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Abstract

This paper demonstrates that the performance of coincidence detection - a classic1

neuromorphic signal processing method found in Rosenblatt’s perceptrons with2

distributed transmission times, can be competitive to a state-of-the-art deep learning3

method for pattern recognition. Hence, we cannot remain comfortably numb to the4

prevailing dogma that efficient matrix-vector operations is all we need; but should5

enquire with greater vigour if more advanced continual learning methods (running6

on spiking neural network hardware with neuromodulatory mechanisms at multiple7

timescales) can beat the accuracy of task-specific deep learning methods.8

1 Introduction9

Frank Rosenblatt and his team (1957-1971) built and analyzed several kinds of perceptrons [1, 2, 3, 4]10

- networks of sensory, association and receptor neurons; which in contemporary deep learning termi-11

nology relates to the input, hidden and output layers. The propagating signals were binary (compatible12

with a spike-based view), the synaptic delays (transmission times) and weights (memory states) could13

be analog, the network could be recurrent and was often randomly interconnected, and learning14

often meant tuning the weights of the association-receptor subnetwork by some error-corrective15

reinforcement. The synaptic delays were not learnt but instead randomly distributed in Rosenblatt’s16

Tobermory perceptrons [5], and this was rich enough to realize concentration-invariant and uniform17

time-warp invariant spatiotemporal classification by logarithmic encoding and coincidence detection.18

However, the processing speed of commercial Von Neumann computers advanced exponentially19

and outperformed neuromorphic hardware on yesterdecade’s benchmarks [6]. The Tobermory per-20

ceptron was forgotten, nevertheless, the utility of logarithmic encoding and coincidence detection21

was formalized by John Hopfield [7] as an efficient solution to the analog match problem in pattern22

recognition.23

Now, half a century after the accidental demise of Rosenblatt, neuromorphic signal processors are24

making a comeback. For example, (1) Intel’s Loihi with spike-time dependent plasticity mechanisms25

for learning olfactory pattern recognizers [8]; (2) Physical reservoir computing networks [9] where26

the interconnectivity of the hidden layer is unchanged, closer to the spirit of Rosenblatt’s randomly27

interconnected sensory-association subnetwork.28

Here, to strengthen the case for revisiting classic methods on novel and modern hardware, we evaluate29

the performance of coincidence detection in comparison to a deep learning method. Nothing more,30

nothing less, although this work was triggered by a rabid interest in employing artificial intelligence31

to sniff out infections and prevent future pandemics.32
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Table 1: Test accuracy (%)

ResNet-26 Coincidence detection

82.2± 0.3 (from [10]) 82.7 (this work)

2 Methods33

Here, we consider the work [10] of an interdisciplinary team, where a 26 layer convolutional neural34

network with residual connections (ResNet-26) was successfully trained for classifying pathogenic35

bacteria by Raman spectroscopy. In their work, there are N = 30 classes of bacterial isolates and36

they begin with a ResNet-26 pre-trained on N×2000 spectra, then for each class n = 1 : N there are37

M = 100 training spectra, and similarly N×M = 3000 test spectra. Each spectrum x contains 100038

floating-point numbers ranging between 0 and 1. Although compute intensive, their deep learning39

method proved to be a tool of great convenience for pattern recognition in a challenging dataset,40

where intra-isolate spectra were often more dissimilar than inter-isolate spectra.41

Our method to tackle the above dataset, is inspired by the theory of how coincidence detection [7]42

in animal brains is fundamental for odour classification in complex and turbulent mixtures. Each43

class n has a vector representation wn that is learnt, and an input vector x results in an output44

class y(x) = argn max(x
∧
wn) where we introduce the operator

∧
to represent the coincidence45

between two signals. The analytical nature of coincidence detection depends on the specificities of the46

ion-channels and the membranes involved [11], and may even incorporate nonlinear leaky-integrate47

[12] multiple timescale mechanisms. We do not yet have a complete theory of neuromorphic signal48

processing, so here we introduce an approximation for the translation and scale-invariant property of49

coincidence detection as50

argn max(x
∧

wn) ≈ argn max(wn · x̂), (1)

where x̂ is the zero-mean unit-variance normalization of x.51

Thus, the approximation in Eq. (1) allows y(x) to be learnt by a logistic regression on the normalized52

dataset. We discard the pre-training data, pre-process the training and test spectra by a range-1 mean53

filter, and use the default method for logistic regression in Wolfram Mathematica (L2-regularization54

= 0.0001, optimization method = limited-memory BFGS). Code is provided in the supplemental55

material for reproducibility.56

3 Result and outlook57

The coincidence detection (via normalized logistic regression) method introduced here achieves a test58

accuracy greater than ResNet-26 (see Table 1), and it took less than 3 seconds to train the classifier59

on a modern desktop (without any special-purpose GPUs). Check the Appendix for a confusion60

matrix plot of the training and test data. Note that the training data was fit all at once to a 100%61

accuracy. With a more neuromorphic coincidence detection method and a learning method that adapts62

the synaptic delays w continually, to keep track under changing environmental conditions, we may63

achieve even greater accuracies.64
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Checklist94

1. For all authors...95

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s96

contributions and scope? [Yes] See Table 1.97

(b) Did you describe the limitations of your work? [Yes] Equation (1) makes it clear that98

we employ an approximation for coincidence detection.99

(c) Did you discuss any potential negative societal impacts of your work? [N/A]100

(d) Have you read the ethics review guidelines and ensured that your paper conforms to101

them? [Yes]102

2. If you are including theoretical results...103

(a) Did you state the full set of assumptions of all theoretical results? [N/A]104

(b) Did you include complete proofs of all theoretical results? [N/A]105

3. If you ran experiments...106

(a) Did you include the code, data, and instructions needed to reproduce the main ex-107

perimental results (either in the supplemental material or as a URL)? [Yes] Check108

supplemental material109

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they110

were chosen)? [Yes]111

(c) Did you report error bars (e.g., with respect to the random seed after running experi-112

ments multiple times)? [N/A]113

(d) Did you include the total amount of compute and the type of resources used (e.g., type114

of GPUs, internal cluster, or cloud provider)? [Yes] qualitatively, in the results section115

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...116

(a) If your work uses existing assets, did you cite the creators? [Yes]117
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(b) Did you mention the license of the assets? [Yes] In the supplemental information118

(c) Did you include any new assets either in the supplemental material or as a URL? [No]119

(d) Did you discuss whether and how consent was obtained from people whose data you’re120

using/curating? [N/A]121

(e) Did you discuss whether the data you are using/curating contains personally identifiable122

information or offensive content? [N/A]123

5. If you used crowdsourcing or conducted research with human subjects...124

(a) Did you include the full text of instructions given to participants and screenshots, if125

applicable? [N/A]126

(b) Did you describe any potential participant risks, with links to Institutional Review127

Board (IRB) approvals, if applicable? [N/A]128

(c) Did you include the estimated hourly wage paid to participants and the total amount129

spent on participant compensation? [N/A]130

A Appendix131

Confusion matrix of the training and test data. Wolfram Mathematica code to reproduce these results132

is provided as supplemental material.133
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