen-541

cies, restricting potentially challenging questions542

across the whole text.543

Tentative Language One emergence in the544

RLHF model is the use of ’approximately’ when545

asking for details which are provided exactly in the546

text. There are no instances of this happening in547

the SFT set and only 10 in the SQuAD test split;548

however, in the RLHF samples, there are 333 in-549

stances. This goes against intuition as there are 14550

instances of approximately appearing in the chosen551

split of the difficulty comparisons set but 25 appear-552

ing in rejected. One potential explanation is that553

the combination of approximately with other fea-554

tures exhibits high levels of difficulty in chosen set555

and the RLHF model is leveraging those features.556

Further work could seek to definitively explore this557

phenomenon.558

Misuse of Articles Creates Ambiguous Ques-559

tions In some instances, both the SFT model and560

the RLHF model misuse articles. One example561

is for the question What is the main bus company562

that operates in Newcastle? However, the source 563

text clearly states There are 3 main bus companies 564

providing services in the city; Arriva North East, 565

Go North East and Stagecoach North East. This 566

is a challenging problem to solve since it requires 567

comprehension of the source text, which is beyond 568

the limits of rule-based penalties. This could be 569

resolved by using a classification model which is 570

trained to understand when an ambiguous question- 571

answer pair is generated and apply a fixed negative 572

reward. Alternatively, a second reward model could 573

be used to apply a scalar reward based on the de- 574

gree of ambiguity. The risk of accumulated error is 575

again present in these solutions. 576

Self-Answering Questions Another example of 577

a failure mode is questions which anwer them- 578

selves. One such question from the RLHF model 579

is What is the term that refers to Turing machines 580

that are not deterministic? where the answer is 581

non-deterministic Turing machines. An imperfect 582

estimate of this occurrence across each set can be 583

obtained by identifying the number of questions 584

which contain the answer span. Our SQuAD test 585

split contains 30 such examples, SFT 18 and the 586

RLHF split the most with 39. More investigation 587

is necessary but removing these samples from the 588

training data could limit this effect downstream. 589

7 Conclusion 590

In this paper we have introduced a robust ap- 591

proach for automatically generating question- 592

answer pairs from textual input. Using existing, 593

high-performing question answer models, we are 594

able to determine which questions are most chal- 595

lenging, and use them to develop synthetic pair- 596

wise data for training a reward model. Rather than 597

explicitly defining the characteristics of question 598

difficulty, we allow the reward model to extract 599

these features, leading to a significant increase in 600

question difficulty when used to fine-tune the SFT 601

model. 602

Furthermore, we have conducted an extensive 603

analysis of the current issues with this approach and 604

provide potential remedies which may be explored 605

in future work. 606

We believe this technique may be extended to ad- 607

dress further abstract properties of question genera- 608

tion such as ambiguity, completeness and relevance. 609

This method may also be adapted to tackle multi- 610

ple aspects at once through the use of multi-reward 611

model setups as in Wu et al. (2023). 612
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Limitations613

This project only shows the suitability of the614

method on a single model. In future work, we615

seek to address this by performing a more compre-616

hensive review of the approach across a range of617

model sizes and architectures. We also acknowl-618

edge that this method currently only addresses an-619

swerable questions while most contemporary QA620

datasets utilise both answerable and unanswerable621

questions. Finally, despite using LoRA and multi-622

adapter training, we still required approximately 15623

GPU hours on an A100 80GB which restricts the624

potential audience for this approach. Evaluating625

smaller models or quantisation will enable greater626

access to this project’s benefits.627

Ethics Statement628

This project has been approved by the relevant in-629

stitution’s ethics committee. We use LLaMa2 in630

accordance with Meta’s license4.631
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System: Determine if the question is answered or
not based on the premise. Use your entailment
reasoning knowledge to classify entailed by as yes
or not entailed by as no. Make sure to response
Label: yes or no. Your response should only be in
the set yes, no.
Premise: ... Upon its arrival in Canberra, the
Olympic flame was presented by Chinese officials
to local Aboriginal elder Agnes Shea, of the
Ngunnawal people. She, in turn, offered them a
message stick ...
Question: Who received the flame from Chinese
officials in Canberra?
Answer: Agnes Shea

Label: yes

Figure 6: Example prompt and response to GPT-4-
Turbo (gpt-4-1106-preview as of 13th Dec. 2023)
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