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Abstract

Mutual Information (MI) is a fundamental metric for quantifying dependency
between two random variables. When we can access only the samples, but not
the underlying distribution functions, we can evaluate MI using sample-based
estimators. Assessment of such MI estimators, however, has almost always relied on
analytical datasets including Gaussian multivariates. Such datasets allow analytical
calculations of the true MI values, but they are limited in that they do not reflect
the complexities of real-world datasets. This study introduces a comprehensive
benchmark suite for evaluating neural MI estimators on unstructured datasets,
specifically focusing on images and texts. By leveraging same-class sampling for
positive pairing and introducing a binary symmetric channel trick, we show that
we can accurately manipulate true MI values of real-world datasets. Using the
benchmark suite, we investigate seven challenging scenarios, shedding light on the
reliability of neural MI estimators for unstructured datasets.

1 Introduction

Mutual Information (MI), denoted as I(X;Y ), serves as a fundamental measure in quantifying the
dependency between two random variables [Cover, 1999]. It is mathematically defined as:

I(X;Y ) = Ep(x,y) log

[
p(x, y)

p(x)p(y)

]
.

In practice, we often rely on the estimations instead of the exact calculation of MI because we can only
access the examples sampled from joint and marginals but not the underlying distribution functions
(p(x, y) and p(x)p(y)). To this end, various sample-based MI estimators have been proposed [Fraser
and Swinney, 1986, Shwartz-Ziv and Tishby, 2017, Kraskov et al., 2004, Belghazi et al., 2018,
Poole et al., 2019, Song and Ermon, 2019, 2020, Cheng et al., 2020], and they have played a key
role in improving the deep learning performance across diverse applications, including generative
models [Chen et al., 2016], language representation learning [Oord et al., 2018, Wang et al., 2020],
domain generalization [Li et al., 2022], anomaly detection [Lei et al., 2023], and self-supervised
learning [Hjelm et al., 2018, Bachman et al., 2019, Chen et al., 2020, Chen and He, 2020, Grill et al.,
2020].

Despite the huge success of MI estimators in developing useful real-world applications, the accuracy
of MI estimators on real-world datasets largely remains underexplored because the true MI values
cannot be calculated for such datasets. Gaussian datasets, the primary benchmark in the existing
studies [Belghazi et al., 2018, Poole et al., 2019, Song and Ermon, 2019, 2020, Cheng et al., 2020],
do not adequately represent the complexity of real-world datasets. This raises a fundamental question:
do estimators that perform well on Gaussian datasets also excel with more complex datasets like
images or texts? Recently, Czyż et al. [2023] have explored non-Gaussian datasets to evaluate MI
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Figure 1: Exemplary findings from our benchmark suite. The ratio between estimated MI value and
true MI value is shown in y-axis. A ratio close to 1.0 indicates a highly accurate MI estimation. (a, b,
c) When the number of independent information sources is increased to 16, all MI estimators become
inaccurate for Gaussian dataset (shown in (a)) but some MI estimators remain accurate for image
dataset (shown in (b)) and text dataset (shown in (c)). (d) When MI is estimated using embeddings
from different layers of ResNet-50, MI estimators stay accurate only for the upper layers.

estimator accuracy. However, their evaluation is also limited to datasets with tractable distributions,
such as Student’s t-distributions, still far from being representative of real-world datasets. To address
this gap, we present a method for evaluating MI estimators on any dataset in the absence of underlying
distribution functions. Our approach employs same-class sampling as positive pairing [Lee et al.,
2023] and binary symmetric channels [Cover, 1999] for precise manipulation of the true MI values.

We have developed a benchmark suite based on our method, encompassing three data domains
for Gaussian multivariates, images, and sentence embeddings. To demonstrate its usefulness, we
examine performance of several neural MI estimators over seven key aspects in Section 5. The
seven aspects are critic architecture, critic capacity, choice of neural MI estimator, number of
information sources, representation dimension, strength of nuisance, and layer-dependency. Through
the examination of the seven aspects, we report interesting findings from our benchmark suite.
For instance, when the number of information sources become large, MI estimation is relatively
robust for image and text datasets than for Gaussian dataset as shown in Figure 1 (a,b,c). We
also report that a larger critic capacity does not ensure a higher estimation accuracy, there is no
single MI estimator that provides a universally superior performance over the three data domains,
representation dimension can be as large as 10,000 without degrading the accuracy of MI estimators,
MINE [Belghazi et al., 2018] turns out to be relatively robust to nuisance, and MI estimation can
be surprisingly inaccurate for lower-layer representations while it is typically much more accurate
for upper-layer representations (see Figure 1d). The benchmark suite and codebase are available in
https://github.com/kyungeun-lee/mibenchmark.

2 Backgrounds: Neural Mutual Information Estimators

Mutual information between two random variables X and Y is defined as follows.

I(X;Y ) ≜ KL(p(x, y)||p(x)p(y)) = Ep(x,y) log

[
p(x, y)

p(x)p(y)

]
When only a finite set of joint samples is available, the exact MI cannot be calculated, but an estimation
can be made. Among the known MI estimation methods, including simple binning [Fraser and Swin-
ney, 1986, Shwartz-Ziv and Tishby, 2017] and non-parametric kernel-density estimators [Kraskov
et al., 2004], variational estimators based on variational bounds and deep neural networks (DNN)
modeling have become dominant for complex datasets [Belghazi et al., 2018, Poole et al., 2019, Song
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Table 1: Summary of neural mutual information estimators. For the optimization step, we learn
f∗(x, y) by maximizing the optimization loss L(f(x, y)) with a given batch size K. For the estima-
tion step, we evaluate MI values as Î(X;Y ). DV, NWJ, and InfoNCE utilize the same formulation
for optimization and estimation.

Estimator Optimization Loss - L(f(x, y)) Estimate Evaluation - Î(X;Y )

DV [Donsker and Varadhan, 1983] LDV(f(x, y)) = ÎDV(X;Y ) = Ep(x,y)[f(x, y)]− logEp(x)p(y)[e
f(x,y)]

NWJ [Nguyen et al., 2010] LNWJ(f(x, y)) = ÎNWJ(X;Y ) = Ep(x,y)[f(x, y)]− e−1Ep(x)p(y)[e
f(x,y)]

InfoNCE [Chen et al., 2018] LInfoNCE(f(x, y)) = ÎInfoNCE(X;Y ) = EpK(x,y)

[
1
KΣK

i=1 log
f(xi,yi)

1
K ΣK

j=1f(xi,yj)

]
JS [Poole et al., 2019] Ep(x,y) [−Softplus(−f(x, y))]− Ep(x)p(y) [Softplus(f(x, y)] ÎNWJ(X;Y )

MINE [Belghazi et al., 2018] Ep(x,y)[f(x, y)]−
Ep(x)p(y)[e

f(x,y)]

ExponentialMovingAverage(Ep(x)p(y)[ef(x,y)])
ÎDV(X;Y )

SMILE-τ [Song and Ermon, 2019] LJS(f(x, y)) Ep(x,y)[f(x, y)]− logEp(x)p(y)[clip(ef(x,y), e−τ , eτ )]

and Ermon, 2019, 2020, Cheng et al., 2020]. These DNN-based estimators are commonly referred
to as neural MI estimators. In this study, we focus on neural MI estimators due to their superior
performance in handling large sample sizes and high-dimensional data, as demonstrated in previous
works [Gao et al., 2015, Belghazi et al., 2018, Poole et al., 2019, Czyż et al., 2023].

Variational MI estimators are based on two steps. First, an analytical bound is derived where the
bound is based on a critic function f(x, y). Second, the bound is made tight by optimizing for
a supremum or an infimum over f(x, y). In recent works, deep neural networks have been used
to model the critic function. When a proper loss function is chosen and the learning of f(x, y) is
successful, the variational estimations have been shown to be accurate for Gaussian datasets [Belghazi
et al., 2018, Poole et al., 2019, Song and Ermon, 2019, Czyż et al., 2023].

Definition 2.1 (Variational MI estimators [Poole et al., 2019]). Let X , Y be two random variables
taking values in X , Y , and D = {(xi, yi)}Ni=1 ∼ X,Y denote the set of samples drawn from a joint
distribution over X and Y . The variational bounds of I(X;Y ) are formulated as:

I(X;Y ) ≥ Î(X;Y ) = 1 + Ep(x,y)

[
log

ef(x,y)

a(y)

]
− Ep(x)p(y)

[
ef(x,y)

a(y)

]
where a(y) > 0 is any value or function of y. A variety of MI estimators are defined by adopting
different a(y). For example, a(y) = e (constant) corresponding to ÎNWJ(X;Y ) [Nguyen et al.,
2010] (also known as f -GAN KL [Nowozin et al., 2016] and MINE-f [Belghazi et al., 2018]) and
a(y) = 1

K

∑K
i=1 e

f(xi,y) corresponding to ÎInfoNCE(X;Y ) [Oord et al., 2018].

For a neural MI estimator, a DNN is used to model the critic function f(x, y), and there are two
associated steps. The first is the optimization (or training) step where the DNN parameters are learned.
The second is the estimation step where the actual MI values are inferred with the optimized DNN.
Variational MI estimators, such as DV [Donsker and Varadhan, 1983], NWJ [Nguyen et al., 2010],
and InfoNCE [Oord et al., 2018], use a single loss function for both optimization and estimation, and
the loss function corresponds to the theoretical MI bound in use. Other variational MI estimators,
such as JS [Nowozin et al., 2016], MINE [Belghazi et al., 2018], and SMILE [Song and Ermon,
2019], adopt small modifications in either optimization or estimation to improve the robustness or
accuracy of the estimator. The most popular variational MI estimators are summarized in Table 1.

Common choices for the critic function f(x, y) include (1) the inner product critic finner(xi, yj) =
xT
i yj , (2) bilinear critic fbi(xi, yj) = xT

i Wyj where W is trainable, (3) separable critic fsep(xi, yj) =
f1(xi)

T f2(yj), and (4) joint critic fjoint(xi, yj) = f3([xi, yj ]). Here f1, f2, and f3 are typically
shallow MLPs and they model the relationship between all pairs of (xi, yj) ∀i, j ∈ [1,K].

3 Related Works

Despite its theoretical validity, MI estimators present a few disadvantages because we typically have
access to samples, but not to the underlying distribution functions [Poole et al., 2019, Song and
Ermon, 2019, Paninski, 2003, McAllester and Stratos, 2020]. Most estimators exhibit sub-optimal
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performance, particularly when batch size K is small and true MI is large. For instance, InfoNCE can
result in a high bias because it is upper bounded by logK [Oord et al., 2018]. McAllester and Stratos
[2020] noted that any distribution-free high-confidence lower bound on MI cannot be larger than
O(logK). In contrast, most estimators result in a variance that can increase exponentially with the
increase in the true MI value [Poole et al., 2019, Song and Ermon, 2019, Xu et al., 2019]. While these
findings are enlightening, the limitations of estimators have been assessed mostly for the Gaussian
benchmarks only instead of for the real-world datasets.

In efforts to evaluate MI estimators beyond Gaussian datasets, Song and Ermon [2019] proposed
self-consistency tests using MNIST and CIFAR-10 datasets. They found that all estimators were
not accurate for images. However, the analysis can be highly misleading because they evaluated
based on the approximated metrics instead of the true MI. Czyż et al. [2023] suggested a non-
Gaussian benchmark with tractable distributions (e.g., multivariate student, uniform distribution)
with the formulated mapping functions (e.g., spiral transformation), enabling access to true MI.
They considered non-Gaussian datasets that have tractable distribution functions, but the results are
not representative of unstructured datasets, such as images and texts. In this study, we introduce a
comprehensive method for evaluating MI estimators with no constraint on the type of data domains.
In particular, we present a benchmark suite that allows assessment and manipulation of the true MI
for images and sentence embeddings.

4 Proposed Method and Benchmark Suite
We propose a comprehensive method for evaluating neural MI estimators across various data domains.
While our method is applicable to any choice of data domain, we focus on three types of data domains
in our benchmark suite: (1) a multivariate Gaussian dataset (DGaussian), corresponding to the most
common case for evaluating MI estimators in the existing works [Poole et al., 2019, Song and Ermon,
2019, McAllester and Stratos, 2020]; (2) an image dataset consisting of digits (Dvision), as an example
of vision tasks; and (3) a sentence embedding dataset consisting of BERT embeddings of movie
review datasets (DNLP), as an example of NLP tasks. We first consider the general formulation
for Gaussian dataset, define three factors that can affect MI values, introduce same-class sampling,
propose a method for generating unstructured datasets with adjustable true MI values, and finally
explain how binary symmetric channel trick can be employed for manipulating true MI to any
non-integer value.

4.1 General formulation for Gaussian dataset
Consider a dataset with K pairs of samples, where (xi, yi) is sampled from a joint distribution p(x, y).
An MI estimator utilizes the dataset as its input and evaluates the estimated mutual information
Î(X;Y ). If the estimation is accurate, Î(X;Y ) should be close to the true mutual information
I(X;Y ). In previous studies, a Gaussian dataset associated with a multivariate Gaussian model was
utilized to assess neural MI estimators [Belghazi et al., 2018, Poole et al., 2019, Song and Ermon,
2019, 2020, Cheng et al., 2020]. The Gaussian dataset has Gaussian samples with zero mean and
a component-wise correlation of ρ between X and Y . The true MI is known and can be expressed
analytically as I(X;Y ) = −dg

2 log (1− ρ2), where x ∈ Rdg and y ∈ Rdg .

4.2 Definitions of ds, dr, and Z

In the benchmark suite, we design and focus on three essential factors that can affect mutual
information I(X;Y ), especially for unstructured datasets. For random variables X and Y with a
joint distribution p(x, y), they can be defined as follows.

Definition 4.1 (Number of information sources ds). ds is the number of independent scalar random
variables used to form the mutually shared information between X and Y .

Definition 4.2 (Representation dimension dr). dr is the size of the observational data. When X and
Y are of the same size, it is the length of the vector formed by flattening either X or Y .

Definition 4.3 (Nuisance Z). Nuisance to a random variable X is defined as an equal-size random
variable Z sharing no information with X . Mathematically, Z satisfies I(X;Z) = 0. Nuisance to
(X,Y ) can be defined similarly where Z is of the same size as (X,Y ) and I(X,Y ;Z) = 0.

As an example, consider the Gaussian dataset. Its number of information sources ds is equal to dg,
its representation dimension dr is equal to dg, and the dataset contains no nuisance. The effects of
three factors on neural MI estimators will be analyzed in Section 5.
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Figure 2: Four image examples of generating datasets with known true MI values. X and Y consist
of random images drawn from the MNIST dataset. (a) Basic construction: only the images of class
0 or 1 are considered and X and Y are sampled to share the class information. By choosing C
to be either 0 or 1 with probability 0.5, H(C) becomes 1 and therefore I(X;Y ) = H(C) = 1.
(b) Combining four independent images in 2-D to form a single image: I(X;Y ) = 4 because
H(C) = Hleft,up +Hleft,down +Hright,up +Hright,down = 4. (c) Combining three independent images in
channel dimension to form a color image: I(X;Y ) = 3 because H(C) = Hgreen +Hred +Hblue = 3.
(d) Adding nuisance: an independently chosen background image from CIFAR-10 [Krizhevsky et al.,
2009] is inserted as nuisance. Because the nuisance is independently chosen for X and Y , they do
not affect the true MI [Lee et al., 2023]. Therefore, I(X;Y ) = 1.

4.3 Theoretical background: same-class sampling for positive pairing
Same-class sampling for positive pairing was proposed in Lee et al. [2023]. The key idea is to allow
only the class information to be shared between two random variables X and Y , such that the true MI
can be proven to be the same as the entropy of class variable C, i.e., I(X;Y ) = H(C). The proofs
require mild assumptions of either a lower bound estimate of MI being equal to H(C) or the existence
of an error-free decoder (Theorem 3.1 and 3.2 in Lee et al. [2023]). In Lee et al. [2023], the first mild
assumption was shown to be closely satisfied for commonly used image datasets, through extensive
empirical evaluations. The second one essentially implies that the true MI is equal to H(C) when
the class information is easily decodable. An example is MNIST dataset whose digit information as
the class label is known to be easily decodable. Similarly, for NLP datasets, sentence embeddings
of the IMDB dataset [Maas et al., 2011] can be made easily decodable by fine-tuning with the class
label C. We carefully construct our unstructured datasets such that we can take advantage of the
theoretical results. Once we can employ I(X;Y ) = H(C), the calculation of H(C) can be made
trivial by choosing uniformly distributed class labels. Overall, same-class sampling makes it possible
to access the true MI values even for unstructured datasets. For convenience, the theorems and proofs
are provided in Supplementary B.1.

4.4 Generating datasets with adjustable true MI values
By utilizing Theorem 3.1 and 3.2 in Lee et al. [2023], it becomes possible to access the true MI
of an unstructured dataset by drawing the positive pairs from a joint distribution p(x, y) where
only the class information C is shared by X and Y . We first consider a binary random variable
C with p(0) = p(1) = 0.5. We can design a simple stochastic function that maps C to X , where
X is an image or sentence embedding. In our benchmark suite, to make use of the error-free
classification function, we choose a dataset that easily achieves perfect classification accuracy with
a simple classifier (e.g., 1-layer MLP). We adopt the MNIST dataset [Deng, 2012] for Dvision and
BERT [Devlin et al., 2018] fine-tuned sentence embeddings of the IMDB dataset [Maas et al., 2011]
for DNLP. In our implementation, x becomes a sample from D of class 0 when c = 0, and a sample
from D of class 1 when c = 1. We design a mapping function from C to Y where a different image
or text of same class is drawn. For this basic construction, it can be shown that I(X;Y ) = H(C) = 1
bit. An image example is shown in Figure 2a. As a concurrent study, Gowri et al. [2024] also utilized
the benchmark of 1-bit datasets with MNIST images and protein sequences to evaluate MI estimators.

To construct a dataset with larger MI, two straightforward approaches can be used. In Figure 2b,
we combine four samples of Figure 2a to create an image that is four times larger, which means
I(X;Y ) = 4. In Figure 2c, we stack three pairs of samples from Figure 2a and map them to RGB;
hence, I(X;Y ) = 3. We can adopt flexibly use other stratagems to generate a dataset that has a
specific value of true MI. Similarly, we generate the text dataset by concatenating the embedding
vectors in 1D.

For images, we can insert random samples from other datasets as nuisance to X and Y to make
the dataset more realistic without affecting the true MI value, as shown in Figure 2d. Because the
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source images remain on top without any occlusion, and there is no fixed relationship between
the background chosen for X and the background chosen for Y , the nuisance Z does not affect
the true I(X;Y ). Although strong nuisances might make some samples difficult to recognize the
information sources C, the true MI is based on the overall distribution, not a few outlier samples.
Therefore, the presence of nuisances does not affect the true MI. Further discussion will be provided
in Section 5.6. While it is possible to introduce nuisance to any dataset based on the formal definition
in Definition 4.3, we applied nuisance only to image datasets in this study, as text datasets already
follow practical natural language distributions.

For Dvision and DNLP, it is trivial to identify the number of information sources ds and the representa-
tion dimension dr. The number of information sources ds is always equal to I(X;Y ). For instance,
Figure 2b has ds = 4. The representation dimension dr is a design parameter. As the default, we set
dr = 642 for Dvision and dr = 768× 10 for DNLP.

4.5 Manipulating MI to non-integer values: binary symmetric channel
To manipulate the true MI and construct a dataset with a non-integer MI value, we adopt the concept
of binary symmetric channel (BSC) [Cover, 1999]. BSC is a simple and well known form of noisy
communication channel in information theory, and we utilize it for scaling down the true MI value
in a fully controlled manner. With BSC, X is always consistent with the class variable C but Y is
noisy where it is different from C with a crossover probability of β. Then, the true MI value can be
controlled by adjusting β between 0 and 0.5.
Theorem 4.4 (Manipulating MI to be non-integer). When the information source C is transmitted
perfectly to X , while it is transmitted to Y over a binary symmetric channel (BSC) with a crossover
probability β ∈ [0, 0.5], the mutual information I(X;Y ) between X and Y is determined as follows.

I(X;Y ) = H(C)× (1−H(β)) (1)

H(β) refers to the entropy of a binary variable with the crossover probability β [Cover, 1999],
and is given by H(β) = −β log β − (1 − β) log (1− β). When β = 0, there is no information
loss during transmission. Thus, H(β) = 0 and I(X;Y ) = H(C). When β = 0.5, the channel is
completely noisy, and X and Y do not share any information. Thus, H(β) = 1 and I(X;Y ) = 0.
Any MI value in between can be implemented by choosing an appropriate β. The proof is provided
in Supplementary B.2.

5 Empirical investigations
In this section, we investigate seven key aspects that can affect the performance of MI estimators.
All investigations are based on our benchmark suite and the empirical findings are reported together.
As evaluation metrics, we calculate bias, variance, mean squared error (MSE), and the estimated MI
(defined as the average of the estimations) during the training of the critic function. All experiments
were conducted on a single NVIDIA GeForce RTX 3090. Detailed experimental setups and raw
results are available in Supplementary C and D, respectively.

5.1 Choice of critic architecture: superiority of joint critic for unstructured datasets

Poole et al. [2019] observed that using a joint critic outperforms a separable critic for NWJ and JS
estimators, while the InfoNCE estimator demonstrating robustness to the choice of critic architecture.
For SMILE [Song and Ermon, 2019] estimator, a joint critic surpassed a separable critic in basic
Gaussian setups, but this trend reversed in more complex setups of the same dataset. This section
aims to extend these insights into the vision and NLP domains, providing guidance on selecting critic
architectures across diverse data contexts.

Figure 3 and Figure 9 in Supplementary D present the results of our experiments, which include
scenarios where variables share the same domain (image and image, text and text) as well as cases
involving cross-domain pairs (image and text). Our key observations are: (1) The joint critic
consistently provides reliable estimations across all estimators and data domains; (2) The bilinear
critic, while providing stable yet biased estimations for Gaussian datasets, is notably inaccurate
in unstructured datasets; (3) The separable critic performs well on unstructured datasets while it
often exhibits large variance for Gaussian cases; (4) Contrary to the theoretical proofs and empirical
findings of Song and Ermon [2019] on the high variance of the DV estimator in Gaussian datasets, we
observe stable performance in unstructured datasets even with large MI values. Notably, no significant
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Gaussian
dr = 10

Images
dr = 642

Figure 3: Estimation results for four different benchmarks with ds = 10. Following the experimental
setup of Poole et al. [2019], we change the true MI values stepwise and the other hyperparameters
are fixed.

advantage of SMILE over DV (or MINE) was observed for both images and sentence embeddings.
These findings underscore the pronounced differences in analyzing MI estimators between Gaussian
and unstructured datasets, highlighting the robustness of the joint critic in diverse contexts.

5.2 Choice of critic capacity: larger capacity does not ensure a higher estimation accuracy

Table 2: Estimation bias/variance/MSE when the true MI is 2
bits. All estimators showed the same trends, so we report the
result of the case of SMILE-inf with the joint critic.

Dataset Gaussian Images Sentence Embeddings

Critic depth Bias Variance MSE Bias Variance MSE Bias Variance MSE

1 0.136 0.106 0.125 0.293 0.108 0.194 0.300 0.083 0.173
2 0.145 0.096 0.117 0.297 0.101 0.189 0.273 0.078 0.153
3 0.142 0.094 0.114 0.302 0.102 0.194 0.269 0.077 0.150
4 0.140 0.095 0.114 0.302 0.103 0.195 0.270 0.078 0.151
5 0.145 0.096 0.117 0.311 0.105 0.202 0.278 0.081 0.158

While joint critics often yield the best
estimation accuracy in various sce-
narios, this subsection delves into
whether increasing critic capacity
could further enhance estimation ac-
curacy. A prior study [Tschannen
et al., 2019] posited that larger critic
capacities should correlate with more
precise estimations. To assess critic
capacity, we manipulated the depth
of the critic network, with specific results for a true MI of 2 bits outlined in Table 2. (Full results are
available in Supplementary D.3.)

Contrary to the assertion of Tschannen et al. [2019], our findings reveal an unexpected trend: no
discernible positive correlation between critic capacity and estimation accuracy across any data
domain. Specifically, the Pearson’s correlation coefficient ρ between critic depth and estimation
accuracy was −0.007 for DGaussian, 0.059 for Dvision, and −0.001 for DNLP. These findings suggest
that an increase in critic capacity does not inherently improve estimation accuracy and may even
be counterproductive, contradicting previous assumptions and underscoring the need for a nuanced
approach to enhancing critic architectures.

Based on our findings, we fixed the critic architecture as the joint critic of 2-layer MLP for all
subsequent sections of this study.

5.3 Choice of MI estimator: no universal winner exists across the three data domains

Table 3: Estimation error (MSE) with the joint critic. For
each dataset and true MI, the best cases are marked in bold.

Dataset True MI (bits) NWJ DV InfoNCE MINE SMILE-1 SMILE-5 SMILE-inf

Gaussian 2 0.142 0.117 0.121 0.116 0.139 0.115 0.117
Gaussian 4 0.214 0.225 0.418 0.212 0.423 0.160 0.174
Gaussian 6 0.557 1.451 2.090 0.452 0.789 0.258 0.324
Gaussian 8 4.464 456.420 7.235 0.897 1.087 0.596 0.596
Gaussian 10 8.889 1e+07 18.400 1.973 1.443 1.658 1.262
Images 2 0.288 0.175 0.179 0.217 0.142 0.191 0.189
Images 4 0.357 0.233 0.479 0.250 0.338 0.229 0.239
Images 6 0.577 0.366 1.912 0.340 0.854 0.210 0.372
Images 8 1.058 0.787 6.457 0.602 1.278 0.659 0.694
Images 10 1.580 9.529 16.742 3.249 4.197 8.987 4.899

Text 2 0.150 0.143 0.162 0.147 0.097 0.155 0.153
Text 4 0.336 0.312 0.641 0.335 0.234 0.301 0.328
Text 6 0.668 0.596 2.390 0.625 0.305 0.328 0.606
Text 8 1.309 1.092 7.288 1.108 0.297 0.274 1.159
Text 10 2.659 2.345 17.757 2.027 0.319 0.749 2.476

Recent advancements have introduced
more accurate MI estimators, with
notable efforts highlighted in Poole
et al. [2019], Song and Ermon [2019],
McAllester and Stratos [2020], Cheng
et al. [2020]. Among these, the SMILE
estimator has been acclaimed for effi-
ciently reducing the estimation vari-
ance compared to other estimators, of-
fering a more favorable bias-variance
trade-off [Song and Ermon, 2019]. As
evidenced in Table 3, the SMILE esti-
mator exhibits a slight superiority over
other estimators in Gaussian scenarios and a more pronounced advantage in NLP cases. However,
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in vision cases with large true MI values, the NWJ and MINE estimators demonstrate superior
performance compared to SMILE. These findings indicate the absence of a universally optimal
estimator, highlighting the necessity of context-specific selection for MI estimation across various
data domains.

5.4 Number of information sources (ds): unstructured datasets outperform Gaussian in
handling larger ds

In this subsection, we explore the influence of the number of information sources (ds), as previously
defined in Section 4.2, on the accuracy of MI estimation. We incrementally increase ds from 1 to 100,
observing the effects on estimation accuracy. As shown in Figure 4, estimation accuracy deteriorates
when ds becomes excessively large across all data domains.

100 101 102

ds

0.00
0.25
0.50
0.75
1.00
1.25
1.50

I(X
;Y

)/I
(X

;Y
)

Gaussian

100 101 102

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Images

100 101 102

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Sentence Embeddings
NWJ
JS
MINE
DV
INFONCE
SMILE-1
SMILE-5
SMILE-INF

Figure 4: Estimation results varying ds. Shades corre-
spond to the standard deviation of the estimations.

Interestingly, we observed domain-
specific thresholds where MI estimators
begin to falter: estimations become un-
reliable when ds exceeds 4 in the Gaus-
sian case, 36 in the vision case, and 64
in the NLP case, approximately. This
suggests that unstructured datasets, un-
like the Gaussian datasets, allow for rela-
tively accurate MI estimations with mod-
erate ds values within the range of [4, 36].
Given that a uniformly distributed classification problem typically involves classes much less than
10M (significantly lower than 236), these findings indicate that large ds values might not be a limiting
factor in practical applications.

5.5 Representation dimension (dr): it does not affect the estimation accuracy

Table 4: Estimation results varying dr for images with
ds = 1 and I(X;Y ) = 1.
dr NWJ JS MINE DV InfoNCE SMILE-1 SMILE-5 SMILE-inf

100 0.993 0.464 0.996 0.996 0.984 0.753 0.990 0.995
400 0.993 0.465 0.997 0.997 0.985 0.754 0.992 0.996
2500 0.994 0.465 0.997 0.997 0.986 0.753 0.992 0.997
10000 0.994 0.464 0.997 0.997 0.985 0.753 0.991 0.996

Real-world datasets can have any repre-
sentation dimension while having a fixed
number of information sources. For ex-
ample, the image datasets in Figure 2 can
be represented in any reasonable dimen-
sion without compromising the semantic
information. To analyze the MI estima-
tion accuracy in these scenarios, we investigate a range of representation dimensions dr for a fixed
number of information sources ds and the MI value I(X;Y ). Specifically, we simply resize the
images of size 642 in Figure 2 using a linear interpolation function to obtain images whose size
ranges between 102 and 1002 while keeping ds and I(X;Y ) fixed.

As shown in Table 4, we observe that the representation dimension does not affect estimation accuracy
for images. Even as dr increases to 10000, we found that almost all the estimators provide accurate
estimations. From these results, we conclude that the representation dimension alone does not
influence MI estimation accuracy.

5.6 Nuisance: MINE turns out to be relatively robust

Nuisance, integral to real-world datasets as defined in Section 4.2, presents unique challenges in MI
estimation. To quantitatively assess their influence on images, we place the digits in x over the scaled
background image z · η as depicted in Figure 5a. We varied the nuisance strength parameter η from 0
to 1. Note that introducing nuisance does not alter the true MI values, as class labels remain perfectly
predictable when a large number of samples are given. This is the first attempt to investigate how the
nuisance affects the estimation of MI.

Our first analysis focused on a fixed true MI of 2 bits, with results detailed in Figure 5b. It was
observed that estimation accuracy declines significantly with increased nuisance strength, particularly
beyond a threshold of 0.4, across all estimators. Further investigation into larger MI values (Figure 5c)
reveals that while large η adversely affects estimations for small MI values, MINE and SMILE-inf
estimators provide reliable results under moderate nuisance (up to 0.7) and for larger MI values (over
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Figure 5: (a) Example of inserting nuisance toDvision. (b) Estimation results when the true MI is 2 bits.
(c) Estimation results with various values of nuisance strength and true MI for three best-performing
estimators. True MI values are on the x-axis and the nuisance strength is on the y-axis.

6 bits). These tight estimations empirically support our theoretical background that I(X;Y ) = H(C)
when the nuisance exists, as suggested by Theorem 3.1 in Lee et al. [2023]. MINE uniquely offers
nonzero estimations even in the presence of the largest nuisance (η = 1). High nuisance strength
may complicate the learning process resulting in increased bias and variance. Consequently, all
estimators fail to maintain accuracy under high nuisance conditions, highlighting the need for more
robust methods to handle such scenarios.

5.7 Network and layer dependency: estimation holds for invertible networks and upper layers

Our final investigation focuses on the accuracy of MI estimators in the context of deep represen-
tations (i.e., I(g(X); g(Y )), where g represents a deep network) because of the prevalent interest
in understanding dependencies between representations rather than raw inputs. While Czyż et al.
[2023] highlighted concerns about the reliability of estimators in datasets with tractable distribution
functions and under specific unrealistic transformations, our study expands the horizon by examining
three invertible networks: MAF [Papamakarios et al., 2017], RealNVP [Dinh et al., 2016], and
i-RevNet [Jacobsen et al., 2018] for images and texts. For Dvision, we additionally investigate a
non-invertible ResNet-50 network, a widely used non-invertible network, which is pre-trained on
the MNIST dataset, to provide more relevant insights for practitioners. This allows us to better align
with practical interests in MI estimation beyond invertible networks. Remarkably, as demonstrated in
Figure 11 in supplementary material, we found that estimation robustly persists for the representations
of Dvision and DNLP across various network architectures.
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Figure 6: Estimation results for hidden layers of ResNet-
50. Dashed lines indicate boundaries between stages. For
full results, see Supplementary D.4.

If deep representations are robust for es-
timating MI, should this hold across all
layers? To address this question, we es-
timated MI for intermediate layers of
ResNet-50 trained onDvision without nui-
sance. Results are summarized in Fig-
ure 6. According to the data process-
ing inequality, lower-layer MI cannot
be smaller than upper-layer MI. How-
ever, estimated MI values indicate the
opposite. This discrepancy suggests that
MI estimations at lower layers are less
precise, whereas upper-layer representa-
tions yield more accurate estimations. Interestingly, we observe the step-wise estimation results; the
transition clearly occurs when the output size changes across all types of estimators. It appears that
upper layers might capture abstract, high-level features, potentially offering more meaningful infor-
mation for MI estimation. In contrast, lower layers might contain more noise and less discriminative
features, which could lead to poorer accuracy.

6 Discussion and Conclusion

Quantifying complex dependency between variables is an essential topic in machine learning. In
this realm, sample-based neural MI estimators have been the primary choice for many deep learning
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applications. The MI estimators have been directly used for improving downstream task performance
or indirectly used for motivating learning method developments. However, there has been hardly any
attempt to evaluate the accuracy of these MI estimators over real-world datasets such as images and
texts. In this study, we proposed a novel benchmark suite for evaluating neural MI estimators on
unstructured datasets, where the underlying distribution functions are not accessible. Our findings re-
veal discrepancies in estimation accuracy between traditional Gaussian benchmarks and unstructured
data scenarios, highlighting the limitations of Gaussian benchmarks in capturing the nuances of MI
estimation in practical settings. Notably, our findings on unstructured datasets demonstrate that MI
estimators can yield remarkably accurate results, particularly in conjunction with deep representations,
indicating their potential to continue driving advancements in deep learning research. While our
study does not cover the entire spectrum of real-world datasets, it signifies a substantial step forward
in evaluating and understanding MI estimators beyond purely statistical datasets. We hope that this
benchmark suite not only offers a new standard for evaluating MI estimators but also catalyzes further
research, enriching our comprehension of MI across a diverse data domains.
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A Broader Societal Impact Statement

This paper introduces a new benchmark suite for evaluating mutual information (MI) estimators,
particularly in unstructured datasets like images and texts. The broader impacts of our work are
significant in two folds. First, by providing a more realistic and challenging benchmark for MI
estimators, this research can lead to the development of more accurate and robust estimation methods,
especially in complex data scenarios. Second, improved MI estimation methods can benefit fields such
as computer vision and natural language processing, where understanding intricate data relationships
is crucial, thereby enhancing the efficiency and effectiveness of AI systems in practical applications.
In essence, our research has the potential to influence various aspects of society through the improved
understanding and application of mutual information in complex data domains.

B Theorems

B.1 Theorems and proofs

In Section 4.3, we adopt the same-class sampling method for positive pairing suggested in [Lee et al.,
2023]. For convenience, we provide the theorems and proofs in [Lee et al., 2023] as follows.

Proposition B.1 (InfoNCE estimation as a lower bound of the true MI [Oord et al., 2018, Poole
et al., 2019]). The InfoNCE estimation of mutual information is a lower bound of the true mutual
information.

Î(X;Y ) ≤ I(X;Y ) (2)

Proposition B.2 (log (2K − 1) Bound [Oord et al., 2018, Poole et al., 2019]). The InfoNCE estima-
tion of mutual information is upper bounded by log(2K − 1).

Î(X;Y ) ≤ log (2K − 1) (3)

Proof. The proof is based on the variational bound derivation. Let q(x|y) = p(x)
Z(y)e

zx,y/τ , where

Z(y) = Ep(x)[e
zx,y/τ ]. Then the true MI, I(X;Y ), can be bounded as the following.

I(X;Y )

= Ep(x,y)

[
log

p(x, y)

p(x)p(y)

]
= Ep(x,y)

[
log

p(x|y)
p(x)

]
(4)

= Ep(x,y)

[
log

q(x|y)
p(x)

]
+ Ep(y)[KL(p(x|y)||q(x|y))] (5)

≥ Ep(x,y)

[
log

q(x|y)
p(x)

]
(6)

= Ep(x,y)

[
log

ezx,y/τ

Z(y)

]
(7)

≈ E

log ezxi,yi
/τ

1
2K−1

K∑
j=1

(
1[j ̸=i]e

zxi,xj
/τ + ezxi,yj

/τ
)
 (8)

= log (2K − 1) (9)

+ E

log ezxi,yi
/τ

K∑
j=1

(
1[j ̸=i]e

zxi,xj
/τ + ezxi,yj

/τ
)
 (10)

= log (2K − 1)− LInfoNCE (11)

≜ Î(X;Y ) (12)
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The inequality in Eq. (6) is due to the non-negativeness of KL-divergence, and the approximation in
Eq. (8) is due to the replacement of the expectation with its empirical mean.

The proof of Proposition B.1 is directly obtained from the above derivation of InfoNCE variational
bound. The proof of Proposition B.2 also follows from the derivation. In Eq. (11), the term−LInfoNCE
is always negative because the argument of the log term in Eq. (10) is always between zero and one.

This can be easily confirmed because the denominator term
K∑
j=1

(
1[j ̸=i]e

zxi,xj
/τ + ezxi,yj

/τ
)

is a

sum of positive values and because the summation includes the numerator term ezxi,xj
/τ .

Proposition B.3. For the same-class sampling Tclass with its joint distribution pclass(x, y), the mutual
information between the first view X and the second view Y is upper bounded by the class entropy.

Iclass(X;Y ) ≤ H(C) (13)

Proof. From the construction of same-class sampling, the dependency can be expressed as X ←
C → Y . The dependency is Markov equivalent to X → C → Y because both Markov chains encode
the same set of conditional independencies. Then,

I(X;Y ) ≤ I(X;C) (14)
= H(C)−H(C|X) (15)
≤ H(C), (16)

where the first inequality follows from the data processing inequality [Cover, 1999] and the second
inequality follows from the entropy’s positiveness for discrete random variables.

With Proposition B.1 and Proposition B.3, the following main theorem can be obtained.
Theorem B.4. For the same-class sampling Tclass with its joint distribution pclass(x, y), the mutual
information between the first view X and the second view Y is equal to the class entropy when the
estimated mutual information is equal to the class entropy.

Îclass(X;Y ) = H(C) (17)
⇒ Iclass(X;Y ) = H(C) (18)

Proof. The following is a direct result of Proposition B.1 and Proposition B.3.

Îclass(X;Y ) ≤ Iclass(X;Y ) ≤ H(C) (19)

Because the true MI Iclass(X;Y ) is in the middle, Îclass(X;Y ) = H(C) means that all three are of
the same value.

For the most popular downstream benchmarks, such as CIFAR and ImageNet, the calculation of
H(C) is trivial. Now, thanks to the Theorem B.4, we can identify the true MI with no ambiguity
whenever Îclass(X;Y ) = H(C) is satisfied. This theorem will be utilized as a key enabler for a
rigorous MI analysis.

Theorem B.4 can be useful when the true MI value is required for an MI analysis. The theorem,
however, is not useful when the condition Îclass(X;Y ) = H(C) is not satisfied. For such a case, we
derive another equality that can be proven under an error-free classifier assumption.
Theorem B.5. For the same-class sampling Tclass with its joint distribution pclass(x, y), the mutual
information between the first view X and the second view Y is equal to the class entropy when there
exists an error-free classification function fclass(·).

∃ An error-free classifier fclass(·) : X → C (20)
⇒ Iclass(X;Y ) = H(C) (21)

In reality, such an error-free classification function fclass does not exist for practical and interesting
problems. Nonetheless, the equality result is useful for understanding MI in a high-accuracy regime.
The proof is provided below.

2



Proof. From the construction of same-class sampling, the dependency can be expressed as S →
C → X and S → C → Y where C is the class label of the sampled source image S. Because of
the error-free classifier fclass(·), the class label information can be perfectly extracted from X or Y .
This means that X → C and Y → C also hold. Using the dependencies, we can conclude that the
following is a valid Markov chain.

S → C → X → C → Y → C (22)

The desired equality proof can be obtained by deriving an upper bound I(X;Y ) ≤ H(C) and a
lower bound H(C) ≤ I(X;Y ). The upper bound follows directly from the Proposition B.3. The
lower bound can be derived by applying the data processing inequality to the Markov dependency
C → X → Y → C that can be confirmed from Eq. (22).

I(C;C) ≤ I(X;Y ) (23)
⇒H(C) ≤ I(X;Y ) (24)

Note that I(C;C) is the self-information that is equal to H(C).

B.2 Proof of Theorem 4.4: Detailed explanation for binary symmetric channel (BSC)

Figure 7: Construction of an image dataset with a non-integer MI value. We utilize binary symmetric
channel to corrupt the label of Y .

Proof. In Section 4.5, we introduced binary symmetric channel (BSC) [Cover, 1999] to construct a
dataset with a non-integer MI value. We first consider the basic construction case of Figure 2a where
H(C) = 1. As shown in Figure 7, the transmission process of BSC for C → Y corresponds to a
binary channel where the the label of Y is corrupted with probability β. Then, the mutual information
can be evaluated as follows.

I(X;Y ) = I(C;Y ) = H(C)−H(C|Y )

= 1−
∑

p(y)H(C|Y = y)

= 1−
∑

p(y)H(β)

= 1−H(β)

The first equality comes from the Markov equivalence between X and C. Note that H(β) is symmetric
and it can be expressed as H(β) = −β log β − (1− β) log (1− β) = H(1− β). For the case where
H(C) is an integer larger than 1, we can apply the above BSC trick to each binary information
source. Then, we obtain the general result of I(X;Y ) = H(C)× (1−H(β)). For instance, when
we have three independent binary information sources, H(C) = 3 and I(X;Y ) = 3× (1−H(β))
by applying BSC with the same parameter β to each binary information source.

C Detailed experimental setups

We follow the setup of the case of multivariate Gaussian [Belghazi et al., 2018, Tschannen et al.,
2019, Song and Ermon, 2019, Poole et al., 2019]. For Gaussian datasets, the critic network f(x, y) is
trained to maximize Î(X;Y ) with the real-time-generated inputs X and Y . For images and texts, the
critic network f(x, y) is trained to maximize Î(X;Y ) using a limited number of inputs X and Y ,
specifically 50,000 samples. The positive pairs, i.e., samples from the joint distribution p(x, y), are
randomly sampled from the limited number of inputs, thus ensuring that the diversity of the paired
samples is much larger than the size of inputs. When the other factors are fixed, only the true MI
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(I(X;Y )) is controlled during estimation. A complete estimation occurs over 20k steps, and we vary
the true MI (I(X;Y )) over time. For calculating the estimated values, bias, variance, and MSE, we
use all the estimations during 4000 steps with same true MI values.

Note that our method is not restricted to cases where X and Y have the same dimensionality. When X
and Y have different dimensions (e.g., a 4096-dimensional image and a 7680-dimensional sentence
embedding as in Figure 9(Mixture)), we handle this by expanding the smaller dimension with
redundant information, essentially copying parts of the original vector. This ensures no information
loss and allows both X and Y to contribute equally to the training of the critic functions. For instance,
in the case mentioned, the first 3584 dimensions of the 4096-dimensional image can be copied to
expand X to 7680 dimensions, aligning it with Y.

We provide the architecture details for the critic network as follows. We reference the official code of
[Tschannen et al., 2019, Song and Ermon, 2019]. Critic functions model the relationship between
all pairs of (xi, yj) ∀i, j ∈ [1,K]. Variational bounds approximate MI by using the diagonal terms
as the values from the joint distribution p(x, y) and the off-diagonal terms as the values from the
marginal distribution p(x)p(y). For the separable critic f(xi, yj) = f1(xi)

T f2(yj), we use the same
architecture for f1 and f2 as a 2-layer MLP with 256 units and 32-dimensional outputs. For the
concatenated critic f(xi, yj) = f([xi, yj ]), we use 2-layer MLP with 256 units. To train the critic
networks, we set the batch size K as 64. We optimize the variational bounds of mutual information
using Adam [Kingma and Ba, 2014] with a learning rate of 0.0005. The detailed codebase and
datasets are available in https://github.com/kyungeun-lee/mibenchmark.

D Additional experimental results

All the raw results, in addition to the codebase and materials are available in https://github.com/
kyungeun-lee/mibenchmark.

D.1 Changing embedding networks for NLP dataset

For sentence embeddings, we replaced the BERT encoder with DistilBERT [Sanh et al., 2019] and
RoBERTa [Liu et al., 2019] on the same dataset. As shown in Figure 8, estimation holds for the deep
representations regardless of which embedding encoder is used. We also found that all the variational
MI estimators work well for all cases.

From our findings, we conclude that the variational MI estimators are unexpectedly accurate for
images and sentence embeddings datasets, and also for their deep representations.

Figure 8: Estimation results for different types of embedding encoders for sentence embeddings. For
all types of embedding encoders, we achieve accurate estimations.

4

https://github.com/kyungeun-lee/mibenchmark
https://github.com/kyungeun-lee/mibenchmark
https://github.com/kyungeun-lee/mibenchmark


D.2 Additional results of Section 5.1

(a) Gaussian dr = 10

(b) Images dr = 642

(c) Sentence Embeddings dr = 7680

(d) Mixture dr = 7680

Figure 9: Estimation results for four different benchmarks with ds = 10. Following the experimental
setup of Poole et al. [2019], we change the true MI values stepwise and the other hyperparameters
are fixed.
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D.3 Additional results of Section 5.2

(a) Gaussian

(b) Images

(c) Sentence embeddings

Figure 10: Full results for Table 2. We calculate the bias, variance, and MSE for each true MI values
in the manuscript.
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D.4 Additional results of Section 5.7

(a) Images

(b) Sentence embeddings

Figure 11: Estimation results for deep representations. For simplicity, we use the deep networks at
random initialization except for the ResNet-50, which is pre-trained on the MNIST dataset.
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(a) I(X;Y ) = 2bits

1 3 5 7 9 11 13 15 17
ResNet Block

0

1

2

3

4

5

6

M
I (

bi
ts

)

NWJ
JS
MINE
DV
INFONCE

SMILE-1
SMILE-5
SMILE-INF
True MI

(b) I(X;Y ) = 4bits
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(c) I(X;Y ) = 6bits

1 3 5 7 9 11 13 15 17
ResNet Block

0

2

4

6

8

10

M
I (

bi
ts

)

NWJ
JS
MINE
DV
INFONCE

SMILE-1
SMILE-5
SMILE-INF
True MI

(d) I(X;Y ) = 8bits
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(e) I(X;Y ) = 10bits

Figure 12: MI estimation results for hidden layers of ResNet-50.
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