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Abstract

Brains learn robustly, and generalize effortlessly between different learning tasks;1

in contrast, robustness and generalization across tasks are well known weaknesses2

of artificial neural nets (ANNs). How can we use our accelerating understanding of3

the brain to improve these and other aspects of ANNs? Here we hypothesize that (a)4

Brains employ synaptic plasticity rules that serve as proxies for Gradient Descent5

(GD); (b) These rules themselves can be learned by GD on the rule parameters; and6

(c) This process may be a missing ingredient for the development of ANNs that7

generalize well and are robust to adversarial perturbations. We provide both empiri-8

cal and theoretical evidence for this hypothesis. In our experiments, plasticity rules9

for the synaptic weights of recurrent neural nets (RNNs) are learned through GD10

and are found to perform reasonably well (with no backpropagation). We find that11

plasticity rules learned by this process generalize from one type of data/classifier to12

others (e.g., rules learned on synthetic data work well on MNIST/Fashion MNIST)13

and converge with fewer updates. Moreover, the classifiers learned using plasticity14

rules exhibit surprising levels of tolerance to adversarial perturbations. Focusing15

on the last layer of a classification network, we show analytically that GD on the16

plasticity rule recovers (and can improve upon) the perceptron algorithm and the17

multiplicative weights method; and the learned weights are provably robust to a18

quantifiable extent. Finally, we argue that applying GD to learning plasticity rules19

is biologically plausible, in the sense that they can be learned over evolutionary20

time: we show that, within the standard population genetic framework used to21

study evolution, natural selection of a numerical parameter over a sequence of22

generations provably simulates a simple variant of GD.23

1 Introduction24

The brain is the most striking example of a learning device that generalizes robustly across tasks.25

Artificial neural networks learn specific tasks from labeled examples through backpropagation with26

formidable accuracy, but generalize quite poorly to a different task, and are brittle under data27

perturbations. In addition, it is well known that backpropagation is not biorealistic — it cannot be28

implemented in brains, as it requires the transfer of information from post- to pre-synaptic neurons.29

This is not, in itself, a disadvantage of backpropagation — unless one suspects that this lack of30

biorealism limits ANNs in important dimensions such as cross-task generalization, self-supervision,31

and robustness.32

We believe that the quest for ANNs that generalize robustly between learning tasks has much33

inspiration to gain from the study of the way brains work. In this paper we focus on plasticity34

rules [Dayan and Abbott, 2001] — laws controlling changes of the strength of a synapse based on35

the firing history as seen at the post-synaptic neuron. We provide evidence, both experimental and36

theoretical, that (a) In the case of RNNs, plasticity rules can successfully replace backpropagation37
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Figure 1: Feedforward networks vs RNNs

and GD resulting in versatile, generalizable and robust learning; and (b) These rules can be learned38

efficiently through GD on the rule parameters.39

Plasticity Rules. Hebbian learning (“fire together wire together” [Hebb, 1949]) is the simplest and40

most familiar plasticity rule: If there is a synapse (i, j) from neuron i to neuron j, and at some point41

i fires and shortly thereafter j fires, then the synaptic weight of this synapse gets an increment. Over42

the seven decades since Hebb, many forms of plasticity have been observed experimentally and/or43

formalized analytically, many of them quite sophisticated and complex, see [Dayan and Abbott, 2001]44

for an exposition. All of them dictate a change – increment or decrement – in the synaptic weight of45

a synapse (i, j) provided neurons i and j both fired in some pattern. Intuitively, the decision for the46

application of a plasticity rule takes place at the post-synaptic neuron j, since j receives information47

from the firing of both i and itself. This is consistent with our understanding of the molecular48

mechanisms that determine synaptic strength, all of which are complex chemical phenomena taking49

place at (the dendrite of) j.50

In this paper we consider plasticity rules as objects that can be learned. This fits with the view that51

existing mechanisms have presumably changed over evolutionary time and are known to differ in52

their details from one animal species to another. We show experimentally that an RNN can meta-learn53

a plasticity rule that allows it to learn to perform a classification task without backpropagation. This54

meta-learning is done by GD on the parameters of the rule. Interestingly, the same plasticity rule then55

performs well on very different tasks and data sets. There are many ways to parameterize a plasticity56

rule, from a full lookup table to a small neural network that takes as input the activation sequences at57

both ends of a synapse and outputs the change to the synaptic weight.58

Why RNNs? RNNs are inspired by, and can model, recurrent activity observed in the brain; they59

are also especially well-suited to plasticity rules. To illustrate, suppose that we want to train the60

feed-forward ANN in Figure 1(a) with a plasticity rule. It is clear that the space of possible rules is61

rather meager. In order to change the weight of link (i, j) after each labeled example, node j will62

decide the nature of the change based on local information, namely, whether i or j or both fired during63

the forward pass. Thus any learned plasticity rule must be some slight generalization of Hebb’s rule1.64

But suppose instead that the three hidden layers have been collapsed into one, resulting in the RNN65

shown in Figure 1(b), and this collapsed layer fires three times before readout, roughly simulating66

a feedforward 3-layer network. Now node j knows much more about what happened to link (i, j)67

during these three rounds, whereas such information was inaccessible in the feedforward setting. Any68

23 × 23 matrix of reals is a possible plasticity rule, where 23 is the number of possible firing patterns69

— such as “fired in the first round, did not fire in the second, fired in the third,” or “101” — for each of70

i and j, and the entries of the matrix denote increments/decrements, additive or multiplicative, of the71

weight of link (i, j). If one updates the entries of this rule by training on a task, it is possible that this72

rule may be an adequate proxy for the update calculated by backpropagation. Furthermore, we might73

hope that this rule may even generalize well, performing far above baseline on very different tasks.74

1We could update all incoming links to node j based on the firing status of all of them; [Zenke et al., 2015]
suggests that such complex rules may be indeed at work in the animal brain. See the discussion for more on this
intriguing research direction.
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Evolution. We proposed to replace GD in deep learning by biorealistic plasticity rules, and then75

we use GD to learn the plasticity coefficients. Are we contradicting ourselves? After all, the brain76

did not develop its plasticity rule(s) through GD, but through evolution. But since GD apparently77

produces good plasticity rules, the question arises, is evolution at all like GD? In Appendix A we78

address this question analytically. In particular, we prove a general result (which is of some interest79

by itself in Evolution) stating that the evolution of any real parameter of the phenotype affecting80

fitness (such as the parameters of the plasticity function) is approximately equivalent to a simple81

(and suboptimal) variant of GD, as long as the parameter is expressed as the sum of a large number82

of small genetic contributions (as is known to be the case for many common traits, such as height83

in humans). Hence, it is reasonable to assume that the tuning of such parameters could have been84

achieved over evolutionary time.85

Summary of Results. Could such plasticity rules serve as effective learning algorithms? As we86

show in the following sections, the answer is affirmative: in the special case of the simplest possible87

network, with either no hidden layer or a fixed feature layer, and applied to a binary classification task,88

learning the plasticity rule through GD recovers classical supervised learning algorithms, namely89

the Perceptron algorithm and the Multiplicative Weights (Winnow) algorithm (Theorems 1 and 3).90

Optimizing the output layer rule is a convex minimization problem for the cross-entropy loss function91

and is an explicit formula for the mean-squared error (Theorem 2). Moreover, the learned plasticity92

rules are robust to perturbations in a quantifiable sense (Theorem 4). We experiment with learning93

more complex plasticity rules in a general RNN, establishing that learning plasticity rules leads to94

performance that is quite good. Even though the performance is not at the same level as ANNs, our95

experiments show that learning through plasticity has three important benefits: (1) It generalizes well96

across learning tasks; (2) its convergence to a good classifier is more rapid, i.e., the number of updates97

(measured by the total number of samples) needed is significantly fewer; and (3), and perhaps more98

striking, classifiers learned this way appear to be considerably more robust to adversarial perturbations99

than classifiers learned using GD. An intriguing finding here is that the robustness appears to increase100

significantly with the depth (number of rounds) of the RNN. Rigorously analyzing these general101

RNN experiments is an exciting open question.102

1.1 Related work103

Plasticity Rules. Motivated by the brain, learning with plasticity rules has also been studied in104

machine learning. Early work of Bengio et al. [1990] suggested genetic algorithms for doing so, and105

later Bengio et al. [1992] explored gradient-based methods as well. Floreano and Urzelai [2000]106

applied evolving Hebbian plasticity rules to randomly initialized weights for a robot navigation task,107

while Miconi et al. [2018] introduced differentiable plasticity with a plasticity parameter for every108

edge of a network, which also evolves over time, and applied this to large, high-dimensional data109

sets. Similarly, Najarro and Risi [2020] allowed each weight in the a network to evolve its own110

plasticity rule, which were used to maintain performance across severe perturbations in life-long111

reinforcement learning task. More recently, work by Yaman et al. [2019] is in a similar spirit as ours112

but with important differences: they apply plasticity rule updates to a specific small 2-layer ANN113

and find it beneficial; we focus on how rules learned for one task on one network apply to other114

tasks on other networks, and on the robustness properties of learning through plasticity. Through115

carefully parameterizing their plasticity rules and selecting the right objective function, Confavreux116

et al. [2020] show that it is possible to learn purely local rules which train the network to extract117

principle components, or produce a stable firing rate. Finally, Cheng et al. [2019] examined how118

a Hebbian rule can be used in tandem with gradient descent, through a particularly parsimonious119

method which updates the network’s weights using the rule during the forward pass, and both the120

weights and the rule during the backward pass of the gradient. We restrict our attention to rules that121

allow for purely local learning.122

Other Update Schemes. There is a variety of mechanisms other than plasticity available to modulate123

synaptic weights. Inspired by feedback connections in the brain [Guillery and Sherman, 2002,124

Sherman and Guillery, 2011, Viaene et al., 2011], a popular strategy in metalearning is to explicitly125

parameterize a “mirror” network of feedback connections, which sends activation information back126

through the network. Backpropagation actually does just this but requires the weights to be the127

transpose of the forward ones, which is generally agreed to be biologically untenable [Grossberg,128

1987, Crick, 1989, Oztas, 2003]. While we eschew feedback entirely, this paradigm aligns with ours129

in that a local rule is often learned to incorporate downstream, upstream, and sometimes even lateral130
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activation information to a single weight update. In this line of work, Lindsey and Litwin-Kumar131

[2020] discover such rules which actually outperform gradient-based methods, while Metz et al.132

[2018] learned an update rule which trains both the forward and backward paths which, much like133

ours, performs updates without a supervised objective, and later extended it to make use of semi-134

supervised feedback [Gu et al., 2019]. A body of previous work [Sacramento et al., 2017, Guerguiev135

et al., 2017] has demonstrated that well-known mechanisms from neurobiology can coordinate these136

forward and backward paths to learn in an online fashion. In contrast, rather than trying to learn137

more complex plasticity rules, Lillicrap et al. [2020] argue that hand-designed local update rules138

are sufficient in the presence of feedback connections, and that these are a plausible mechanism for139

learning in the brain.140

Taking a different tack, Wang et al. [2018] train an RNN to implement a general reinforcement141

learning algorithm, which bears some conceptual similarities to our scheme of learning a general142

plasticity rule. Here, the meta-learning procedure by which the network’s weights are updating143

is analogous to the action of the dopamine system on the neurons of prefrontal cortex, but when144

applied to novel tasks the network’s weights are frozen. Finally, Andrychowicz et al. [2016] and more145

recently Maheswaranathan et al. [2020] parameterize a gradient-based optimizer and then optimize146

these parameters, which is similar in implementation to our strategy for learning plasticity rules.147

Adversarial Robustness. Lastly, the existence of adversarial perturbations, and in particular learning148

to avoid them, has been an active topic in recent years, beginning with Goodfellow et al. [2014] and149

continuing with Madry et al. [2018], Ilyas et al. [2019]. Crucially, these methods achieve robust150

classification by explicitly regularizing the objective function of the network to counter an adversarial151

attack. We focus on learning methods which by themselves happen to converge to minima that are152

robust to adversarial perturbations without explicitly searching for them.153

2 Learning (with) Plasticity Rules154

Define the RNN plasticity rule r : {0, 1}T × {0, 1}T → < to be a function that maps a pair of binary155

vectors to a real number. The binary vectors correspond to the firing patterns of two neurons i, j156

connected by a synapse (i, j) in a T -round recurrent network. Similarly the output layer plasticity157

rule is defined by ro : {0, 1}T × {0, 1}, the binary vector again describing the firing pattern of a158

neuron, and the 0/1 value describing whether a node in the output layer corresponds to the true159

label or not. The functions r, ro indicate the change to the synapse weight, which can be additive or160

multiplicative. For example, Hebbian plasticity corresponds to the AND function with T = 1. During161

supervised learning, the plasticity rules are applied independently to each synapse. There are two162

alternatives here: (1) apply plasticity rules only in the event of disagreement between the network’s163

output and the true label of the training example. That is, we assume that, besides the local firing164

information, the plasticity mechanism also receives a signal about the loss of the current training165

example; it is known from animal experiments such as Yagishita et al. [2014] that this does happen in166

the mammalian striatum and cortex through the excretion of dopamine. (2) we apply training rules167

on all training examples. This requires even lesser coordination, and the time-scales of dopamine168

action are not an issue. In our experiments, we find that both modes perform equally well (see Fig. 6169

in the Appendix). Moreover, the second mode incorporates error information only at the output layer170

(where the correct label is known), making it completely unsupervised throughout the rest of the171

network. To learn a plasticity rule, we select a model and a dataset to train with, and then randomly172

initialize a rule. We apply a standard loss function to the output of this network (e.g. cross-entropy173

loss for classification), but as a function of the parameters of the rule. GD can then be used to update174

these parameters to minimize the loss function.175

Training. Our architecture is similar to an RNN. The network consists of an input layer connecting176

the input to a directed graph G = (V,E), and a fully-connected output layer connecting G to the177

output nodes. We generate G at random, choosing each edge with probability p. Let A ∈ <d×|V |178

denote the weights of the input layer, W ∈ <|V |×|V | the weights of G, and U ∈ <|V |×l the weights179

of the output layer. Over the course of T rounds, we maintain a hidden vector h ∈ <|V | initialized to180

zero, and updated as h ← ck(σ(W · h + A · x)) where x ∈ <d is the input, σ is ReLU activation181

function, and ck : <|V | → <|V | is a notion of a cap, a biologically plausible activation function182

implementing the excitatory-inhibitory balance of a brain area, see Papadimitriou and Vempala [2019].183

Given a vector u, ck(u) returns a copy of u with only the highest k entries remaining; the rest are set184
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Figure 2: On the standard MNIST data set, we trained the same underlying RNN with T = 1,
|V | = 1000 with an output layer plasticity rule, and separately with GD (using the standard Adam
optimizer, learning rate 10−2) on the output weights. Note that we did not optimize hyperparameters
such as batch size and learning rate. This is only meant to show that plasticity-based training is
competitive with gradient methods.

to zero. If at the end of a round hi is nonzero, we say that the corresponding unit has fired. The output185

layer consists of linear combinations U of the hidden vector components (one output per label), and a186

final softmax is then applied. We will refer to this particular architecture as the simple RNN. Given187

plasticity rules, we train a network as follows. For each individual example in the dataset, we run the188

forward pass and keep track of the firing sequences of each node. Using these firing sequences, we189

update the graph using the RNN rule r, and the output layer according to ro as described previously.190

Landscape of rules. Any function which maps appropriate binary vectors to real numbers defines a191

rule. An RNN rule can be any function r : {0, 1}T × {0, 1}T → <, and the output rule can be any192

ro : {0, 1}T × {0, 1} → <. We consider two different parameterizations: (1) Table: r and ro are193

look-up tables of size 2T × 2T and 2T × 2, respectively. The entries are the parameters we learn. (2)194

Small NN: r and ro are defined by small auxiliary neural networks. These networks take as input the195

activation sequences, say the concatenation of s1, s2, and output the update value, r(s1, s2). In this196

case, the weights of the auxiliary network are the parameters we learn.197

Efficiency. Using tables to represent the plasticity rules is more expressive but requires an exponential198

number, (2T )2, of parameters. On the other hand, the complexity of the second method depends199

only on the size of the auxiliary network, which is independent of the simple RNN size, and its200

input, the activation sequence, grows linearly as 2T . We found that training using plasticity rules201

converges with a significantly smaller number of updates compared to GD. See Fig 2 for a comparison202

of the two methods. Data sets. We use six different datasets. In the first four, 10,000 points are203

generated from a 10-dimensional normal distribution and assigned binary labels by a linear threshold204

function (Halfspace), two different ReLU networks each with a single hidden layer of width 1000205

and randomly initialized weights (ReLU1 and 2), and a simple RNN with T = 3, |V | = 100, k = 50.206

The last two datasets are the MNIST and Fashion MNIST benchmarks.207

3 Cross-task Generalization with Plasticity Rules208

GD is a general method of optimization, capable of improving the performance of any model for209

which gradients can be computed. The obvious question is whether plasticity rules offer similarly210

general strategies for updating the weights of a network. We find that rules learned from simple,211

low-dimensional datasets generalize to accurately classify data in higher dimensions labeled by much212

more complex functions, see Fig 3. First, we examine the empirical evidence, and exhibit experiments213

which demonstrate the remarkable capability of these rules to generalize across tasks. Then we214

analyze output-layer rules, capturing well-known provable methods for learning linear threshold215

functions. To test the generalization abilities of these plasticity rules, we learn a rule for a particular216

network and dataset, and then use it to train other architectures to classify other datasets. In the217

first experiment, we separately learn output and RNN rules for small networks. With these fixed218

rules in hand, we then re-train a feedforward and a recurrent network of both small and large sizes219

on all six of our datasets. The results are clear (see Fig 3); all four models perform well on other220

datasets, although the large recurrent network consistently outperforms the other three models. We221

have empirically observed a significant increase in accuracy as compared to a network of the same222
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Figure 3: Comparison of various models on different datasets trained using the same plasticity
rules. We first learned a plasticity rule for the output weights of a small feedforward network (i.e.
|V | = 100, T = 1) on the Halfspace dataset, and a plasticity rule for the graph weights of a small
recurrent network (i.e. |V | = 100, T = 3) on the ReLU1 dataset. We use these fixed rules to
re-train both of the small models and additional large models (|V | = 1000) on all six datasets,
restricting MNIST and Fashion-MNIST to only a random 10,000 training examples in the interest of
fair comparison. The average of 10 re-trainings for each model/dataset combination is shown above.

size when using a recurrent network with its weights updated by a plasticity rule (Fig. 3), with the223

improvement most obvious on the more nonlinear datasets. Significantly, on certain datasets the224

small recurrent network even outperforms the large feedforward network, suggesting that learned225

recurrent weights can compensate for fewer neurons. Moreover, a rule learned on one dataset appears226

to generalize well to others. Thus, it appear that an appropriate RNN plasticity rule represents a227

general strategy for producing separable representations, although an explanation of how these rules228

work, let alone whether they are optimal, remains elusive.229

3.1 Analyzing the output layer plasticity rule230

We first examine update rules for the output layer alone, with the goal of learning a synaptic plasticity231

rule to update the output layer weights. It is well-known that training just the output layer to minimize232

well-known loss functions is a convex optimization problem that can be solved efficiently; GD233

provably works with specialized variants under different assumptions on the data. It has also been234

established that training just the output layer of a feedforward network, with random weights and a235

sufficiently wide penultimate layer can provably achieve high classification accuracy [Rahimi and236

Recht, 2008, Vempala and Wilmes, 2019].237

The classical perceptron algorithm for learning a linear threshold function `(x) = sign(w∗ · x) is the238

following iteration, starting with w = 0:239

While there is a misclassified example x, w ← w + x`(x).

This is guaranteed to converge to a halfspace consistent with all the labels in at most

‖w∗‖22 max
x
‖x‖22/(min

x
‖w∗ · x‖)2

iterations [Rosenblatt, 1962, Minsky and Papert, 1969]. To map this to our setting, we learn a240

network with a single output neuron, and assume each xi ∈ {−1, 1}. Then this corresponds to the241

output layer rule in Fig. 1, which depends on the (incorrect) prediction value p(x) = sign(w ·x). This

Perceptron (additive) MW (multiplicative)
p(x) = −1 p(x) = 1

xi = −1 −1 1
xi = 1 1 −1

p(x) = −1 p(x) = 1
xi = 0 1 1
xi = 1 2 1

2

Table 1: The plasticity rules for the Perceptron and MW algorithms

242
is an additive update rule. The Multiplicative Weights algorithm [Littlestone, 1987] can be mapped243

to a similar multiplicative plasticity rule. Recall that MW only acts on examples where the current244
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hypothesis predicts incorrectly, and then on variables that are "ON", doubling the corresponding245

weight if the true label is 1, and halving if the true label is −1.246

Our first theorem is that very similar plasticity rules for the output layer can be automatically247

discovered in a general setting, i.e., an effective output layer rule can be provably meta-learned.248

Theorem 1. GD on an additive output rule, from any starting rule, and network weights initialized249

to zero, converges to a rule with sign pattern [−,+; +,−].250

In fact, GD provably optimizes the output layer rule. The next theorem is about the efficiency of251

optimizing plasticity rules. The first part follows from the observation that the cross-entropy loss is a252

convex function of the outer layer weights, which are linear functions of the output layer rule for any253

fixed graph and sequence of examples; the second part is proved in the appendix.254

Theorem 2. The problem of finding the output layer update rule that minimizes the cross entropy255

loss is a convex optimization problem. For the mean squared loss, it can be done with a formula that256

takes O(n`d) time for an n point data set in d dimensions with ` classes.257

To explain the generalization itself, we offer a modest (but rigorous) guarantee. In the next section,258

we will extend this to data that are not perfectly separable (Theorem 4).259

Theorem 3. Let r = [−a, a; b,−b] be an output layer plasticity rule with b ≥ a > 0. For data in260

{−1, 1}n that are strictly linearly separable by a unit vector w∗ with
∑n
i=1 w

∗
i = 0, applying this261

rule to the weights of a linear threshold network converges to a correct classifier.262

4 Adversarial Robustness of Learning with Plasticity Rules263

Empirically, we found that networks trained with plasticity rules are far more robust to adversarial264

examples than their GD-trained counterparts. To test this, we created adversarial datasets under fixed265

levels of perturbation for networks trained with each of the two schemes, and measured how much266

their performance changed. A prevalent attack method is the Fast Gradient Sign Method, first proposed267

in Goodfellow et al. [2014], which uses the following single step update: x+ α · sign(∇xL(x, y))268

where L is the loss function, x is the input we wish to perturb, and y is the true label. We use a more269

powerful adversary, allowing for (1) multiple gradient steps as in Madry et al. [2018], (2) moving270

directly in the direction of the gradient, instead of using only its sign, as in Rozsa et al. [2016], and271

(3) targeting a specific class y′ that we wish to misclassify the image with:272

xt+1 = Πx+S(xt − α · ∇xL(x, y′))

where S is the set of allowed perturbations, and Πx+S(v) is the projection of a vector v onto the set273

x+ S. For a given network and image, we generate nine adversarial images, one for each value of274

y′ 6= y. If any of the nine resulting perturbations become misclassified, then we count the original275

image as misclassified under perturbation (see Appendix C.3 for details). For MNIST, we restrict to276

perturbations that lie within an ε ball around the original x, and to pixel values in the interval [0, 1].277

We generate an adversarial dataset for both plasticity and gradient trained networks for increasing278

values of ε. The results were striking; while small perturbations are sufficient to cause a GD-trained to279

misclassify nearly every example, recurrent rule-trained networks still classify a majority of examples280

correctly well after the perturbations become visible to the naked eye (see Figure 4). We provide281

details of the experiment and exhibit a representative sample of adversarial images in the appendix.282

Notably, the leap in robustness is only achieved by using a recurrent network, as the two-layer network283

is still quite easy to fool. Madry et al. [2018] explored the relationship between model capacity and284

adversarial robustness, noting that a larger capacity is needed in order to be robust than to simply285

classify benign examples, which aligns with our observations, yet fails to explain the divide between286

plasticity and GD.287

So, how to explain this robustness? One possible explanation is the following: the RNN finds a rich288

representation, one in which the examples with different labels can be separated with large margins.289

More precisely, for most correctly labeled data points, ε-balls around them are also classified with290

the same label. Large margin learning, a celebrated success of Support Vector Machines [Cortes291

and Vapnik, 1995, Vapnik, 1998], could explain robustness if large margins exist in a suitable kernel292

space. We show here that a similar result holds for small plasticity based learning of the output layer293

weights, provided we also update on correctly classified examples that are within a small margin of294

the threshold. This theorem is inspired by Freund and Schapire [1999].295
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Figure 4: The same network with |V | = 1000, cap = 500 was trained with plasticity rules for
T = 1, 3, and with GD. For each trained network, we generate adversarial data-sets with increasing
perturbation magnitude.

Theorem 4. Let (x1, y1), . . . , (xm, ym) be a training data set in <n with binary labels such that296

‖x‖ ≤ R, andD2 =
∑m
i=1 max{0, γ−yi(w∗ ·x)} for some unit vector w∗. Suppose we sequentially297

apply an output layer rule of the form [−a, a; b,−b], with b ≥ a > 0 to any example whose label is298

incorrectly predicted or with γ of the threshold. Then the number of incorrectly predicted labels is299

bounded by300

O

(
b2

a2
· R

2 +D2 +
√

2γ

γ2

)
.

Moreover, perturbing each example arbitrarily by up to γ in Euclidean distance does not affect its301

predicted label.302

However, we have yet to account for the marked increase in robustness that comes from using an303

RNN plasticity rule. The success of these rules in finding a representation amenable to more robust304

classification is intriguing and merits rigorous explanation.305

5 Discussion306

Learning is the modification of the long-term state of an organism or other system caused by307

experience; such modification is effected by the system’s learning mechanism. Meta-learning then308

must be the structure or parameters of the learning mechanism that remain invariant across learning309

experiences. In animal brains, synaptic plasticity (including creation and pruning of synapses) is just310

about the only mechanism that qualifies. If meta-learning happens in the animal brain, we propose311

that it is done through plasticity.312

Can these lessons be useful for ANNs? Here we focus on RNNs, because they afford a richer space of313

synaptic plasticity mechanisms, and we demonstrate that plasticity rules can be learned through GD.314

These learned rules (1) achieve reasonably effective learning on a variety of training data without315

backpropagation; (2) the same rules learned on a data set also perform quite well on new data of a316

different sort, and on a graph with a different wiring; and (3) these rules can train models which are317

naturally and significantly more robust to adversarial attacks. Furthermore, in the case of the rules for318

the output layer, the plasticity rules achieved by GD correspond to some basic learning algorithms319

such as the Perceptron and Winnow.320

We believe that our ideas and results point to a rich and promising field of inquiry. Plasticity in the321

input layer would probably enhance learning, but would it hurt generalization? A provable trade-off322

would be of interest here. Can plasticity rules more complex than the output rule also be dissected323

analytically? Also, do plasticity rules work for feed-forward networks? This direction is worthy324

of further experimental exploration, but it also seems more analytically tractable (see Footnote 1).325

Are there ways to combine plasticity with backpropagation to enhance generalization and robustness326

while maintaining learning performance?327

Finally, what is the full range of algorithms that can be realized as synaptic plasticity rules? Does this328

view, motivated by neural plausibility, yield an interesting complexity-theoretic formulation?329
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Supplementary Material442

A Evolution can simulate GD443

We have shown that plasticity rules can be computed though GD in RNNs, and learning is enhanced444

significantly as a result. On the other hand, plasticity in animals is not learned but has evolved through445

natural selection. Can we demonstrate analytically that plasticity rules can also be learned through446

evolution? And is there a connection between these two paths on plasticity, namely evolution and447

GD? Could it be that evolution simulates GD in this case?2448

Here we show, using the standard mathematical models of population genetics and evolution, that449

any real parameter such as each of the plasticity coefficients can be adapted by evolution by having450

such a parameter be the sum of many genetic contributions. This is rather commonplace in genetics451

— for example, height in mammals seems to be affected additively by over 200 genes, hence the452

Gaussian nature of height distributions, see Signer-Hasler et al. [2012]. Furthermore, we show that453

the evolution equations ultimately point to GD!454

Consider a model in which a haploid organism has n genes g1, . . . , gn, each with two alleles {+ε,−ε},455

and suppose that a parameter Y of the phenotype — for example, a coefficient of the plasticity rule456

— is represented as the sum of these n values. To study the evolution of such organism, consider457

a sequence of generations indexed by t, where at each generation we denote by xti the frequency458

of allele i in the population, and thus for each individual in the population the expectation of Y is459

Ȳ = ε ·
∑
i(2xi − 1). At each generation, a population is sampled from this distribution, and each460

individual’s performance on the learning task partly determines the individual’s fitness — intuitively,461

its expected number of offspring. We assume that the contribution of this particular parameter to462

fitness is small — this is reasonable, as there are many other traits contributing to fitness, such463

as locomotion and digestion. This is known as the weak selection regime of evolution Nagylaki464

[1993], Chastain et al. [2014], and the population genetics equations of how the xi’s (the genetic465

make-up of the species) evolve are: (A similar weak selection equation holds for the frequency of466

the other allele, (1 − xi)t−1.) Zt+1 is a normalizer to be defined soon, L(Y ) is the expected loss467

2Recall that Geoff Hinton opined in his Turing award lecture [Hinton, 2019] that “evolution can’t get
gradients.”
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of the test data when the parameter is Y , and θ, assumed to be a very small positive number, is the468

amount by which aptitude in this learning task will enhance the individual’s chance of surviving and469

procreating. That is, the frequency of the i-th gene changes by θ times the difference between some470

reference expected loss, taken to be L(Ȳ ), and the expected loss when the i-th gene of parameter471

Y is conditioned to be +ε. The function of Zt+1 is to keep the allele frequencies adding to one:472

Zt+1 = 1 + θ[xi(L(Ȳ )− L(Ȳ|+ε)) + (1− xi)(L(Ȳ )− L(Ȳ|−ε))].473

Theorem 5. Equation (WS) is, within constant multiples of θ2 and ε2| ∂
2L
∂Ȳ 2 |, equivalent to gradient474

descent on L(W ), where W =
∑
i wi and each wi is in [0, 1] a strictly increasing function of the475

corresponding xi.476

Proof. Since 1
1+a = 1− a+O(a2), the above expression is within O(θ2) equal to:

xti − θ · [(L(Ȳ )− L(Ȳ|+ε)(1− x2
i )− (L(Ȳ )− L(Ȳ|−ε))xi(1− xi)]

Now notice that Ȳ|ε, the expectation of Y conditioned on the value of the gene i being +ε, is477

(Ȳ − ε(1− 2xi)) + ε. To see this, the parenthesis is the expectation of the remaining genes besides478

gene i, and then ε is added to that; and similarly Ȳ|−ε = Ȳ − 2εx.479

Finally, we can approximate the difference (L(Ȳ )−L(Ȳ −ε(1−x2
i )) by ∂L

∂Ȳ
ε(1−x2

i )+O(ε2 ·| ∂
2L
∂Ȳ 2 |),

and similarly for the other difference, to finally obtain, by the chain rule and the fact that ∂Ȳ∂xi
= 2ε,

xt+1
i = xti − θ

∂L

∂xti
(2− 2xti) +O(θ2 + ε2 · | ∂

2L

∂Ȳ 2
|).

Notice now that, ignoring the error term, which is by assumption small, this is GD on gene frequency480

xi, with the extra factor 2− 2xi, a factor which slows the GD at large values of xi and accelerates it481

at small values. Alternatively, this equation is precisely GD on the new variable wi = 2xi − x2
i , the482

integral of the factor 2− 2xi — note that, appropriately for a variable change, the defining function483

of wi is strictly monotone for xi in [0, 1].484

This result holds for the scenario in which each plasticity coefficient is represented by the additive485

contributions of many genes. What happens in the setting, less wasteful genetically, in which these486

genes are shared between the plasticity coefficients? That is, let us assume that each coefficient is487

a random linear function of a random subset of these coefficients. That situation is much harder to488

analyze and compare to GD, but it does work as an effective evolutionary mechanism, see Gorantla489

et al. [2019], Theorem 1.490

B Mathematical proofs491

Proof of Theorem 1. For analysis, we assume that we compute the loss after applying the update rule492

to a random example. For the cross entropy loss, we minimize493

L(r,W ) = Ex∼D
(
− log f`(x)(r,W, x) | p(x) 6= `(x)

)
Let `c(x) = 1 if `(x) = c and `c(x) = 0 otherwise. pc(x) is defined similarly for the prediction of x.494

Since the rest of the network is fixed, we can view L and f as functions of just the output layer weight495

matrix W , consisting of weight vectors wc for each output class c. Now fc is the output neuron value496

for class c, i.e., the result of softmax applied to a linear combination of previous layer outputs. So we497

have,498

fc(r,W, x) =
ewc(r)·y∑
c′ e

wc′ (r)·y

where y is the vector of penultimate layer outputs and wc(r) is the weight after the rule update, i.e.,499

wc(r) · y = η
∑
i

yi
∑

a,b∈{0,1}

r(a, b) Pr(y′i = a, pc(x) = b | p(x) 6= `(x)).
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With f(z) = ezi/
∑
j e
zj , we have500

∂(− ln f(x))

∂zj
=

∂

∂zj
(ln(

∑
k

ezk)− ln ezi)

=
ezj∑
k e

zk
− χ(i = j).

We then compute the gradient of L with respect to r:501

∂L

∂r(a, b)
= Ex∼D

(
−
∂ log f`(x)(r, w, x)

∂r(a, b)
| p(x) 6= `(x)

)
= Ex∼D

(∑
c

(
∂wc(r) · y
∂r(a, b)

(fc(r,W, x)− χ(c = `(x))

)
| p(x) 6= `(x)

)
.

In the case of two labels, we get:502

∂L

∂r(a, b)
= Ex∼D

(
f¯̀(x)(r,W, x)

(
∂w¯̀(x)(r) · y
∂r(a, b)

−
∂w`(x)(r) · y
∂r(a, b)

)
| p(x) 6= `(x)

)
.

where ¯̀(x) is label opposite `(x). Note that503

∂wc(r) · y
∂r(a, b)

= η
∑
i

Ey′(χ(y′i = a, pc(x) = b, `c(x) 6= b))yi.

Therefore, ∂L
∂r(a,b) is504

ηEx∼D

(
f¯̀(x)(r,W, x)

∑
i

yi (Pr(y′i = a, pc̄(x) = b | `c̄(x) 6= b)− Pr(y′i = a, pc(x) = b | `c(x) 6= b))

)
.

From this, we can get the sign of each entry of the rule matrix. First, it is clear that the entries for505

first and second columns (corresponding to b = 0, 1, i.e., the updates to the “correct" and “incorrect"506

labels) have opposite sign. Next if the gradient for (0, b) is positive, then the gradient for (1, b) is507

negative, since entries in the second row are negations of the first row minus a positive constant.508

Then, since we use a standard squared Euclidean norm regularizer, at optimality, the overall gradient509

is a matrix with the above sign pattern plus the current rule matrix r. For this to be zero (at a510

point with zero gradient), the rule r and the gradient must have the opposite sign pattern. Let511

P (a, c) = Pr(y′i = a, `(x) = c). Then, since every y′i used to update is misclassfied, each coefficient512

r(1, 0) and multiplier P (1, c̄)−P (1, c) must have the same sign, so if we have r(1, 0) negative, then513

the P term is negative and the gradient with a = 0, b = 0 has positive sign and the rule has negative514

sign. The signs of the other entries follow similarly.515

Proof of Theorem 3. The proof is inspired by the classical proof of the Perceptron algorithm. For516

data labeled by an unknown linear threshold function sign(w∗ · x) with margin γ. we consider the517

invariant w · w∗/‖w‖2. Then on a misclassified example x whose true label is 1, the update is518

wi ←
{
wi − a if xi = −1

wi + b if xi = 1.

Therefore the numerator goes from w∗ · w to519

w∗ · w − a
∑

i:xi=−1

w∗i + b
∑
i:xi=1

w∗i

=w∗ · w + a(w∗ · x) + (b− a)
∑
i:xi=1

w∗i .

Then, since x has label 1 we have −
∑
i:xi=−1 w

∗
i +

∑
i:xi=1 w

∗
i ≥ γ. Also, by assumption,520 ∑

i w
∗
i =

∑
i:xi=−1 w

∗
i +

∑
i:xi=1 w

∗
i = 0. Therefore,

∑
i:xi=1 w

∗
i ≥ γ/2. It follows that the521
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increase in w∗ · w in t iterations is at least taγ. On the other hand, consider the squared norm of the522

denominator. After one updated it goes from ‖w‖2 to523 ∑
i:xi=−1

(wi − a)2 +
∑
i:xi=1

(wi + b)2

≤‖w‖2 + b2n+ 2b
∑
i:xi=1

wi − 2a
∑

i:xi=−1

wi

=‖w‖2 + b2n+ 2(b− a)
∑
i:xi=1

wi + 2a(w · x)

≤‖w‖2 + b2n+ 2(b− a)
∑
i:xi=1

wi

where the last step uses the fact that x is misclassified and so w · x < 0. We can thus bound the524

increase in ‖w‖2 in t iterations by Ct for some constant C ≤ b2n + 2(b − a)
√
n. Now since525

|w∗ · w|/‖w‖ ≤ 1, we must have526

t2a2γ2 ≤ tC

or t < 2b2n
a2γ2 .527

Proof of Theorem 4. There are two parts to this theorem. First, we want to argue that plasticity rules528

can learn large margin classifiers. Second, we want to give guarantees on the number of mistakes529

for the setting where there is no perfect classifier. Both parts of the proof will use classical ideas in530

learning theory and the analysis of the perceptron algorithm. The proof will extend in a straighforward531

manner to the general plasticity rule of the form [−a, a; b,−b], but we will focus on the perceptron532

rule [−1, 1; 1,−1] for simplicity.533

Assume that the data is separable by a halfspace w∗ · x ≥ 0, with margin γ. The algorithm maintains534

a prediction vector w and for the next example x, it checks if max{0, γ − y(x)(γ − (w · x)} > 0. In535

words, it updates if the example is either misclassified, or at distance less than γ from the separating536

plane. In this case, the update is,537

w ← w + y(x)x.

We track the changes in w · w∗ and ‖w‖2. In each step, we have538

w · w∗ ← w · w∗ + y(x)(w∗ · x) ≥ w · w∗ + γ.

‖w‖2 ← ‖w‖2 + 2y(x)(w · x) + ‖x‖2 ≤ ‖w‖2 + 2γ +R2.

Therefore, after t iterations, starting at w = 0, we have w ·w∗ ≥ kγ and ‖w‖2 ≤ k(R2 + 2γ). Thus,539

since w∗ is a unit vector, we must have540

(w · w∗)2 = k2γ2 ≤ ‖w‖2 = k(R2 + 2γ).

Thus,541

k ≤ R2 + 2γ

γ2
.

For the generalized plasticity rule, the bound is multiplied by O(b2/a2), as in the proof of Theorem 1.542

Next, we go to the setting where the classifier is not perfect, but has bounded total deviation as543

assumed in the theorem. The proof here goes as follows: we map to a higher dimensional space544

<n+m, with one new coordinate for each input example. In this space there is a perfect classifier545

with a margin that is not much smaller. Finally, we argue that the large-margin perceptron algorithm546

applied in the original space or the lifted space produces the same sequence of predictions, and hence547

the algorithm in the original space inherits the guarantee on the number of mistakes. This proof idea548

is from Freund and Schapire [1999], and attributed to earlier work by Klasner and Simon [1995] and549

also used in Frie et al. [1998]. The map for the i’th input example xi is x̄i = (xi, 0, . . . , 0, D, 0, . . .).550

where the nonzero value after the first n coordinates is only in the (n+ i)’th coordinate. The vector551

w∗ is mapped to w̄∗ = (1/
√

2)(w∗, (1/D)`(x)� d) where d is the vector with coordinates552

di = max{0, γ − yi(w∗ · x)}
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Z is chosen to make w̄∗ a unit vector, so it and � is entry-wise product. Now we observe that for any553

example i,554

yi(w̄
∗ · x̄i) =

1√
2

(yi(w̄
∗ · xi) + di)

≥ γ√
2
.

Next, examples in the lifted space have squared length at most ‖x̄i‖2 = ‖x‖2 + D2 ≤ R2 + D2.555

Using the analysis from the first part, and the bounds on the maximum example length, and the556

margin, the number of mistakes of the large-margin perceptron algorithm in the lifted space is at most557

R2 +D2 + 2(γ/
√

2)

(γ/
√

2
2 =

2

γ
(R2 +D2 +

√
2γ).

The bound for the general plasticity rule has an additional O(b2/a2) factor.558

Finally, we prove the second part of Theorem 2.559

Optimal Output Layer Rule for Mean Squared Error Loss. We derive an analytic solution to finding560

the optimal output layer rule given that all else is fixed. By optimal, we mean the rule minimizing the561

mean-squared error loss of the model after training:562

L(r) =
1

n

n∑
i=1

(
1

l

l∑
c=1

(fc(r, x
(i))− lc(x(i)))2

)

where we have n data points x(1) . . . x(n) and l labels. Unlike previously, we do not apply a final563

softmax to the output, so564

fc(r, x
(i)) = wc(r) · y(i)

where again y(i) is the vector of penultimate layer outputs corresponding to x(i) and wc(r) is the565

final weight vector corresponding to label c.566

Previously, we have only updated the weights of the output layer if our prediction was incorrect. In567

this situation, we will instead be updating the weights for every example. Doing so, the final output568

weights will be independent of the order of the data. Given that the initial weights are initialized at 0,569

the final weights can be explicitly described by570

wc(r) = η
∑

a,b∈{0,1}

r(a, b)
∑

lc(x(i) 6=b)

χa(y(i))

where χ1(y) is the standard indicator function. That is (χ1(y))i = yi if yi 6= 0 and (χ1(y))i = 0571

otherwise. On the other hand, (χ0(y))i = 1 if yi = 0 and 0 otherwise. Note that yi must be572

nonnegative since it is the result of a ReLu activation.573

For instance, consider the r(1, 0), and term contributing to wc(r):574

r(1, 0)
∑

lc(x(i))6=c

χ1(y(i))

Recall that r(1, 0) describes the update of an edge (i, j) if node i fired, and node j is the output node575

corresponding to the true label. We have lc(x) 6= 0 whenever the true label of x is equal to c. And,576

we are updating the weight (wc(r))j by r(1, 0) whenever the jth node fires, as expected.577

Now, we compute the gradient of L with respect to r:578
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∂L

∂r(a, b)
=

2

n · l
∑
i

∑
c

(wc(r) · y(i) − lc(x(i)))
∂wc(r) · y(i)

∂r(a, b)

Notice that for each i the last term is independent of r, and evaluates to a real number:579

∂wc(r) · y(i)

∂r(a, b)
= y(i) ·

∑
lc(x(j))6=b

χa(y(j))

Finally, note that the remaining term wc(r) · y(i) − lc(x(i)) is a linear combination of the entries in r580

plus some constant. Hence, so must be ∂L
∂r(a,b) .581

To find the rule r minimizing the loss, we simply set the gradient to zero. Since each ∂L
∂r(a,b) = 0 is a582

linear equation in r, we have a simple 4× 4 system of linear equations. Its solution is the optimal583

rule.584

Furthermore, it is computationally efficient to determine the optimal rule, taking O(n · l · d) time,585

where d is the dimension of the penultimate layer, y. This can be done by directly computing the 4×4586

linear system as described above. Solving the system afterwards simply takes constant time.587

C Experimental Methods588

# Rounds MNIST Acc. Fashion MNIST Robustness on MNIST
T = 3 87% 77% ε = 2 : 60%, ε = 4 : 36%
T = 1∗ 93% 81% ε = 2 : 12%, ε = 4 : 0%
T = 1 85% 70% ε = 2 : 00%, ε = 4 : 0%

Table 2: Each experiment uses graphs with |V | = 1000, k = 500 and 2 epochs of training. We ran
two separate runs for T = 1. The starred entry has all entries of the input weights equal to one
(normally, we let these be random from a normal distribution). It is unclear why such an initialization
produces such a stark improvement in accuracy on MNIST.

In this section, we give complete details of our experimental procedure. The accompanying code can589

be found here: https://github.com/BrainNetwork/BrainNet.git.590

Next, we experimentally show that a rule learned on a specific data set generalizes to new data sets.591

We learn rules on simple data sets, such as data labelled by a linear threshold function, then use this592

rule to train a simple RNN on more complex data-sets generated by ReLu networks, simple RNN’s,593

MNIST and Fashion-MNIST.594

Then, networks trained by plasticity rules are empirically shown to be more robust than ones trained595

by GD. Furthermore, as depth increases, so does robustness to adversarial attacks.596

Finally, We also describe alternative, arguably more bio-plausible schemes for updating weights597

during training.598

C.1 Training and Testing Procedure599

Rule-based training. First suppose that we are already given output layer plasticity rule ro :600

{0, 1}T × {0, 1} → < and an RNN rule r : {0, 1}T × {0, 1}T → <. We can now take any simple601

RNN with T rounds and any data X = (x(1), . . . , x(n)), and train using these rules. Of course, in the602

case that T = 1, there would be no RNN rule.603

1. In the case of additive updates, initialize the graph weights W and output layer weights U604

to zero. In the case of multiplicative updates, initialize these to 1.605

2. For each example xi, perform the forward pass, and keep track of the firing sequence of the606

nodes.607
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3. Given the firing sequences of each node, update W according to RNN rule r and U ,608

according to output layer rule ro. We scale down the magnitudes of the rule updates by a609

factor of η, the step size.610

4. The final weights provide the trained simple RNN.611

GD to Learn a Rule. We now want to learn a rule specific to a particular data set. For this, we do612

the following.613

1. For each epoch, randomly split the data into batches (we used size 100 or 1000).614

2. For each batch, train a network using the current rule as described above.615

3. Using the resulting network, compute the cross entropy loss on this batch.616

4. Compute the gradient of this loss with resp of choice ect to the parameters of the rules.617

5. Update the rules according to the optimizer of choice.618

The experiments we have run used the Adam optimizer, with l2 regularization (with a constant of619

0.01).620

C.2 Generalization experiments.621

We used six different data sets: Halfspace data is labeled by a simple linear threshold function.622

ReLU1 and ReLU2 data are labeled by two different ReLU feedforward networks, each with a single623

hidden layer of width 1000 and randomly initialized weights, and two output neurons, and the argmax624

of the two output neurons was taken to label each example. The simple RNN data was generated625

by a random simple RNN with T = 3, |V | = 100, k = 50, p = 0.5. Each dataset has both training626

and testing data, each consisting of ten thousand examples. Lastly, we used the standard benchmark627

MNIST and Fashion-MNIST datasets, with their 28x28 pixel images vectorized to 784 dimensions,628

where we selected ten thousand random images out of the sixty thousand in each of their training sets.629

We began with a simple RNN with |V | = 100, k = 50, p = 0.5. Using this network with T = 1, we630

learned an output layer plasticity rule using GD on the Halfspace dataset.631

Next, we used a network of the same size with T = 3 and ReLU1 data to train, this time learning an632

RNN plasticity rule parameterized by a single-hidden layer neural network, in addition to the output633

layer rule.634

For each of the two models, we created a new network with a larger graph, |V | = 1000, k = 500, p =635

0.5. We did not learn new rules specific to these particular graphs, but rather retained the previously636

learned rules.637

Using each model’s respective rule(s), we trained the models on the ten thousand training examples638

from each of the six data sets. Note that this training only consists of initializing the weights of the639

graph and output layers to 0, and for each misclassified example, update the weights according to640

the rule, completely without using GD. We did this ten times for each data-set, with the order of641

examples randomly shuffled each time. We reported the average testing and training accuracy in the642

figure. In every experiment a learning rate of η = 10−2 was used, corresponding to weighting the643

weight update proposed by the rule by a factor of η.644

C.3 Robustness Experiments645

We generated a simple RNN with |V | = 1000 and cap of 500, and trained it separately with plasticity646

rules and with GD.647

We performed two experiments with a rule, one for T = 1 and one for T = 3. In both cases, the648

same perceptron-style output rule was used. For T = 3, we utilized a small two layer feedforward649

network to act as the rule. This had a hidden layer of size 20. To train this auxiliary network, we used650

the method described earlier, however we did so on a smaller simple RNN with |V | = 200, and cap651

of 100.652

Once we trained each of the three networks, one hundred random images were chosen to be adversar-653

ially perturbed. For a given network and image, we generate nine adversarial images according to the654
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Figure 5: Adversarial perturbations on MNIST (left) and FashionMNIST (right) for a GD-trained
network, and a plasticity-trained network. Original images are in the top row.

following multi-step attack method previously described, one for each value of y′ 6= y:655

xt+1 = Πx+S(xt − α · ∇xL(x, y′))

If any of the nine resulting perturbations become misclassified, then we count the original image as656

misclassified under perturbation. We repeat for ε ∈ {0.5, 1, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}, allowing a657

perturbation up to a magnitude of ε under the l2 norm.658

C.4 Alternative Schemes659

Updates on each example. Instead of applying the rules only when we misclassify an example, a660

more biologically plausible updating scheme would be to perform the rule updates for every example,661

regardless of the current model’s prediction.662

Experimentally, this approach has had results very similar to those when updating only for misclas-663

sified examples. For instance, Figure 6 is a comparison of the accuracy curves on MNIST when664

applying the same perceptron update rule on all examples, and on only misclassified examples.665

Figure 6: Updating on all examples provides similar results as updating only on misclassified data for
a T = 3, |V | = 1000, k = 500 simple RNN on MNIST.

Updates to all edges. Our output layer rule only updates edges which lead either to the node666

corresponding to the true label of the example or to the prediction. Instead, we could apply the rule667

to all edges - the first column of the rule indicating the update to the edge leading to the correct label,668

and the second column indicating the update to the remaining edges. Note that this only affects the669

multi-label case. For the MNIST data set, we have again had comparable results.670

Using both schemes. Using both schemes described above (updating at each example, and updating671

all weights), we provide a computationally efficient analytic solution to finding the optimal output672

rule (given all else is fixed) with respect to a mean-squared error loss (MSE loss). See Section B.673
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In the case of our binary classification data, the accuracy we achieve with this optimal rule is674

comparable to that of our original model, which would update only on misclassified data.675

However, when combining both schemes on MNIST data, we begin to see a decline in accuracy. The676

usual perceptron rule which originally achieved 92% accuracy is now only reaching 88-89%. The677

optimal rule reached a similar 89% accuracy.678

Note that this “optimal” rule is only optimal with respect to the MSE loss, which in general is not679

particularly well-suited for classification tasks. Additionally, this rule is not necessarily of the same680

sign pattern681
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