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Abstract

Although federated learning (FL) has been a prevailing distributed learning frame-
work in recent years due to its benefits in scalability/privacy and rich applications
in practice, there remain many challenges in FL system design, such as data and
system heterogeneity. Notably, most existing works in the current literature only fo-
cus on addressing data heterogeneity issues (e.g., non-i.i.d. datasets across clients),
while often assuming either full client or uniformly distributed client participation.
However, such idealistic assumptions on client participation rarely hold in practical
FL systems. It has been frequently found in FL systems that some clients may
never participate in the training (aka partial/incomplete participation) due to vari-
ous reasons. This motivates us to fully investigate the impacts of incomplete FL
participation and develop effective mechanisms to mitigate such impacts. Toward
this end, by establishing a fundamental generalization error lower bound, we first
show that conventional FL is not PAC-learnable under incomplete participation.
To overcome this challenge, we propose a new server-aided federated learning
(SA-FL) framework with an auxiliary dataset deployed at the server, which is able
to revive the PAC-learnability of FL under incomplete client participation. Upon
resolving the PAC-learnability challenge, we further propose the SAFARI (server-
aided federated averaging) algorithm that enjoys convergence guarantee and the
same level of communication efficiency and privacy as state-of-the-art FL.

1 Introduction

Since the seminal FedAvg (federated averaging) algorithm [1], most works on FL to date are focused
on addressing data heterogeneity issues [2–14]. While these algorithms have achieved varying degrees
of theoretical and/or empirical success, it does not directly address the underlying challenges of client
participation resulted from system-level heterogeneity. Specifically, these methods often make “ideal”
assumptions on client participation in that, in each communication round, clients either all participate
or are sampled uniformly at random in the FL training process (referred to as “full” and “uniform”
client participation in this paper, respectively). However, such assumptions on client participation
rarely hold for FL systems in practice due to the aforementioned system-level heterogeneity. Indeed,
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studies have found that system-level heterogeneity could significantly affect client participation and
largely degrade the learning performance of FL [15,16]. In FL, the participation of a client is affected
not only through the request/sampling from the server, but also the client’s status (e.g., busy or idle,
whether or not in a stable network, privacy concerns, or battery level). Thus, the client participation is
not solely determined by the server. Even if the server enlists clients uniformly at random, the actual
client participation may signficantly deviate from uniform participation. For example, it is shown
in [16] that more than 30% clients never participated in FL, while only 30% of clients contribute to
81% of the total computation even if server uniformly samples clients. Exacerbating the problem is
the fact that the client’s status could be unstable and time-varying. Unfortunately, in the FL literature,
there remains a lack of a theoretical understanding on the impacts of incomplete client participation,
let alone how to mitigate such impacts on FL. This motivates us to fill this gap by fully investigating
how to address the challenges of incomplete client participation in this paper. The major contributions
and main results of this paper are summarized as follows:
• We first study standard FL under incomplete client participation through the lens of statistical

learning theory. We prove that FL with incomplete client participation is not PAC-learnable by
establishing a generalization error lower bound. Our analysis reveals that no learning algorithm
can approach zero generalization error under incomplete participation in FL even in the limit of
infinitely many training data and iterations.

• To overcome the non-PAC-learnable challenge, we propose a server-aided federated learning
framework (SA-FL) to revive PAC learnability of FL under incomplete client participation. The
key idea of SA-FL is to maintain an auxiliary dataset at the server that mimics the data distributions
of the non participating clients. This allows the system to mitigate the deviation caused by
distribution mismatch resulting as a consequence of incomplete client participation. Under mild
conditions, we establish the PAC learnability of SA-FL by proving a new generalization error
bound with the joint sever-client dataset.

• After showing the PAC learnability of SA-FL, we further propose an efficient training algorithm
for SA-FL called SAFARI (server-aided federated averaging). By carefully designing the update
coordination between the server and the clients, we show that SAFARI achieves an O(1/

√
KT )

convergence rate.

2 PAC learnability analysis for FL with incomplete client participation

The goal of FL is to minimize the following loss function F (x) = Ei∼P [Fi(x)], where Fi(x) ,
Eξ ∼Pi [fi(x, ξ)]. Here, P represents the distribution of the entire client population, x ∈ Rd is
the model parameter, Fi(x) represents the local loss function at client i, and Pi is the underlying
distribution of the local dataset at client i. In general, Pi 6= Pj , if i 6= j due to data heterogeneity.
However, the loss function F (x) or full gradient ∇F (x) can not be directly computed as the exact
distribution of data is unknown in general. Instead, one often considers the following empirical risk
minimization (ERM) problem in the form of finite-sum:

min
x∈Rd

F̂ (x) =
∑
i∈[M ]

αiF̂i(x), (1)

where F̂i(x) , 1
|Si|
∑
ξ∈Si fi(x, ξ). Here, M is the total number of clients, Si is the local dataset

with cardinality |Si|, which is i.i.d. and sampled from distribution Pi, αi = |Si|∑
j∈[M] |Sj |

(hence∑
i∈[M ] αi = 1). For ease of presentation, we consider a balanced dataset case: αi = 1

M ,∀i ∈ [M ].
Next, we state several basic definitions from statistical learning theory [17] that are needed here.
Definition 1 (Generalization Error and Empirical Error). Given a hypothesis h ∈ H, a target
concept f , an underlying distribution D and a dataset S i.i.d. sampled from D (S ∼ D), the
generalization error and empirical error of h are defined as followsRD(h) = E(x,y)∼Dl(h(x), f(x))

and R̂D(h) = 1
|S|
∑
i∈S l(h(xi), f(xi)), where l(·) is some valid loss function.

Definition 2 (Optimal Hypothesis). For a distribution D and a dataset S ∼ D, we define h∗D =

argmin
h∈H

RD(h) and ĥ∗D = argmin
h∈H

R̂D(h).

Definition 3 (Excess Error). For hypothesis h and distribution D, the excess error and excess empiri-
cal error are defined as εD(h)=RD(h)−RD(h∗D), and ε̂D(h)=R̂D(h)−R̂D(ĥ∗D), respectively.
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2.1 FL under incomplete client participation

With the above notations, we consider the FL under incomplete client participation. Consider an
FL system with M clients in total. We let P denote the underlying joint distribution of the entire
system, which can be decomposed into the summation of the local distributions at each client, i.e.,
P =

∑
i∈[M ] λiPi, where λi > 0 and

∑
i∈[M ] λi = 1. We assume that each client i has n training

samples i.i.d. drawn from Pi, i.e., |Si| = n, ∀i ∈ [M ]. Then, S = {(xi, yi), i ∈ [M × n]} can be
viewed as the dataset i.i.d. sampled from the joint distribution P . We consider an incomplete client
participation setting, where m ∈ [0,M) clients participate in the FL training as a result of some
client sampling process F . We let F(S) represent the data ensemble actually used in the training and
D denote the underlying distribution corresponding to F(S). For convenience, we define the notion
α = m

M as the FL system capacity (i.e., only m clients participate in the training).

For FL with incomplete client participation, we establish the following fundamental performance
limit of any learner in general. For simplicity, we use binary classification with zero-one loss here.
We state the following impossibility result in Theorem 1 in terms of PAC learnability:
Theorem 1 (Impossibility Theorem). Let H be a non-trivial hypothesis space and L :
(X ,Y)(m×n) → H be the learner for an FL system. There exists a client participation process
F , a distribution P , and a target function f ∈ H with minh∈HRP (h, f) = 0, such that

PS∼P
[
RP (L(F(S)), f) >

1− α
8

]
>

1

20
. (2)

Proof Sketch. The proof is based on the method of induced distributions in [17–19]. We first show
that the learnability of an FL system is equivalent to that of a system that arbitrarily selects mn out of
Mn samples in centralized learning. Then, for any learning algorithm, there exists a distribution P
such that dataset F(S) resulting from incomplete participation and seen by the algorithm is always
distributed identically for any target functions. Thus, no algorithm can learn a better predictor than
random guessing. Due to space limitation, we relegate the full proof to supplementary material.

Given the system capacity α ∈ (0, 1), the above theorem characterizes the worst-case scenario for
FL with incomplete client participation. It shows that for any learner (i.e., algorithm) L, there exists
a bad client participation process F and distributions Pi, i ∈ [M ] over target function f , for which
the error of the hypotheses returned by L is constant with non-zero probability. In other words, FL
with incomplete client participation is not PAC-learnable. One interesting observation here is that
the lower bound is independent of the number of samples per client n. This indicates that even if
each client has infinitely many samples (n→∞), it is impossible to have a zero-generation-error
learner under the incomplete client participation situation (α ∈ (0, 1)). Note that this fundamental
result relies on two conditions: heterogeneous dataset and arbitrary client participation. Under
these two conditions, there exists a worst-case scenario where the underlying distribution D of the
participating data SD = F(S) deviates from the ground-truth P , thus yielding a non-vanishing error.
This result also sheds light on how to motivate client participation in FL effectively and efficiently:
the participating client’s data should be comprehensive enough to model the complexity of the joint
distribution P to close the gap between D and P .

Note that this result is not contradictory to previous works where the convergence of FedAvg is
guaranteed since this theorem is not applicable for homogeneous (i.i.d.) datasets or uniformly random
client participation. As mentioned earlier, most of the existing works rely on at least one of these
two assumptions. However, none of these two assumptions hold for FL with incomplete client
participation. Theorem 1 naturally leads to an important open question: How to make FL with
incomplete client participation PAC-learnable? Toward this end, we propose a new server-aided
federated learning framework (SA-FL) in the next subsection.

2.2 Server-aided federated learning (SA-FL)

We consider the same FL problem with incomplete client participation, which induces a dataset
SD ∼ D, with cardinality nS and D 6= P . In SA-FL, the server is equipped with an auxiliary dataset
T of cardinality nT , which is i.i.d. sampled from distribution P . As a result, the learning process is
to minimizeRP (h) by utilizing (X ,Y)nT+nS to learn a hypothesis h ∈ H. For notional clarity, we
assume the joint dataset SQ = (SD ∪ T ) ∼ Q with cardinality nT + nS for some distribution Q.
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The intuition of SA-FL is to utilize dataset T as a vehicle to correct potential distribution derivations
due to incomplete client participation. By doing so, the server steers the learning by a small number
of representative data, while the clients aid the learning by federation to leverage the huge amount of
privately decentralized data (nS � nT ). For SA-FL to be practical, it is highly desirable that the
server only needs to maintain a small dataset from distribution P . Note that the assumption of access
to this dataset is not restrictive since such datasets are already available in many FL systems: although
not always necessary for training, an auxiliary dataset is often needed for defining FL tasks (e.g.,
simulation prototyping) before training and model checking after training (e.g., quality evaluation and
sanity checking) [20, 21]. Also, obtaining an auxiliary dataset is affordable since the number of data
points required is relatively small (of the order of hundreds, see our experimental results), and hence
the cost is low. Then, SA-FL can be easily achieved or even with manually labelled data thanks to its
small size. It is also worth noting that many works use such auxiliary datasets in FL for security [22],
incentive design [23], and knowledge distillation [24]. Before deriving the generalization error
bound for SA-FL, we state the following assumption and definition.
Assumption 1 (Noise Condition). Suppose that h∗P and h∗Q exist. There exist βP , βQ ∈ [0, 1] and
αP , αQ > 0 such that

Px∼P (h(x) 6= h∗P (x)) ≤ αP [εP (h)]βP , (3)

Px∼Q(h(x) 6= h∗Q(x)) ≤ αq[εQ(h)]βQ . (4)

This assumption is a traditional noise model known as the Bernstein class condition, which has been
widely used in the literature [25–27].
Definition 4 ((α, β)-Positively-Related). Distributions P and Q are said to be (α, β)-positively-
related if there exist constants α ≥ 0 and β ≥ 0 such that

|εP (h)− εQ(h)| ≤ α[εQ(h)]β ,∀h ∈ H. (5)

Definition 1 specifies a stronger constraint between distributions P and Q. It indicates that the
difference of excess error for one hypothesis h ∈ H between P and Q is bounded by the excess error
of Q in some exponential form. With the above assumption and definition, we have the following
generation error bound:
Theorem 2 (Generalization Error Bound for SA-FL). For an SA-FL system with arbitrary system and
data heterogeneity, if distributions P and Q satisfy Assumption 1 and are (α, β)-positively-related,
then with probability at least 1− δ for any δ ∈ (0, 1), it holds that

εP (ĥ∗Q)=Õ

((
dH

nT +nS

) 1
2−βQ

+

(
dH

nT +nS

) β
2−βQ

)
, (6)

where dH denotes the finite VC dimension for hypotheses classH, and parameters {P,Q, nT , nS , β,
βQ} are defined the same as before.

It is known that (see, e.g., [27]) the generalization error bound of centralized learning is (hiding loga-

rithmic factors) Õ(( 1
n )

1
2−βQ ) with n samples in total and noise parameter βQ. Note that when β ≥ 1,

the first term in Eq. (6) dominates. Hence, Theorem 2 implies that the generalization error bound
for SA-FL matches that of centralized learning (with dataset size nT + nS). Meanwhile, compared

with solely training on server’s dataset T , SA-FL exhibits an improvement from Õ(( 1
nT

)
1

2−βQ ) to

Õ(( 1
nT+nS

)
β

2−βQ ). This highlights the benefit of collaboration from the clients.

Note that SA-FL shares some similarity with the domain adaptation problem, where the learning is
on Q but the results will be adapted to P . In what follows, we offer some deeper insights between the
two by answering two key questions: 1) What is the difference between SA-FL and domain adaptation
(a.k.a. transfer learning)? and 2) Why is SA-FL from Q to P PAC-learnable, but FL from D to P
with incomplete client participation not PAC-learnable (as indicated in Theorem 1)?

To answer these questions, we illustrate the distribution relationships for domain adaptation and fed-
erated learning, in Fig. 1, respectively. In domain adaptation, the target P and source Q distributions
often have overlapping support but there also exists distinguishable difference. In contrast, the two
distributions P and Q in FL happen to share exactly the same support with different density, since Q
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is a mixture of D and P . As a result, the known bounds in domain adaptation (or transfer learning)
are pessimistic in FL. For example, the dist(P,Q) in dA-divergence and Y-divergence both have
non-negligible gaps when applied to FL. Here in Theorem 2, we provide a generalization error bound
in terms of the total sample size nT + nS , thus showing the benefit of SA-FL.

Domain Adaptation Federated Learning

P

Q

P

D

Figure 1: Diagram of distribution for do-
main adaptation and federated learning

Moreover, for FL, only the auxiliary dataset T i.i.d.∼ P
is directly available for the server. The clients’ datasets
could be used in FL training, but they are not directly ac-
cessible due to privacy constraints. Therefore, previous
methods in domain adaptation (e.g., importance weights-
based methods in covariate shift adaptation [28, 29])
are not applicable since they require the knowledge of
density ratio between training and test datasets.

The key difference between FL and SA-FL lies in rela-
tions among D,P and Q. For FL, the distance between
D and P under incomplete participation could be large
due to system and data heterogeneity in the worst-case.
More specifically, the support of D could be narrow
enough to miss some part of P , resulting in non-vanishing error as indicated in Theorem 1. For
SA-FL, distribution Q is a mixture of P and D (Q = λ1D + λ2P , with λ1, λ2 ≥ 0, λ1 + λ2 = 1),
thus having the same support with P . Hence, under Assumption 4, the PAC-learnability is guaranteed.

Although we provide a promising bound to show the PAC-learnability of SA-FL in Theorem 2, the
superiority of SA-FL over training solely with dataset T in server (i.e., Õ(( 1

nT
)

1
2−βP )) is not always

guaranteed as β → 0 (i.e., Q becomes increasingly different from P ). In what follows, we reveal
under what conditions between P and Q could SA-FL perform no worse than centralized learning in
terms of generalization error.

Theorem 3 (SA-FL Being No Worse Than Centralized Learning). Consider an SA-FL system with
arbitrary system and data heterogeneity. If Assumption 1 holds and additionally R̂P (ĥ∗Q) ≤ R̂P (h∗Q)

and εP (h∗Q) = O(A(nT , δ)), then with probability at least 1 − δ for any δ ∈ (0, 1), it holds that

εP (ĥ∗Q) = Õ
(

(dH/nT )
1

2−βP

)
, whereA(nT , δ) = dH

nT
log(nTdH + 1

nT
log( 1

δ )), and other parameters
are as defined in Theorem 2.

Here, we remark that εP (h∗Q) = O(A(nT , δ)) is a weaker condition than the εP (h∗Q) = 0 condition
and the covariate shift assumption (PY |X = QY |X ) used in the transfer learning literatures [30, 31].
Together with the condition R̂P (ĥ∗Q) ≤ R̂P (h∗Q), the following intermediate result holds: R̂P (ĥ∗Q)−
R̂P (h∗P ) = O(A(nT , δ)) (see Lemma 2 in the supplementary material). Intuitively, this states that
“if P and Q share enough similarity, then the difference of excess empirical error between ĥ∗Q and h∗P
on P can be bounded.” Thus, the excess error of ĥ∗Q shares the same upper bound as that of ĥ∗P in
centralized learning. Therefore, Theorem 3 implies that, under mild conditions, SA-FL guarantees
the same generalization error upper bound as that of centralized learning with dataset T (to see this,
set nS = 0 and β = 0 in Eq. (6)), hence being “no worse than” centralized learning with dataset T .

3 The SAFARI algorithm

In the previous section, we showed that SA-FL under arbitrary system heterogeneity is PAC learnable
and its superiority to standard FL is guaranteed under mild conditions. This indicates the existence of
an algorithm to achieve PAC learnability for SA-FL. However, it remains to design some efficient
algorithms for SA-FL with a comparable level of communication overhead as conventional FL. In
this section, we propose our SAFARI (server-aided federated averaging) algorithm for SA-FL and
characterize its convergence guarantees.

As shown in Algorithm 1, SAFARI iteratively performs the following three steps: 1) Server samples
a subset of clients as in conventional FL and synchronize the latest global model xt with each
participating clients (Line 3). 2) Each participating client and the server train the model based on
local dataset (Lines 4-8). Specifically, client initializes its local model with xt and then performs K
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Algorithm 1 The SAFARI Algorithm for SA-FL.
1: Initialize x0.
2: for t = 0, · · · , T − 1 do
3: The server samples a subset St of clients with |St| = n and send current model xt.
4: for Each client i ∈ St do
5: Synchronization: xit,0 = xt.
6: Local updates: for k = 0, ...,K − 1: xit,k+1 = xit,k − η∇Fi(xit,k, ξit,k).
7: Send ∆i

t = −
∑K−1
k=0 ∇Fi(xit,k, ξit,k) to server.

8: end for
9: for Server do

10: Local updates: for k = 0, ...,K − 1: x0
t,k+1 = x0

t,k − η∇F (x0
t,k, ξ

0
t,k),

∆0
t = −

∑K−1
k=0 ∇F (x0

t,k, ξ
0
t,k).

11: Receive ∆i
t, i ∈ St, and normalize it: ∆̂i

t = ct
∆i
t−∆0

t

‖∆i
t−∆0

t‖
.

12: Server Update:
xt+1 = xt + η

(
∆0
t + 1

|St|
∑
i∈St ∆̂i

t

)
.

13: end for
14: end for

local steps by the stochastic gradient descent method. Then, each client sends its locally accumulated
update ∆i

t back to the server. Note the server simultaneously takes K local steps based on its
auxiliary dataset (in Line 10). 3) Server aggregates and updates the global model (Lines 11-12).
Upon receiving the local update ∆i

t, the server normalizes and rescales it by a hyper-parameter ct.
Then, the server updates the global model by aggregating the normalized update ∆̂i

t and the server’s
update ∆0

t based on its own auxiliary dataset. Compared to FedAvg [1] in FL, SAFARI shares the
same communication and computation process from the client’s perspective. Hence, it enjoys the
same level of communication efficiency and privacy benefits.
Assumption 2. (L-Lipschitz Continuous Gradient) There exists a constant L > 0, such that
‖∇F (x)−∇F (y)‖ ≤ L‖x− y‖, ∀x,y ∈ Rd.
Assumption 3. (Unbiased Stochastic Gradient with Bounded Variance) The stochastic gradient is
unbiased, i.e., E[∇F (x, ξ)] = ∇F (x) and E[‖∇F (x, ξ)−∇F (x)‖2] ≤ σ2.

With the assumptions above, we are now in the position to analyze the convergence of SAFARI.
Theorem 4 (Convergence Rate for SAFARI ). Under Assumptions 2 and 3, let constant learning
rate η satisfy ( 1

2 − 4LKη − 20K(L+ 4KL3η)η2) > 0. Then, the sequence {xt} generated by the
SAFARI algorithm satisfies:

1

T

T−1∑
t=0

E‖∇F (xt)‖2 ≤
1

c

[
F (x0)− F (x∗)

ηKT

]
+

1

c

[(
5KLη2 + 20K2L3η3 + 2Lη

)
σ2
]

+
1

c

[(
1

K2
+
Lη

K

)
1

T

T−1∑
t=0

c2t

]
,

where c is a constant and x∗ denotes an optimal solution.

Theorem 4 implies anO(1/T ) convergence rate to a neighborhood of a stationary point. Furthermore,
by choosing parameters {ct} and the learning rate η appropriately, we have the following convergence
rate to a stationary point:

Corollary 1. If
∑T−1
t=0 c2t is bounded and learning rate η = 1√

KT
, the convergence rate of SAFARI is:

O
(

1

K1/2T 1/2
+

1

T
+

1

K2T
+

1

K3/2T 3/2

)
.

In Theorem 4 and Corollary 1, we show the convergence guarantee of SAFARI under no extra assump-
tions on the data and system heterogeneity (client participation), which corroborates the learnability
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analysis in Section 2. Hence, in the worst-case scenarios, convergence rate O(1/(K1/2T 1/2)) is
achieved for sufficiently large T and K ≤ T . In comparison, a non-vanishing error term emerges
consistently for the same setting in FL [32]. This verifies the superiority of SA-FL over conventional
FL with incomplete client participation. Note that Corollary 1 requires a convergent series {c2t}. This
can be relaxed to

∑T−1
t=0 c2t = O(min{KT,K3/2T 1/2}) to maintain the same O(1/(K1/2T 1/2))

rate. It can be readily verified that p-series (ct = t−p) satisfies the condition.

4 Conclusion

Different from previous works that considered either full or uniform client participation scenarios in
federated learning (FL), we considered in this paper a more practical scenario in FL with incomplete
client participation. By establishing a fundamental generalization error lower bound, we first showed
that conventional FL is not PAC-learnable under incomplete client participation. To overcome
this challenge, we proposed a new server-aided federated learning (SA-FL) framework with an
auxiliary dataset deployed at the server, which is able to revive the PAC-learnability of FL under
incomplete client participation. Upon resolving the PAC-learnability challenge, we proposed a new
SAFARI (server-aided federated averaging) algorithm that enjoys convergence guarantee and the
same level of communication efficiency and privacy protection as conventional FL.
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A Proofs

Theorem 1 (Impossibility Theorem). Let H be a non-trivial hypothesis space and L :
(X ,Y)(m×n) → H be the learner for an FL system. There exists a client participation process
F , a distribution P , and a target function f ∈ H with minh∈HRP (h, f) = 0, such that

PS∼P
[
RP (L(F(S)), f) >

1− α
8

]
>

1

20
. (2)

Proof. Denote S the dataset with size Mn i.i.d. sampled from distribution P , F(·) the sampling
process of FL system, and S̄ = F(S) the training dataset selected by FL system with size mn.
Consider a distribution P with support on only two points {x1, x2} such that PP (x1) = 1 −
4ε and PP (x2) = 4ε with ε = 1−α

8 .

First we show that the rare points x2 appears at most (1 − α)Mn times with constant probability.
Let ŝ be the number of x2 points in S, then ŝ ∼ B(Mn, ε) is a binomial random variable. By the
Chernoff bound,

P[ŝ ≥ (1− α)Mn] = P[ŝ ≥ (1 + 1)4εMn] ≤ e− 4εMn
3 = e−

(1−α)Mn
6 ≤ e− 1

6 ≤ 17

20
.

So P[ŝ < (1− α)Mn] > 3
20 .

Next, we consider the following sampling process with dataset S =

{(x′1, f(x
′

1)), . . . , (x
′

M×n, f(x
′

M×n))}: choosing as many data (x
′

i, f(x
′

i)), i ∈ [mn] such
that x

′

i = x1 as possible to form the training set S̄. Let f1, f2 ∈ H be two target functions whose
existence is guaranteed by the non-trivial definition ofH and f1(x1) = f2(x1), f1(x2) = −f2(x2),
and S be the set of all datasets in (X ,Y)(M×n) such that ŝ < (1− α)MN .

Let R(hs, f) = PP [L(F(S))(x) 6= f1(x) ∩ x 6= x1], the following holds for these two target
functions f1 and f2:
R(hs, f1) +R(hs, f2) = PP [L(F(S))(x) 6= f1(x) ∩ x 6= x1] + PP [L(F(S))(x) 6= f2(x) ∩ x 6= x1]

= 1L(F(S))(x1)6=f1(x1)P(x2) + 1L(F(S))(x1)6=f2(x2)P(x1)

= 4ε.

The above result hold in expectation since it holds for any S ∈ S . Hence, there exists a target function
f ∈ H such that ES∈SR(hs, f) ≥ 2ε. NoteR(hs, f) ≤ P(x 6= x1) = 4ε, then by decomposing the
expectation into two parts we obtain:

2ε ≤ ES∈SR(hs, f) =
∑

S:R(hs,f)≥ε

R(hs, f)P[R(hs, f)] +
∑

S:R(hs,f)<ε

R(R(hs, f)P[R(hs, f)]

≤ 4εPS∈S [R(hs, f) ≥ 4ε] + ε(1− PS∈S [R(hs, f) ≥ ε])
= ε+ 3εPS∈S [R(hs, f) ≥ ε].

That is,

PS∈S [R(hs, f) ≥ ε] ≥ 1

3
.

Note R(hs, f) = PP [L(F(S))(x) 6= f1(x) ∩ x 6= x1] ≤ R(L(F(S))) = PP [L(F(S))(x) 6=
f1(x)], then we have the final results:

PS∼P [RP (L(F(S)), f) ≥ ε] ≥ PS∼P [R(hs, f) ≥ ε]
≥ PS∈S [R(hs, f) ≥ ε]P[S ∈ S]

>
1

3

3

20
=

1

20
.

Theorem 2 (Generalization Error Bound for SA-FL). For an SA-FL system with arbitrary system and
data heterogeneity, if distributions P and Q satisfy Assumption 1 and are (α, β)-positively-related,
then with probability at least 1− δ for any δ ∈ (0, 1), it holds that

εP (ĥ∗Q)=Õ

((
dH

nT +nS

) 1
2−βQ

+

(
dH

nT +nS

) β
2−βQ

)
, (6)

9



where dH denotes the finite VC dimension for hypotheses classH, and parameters {P,Q, nT , nS , β,
βQ} are defined the same as before.

Proof.

εP (ĥ∗Q) = RP (ĥ∗Q)−RP (h∗P )

= [RP (ĥ∗Q)−RP (h∗P )− (RQ(ĥ∗Q)−RQ(h∗Q))] +RQ(ĥ∗Q)−RQ(h∗Q)

≤ |εP (ĥ∗Q)− εQ(ĥ∗Q)|+ εQ(ĥ∗Q)

≤ αεQ(ĥ∗Q)β + εQ(ĥ∗Q).

Combining with Lemma 1, the proof is complete.

Lemma 1 (Auxiliary Lemma [25, 26, 30, 31]). For any m ∈ N and δ ∈ (0, 1), define A(m, δ) =
dH
m log( mdH + 1

m log( 1
δ )) With probability at least 1− δ, ∀h, ĥ ∈ H,

R(h)−R(ĥ) ≤ R̂(h)− R̂(ĥ) + c

√
min {PS(h 6= ĥ), P̂S(h 6= ĥ)}A(m, δ) + cA(m, δ),

1

2
PS(h 6= ĥ)− cA(m, δ) ≤ P̂S(h 6= ĥ) ≤ 2PS(h 6= ĥ) + cA(m, δ),

εQ(ĥ∗Q) = [A(m, δ)]
1

2−βQ ,

where PS(·) = E[P̂S(·)], S is the i.i.d. dataset with size m drawn form distribution Q, c ∈ (0,∞) is
a constant.

Theorem 3 (SA-FL Being No Worse Than Centralized Learning). Consider an SA-FL system with
arbitrary system and data heterogeneity. If Assumption 1 holds and additionally R̂P (ĥ∗Q) ≤ R̂P (h∗Q)

and εP (h∗Q) = O(A(nT , δ)), then with probability at least 1 − δ for any δ ∈ (0, 1), it holds that

εP (ĥ∗Q) = Õ
(

(dH/nT )
1

2−βP

)
, whereA(nT , δ) = dH

nT
log(nTdH + 1

nT
log( 1

δ )), and other parameters
are as defined in Theorem 2.

Proof. Without loss of generality, we use c serve as a generic constant since we focus on the order in
terms of the sample number and thus omit the constant factor.

εP (ĥ∗Q) = RP (ĥ∗Q)−RP (h∗P )

≤ R̂P (ĥ∗Q)− R̂P (h∗P ) + c
√

min {P (ĥ∗Q 6= h∗P ), P̂ (ĥ∗Q 6= h∗P )}A(nT , δ) + cA(nT , δ)

≤ c
√
εβPP (ĥ∗Q)A(nT , δ) + cA(nT , δ).

The first inequality is due to Lemma 1 and second inequality follows from Lemma 2 and Noise
assumption 1. Then we have the following result, which completes the proof:

εP (ĥ∗Q) ≤ cA(nT , δ)
1

2−βP .

Lemma 2. If R̂P (ĥ∗Q) ≤ R̂P (h∗Q), with probability at least 1− δ,

R̂P (ĥ∗Q)− R̂P (h∗P ) = εP (h∗Q) +O(A(nT , δ)).

10



Proof.

R̂P (ĥ∗Q)− R̂P (h∗P ) ≤ R̂P (h∗Q)− R̂P (h∗P )

≤ RP (h∗Q)−RP (h∗P ) + c
√

min {P (h∗Q 6= h∗P ), P̂ (h∗Q 6= h∗P )}A(nT , δ) + cA(nT , δ)

= εP (h∗Q) +O(A(nT , δ)).

Theorem 4 (Convergence Rate for SAFARI ). Under Assumptions 2 and 3, let constant learning
rate η satisfy ( 1

2 − 4LKη − 20K(L+ 4KL3η)η2) > 0. Then, the sequence {xt} generated by the
SAFARI algorithm satisfies:

1

T

T−1∑
t=0

E‖∇F (xt)‖2 ≤
1

c

[
F (x0)− F (x∗)

ηKT

]
+

1

c

[(
5KLη2 + 20K2L3η3 + 2Lη

)
σ2
]

+
1

c

[(
1

K2
+
Lη

K

)
1

T

T−1∑
t=0

c2t

]
,

where c is a constant and x∗ denotes an optimal solution.

Proof. Let ∆̄t = 1
|St|

∑
i∈St ∆̂i

t, ḡt = ∆0
t + 1

|St|
∑
i∈St ∆̂i

t = ∆0
t + ∆̄t.

Et[F (xt+1)] ≤ F (xt) +
〈
∇F (xt),Et[xt+1 − xt]

〉
+
L

2
Et[‖xt+1 − xt‖2]

= F (xt) +
〈
∇F (xt), ηEtḡt

〉
+
L

2
η2Et[‖ḡt‖2]

= F (xt)− ηK‖∇F (xt)‖2 +
〈
∇F (xt), ηK∇F (xt) + ηEt

[
∆0
t + ∆̄t

] 〉︸ ︷︷ ︸
A1

+
L

2
η2Et

[
‖∆0

t + ∆̄t‖2
]

︸ ︷︷ ︸
A2

.

A1 =
〈
∇F (xt), ηK∇F (xt) + ηEt

[
∆0
t + ∆̄t

] 〉
= ηK

〈
∇F (xt),∇F (xt) +

1

K
Et
[
∆0
t + ∆̄t

] 〉
≤ 1

2
ηK‖∇F (xt)‖2 +

1

2
ηK‖∇F (xt) +

1

K
Et
[
∆0
t + ∆̄t

]
‖2

Note that ∆0
t = −

∑K−1
k=0 ∇F (x0

t,k, ξ
0
t,k). We have

1

2
ηK‖∇F (xt) +

1

K
Et
[
∆0
t + ∆̄t

]
‖2 ≤ ηK‖∇F (xt) +

1

K
Et
[
∆0
t

]
‖2 + ηK‖ 1

K
Et
[
∆̄t

]
‖2

≤ ηK‖∇F (xt)− Et

[
1

K

K−1∑
k=0

∇F (x0
t,k, ξ

0
t,k)

]
‖2 +

η

K
Et‖

[
∆̄t

]
‖2

= ηK‖∇F (xt)−
1

K

K−1∑
k=0

∇F (x0
t,k)‖2 +

η

K
Et‖

1

|St|
∑
i∈St

∆̂i
t‖2

≤ η
K−1∑
k=0

‖∇F (xt)−∇F (x0
t,k)‖2 + η

1

|St|
Et
∑
i∈St

‖∆̂i
t‖2

≤ ηL
K−1∑
k=0

‖xt − x0
t,k‖2 +

η

K
c2t .

So, we can bound A1 as following:

A1 ≤
1

2
ηK‖∇F (xt)‖2 + ηL

K−1∑
k=0

‖xt − x0
t,k‖2 +

η

K
c2t .
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A2 =
L

2
η2Et

[
‖∆0

t + ∆̄t‖2
]
≤ Lη2Et

[
‖∆0

t‖2
]

+ Lη2Et
[
‖∆̄t‖2

]
.

Et
[
‖∆0

t

]
= ‖

K−1∑
k=0

∇F (x0
t,k, ξ

0
t,k)‖2

≤ 2‖
K−1∑
k=0

∇F (x0
t,k)‖2 + 2Kσ2

≤ 2‖
K−1∑
k=0

[
∇F (x0

t,k)−∇F (xt) +∇F (xt)
]
‖2 + 2Kσ2

≤ 4K

K−1∑
k=0

[
‖∇F (x0

t,k)−∇F (xt)‖2 + ‖∇F (xt)‖2
]

+ 2Kσ2

≤ 2Kσ2 + 4KL2
K−1∑
k=0

‖x0
t,k − xt‖2 + 4K2‖∇F (xt)‖2,

where the first inequality is due to assumption 1 and {∇F (x0
t,k, ξ

0
t,k)−∇F (x0

t,k)} form a martingale
difference sequence (see Lemma 4 in [4]).

Hence, we can bound A2 as following:

A2 ≤ 2KLη2σ2 + 4KL3η2
K−1∑
k=0

‖x0
t,k − xt‖2 + 4LK2η2‖∇F (xt)‖2 + Lη2c2t .

Plugging the bound of A1 and A2 into the smoothness inequality, we have:

Et[F (xt+1)] ≤ F (xt)− ηK‖∇F (xt)‖2 +
〈
∇F (xt), ηK∇F (xt) + ηEt

[
∆0
t + ∆̄t

] 〉︸ ︷︷ ︸
A1

+
L

2
η2Et

[
‖∆0

t + ∆̄t‖2
]

︸ ︷︷ ︸
A2

≤ F (xt)− ηK(
1

2
− 4LKη)‖∇F (xt)‖2 +

(
ηL+ 4KL3η2

)K−1∑
k=0

Et[‖x0
t,k − xt‖2]

+
( η
K

+ Lη2
)
c2t + 2KLη2σ2.

For the server, we have the following results for the norm of parameter changes for one local
computation:

E[‖x0
t,k − xt‖2] = E[‖x0

t,k−1 − xt − ηg0
t,k−1‖2]

= E
[
‖x0

t,k−1 − xt − η∇F (x0
t,k−1)‖2

]
+ E‖η

(
g0
t,k−1 −∇F (x0

t,k−1)
)
‖2

= (1 +
1

2K − 1
)E
[
‖x0

t,k−1 − xt‖2
]

+ E‖η
(
g0
t,k−1 −∇F (x0

t,k−1)
)
‖2

+ 2KE‖η∇F (x0
t,k−1)− η∇F (xt) + η∇F (xt)‖2

= (1 +
1

2K − 1
)E
[
‖x0

t,k−1 − xt‖2
]

+ E‖η
(
g0
t,k−1 −∇F (x0

t,k−1)
)
‖2

+ 4Kη2‖∇F (x0
t,k−1)−∇F (xt)‖2 + 4Kη2‖∇F (xt)‖2

≤ (1 +
1

2K − 1
+ 4KL2η2)E

[
‖x0

t,k−1 − xt‖2
]

+ η2σ2 + 4Kη2‖∇F (xt)‖2
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≤ (1 +
1

K − 1
)E
[
‖x0

t,k−1 − xt‖2
]

+ η2σ2 + 4Kη2‖∇F (xt)‖2.

Unrolling the recursion, we obtain the following:

E[‖x0
t,k − xt‖2] =

k−1∑
p=0

(1 +
1

K − 1
)p
(
η2σ2 + 4Kη2‖∇F (xt)‖2

)
≤ (K − 1)

[(
1 +

1

K − 1

)K
− 1

] (
η2σ2 + 4Kη2‖∇F (xt)‖2

)
≤ 5Kη2σ2 + 20K2η2‖∇F (xt)‖2.

Putting the pieces together, we obtain

Et[F (xt+1)]− F (xt) ≤ −ηK(
1

2
− 4LKη − 20K(L+ 4KL3η)η2)‖∇F (xt)‖2

+ ηK
(
5KLη2 + 20K2L3η3 + 2Lη

)
σ2 +

( η
K

+ Lη2
)
c2t

≤ −cηK‖∇F (xt)‖2 + ηK
(
5KLη2 + 20K2L3η3 + 2Lη

)
σ2

+
( η
K

+ Lη2
)
c2t .

The last inequality follows from that there exist such constant c if ( 1
2 − 4LKη − 20K(L +

4KL3η)η2) > 0.

Summing over t = 0 to T − 1, we have

1

T

T−1∑
t=0

E‖∇F (xt)‖2 ≤
1

c

[
F (x0)− F (x∗)

ηKT
+
(
5KLη2 + 20K2L3η3 + 2Lη

)
σ2

+

(
1

K2
+
Lη

K

)
1

T

T−1∑
t=0

c2t

]

B Experiments

In this section, we provide the details of the numerical experiments and some additional experimental
results.

B.1 Models and Datasets

We test the SAFARI algorithm by running two models on two different types of datasets, including
1) multinomial logistic regression (LR) on MNIST, and 2) convolutional neural network (CNN) on
CIFAR-10. Both datasets are chose from a previous FL paper [1], and they are now widely used as
benchmarks for FL research [7, 33].

MNIST and CIFAR-10 have ten classes of images separately. In order to impose the heterogeneity
of the data, we partition the dataset according to the number of classes (p) that each client contains.
We distribute these data to M = 10 clients, and each client only has a certain number of classes.
Specifically, each client randomly selects p classes of images and then evenly samples training and
test data-points within these p classes of images without replacement. For example, if p = 2, each
client only samples training and test data-points within two classes of images, which causes the
heterogeneity among different clients. If p = 10, each client contains training and test samples that
selects from ten classes. This situation is almost the same as i.i.d. case. Hence, the number of classes
(p) in each client’s local dataset can be used to represent the level of non-i.i.d. qualitatively. In addition,
to mimic incomplete client participation, we enforce s clients to be exempt from participation, where
the index s can be used to represent the degree of incomplete client participation. Specifically, we
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Figure 2: Test Accuracy of FedAvg on CIFAR-10 with incomplete client participation. Larger
incomplete client participation index means less clients participate in the training, and smaller non-
i.i.d. index means the data across clients is more heterogeneous.

assume there are M = 10 clients in total, and m = 5 clients participate in each communication round.
These clients are uniformly sampled from M − s clients. Larger incomplete client participation index
s means less clients participate in the training.

For both MNIST and CIFAR-10, the learning rate is 0.1, and the local epoch is 1. For MNIST, the
batch size is 64, and the total communication round is 150. For CIFAR-10, the batch size is 500, and
the total communication round is 4000. To simulate the data heterogeneity, we use p = [10, 5, 2, 1]
as a proxy to represent the degree of non-i.i.d. on MNIST and CIFAR-10 datasets. To emulate the
effect of incomplete client participation, we set s = [0, 2, 4] to represent the degree of incomplete
client participation for the SAFARI algorithm, the FedAvg algorithm, and the SGD algorithm. Last
two algorithms are employed as the baselines to compare with our algorithm. The hyper-parameter
ct in the SAFARI algorithm is set to 0.1 both on MNIST and CIFAR-10. To compare the effect of
the collaboration from server, we add [50, 100, 500, 1000] data to the server’s side for MNIST and
[500, 1000, 5000] for CIFAR-10.

B.2 Additional Experimental Results

In Figure B.2, we show the test accuracy of FedAvg algorithm on CIFAR-10 for different Non-IID
index p and incomplete client participation index s. In the case of p = 10, the test accuracy of s = 4
and s = 0 is not much different whereas the test accuracy of s = 4 is 25% lower than that of s = 1
in the case of p = 1. Incomplete client participation has no impact on the performance for nearly
homogeneous data, but it causes catastrophical performance degradation for highly Non-IID data.

In Figure 3, we show the test accuracy of the SAFARI algorithm, the FedAvg algorithm, and the SGD
algorithm on MNIST for incomplete client participation s = 4 and different Non-IID index p. The
evidences of the observations are provided visually as follows:

• Compared to FedAvg in the case of p = 1 (see Figure 3(d)), with only 50 data at server’s
side (0.1% of the total training data), there is a non-negligible increase of test accuracy for
our SAFARI algorithm. This increase increases as more data is added to the server’s side.

• In nearly homogeneous case when p = 5 or p = 10 (see Figure 3(a) and 3(b)), there is
actually no improvement of the test accuracy with these auxiliary data added to the server’s
side, comparing SAFARI with FedAvg.

• Compared SAFARI with SGD (for centralized learning solely on server’s data) in nearly
homogeneous case when p = 5 or p = 10 (see Figure 3(a) and 3(b)), the collaborations
from clients significantly improves the performance, especially with less data on the server’s
side.

• In highly heterogeneous case when p = 2 or p = 1 (see Figure 3(c) and 3(d)), it shows no
obvious improvement from the collaboration of clients comparing SAFARI to SGD.
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(b) Non-IID Index p = 5
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(c) Non-IID Index p = 2
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(d) Non-IID Index p = 1

Figure 3: Test accuracy of SAFARI , FedAvg, and SGD algorithm on MNIST with incomplete client
participation s = 4 and different Non-IID index p. Smaller p means the data across clients is more
heterogeneous.

Table 1: Test accuracy improvement (%) for SAFARI compared with FedAvg on CIFAR-10 with
incomplete client participation s = 4. ‘-’ means no statistical difference within 2% error bar.

SERVER DATASIZE
NON-IID INDEX (p)
10 5 2 1

500 - - - -
1000 - - - 3.55
5000 - - 5.45 16.08

In Table 1, we show the comparison between our SAFARI algorithm and FedAvg algorithm on
CIFAR-10 for incomplete client participation s = 4. The observations are further illustrated: 1)
There is non-negligible increase of the test accuracy for SAFARI algorithm with small amount of
auxiliary data at server’s side. With 5000 data at server’s side, the test accuracy increases by 16.08%.
2) There is actually no improvement with these auxiliary data for nearly homogeneous case (e.g.,
p = 10 or p = 5), which is denoted by ‘-’ in the table.

In Table 2, we show the difference between our SAFARI algorithm and SGD, which is for centralized
learning solely on server’s data, for incomplete client participation s = 4 on CIFAR-10. When
the size of data on server’s side is small, the collaborations from clients significantly improve the
performance of the SAFARI algorithm. Even in the highly heterogeneous case when p = 1, the test
accuracy can be improved by 10% for only 500 data on the server’s side (0.8% of the total training
data). This observation further validates our theoretical analysis in Theorem 2.
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Table 2: Test accuracy improvement (%) of SAFARI under incomplete client participation s = 4
compared with SGD in centralized learning on CIFAR-10. Smaller Non-IID index means the data
across clients is more heterogeneous.

SERVER DATASIZE
NON-IID INDEX (p)

10 5 2 1
500 35.67 33.48 27.60 10.77

1000 31.23 28.46 22.36 7.62
5000 13.99 11.11 7.88 3.40
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