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Summary
We address the challenge of switching among multiple learned policies in reinforcement

learning control systems, where conventional value function–based methods can lead to chat-
tering in the presence of small measurement noise. Our goal is to design a switching logic that
preserves the asymptotic stability of each individual policy, achieves overall performance that
is at least as good as any fixed policy, and maintains a robustness margin so that rapid switching
is prevented for any bounded measurement noise. To this end, we propose a timer-based hybrid
supervisor that integrates a resettable timer that enforces a minimum dwell time on the active
policy. This dwell time is adaptively adjusted by predicting the evolution of the state of the
system, ensuring that a switch occurs only when a significantly better alternative is predicted.

We derive sufficient conditions under which the hybrid supervisor is guaranteed to exhibit
non-Zeno behavior and render a compact set robustly globally asymptotically stable in the
presence of bounded measurement noise. Simulation results on representative decision-making
problems demonstrate that our hybrid supervisors maintain performance and robustness under
noisy conditions where a conventional switching strategy fails.

Contribution(s)
1. This paper presents a hybrid supervisor that maintains the globally asymptotic stability

properties of the underlying policies and prevents chattering between the policies under
bounded measurement noise. The hybrid supervisor deploys a timer-based mechanism to
predict and enforce a dwell period between policy switches.
Context: Chattering refers to the phenomenon of a system rapidly switching its decision
due to measurement noise that results in inefficient or destabilizing behavior. Prior solutions
rely on spatial or temporal regulation, such as hierarchical methods. In contrast to existing
spatial regulation approaches, the proposed method can be applied to high-dimensional
state spaces. Compared to existing temporal regulation approaches, the proposed method
guarantees that chattering cannot occur.
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Abstract

We address the challenge of switching among multiple learned policies in reinforcement1
learning control systems, where conventional value function–based methods can lead to2
chattering in the presence of small measurement noise. Our goal is to design a switching3
logic that preserves the asymptotic stability of each individual policy, achieves overall4
performance that is at least as good as any fixed policy, and maintains a robustness5
margin so that rapid switching is prevented for any bounded measurement noise. To6
this end, we propose a timer-based hybrid supervisor that integrates a resettable timer7
that enforces a minimum dwell time on the active policy. This dwell time is adaptively8
adjusted by predicting the evolution of the state of the system, ensuring that a switch9
occurs only when a significantly better alternative is predicted. We derive sufficient10
conditions under which the hybrid supervisor is guaranteed to exhibit non-Zeno behav-11
ior and render a compact set robustly globally asymptotically stable in the presence12
of bounded measurement noise. Simulation results on representative decision-making13
problems demonstrate that our hybrid supervisors maintain performance and robustness14
under noisy conditions where a conventional switching strategy fails.15

1 Introduction16

In many real-world decision-making problems, a reinforcement learning (RL) agent is faced with17
a choice among multiple strategies or actions, each with its own advantages and trade-offs. Such18
problems arise not only in control systems and robotics (Hwangbo et al., 2019), but also in areas19
as diverse as financial portfolio management (Bartram et al., 2021), cybersecurity (Alpcan & Baar,20
2010), and video game strategy selection (Yannakakis & Togelius, 2018). In these settings, the21
agent must evaluate limited, often noisy information in order to select the best course of action,22
balancing short-term rewards against long-term objectives. This dynamic, multi-strategy decision-23
making process is inherently challenging, particularly in RL, where the optimal strategy may not be24
immediately apparent and can depend on subtle aspects of the current state or adversarial influences25
in the environment.26

One particularly challenging phenomenon in this context is the tendency for the system to “chatter”27
between strategies (Prieur et al., 2007; Mayhew et al., 2011; de Priester et al., 2022; 2024). Chatter-28
ing occurs when an agent rapidly switches its decision—often due to small measurement errors or29
environmental perturbations—resulting in inefficient or even destabilizing behavior. For example,30
in video game scenarios, a player or AI might oscillate between aggressive, defensive, and resource-31
gathering strategies in response to transient changes in the game state. Although such switching32
might appear adaptive in the short term, it can prevent the full exploitation of a promising strategy,33
ultimately leading to suboptimal performance. Furthermore, in competitive environments, adver-34
saries can deliberately manipulate the situation to induce premature or frequent switching, thereby35
exploiting the hesitation or uncertainty of the decision maker (de Priester et al., 2022; 2024).36
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Existing approaches to mitigate chattering typically rely on spatial regulation or temporal abstrac-37
tion, as seen in traditional Hierarchical Reinforcement Learning (HRL) frameworks (Sutton et al.,38
1999; Makumi et al., 2023). Prior works (de Priester et al., 2022; 2024) have explored robustify-39
ing the switching logic through spatial regulation, which involves defining specific regions in the40
state space where policy switching is permitted or restricted. However, spatial regulation may not41
be ideal when defining such regions is challenging or impractical—for instance, in environments42
with high-dimensional state spaces. Policy parameterizations are often continuous or memoryless43
discrete, and even strategies that incorporate state or input memory struggle because the required44
memory length depends on the magnitude of the perturbations; insufficient memory can trap the45
system in critical areas. More complex solutions—such as adaptive input spaces—further reduce46
policy interpretability. Moreover, even when temporal regulation is employed in such ways, the exe-47
cution duration of a policy or option is not explicitly linked to robustness against chattering, offering48
no guarantees that rapid switching will be prevented. To address these limitations, we complement49
the prior works by developing a new state value function-based approach that robustifies RL-based50
supervisory policies.51

Motivated by these challenges, we propose a novel hybrid supervisor that maintains the performance52
of the underlying policies and prevents chattering. In particular, the hybrid supervisor deploys a53
timer-based mechanism to predict and enforce a dwell period between policy switches. In Section 4,54
we provide a formal analysis of the proposed hybrid supervisor, establishing properties such as non-55
Zeno behavior and robustness to measurement noise. In Section 5, we validate our approach through56
numerical simulations on a representative decision-making problem.1 Section 3 further motivates57
our work by presenting a detailed problem formulation and an illustrative example of the chattering58
issues observed with conventional switching strategies.59

2 Preliminaries60

2.1 Notation61

The following notation is used throughout the paper. The n-dimensional Euclidean space is denoted62
by Rn. The real numbers are denoted by R. The nonnegative real numbers are denoted by R≥0,63
i.e., R≥0 := [0,∞). The positive real numbers are denoted by R>0, i.e., R>0 := (0,∞). The natural64
numbers including 0 are denoted by N, i.e., N := {0, 1, 2, ...}. The natural numbers excluding 0 are65
denoted by N>0, i.e., N>0 := {1, 2, ...}. The empty set is denoted by ∅. The interior of the set S is66
denoted by int (S). The boundary of the set S is denoted by ∂S. The closed unit ball, of appropriate67
dimension and centered at the origin, in the Euclidean norm is denoted by B. The Euclidean norm of68
the vector x is denoted by |x|. The distance from x to the nonempty set S is denoted by |x|S , which69
is given by infy∈S |x − y|. The domain of a map f is denoted by dom f . The signum function is70
denoted by sgn and is defined as sgn(χ) := −1 if χ < 0 and sgn(χ) := 1 if χ ≥ 0. The tangent cone71
to the set S ⊂ Rn at χ ∈ Rn is denoted by TS(χ) and defined as the set of all vectors w ∈ Rn for72
which there exists sequences χi ∈ S, τi > 0 with χi → χ, τi ↘ 0, and w = limi→∞

χi−χ
τi

. A set-73
valued map F is outer semicontinuous if for each x ∈ dom F , every sequence of points xi ∈ dom F74
converging to x is such that every sequence yi ∈ F (xi) converging to y satisfies y ∈ F (x). A set-75
valued map F is outer semicontinuous if and only if its graph, denoted by gph(F ), is closed. If F76
is single-valued and continuous, it is also outer semicontinuous.77

2.2 Reinforcement Learning Framework78

Markov decision processes (MDPs) are used as a formalism for RL (Puterman, 1994). In an MDP,79
the learner/controller is referred to as the agent and interacts with an environment. The state of the80
agent z ∈ Z , where Z ⊂ Rn is a set of states, evolves according to its continuous-time dynamics81

ż = f(z, u), (1)

1All simulation files are available in the supplementary material.
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where f : Z × U → Z and u ∈ U is the control input, where U ⊂ Rm is a set of actions. For82
computational purposes, the continuous-time dynamics (1) are discretized to yield the discrete-time83
system84

z+ = z + f(z, u)∆t, (2)

where z+ ∈ Z is the next value of the state z and ∆t ∈ R>0 is the sampling time in seconds. A so-85
lution pair to (2) of length J ∈ N∪{∞} is denoted by (z, u) = {(z0, u0), (z1, u1), . . . , (zj , uj)} =86
{(zj , uj)}Jj=0 ∈ S, where S is the set of solution pairs to (2). The discounted reward func-87
tional V : S → R maps solutions of (2) to a scalar, that is, the discounted reward, and is defined88
as89

V(z, u) :=
J∑

j=0

γjR(zj , uj), (3)

where (z, u) is a solution pair to (2), γ ∈ (0, 1) is the discount factor, and R : Z × U → R is the90
reward function. The state value function for a policy π : Z → U is given by91

Ṽ π(z0) = V(z, π(z)) =
J∑

j=0

γjR(zj , π(zj)), (4)

where (z, u) is the unique solution pair of (2) starting from z0 under the policy π. In this work, we92
apply value iteration to obtain an approximate state value function V : Z → R that approximates the93
true state value function Ṽ π defined in (4). We represent V using a multi-layer perceptron (MLP)94
with L layers and continuously differentiable activation functions, such as the sigmoid or hyperbolic95
tangent function. The approximate state value function is given by96

V (z; θ) = WL h
(
WL−1 h

(
· · · h

(
W1z + b1

)
· · ·

)
+ bL−1

)
+ bL, (5)

where θ = {W1,W2, . . . ,WL, b1, b2, . . . , bL} denotes the collection of weights and biases, and h :97
R → R is a continuously differentiable activation function. For conciseness, we omit the explicit98
dependency on the network parameters θ in the remainder of the paper. The value iteration algo-99
rithm implemented is analogous to the training of the critic network in actor-critic methods, such as100
Proximal Policy Optimization (PPO) (Schulman et al., 2017).2101

2.3 Hybrid Systems102

A hybrid system H = (C,F,D,G) is defined as103

H :

{
ẋ = F (x) x ∈ C

x+ = G(x) x ∈ D
(6)

where x ∈ Rn denotes the state variable, x+ the state variable after a jump, F : C → Rn104
is a function referred to as the flow map, C ⊂ Rn is the set of points referred to as the flow105
set, G : D → Rn the jump map, and D ⊂ Rn is the jump set. When the state is in the flow set, the106
state is allowed to evolve continuously and is described by the differential equation defined by the107
flow map. When the state is in the jump set, the state is allowed to be updated using the difference108
equation defined by the jump map. In this way, with some abuse of notation, the solution to (6) is109
given by a function (t, j) 7→ x(t, j) defined on a hybrid time domain, which properly collects values110
of the ordinary time variable t ∈ R≥0 and of the discrete jump variable j ∈ N. The hybrid system H111
allows for the combination of continuous-time behavior (flow) with discrete-time behavior (jumps).112
For more details on hybrid dynamical systems, see Goebel et al. (2012); Sanfelice (2021).113

2For details on the implementation of the value iteration algorithm, see the attached .zip file.
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3 Motivation114

3.1 Problem Definition115

We consider systems described by the dynamics in (1). The control input to this system is provided116
by a continuous policy πq ∈ Π := {π1, π2, . . . , πN}, πq : Z → U selected from a policy bank Π,117
where each policy πq maps states to control actions and N ∈ N>0 is the number of policies in the118
policy bank Π. Furthermore, each policy asymptotically stabilizes a compact set. A continuously119
differentiable approximate state value function Vq : Z → R of the form (5) is obtained for each120
policy πq ∈ Π for q ∈ Q := {1, 2, . . . , N} via RL. The problem to solve is defined as follows:121

122

Problem (⋆) Design a state value function-based switching logic that:123

(P1) Preserves the properties of the individual policies, namely, inducing asymptotic stability of a124
compact set;125

(P2) Achieves overall performance, as measured by the state value function, that is at least as good126
as—and, if possible, better than—that obtained by holding any individual policy; and127

(P3) Prevents chattering under measurement noise by guaranteeing a robustness margin ε > 0 such128
that for every measurement noise m satisfying |m| ≤ ε, the switching mechanism prevents129
rapid switching (chattering).130

A straightforward switching logic that selects the value of q corresponding to the highest state value131
function Vq for the current state z solves (P1) and (P2); however, it may not be robust against132
measurement noise as required in (P3), as illustrated in the following example.133

Example 1 (Stabilizing two disconnected points on a line). We consider a system evolving on a134
line with the state z ∈ Z ⊂ R and dynamics ż = u, where u ∈ [−1, 1] is the control input. The135
problem to solve consists of robustly globally asymptotically stabilizing the set Z∗ := {z∗1 , z∗2} :=136
{−1, 1} ⊂ Z , which consists of two disconnected setpoints, by designing a supervisory policy to137
select between the two available policies, π1 and π2, based on the observation vector138

o(z +m) =

[
z +m− z∗1
z +m− z∗2

]
, (7)

where m ∈ R represents the measurement noise. The policies are given by139

πq(z) = z∗q − z, (8)

for each z ∈ Z and each value of the logic variable q ∈ {1, 2} := Q. It can be shown that each pol-140
icy in (8) globally asymptotically stabilizes one of the setpoints, namely, π1 globally asymptotically141
stabilizes z∗1 and π2 globally asymptotically stabilizes z∗2 . The value iteration algorithm is applied142
to find the approximate state value functions Vq for q ∈ Q subject to the reward function143

R(z) = −c1|z|Z∗ , (9)

which has a global maximum for z = z∗, where c1 ∈ R>0 is a constant, discount factor γ = 0.9,144
sampling time of ∆t = 0.05 seconds, and a horizon of 100 time steps.145

The supervisory policy Q∗ : Z → Q that maps the state z to the logic variable q is given by146

Q∗(z) := {q ∈ Q : Vq(z) = max
q̄∈Q

Vq̄(z)} (10)

namely, the value of q corresponds to the highest approximate state value function Vq for the current147
state z.3 For the state value function VQ∗ corresponding to deploying the supervisory policy Q∗ it148
follows by the definition of Q∗ that VQ∗(z) ≥ Vq(z) for all z ∈ Z . Figure 1 shows the approximate149

3For certain states, multiple maximizers may exist for the state value functions in the policy bank.
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Figure 1: Left, the approximate state value function V1, in blue, and V2, in green, for the policies π1

and π2, respectively. Right, the resulting control policy by applying the supervisory policy Q∗. The
setpoints Z∗ are denoted by the red stars.

state value function V1 and V2 for the policies π1 and π2, respectively, and the resulting control150
policy by applying the supervisory policy Q∗. Figure 1 shows that in the region z ∈ [z∗1 , z

∗
2 ], the151

supervisory policy Q∗ selects the logic variable q corresponding to the closest setpoint: policy π1152
(q = 1) when z ≤ 0 to stabilize z∗1 , and policy π2 (q = 2) when z > 0 to push solutions towards z∗2 .153
Conversely, in the regions z ∈ [−3,−1.6) ∪ (1.6, 3], the supervisory policy Q∗ opts for opposing154
policies: policy π2 (q = 2) when z < −1.6, and policy π1 (q = 1) when z > 1.6∗. This exploita-155
tive selection can be attributed to the opposing policies in these regions yielding a larger control156
input than the corresponding policies while maintaining the same sign of the control input. Specifi-157
cally, π2(z) > π1(z) for all z ∈ [−3,−1.6) and π1(z) < π2(z) for all z ∈ (1.6, 3], as can be seen158
in Figure 1. Hence, solutions evolve towards z∗ quicker under the exploitative selection.4159

Figure 1 shows that the resulting control policy by applying the supervisory policy Q∗ is piecewise160
continuous. In particular, the resulting control policy changes its decision for a small change in161
the state z near zc := 0, referred to as a critical state. Recall that ż = u, hence near this critical162
state, ż > 0 for z ∈ (zc, z

∗
2) and ż < 0 for z ∈ (z∗1 , zc). To highlight the issue near zc, suppose the163

system is in the region z ∈ (zc − ε, zc), where ε > 0. Without measurement noise, the supervisory164
policy Q∗ selects policy π1 as the system is in the subset of the region z ∈ (z∗1 , zc). However, with165
a small perturbation m = ε, the measured state is in the region z + m ∈ (zc, zc + ε), placing it166
in the subset of the region z ∈ (zc, z

∗
2) and causing the supervisory policy Q∗ to select policy π2.167

At the next sampling interval, that is, when the supervisory policy Q∗ makes its next decision, the168
system moves to the region z ∈ (zc, zc+ε) due to the previous selection of policy π2. This time, with169
a perturbation m = −ε, the measured state is z + m ∈ (zc − ε, zc), resulting in the supervisory170
policy Q∗ selecting policy π1 and pushing the system back to into the region (zc − ε, zc). Repetition171
of this pattern causes the system to chatter around the critical state zc.5 Figure 2b illustrates this172
chattering behavior. In Figure 2, the solutions of the closed-loop system using the supervisory173
policy Q∗ are shown for various initial conditions in the presence of the measurement noise signal174
given by175

m(t) = εmsgn(t), (11)

where ε ∈ R≥0 is the magnitude of the measurement noise and msgn is a function that changes its176
sign at every sampling time interval ∆t = 0.05 and is given by177

msgn(t) = sgn
(
cos

(
πt

∆t

))
∀t ≥ 0, (12)

where sgn is the signum function. Figure 2b shows that the solutions starting away from zc converge178
to the set Z∗. However, for the solutions starting near zc, the measurement noise (11) causes179
solutions to chatter around zc and prevents convergence to the set Z∗. Figure 2 shows that the180
supervisory policy Q∗ indeed causes the chattering behavior due to the applied measurement noise181
as the supervisory policy Q∗ switches its decision from q = 1 to q = 2, and vice versa, for each182
sampling time interval near z = zc.183

4The supervisory policy Q∗ is not necessarily the optimal switching strategy; however, is better or equal to a non-
switching strategy.

5The decision of the supervisory policy Q∗ changes near z ∈ {−1.6, 1.6} as well; however, as both policies have an
equal sign for these points, chattering does not occur at these points.
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(a) Noise magnitude ε = 0.
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(b) Noise magnitude ε = 0.3.

Figure 2: The solutions of the closed-loop system using the supervisory policy Q∗ plotted over
the approximate state value function V1, in blue, and V2, in green, for the policies π1 and π2, re-
spectively, and over time under the measurement noise signal (11) of magnitude ε ∈ {0, 0.3}, for
Example 1. The solutions plotted over the state value functions are displayed by the dashed red
lines with initial conditions denoted by the circles and terminal conditions by the crosses. The set-
points Z∗ are denoted by the red stars.

To address the issue of chattering in the supervisory policy, we propose a state value function-based184
switching approach that ensures the resulting hybrid closed-loop system is robust to measurement185
noise and robustly globally asymptotically stabilizes a compact set.186

4 Hybrid Supervisors187

In this section, we first define a class of systems and establish state value function-based conditions188
that characterize critical areas, where multiple policies appear equally “good”, and small pertur-189
bations can trigger undesired chattering behavior and performance degradation. Using these con-190
ditions, we then propose a hybrid supervisor that deploys a timer-based mechanism to predict and191
enforce a dwell period between policy switches.192

4.1 Class of Systems193

The focus is on systems where, in certain regions of the state space, multiple policies are locally194
equally optimal choices. However, small perturbations in observations within these regions can lead195
to rapid switching between decisions, resulting in undesired chattering behavior and performance196
degradation. These regions are referred to as critical areas. From a state value function-based per-197
spective, critical areas occur in regions of the state space where small perturbations in observations198
can lead to rapid switching between decisions, causing chattering and performance degradation.199
Given a policy bank Π with continuous policies πq : Z → U for q ∈ Q, continuously differentiable200
approximate state value functions Vq : Z → R of the form (5), and continuous-time dynamics as201
in (1), where Z is closed, critical areas are identified by the following conditions:202

(◦) for each z ∈ M∗ ⊂ Z , there exist q, p ∈ Q∗(z), q ̸= p, such that203

Vq(z) = Vp(z), (13)
204

⟨∇Vq(z), f(z, πq(z)⟩ > 0 and ⟨∇Vp(z), f(z, πp(z)⟩ > 0, (14)
205

⟨∇Vq(z), f(z, πp(z)⟩ < 0 and ⟨∇Vp(z), f(z, πq(z)⟩ < 0. (15)

Therefore, the set M∗ is defined as:206

M∗ := {z ∈ Z :∃q ∈ Q∗(z), p ∈ Q∗(z) \ {q} : Vp(z) = Vq(z),

⟨∇Vq(z), f(z, πq(z)⟩ > 0, ⟨∇Vp(z), f(z, πp(z)⟩ > 0,

⟨∇Vq(z), f(z, πp(z)⟩ < 0, ⟨∇Vp(z), f(z, πq(z)⟩ < 0}.
(16)

The conditions in (◦) can be interpreted as follows. Condition (13) identifies states z where multiple207
policies πq and πp are equally optimal, allowing a supervisory policy to select either q or q′ .208
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Condition (14) indicates that the state value functions Vq and Vp increase locally when following209
their respective policies πq and πp . Conversely, condition (15) shows that the state value functions210
decrease when following the opposing policies πp and πq , respectively. Together, these conditions211
are used to define the following partitions of the state space Z near the critical areas M∗.212

Lemma 1. Under the conditions in (◦), there exists δ > 0 such that the set M∗+ δB can be written213
as214 ⋃

q∈Q′

Zq ⊂ M∗ + δB, (17)

where Q′ := Q∗(M∗) =
⋃

z∈M∗ Q∗(z) ⊂ Q and, for each q ∈ Q′, the partition215

Zq :=
⋂

p∈Q′\{q}

{z ∈ Z ∩ (M∗ + δB) : Vq(z)− Vp(z) ≥ 0} (18)

satisfies216

(A1) Zq is closed for each q ∈ Q′;217

(A2) Vq(z) > Vp(z) for all z ∈ int (Zq) and p ∈ Q′ \ {q}; and218

(A3) int (Zq) ∩ int (Zp) = ∅ for all q, p ∈ Q′, p ̸= q.219

The proof of Lemma 1 can be found in the supplementary material.220

By Lemma 1, there exists an arbitrarily small δ > 0 such that the neighborhood M∗ + δB is221
partitioned into regions Zq with disjoint interiors, where each Zq corresponds to a region where Vq222
is strictly larger than Vp for all q, p ∈ Q′, p ̸= q. Suppose, without loss of generality, that z ∈ Zq223
for some q ∈ Q′. Then, due to the properties in Lemma 1, every point z ∈ M∗ + δB is δ close224
to some boundary between Zq and Zp. Therefore, there exists a perturbation m ∈ δB, for which225
the perturbed state z + m belongs to Zp. Consequently, even though z initially lies in Zq , the226
perturbation leads to the selection of policy πp. Since z + m is in M∗ + δB, conditions (14)227
and (15) ensure that if p is chosen in Zq , Vp increases while Vq decreases, effectively making M∗228
attractive. That is, the system is "pulled" back toward the critical area. Subsequent perturbations can229
then induce a switch back to q, leading to chattering between policies near the critical area.230

4.2 Timer-based Hybrid Supervisor231

The hybrid supervisor employs a timer to prevent chattering near critical areas. This timer-based232
approach sets a dwell time parameter based on the state value functions and a noise-free model of233
the system dynamics, ensuring a minimum waiting period before another policy switch is allowed.234

The hybrid closed-loop system H = (C,F,D,G) models the continuous evolution (flow) and dis-235
crete updates (jumps) of its state, which consists of the system state z of (1), a timer τ ∈ R≥0, the236
logic variable q ∈ {1, 2, . . . , N} =: Q, where N ∈ N>0 is the number of policies in the policy237
bank, and an adjustable dwell time parameter δd ∈ R>0. The adjustable dwell time parameter δd238
dictates the amount of time that needs to elapse before the applied policy can be changed, namely,239
to change q. The state is defined as x = (z, τ, q, δd) ∈ X := Z ×R≥0×Q×R≥0. The flow map F240
governs the continuous evolution of each state component, the flow set C specifies the conditions241
under which the state components can flow, the jump map G governs the discrete updates, and the242
jump set D defines the conditions under which the state components can jump.243

During flows, the state z evolves according to its dynamics (1) under the selected policy πq from the244
policy bank. Furthermore, the policy decision stored in q and the adjustable dwell time parameter δd245
do not change during flows. On the other hand, the timer τ evolves linearly with a constant rate of246
one so as to count ordinary time. The flow map F that captures this behavior is given by247 

ż
τ̇
q̇

δ̇d

 = F (x) :=


f(z, πq(z))

1
0
0

 x ∈ C. (19)
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The system flows whenever the timer τ is less than or equal to the adjustable dwell time parameter δd,248
or when the logic variable q corresponds to the highest state value function for the current value of249
the state z, leading to the flow set C := C0 ∪ C1, where250

C0 := {x ∈ X : τ ≤ δd}, (20)

and251
C1 := {x ∈ X : q ∈ Q∗(z)}, (21)

where Q∗ is given by (10). The jump map G is given by252 
z+

τ+

q+

δ+d

 ∈ G(x) :=


z
0{[

q′

min
(
T (z, q′) ∪

{
δ̄d
})] : q′ ∈ Q∗(z)

}
 x ∈ D, (22)

where253

T (z, q) :=
{
η ∈ [0, δ̄d] :

max
q̄∈(Q\{q})

Vq̄ (χ(η))− Vq (χ(η))

|Vq (χ(η)) |+ ϵ
≥ µ,

where χ̇ = f (χ, πq(χ)) , χ(0) = z
}
,

(23)

where ϵ ∈ R>0 is a very small constant (e.g., ϵ ≪ 1) used to avoid division by zero, µ ∈ R>0254
is a constant, and δ̄d ∈ R>0 is the maximum value of the dwell time parameter. The set-valued255
map T : Z ⇒ [0, δ̄d] gathers all time horizons up to δ̄d at which a significant relative improvement256
(as determined by µ) over the current optimal policy q′(z) is predicted. To clarify the construction257
of the ratio in (23), suppose that, for some q ∈ Q and for some η ∈ [0, δ̄d], we have Vq(χ(η)) > 0.258
Then the ratio in (23) can be written as259

Vq̄(χ(η)) ≥ µ(|Vq(χ(η))|+ ϵ) + Vq(χ(η)) > (1 + µ)Vq(χ(η)), (24)

where q̄ ∈ Q\{q}. This inequality indicates that the policy with index q̄ yields a return that is more260
than 1+µ times the return of policy q at η seconds in the future. Next, suppose that, for some q ∈ Q261
and for some η ∈ [0, δ̄d], we have Vq(χ(η)) < 0. In this case, the ratio in (23) can be written as262

Vq̄(χ(η))− Vq(χ(η)) ≥ µ(|Vq(χ(η))|+ ϵ) > µ|Vq(χ(η))|, (25)

where again q̄ ∈ Q\{q}. Here, the inequality shows that the difference in return between the policy263
with index q̄ and the policy with index q is greater than µ times the return of policy q at η seconds in264
the future. Notice that the absolute value in the term |Vq(χ(η))| is essential. Suppose again that, for265
some q ∈ Q and for some η ∈ [0, δ̄d], we have Vq(χ(η)) < ϵ. In this case, if we were to omit the266
absolute value, the ratio in (23) would be written as267

Vq̄(χ(η)) ≤ µ
(
Vq(χ(η)) + ϵ

)
+ Vq(χ(η)) = (µ+ 1)Vq(χ(η)) + µϵ. (26)

Since Vq(χ(η)) < ϵ, the sum Vq(χ(η)) + ϵ is negative, which makes the right-hand side of (26)268
negative as well. This means that the inequality would hold even if the return of policy q̄ is actually269
worse than 1 + µ times the return of policy q at η seconds in the future. By including the absolute270
value, we ensure a meaningful comparison of returns regardless of the sign of Vq(χ(η)).271

The constant ϵ > 0 ensures the ratio is well-defined even when Vq(χ(η)) is close to zero. In (23), the272
trajectory χ(η) with χ(0) = z is a solution of χ̇ = f(χ, πq(χ)) for η ∈ [0, δ̄d]. For each alternative273
policy πq̄ with q̄ ∈ Q \ {q}, we compare Vq(χ(η)) with Vq̄(χ(η)). Whenever the resulting ratio274
meets or exceeds the threshold µ, the corresponding η is included in T (z, q). In (22), it can be seen275
that, at jumps, the state z remains unchanged, and the logic variable q is updated to correspond to the276
index of one of the state value functions with largest value, that is q is reset to a point in Q∗(z), the277
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timer τ is reset to 0, and the adjustable dwell time parameter δd is reset to the minimum between the278
smallest time horizon in T (z, q) or to the maximum dwell time δ̄d. If the set T (z, q) is empty, which279
is possible when no significant improvement is observed over the current optimal policy within the280
time horizon δd, then δd is reset to δ̄d.281

The system jumps whenever the state is in the jump set D, which is defined as282

D := {x ∈ X : τ ≥ δd , q ∈ Q \Q∗(z)}. (27)

In (27), it can be seen that the jump in (22) occurs whenever the timer is greater than or equal to283
the adjustable dwell time parameter δd and the logic variable q does not correspond to a state value284
function with the largest value.285

Next, the key properties of the hybrid closed-loop system H in (19)-(27) are discussed. The first286
property, namely the hybrid basic conditions, is a set of mild conditions on the data (C,F,D,G) of287
the hybrid closed-loop system H. These conditions are required to ensure that asymptotically stable288
compact sets of the hybrid closed-loop system H are robust against disturbances.289

Proposition 1. The hybrid closed-loop system H in (19)-(27) satisfies the hybrid basic conditions290
if, for each q ∈ Q, the approximate state value function Vq : Z → R in (5) is continuous and the291
policy πq : Z → U and f : Z × U → Z are Lipschitz continuous.292

Proof Sketch. We show that the hybrid system H satisfies the required properties. First, both the293
flow set C and the jump set D are closed subsets of X . Next, the flow map F is single-valued294
and constructed from Lipschitz continuous policies πq and dynamics f , which implies its continuity295
on C. This continuity ensures that F is outer semicontinuous, locally bounded and that its values296
are convex. For the jump map G, the analysis is performed for each state component. The z and τ297
components are continuous. The q component is outer semicontinuous as Q∗ is shown to be outer298
semicontinuous. The δd component is determined by a set-valued map given as the inverse image299
of a closed set under a continuous function and is thus outer semicontinuous. Together with the300
appropriate boundedness properties, these facts establish that H meets the desired conditions. For301
the detailed proof, see the supplementary material.302

The following proposition shows that under mild continuity and Lipschitz conditions, the hybrid303
closed-loop system H in (19)-(27) has nontrivial solutions for every initial state in the flow or jump304
set. Without this guarantee, the algorithm could get stuck, preventing further progress.305

Proposition 2. Suppose, for each q ∈ Q, the approximate state value function Vq : Z → R in (5) is306
continuous and the policy πq : Z → U and f : Z × U → Z are Lipschitz continuous. Then, there307
exists a nontrivial solution x to the hybrid closed-loop system H in (19)-(27) for each x◦ ∈ C ∪D308
with x(0, 0) = x◦. Furthermore, every maximal solution x to H is complete, not Zeno, and every309
bounded solution x to H has jump times that are uniformly lower bounded by a positive constant,310
that is, for each bounded solution x to H there exists γ > 0 such that tj+1 − tj ≥ γ for all j ≥ 1,311
where tj denotes the time at jump j.312

Proof Sketch. We show that every initial state yields a well-behaved solution. First, during continu-313
ous evolution, the state either lies in an open region when τ < δd, or, if on the boundary when τ ≥ δd314
with q ∈ Q∗(z), the allowed directions, described by the tangent cone, still contain the flow map F .315
This ensures that the system can always flow. When a jump occurs, the jump map resets the timer316
and updates q to an optimal value while keeping z unchanged so that the state is moved back into a317
region where continuous evolution can resume and jumps cannot occur in rapid succession. More-318
over, under the global Lipschitz condition on F , solutions can be extended for all time, ruling out319
issues like Zeno behavior. For the detailed proof, see the supplementary material.320

Theorem 1. Suppose, for each q ∈ Q, the approximate state value function Vq : Z → R in (5) is321
continuous and the policy πq : Z → U and f : Z ×U → Z are Lipschitz continuous. Furthermore,322
each policy πq ∈ Π globally asymptotically stabilizes a compact set Z∗

q , where Z∗ :=
⋃

q∈Q Z∗
q ,323
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Figure 3: The solutions of the hybrid closed-loop system H in (19)-(27), where µ = 0.1 and δ̄d =
0.5, over the approximate state value function V1, in blue, and V2, in green, for the policies π1 and π2,
respectively, and over time under the measurement noise signal (11) of magnitude ε ∈ {0, 0.3}, for
Example 1. The solutions plotted over the state value functions are displayed by the dashed red
lines with initial conditions denoted by the circles and terminal conditions by the crosses. The
setpoints Z∗ are denoted by the red stars.

the reward function in (4) has a global maximum at Z∗, and the reward function is strictly decreas-324
ing as the distance from Z∗ increases. Then, the hybrid closed-loop system H in (19)-(27) solves325
Problem (⋆).326

Proof Sketch. We construct a hybrid Lyapunov function based on the state value functions, which327
is positive outside the desired set and decreases strictly along both flows and jumps. During flows,328
the continuous dynamics under each policy drive the state toward the target set Z∗, while at jumps,329
the switching mechanism selects a policy that maximizes the value function. In addition, the jump330
mechanism enforces a positive dwell time, ensuring that switches cannot occur too rapidly. Together,331
these properties ensure that the hybrid closed-loop system maintains or improves performance and332
prevents chattering. For the detailed proof, see the supplementary material.333

Example 2 (Stabilizing two disconnected points on a line, revisited). The solutions of the hybrid334
closed-loop system H in (19)-(27) are shown in Figure 3 for various initial conditions in the presence335
of the measurement noise signal (11) of magnitude ε ∈ {0, 0.3}. Furthermore, the parameters in336
the jump set (27) are chosen as µ = 0.1 and δ̄d = 0.5.6 Figure 3b shows that the hybrid closed-337
loop system H in (19)-(27) is robust against the perturbation that caused the switching logic (10)338
in Example 1 Figure 2b to chatter. Furthermore, the rapid policy switching that occurs near z ∈339
{−1.5, 1.5} in Figure 2b is also prevented by the hybrid switching logic.340

4.3 Design Considerations341

The timer-based approach relies on predicting the system state using a dynamic model, which can342
be computationally expensive. The maximum dwell time δ̄d in (22) sets the upper limit for the343
prediction horizon. If δ̄d is set too low, the prediction horizon may be insufficient for the system344
to exit critical regions, thereby reducing robustness; if it is set too high, the increased computa-345
tional cost—and, when combined with a high threshold parameter µ in (23), the potential for pro-346
longed adherence to a suboptimal policy—may degrade performance. The parameter µ serves as a347
safeguard against rapid switching when the state value functions of competing policies are nearly348
equal. Together, δ̄d and µ balance the trade-off between computational efficiency, exploitative policy349
switching, and robustness.350

In practice, the parameters δ̄d and µ can be determined from prior knowledge of the system dynamics351
or tuned iteratively based on observed chattering behavior. Alternatively, these parameters may be352
made state-dependent and integrated into the learning process as part of the overall control strategy.353

6The design/choice of µ and δ̄d is discussed in Section 4.3.
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Figure 4: Visualization of the reward function 28 (located left in each sub-figure) and Q∗ (located
right in each sub-figure) without and with the periodic variations. The setpoints Z∗ are denoted by
the red stars.

5 Application354

We consider a system evolving on a plane with the state z = (zx, zy) ∈ Z ⊂ R2,355
with zx ∈ R and zy ∈ R being the coordinates along the x− and y−axes, respectively,356
and dynamics ż = u, where u ∈ [−1, 1]2 is the control input. The problem to solve357
consists of robustly globally asymptotically stabilizing the set Z∗ := {z∗1 , z∗2 , z∗3 , z∗4} :=358
{(−1, 0.2), (−0.1, 1), (0.9,−0.1), (−0.4,−0.9)} ⊂ Z , which consists of four disconnected set-359
points, by designing a supervisory policy to select between the four available policies, π1, π2, π3360
and π4, based on the observation vector o(z + m) = z + m, where m ∈ R2 represents the mea-361
surement noise. The policies are given by (8) for each z ∈ Z and each value of the logic vari-362
able q ∈ {1, 2, 3, 4} := Q. It can be shown that each policy globally asymptotically stabilizes363
one of the setpoints, namely, π1 globally asymptotically stabilizes z∗1 , π2 globally asymptotically364
stabilizes z∗2 , π3 globally asymptotically stabilizes z∗3 , and π4 globally asymptotically stabilizes z∗4 .365
The value iteration algorithm is applied to find the approximate state value functions Vq for q ∈ Q366
subject to the reward function367

R(z) = −c1|z|Z∗

(
1 +

1

2
sin(c2zx) cos(c3zy)

)
, (28)

which has a global maximum for z = z∗, where c1, c2, c3 ∈ R>0 are constants, discount fac-368
tor γ = 0.9, sampling time of ∆t = 0.025 seconds, and a horizon of 100 time steps. The369
term 1 + 1

2 sin(c2zx) cos(c3zy) introduces periodic variations in the reward function, creating lo-370
cal minima and maxima across the state space. As a result, following the shortest Euclidean path to371
a setpoint is not necessarily optimal—certain indirect trajectories may yield a higher long-term re-372
turn. This makes determining the optimal regions for each policy—the regions where a given policy373
has the highest corresponding state value function, namely Q∗ (10)—nontrivial. Consequently, this374
leads to more complex switching boundaries and decision regions, as shown in Figure 4.375

Figure 5 compares the closed-loop system solutions under the two different supervisors. The first376
row displays the supervisory policy Q∗, given by (10), while the second displays the timer-based377
hybrid supervisor. The timer-based hybrid supervisor, introduced in Section 4.2, is given by (19)-378
(27) with parameters δ̄d = 0.5 and µ = 0.15. The trajectories are plotted over the optimal policy379
regions Q∗ and over time under the influence of a measurement noise signal, given by380

m(t) =

[
ε
−ε

]
msgn(t), (29)

where the noise magnitude is ε ∈ {0, 0.1}. The first row of Figure 5 shows that the supervisory381
policy Q∗ is highly sensitive to measurement noise, leading to chattering and, in some cases, failure382
to reach the target set Z∗. In fact, even one initial condition exhibits chattering in the absence of383
noise. In contrast, the second row demonstrates that the hybrid supervisor successfully mitigates384
chattering and consistently guides the system to Z∗ for all considered initial conditions, even under385
the same measurement noise that caused instability in Q∗.386
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Figure 5: The solutions of the (hybrid) closed-loop system using the supervisory policy Q∗ (first
row) and the timer-based hybrid supervisor from Section 4.2 (second row), plotted over Q∗, and
over time under the measurement noise signal (29) of magnitude ε ∈ {0, 0.1}. The solutions plotted
over the optimal regions for each policy are displayed by the black dashed lines with initial condi-
tions denoted by the circles and terminal conditions by the crosses. The solutions plotted over time
illustrate at what time the switches between policies occur. The setpoints Z∗ are denoted by the red
stars.

Remark. The problem setup in this section generalizes to a wide range of real-world decision-387
making problems where multiple strategies are available, but selecting the best one at any moment388
is challenging due to limited information and long-term trade-offs. Furthermore, adversaries or ex-389
ternal agents can deliberately influence the environment to induce frequent or premature switching.390
In such cases, an agent may be misled into abandoning a good strategy too soon or committing to391
a suboptimal one, leading to inefficient or unintended behavior. An example is video game strat-392
egy selection, where a player or AI agent must decide when to commit to a specific tactic—such393
as aggressive attacks, defensive positioning, or resource gathering. While frequent switching may394
seem advantageous in response to short-term rewards, it can lead to inefficiencies or poor over-395
all performance. Moreover, in competitive settings, a clever opponent may manipulate the game396
state to bait the player into unnecessary switching, exploiting hesitation or uncertainty to gain an397
advantage. This mirrors real-world decision-making problems where adversarial environments or398
strategic opponents introduce uncertainty, making robust strategy selection crucial.399

6 Conclusion400

This paper presents a novel timer-based hybrid supervisor that leverages state value functions for ro-401
bust switching among multiple policies. The supervisor predicts and enforces a minimum dwell time402
between policy switches, thereby preventing chattering even under bounded measurement noise. It403
also ensures that overall performance is maintained or improved relative to any fixed policy while404
preserving the asymptotic stability of the individual policies. Sufficient conditions are presented405
for non-Zeno behavior and robust asymptotic stability of the hybrid closed-loop system. Numerical406
simulations on representative decision-making problems demonstrate that the supervisor effectively407
mitigates rapid switching and drives the system toward the desired target set even under noisy con-408
ditions, where a conventional switching strategy fails.409
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Supplementary Materials458

The following content was not necessarily subject to peer review.459
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Proof of Lemma 1. For each fixed q ∈ Q′, consider any p ∈ Q′ \ {q}. Since both Vq and Vp are461
continuous, the function462

gp(z) := Vq(z)− Vp(z) ∀z ∈ Z (30)

is continuous. Moreover, the set Z is closed, and since B is closed, the set M∗ + δB is closed as463
well. The intersection of these two closed sets is, therefore, closed. Consequently, the set464

Sp := {z ∈ Z ∩ (M∗ + δB) : gp(z) ≥ 0} (31)

is closed, as it is the preimage of the closed set [0,∞) under gp. Since Zq in (18) is an intersection465
of closed sets, it follows that Zq is closed for each q ∈ Q′. Thus, condition (A1) is satisfied.466

Furthermore, the set Zq can be written as467

Zq :=
⋂

p∈Q′\{q}

{z ∈ Z ∩ (M∗ + δB) : Vq(z)− Vp(z) ≥ 0} =
⋂

p∈Q′\{q}

Sp. (32)

The interior of Z is therefore468

int (Zq) = int

 ⋂
p∈Q′\{q}

Sp

 ; (33a)

=
⋂

p∈Q′\{q}

int (Sp); (33b)

=
⋂

p∈Q′\{q}

int ({z ∈ Z ∩ (M∗ + δB) : gp(z) ≥ 0}); (33c)

=
⋂

p∈Q′\{q}

{z ∈ Z ∩ (M∗ + δB) : gp(z) > 0}; (33d)

=
⋂

p∈Q′\{q}

{z ∈ Z ∩ (M∗ + δB) : Vq(z)− Vp(z) > 0}. (33e)

Hence, for each z ∈ int (Zq), it holds that Vq(z) > Vp(z), proving condition (A2).469

Suppose for contradiction that there exists a point470

z ∈ int (Zq) ∩ int (Zp) (34)

for distinct q, p ∈ Q′. Then by (A2), since z ∈ int (Zq) we have471

Vq(z) > Vp(z), (35)

and since z ∈ int (Zp) we have472
Vp(z) > Vq(z). (36)

This contradiction shows that such a z cannot exist, so473

int (Zq) ∩ int (Zp) = ∅. (37)

Thus, condition (A3) is satisfied.474

Proof of Proposition 1. According to Sanfelice (2021, Theorem 2.20), H satisfies the hybrid basic475
conditions if476

14



A Timer-Based Hybrid Supervisor for Robust, Chatter-Free Policy Switching

(B1) C and D are closed subsets of X ;477

(B2) F is outer semicontinuous and locally bounded relative to C, C ⊂ dom F , and F (x) is478
convex for each x ∈ C;479

(B3) G is outer semicontinuous and locally bounded relative to D, and D ⊂ dom G.480

By definition, the flow set C in (20)-(21) and the jump set D in (27) are closed subsets of X ,481
satisfying condition (B1).482

The flow map F in (19) is a single-valued map. By assumption, the policies πq and state dynamics f483
are Lipschitz continuous for each q ∈ Q. Furthermore, the policies πq and state dynamics f are484
defined for each z ∈ Z by assumption. These assumptions ensure that F is continuous on C.485
Consequently:486

• The domain of F satisfies C ⊂ dom F = X ;487

• The continuity of F implies that F is outer semicontinuous;488

• The continuity of F also guarantees that F is locally bounded relative to C;489

• Since F is a single-value map, F (x) is trivially convex for each x ∈ C.490

Thus, condition (B2) is satisfied.491

The outer semicontinuity of the jump map G follows from the fact that each state component is492
outer semicontinuous. Specifically, the z and τ components are trivially continuous and hence outer493
semicontinuous. For the q component, given z ∈ Z , Q∗(z) in (10) can be written as494

Q∗(z) = {q ∈ Q : ν(z, q) = 0}, (38)

where ν(z, q) := Vq(z) − maxq̄∈Q Vq̄(z). For each q ∈ Q, the function ν is continuous as Vq is495
assumed to be continuous, Q is a finite set, and the maximum over a finite number of continuous496
functions is continuous. To show that Q∗ : Z ⇒ Q is outer semicontinuous, pick any z ∈ Z497
and a sequence zi → z. We need to show that for the sequence yi → y, where yi ∈ Q∗(xi),498
it holds that y ∈ Q∗(z). For each point zi, it holds that yi ∈ Q∗(zi) and thus ν(zi, yi) = 0.499
As ν is a continuous function, it holds that limi→∞ ν(zi, yi) = 0 and ν(limi→∞(zi, yi)) = 0.500
Hence, ν(z, y) = 0 and thus y ∈ Q∗(z).501

For the δd component, given z ∈ Z and q ∈ Q, T (z, q) in (23) can be written as502

T (z, q) =
{
η ∈ [0, δ̄d] : ϱ(χ(0), q, η) ≥ 0, where χ(0) = z

}
, (39)

where ϱ(χ(0), q, η) = max
q̄∈(Q\{q}), χ̇=f(χ,πq(χ))

Vq̄ (χ(η)) − Vq (χ(η)) − µ(|Vq (χ(η)) | + ϵ). The503

system dynamics f are Lipschitz continuous in χ and uniformly continuous in η, namely, ordinary504
time, therefore by Khalil (2002, Theorem 3.5), the function ϱ has a continuous dependency on the505
initial state χ(0) = z. Now, fix an arbitrary z ∈ Z and define506

g(η) = ϱ(z, q, η) for η ∈ [0, δ̄d]. (40)

By definition, the inverse image of the closed set [0,∞) under g is507

g−1([0,∞)) = {η ∈ [0, δ̄d] | g(η) ≥ 0}, (41)

which is exactly how T (z, q) is defined:508

T (z, q) = {η ∈ [0, δ̄d] : ϱ(z, q, η) ≥ 0} = g−1([0,∞)). (42)

Since g is continuous (as ϱ is continuous in both z and η) and [0,∞) is closed, it follows from509
standard topological results that g−1([0,∞)) is closed. Hence, T (z, q) is a closed subset of [0, δ̄d].510
Next, we define the graph of the set-valued map T as511

gph(T ) = {(z, q, η) ∈ Z ×Q× [0, δ̄d] : η ∈ T (z, q)}. (43)
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Substituting the definition of T (z, q), we have512

gph(T ) = {(z, q, η) ∈ Z ×Q× [0, δ̄d] : ϱ(z, q, η) ≥ 0}. (44)

Since ϱ(z, q, η) is continuous in both z and η, and [0,∞) is a closed subset of R, the set513

{(z, q, η) ∈ Z ×Q× [0, δ̄d] : ϱ(z, q, η) ≥ 0} (45)

is the inverse image of the closed set [0,∞) under the continuous mapping (z, q, η) 7→ ϱ(z, q, η),514
and is therefore closed. By Rockafellar et al. (2009, Theorem 5.7), a set-valued map whose graph is515
closed is outer semicontinuous. Hence, the set-valued map T : Z × Q ⇒ [0, δ̄d] is outer semicon-516
tinuous. To show that517

δ+d = ς(z) = min(T (z, q′) ∪ {δ̄d}) (46)

is outer semicontinuous, pick any z ∈ Z , any q′ ∈ Q∗(z), and a sequence zi → z. Suppose that for518
each zi we choose519

yi = ς(zi) ∈ T (zi, q
′ ∪ {δ̄d}, (47)

and that yi → y. We need to show that y = ς(z). Since T is outer semicontinuous, and yi ∈520
T (zi) ∪ {δ̄d} for all i, it follows that y ∈ T (z, q′) ∪ {δ̄d}. Moreover, by definition, for each zi the521
number yi is the minimum element of the set T (zi, q

′) ∪ {δ̄d}, namely,522

yi ≤ η for all η ∈ T (zi, q
′ ∪ {δ̄d}. (48)

Taking the limit as i → ∞, and using the fact that inequalities are preserved in the limit, it follows523
that524

y ≤ η for all η ∈ T (z, q′) ∪ {δ̄d}. (49)

Thus, y is a lower bound of T (z, q′)∪{δ̄d}. Since ς(z) is defined as the minimum of T (z, q′)∪{δ̄d},525
it holds that y = ς(z). Hence, the δd component is outer semicontinuous.526

As discussed above, the state components z, τ , and δd are continuous on X , hence they are bounded527
relative to D. The component q is also bounded relative to D as q takes values from a finite set Q.528

Lastly, for the q component, by assumption, each Vq is continuous and well-defined for all z ∈529
Z , and since Q is finite and nonempty, the set Q∗(z) is nonempty, and thus the q component is530
well-defined for all x ∈ X . For the δd component, by definition, δ̄d > 0. If T (z, q′) is empty,531
the minimum is δ̄d, which is trivially defined. If T (z, q′) is nonempty, then min(T (z, q′)) exists532
because T (z, q′) is a closed subset of [0, δ̄d] as discussed above. Hence, the δd is well-defined for533
all x ∈ X . Since z remains z, τ resets to 0, each component of G(x) is well-defined for all x ∈ X ,534
and D ⊂ X , it holds that D ⊂ X ⊂ dom G .535

Thus, the condition (B3) is satisfied.536

Proof of Proposition 2. According to Sanfelice (2021, Proposition 2.34), there exists a nontrivial537
solution x to the hybrid closed-loop system H in (19)-(27) for each x◦ ∈ C ∪D with x(0, 0) = x◦538
if539

(B1) The hybrid closed-loop system H satisfies the hybrid basic conditions; and540

(B2) For each x◦ ∈ C \D there exists a neighborhood U of x◦ such that for every x ∈ U ∩(C \D),541

F (x) ∩ TC(x) ̸= ∅. (50)

As F is single-valued, (50) simplifies to542

F (x) ∈ TC(x). (51)

Additionally, every maximal solution x to H is not Zeno, and every bounded solution x to H has543
jump times that are uniformly lower bounded by a positive constant if the conditions (B1) and (B2)544
hold and if545
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(B3) G(D) ∩D = ∅.546

Lastly, every maximal solution x to H is complete if the conditions (B1) and (B2) hold, F is globally547
Lipschitz on C, and548

(B4) G(D) ⊂ C ∪D.549

By Proposition 1, the hybrid closed-loop system H in (19)-(27) satisfies the hybrid basic conditions550
under the assumptions and therefore condition (B1) is satisfied.551

The strict flow set C \D is given by552

C \D = {x ∈ X : τ < δd} ∪ {x ∈ X : τ ≥ δd, q ∈ Q∗(z)}. (52)

Since the set {x ∈ X : τ < δd} is open, every point x with τ < δd is an interior point. Consequently,553
as such x, there are no constraints on the possible flow directions. For the set {x ∈ X : τ ≥ δd, q ∈554
Q∗(z)}, the value of τ cannot decrease if τ = δd and the value of q cannot change as Q∗(z) is a finite555
subset of N. Hence, the q component of the tangent cone for the set {x ∈ X : τ ≥ δd, q ∈ Q∗(z)} is556
equal to zero and the τ component is equal to R≥0 if τ = δd. The resulting tangent cone for C \D557
is given by558

TC\D(x) =


Rn+3 if τ < δd

Rn × {0} × R≥0 × R if τ = δd

Rn × {0} × R2 if τ > δd

. (53)

For the flow map F in (19) it holds that F (x) ∈ TC\D(x) for x ∈ C \D. Hence, condition (B2) is559
satisfied.560

By the definition of the jump map G in (22), q+ ∈ Q∗(z) and z+ = z for all x ∈ D. As the jump561
set D in (27) requires q ∈ Q \Q∗(z), it holds that G(D) ∩D = ∅ and condition (B3) is satisfied.562
Furthermore, by the definition of the flow set C in (20)-(21), G(D) ⊂ C as q+ ∈ Q∗(z), z+ = z,563
and τ+ = 0. Hence, G(D) ⊂ C ∪D and condition (B4) is satisfied.564

565

Proof of Theorem 1. To solve Problem (⋆), the hybrid closed-loop system H in (19)-(27) needs to:566

(P1) Preserve the properties of the individual policies, namely, inducing asymptotic stability of the567
compact set Z∗;568

(P2) Achieve overall performance, as measured by the state value function, that is at least as good569
as—and, if possible, better than—that obtained by holding any individual policy; and570

(P3) Prevent chattering under measurement noise by guaranteeing a robustness margin ε > 0 such571
that for every measurement noise m satisfying |m| ≤ ε, the switching mechanism prevents572
rapid switching (chattering).573

To prove condition (P1), we will construct a hybrid Lyapunov function and show a strict decrease574
during flows and jumps unless the state of the system z is in the compact set A, for which the hybrid575
Lyapunov function equates to zero. In particular, according to Sanfelice (2021, Definition 3.17), the576
sets U ,A ⊂ X and the function L : X → R define a Lyapunov function candidate on U with respect577
to A for the hybrid closed-loop system H = (C,F,D,G) if the following conditions hold:578

(L1) (C ∪D ∪G(D)) ∩ U ⊂ dom L;579

(L2) U contains an open neighborhood of A ∩ (C ∪D ∪G(D));580

(L3) L is continuous on U and locally Lipschitz on an open set containing C ∩ U ; and581

(L4) L is positive definite on C ∪D ∪G(D) with respect to A.582

Consider the Lyapunov candidate function defined by583

L(x) = −Vq(z) + Vq(z
∗
q ), (54)
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where x = (z, q, τ, δd) ∈ X and z∗q ∈ Z∗
q is the (possibly nonunique) state at which Vq attains its584

global maximum. To obtain a global result, we choose U = X . Furthermore, the compact set that585
we wish to globally asymptotically stabilize is defined as586

A := Z∗ × R≥0 ×Q× R≥0 ⊂ X , with Z∗ =
⋃
q∈Q

Z∗
q . (55)

Condition (L1) is satisfied since (C ∪D∪G(D)) ⊂ X and domL = X . Similarly, because both A587
and C ∪D ∪ G(D) are subsets of X , condition (L2) holds. By assumption, for each q ∈ Q, Vq is588
Lipschitz continuous on Z , which ensures that L is continuous on X and locally Lipschitz on an open589
subset containing C ∩ X ; hence, condition (L3) is satisfied. Moreover, by assumption the reward590
function in (4) attains its global maximum on Z∗ and is strictly decreasing as the distance from Z∗,591
and hence from A, increases. Consequently, each state value function Vq attains its global maximum592
at Z∗ and is negative definite with respect to Z∗. Therefore, by construction, for each q ∈ Q the593
Lyapunov function in (54) is positive definite on X , and hence on C ∪D∪G(D), with respect to A,594
so that condition (L4) is satisfied.595

Next, we use the Lyapunov candidate function in (54) to show that H globally asymptotically596
stabilizes A. According to Sanfelice (2021, Theorem 3.19), given sets U ,A ⊂ X and a func-597
tion L : X → R that defines a Lyapunov candidate on U with respect to A for the hybrid closed-loop598
system H = (C,F,D,G) with state x ∈ X , the set A is asymptotically stable for H provided that A599
is compact, H satisfies the hybrid basic conditions, every maximal solution x to H complete, and600
the following two conditions hold during flows and jumps:601

(L5) ⟨∇L(x), F (x) ∩ TC(x)⟩ < 0 for all x ∈ (C ∩ U) \ A; and602

(L6) L(G(x))− L(x) < 0 for all x ∈ (D ∩ U) \ A.603

By Proposition 1, the hybrid closed-loop system H satisfies the hybrid basic conditions under the604
assumptions. Moreover, by Proposition 2, every maximal solution x to H is complete.605

By assumption, the reward function is strictly decreasing as the distance from Z∗ increases. There-606
fore, for each q ∈ Q, the state value function Vq attains its global maximum at Z∗

q and decreases607
as the distance from Z∗

q increases. Moreover, since each policy πq ∈ Π globally asymptotically608
stabilizes Z∗

q , the state z globally asymptotically converges toward Z∗
q along flows, resulting in a609

strict increase in Vq(z) while q remains constant. Consequently, the Lyapunov candidate function610
in (54) strictly decreases along flows for all x ∈ X \ A, thereby satisfying condition (L5).611

Furthermore, by definition of the jump set D in (27), jumps occur only when q ∈ Q \ Q∗(z); the612
jump map G in (22) then updates q to an element of Q∗(z). Since Vq′(z) > Vq̄(z) for all q′ ∈ Q∗(z)613
and q̄ ∈ Q \ Q∗(z) for each z ∈ Z , it follows that the Lyapunov candidate function undergoes a614
strict decrease at jumps, satisfying condition (L6).615

As all the conditions above are satisfied, the hybrid closed-loop system H globally asymptotically616
stabilizes the compact set A. This, in turn, renders the compact set Z∗ asymptotically stable, and617
thus condition (P1) is satisfied.618

During flows, the policy index q remains constant, so the hybrid closed-loop system H behaves619
exactly as if a single policy were held continuously. At jump instants, the update rule (10) selects a620
new index q′ ∈ Q∗(z), where Q∗(z) is the set of indices that maximize the state value function at621
the current state z. This ensures that Vq′(z) ≥ Vq(z) for all q ∈ Q \ {q′}, so the policy chosen at a622
jump delivers performance that is at least as good as—and potentially better than—that of the policy623
before the jump. Thus, since the overall performance of H, as measured by the state value function,624
is maintained or improved during both flows and jumps, condition (P2) is satisfied.625

Proposition 2 guarantees that, under its assumptions—that for each q ∈ Q the approximate state626
value function Vq : Z → R is continuous and both the policy πq : Z → U and the dynamics f :627
Z ×U → Z are Lipschitz continuous—every maximal solution to the hybrid closed-loop system H628
in (19)-(27) is complete, non-Zeno, and has jump times uniformly lower bounded by a positive629
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constant. Consequently, in the absence of measurement noise, arbitrarily fast switching, that is,630
chattering, cannot occur.631

Now, suppose that measurement noise m is present such that z +m ∈ Z . Then, it is possible that632
a policy q belongs to Q∗(z) while q /∈ Q∗(z + m); that is, the optimal policy for the measured633
state z + m may differ from the optimal policy for the true state z. To prevent an instantaneous634
switch in such cases, we must ensure that the dwell-time parameter δd is always reset to a value635
greater than zero. Since the jump set (27) requires that τ ≥ δd and the timer τ is reset to zero upon636
each switch, a positive reset value for δd guarantees that a nonzero time interval of at least δd must637
elapse before another jump occurs.638

To establish that δd is always positive, consider its update in (22). Two scenarios arise:639

1. If the set T is empty, then by definition δd is reset to δ̄d > 0.640

2. If T is non-empty, let η∗ denote the smallest time horizon in T , that is, the smallest η∗ > 0641
for which the ratio in (23) reaches µ. By the definition of Q∗ in (10), for every z ∈ Z and642
every q ∈ Q∗(z) we have643

Vq(z) ≥ Vq̄(z) for all q̄ ∈ Q.

In particular, at η = 0 we obtain644

max
q̄∈(Q\{q})

Vq̄

(
χ(0)

)
− Vq

(
χ(0)

)
|Vq

(
χ(0)

)
|+ ϵ

< 0, (56)

for all q ∈ Q∗(χ(0)) and χ(0) ∈ Z . Moreover, as demonstrated in the proof of Proposition 1,645
the ratio in (23) has a continuous dependency on the initial state χ(0). Therefore, there exists a646
smallest time η∗ > 0 such that647

max
q̄∈(Q\{q})

Vq̄

(
χ(η∗)

)
− Vq

(
χ(η∗)

)
|Vq

(
χ(η∗)

)
|+ ϵ

= µ. (57)

Since the ratio at η = 0 is strictly negative and η ∈ [0, δ̄d], it follows that η∗ > 0. Consequently,648
the updated value of δd is always positive.649

Thus, even in the presence of measurement noise, the requirement τ ≥ δd > 0 ensures that a650
positive dwell time elapses between jumps, thereby preventing arbitrarily fast policy switching.651
Hence, condition (P3) is satisfied.652
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