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Towards Efficient Conversational Recommendations: Expected
Value of Information Meets Bandit Learning

Anonymous Author(s)

Abstract
In conversational recommender systems, interactively presenting

queries and leveraging user feedback are crucial for efficiently esti-

mating user preferences and improving recommendation quality.

Selecting optimal queries in these systems is a significant challenge

that has been extensively studied as a sequential decision prob-

lem. The expected value of information (EVOI), which computes

the expected reward improvement, provides a principled criterion

for query selection. However, it is computationally expensive and

lacks theoretical performance guarantees. Conversely, conversa-
tional bandits offer provable regret upper bounds, but their query
selection strategies yield only marginal regret improvements over

non-conversational approaches. To address these limitations, we

integrate EVOI within the conversational bandit framework by

proposing a new conversational mechanism featuring two key

techniques: (1) gradient-based EVOI, which replaces the complex

Bayesian updates in conventional EVOI with efficient stochastic

gradient descent, significantly reducing computational complex-

ity and facilitating theoretical analysis; and (2) smoothed key term
contexts, which enhance exploration by adding random perturba-

tions to uncover more specific user preferences. Our approach

applies to both Bayesian (Thompson Sampling) and frequentist

(UCB) variants of conversational bandits. We introduce two new

algorithms, ConTS-EVOI and ConUCB-EVOI, and rigorously prove

that they achieve substantially tighter regret bounds, with both

algorithms offering a

√
𝑑 improvement in their dependence on the

time horizon 𝑇 , where 𝑑 is the dimension of the feature space. Ex-

tensive evaluations on synthetic and real-world datasets validate

the effectiveness of our methods.

CCS Concepts
• Information systems→Recommender systems; • Theory of
computation→ Online learning algorithms; Online learning
theory.

Keywords
Conversational Recommendation, Preference Elicitation, Multi-

Armed Bandit, Online Learning
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1 Introduction
Recommender systems play a crucial role in personalizing content

across various industries such as e-commerce, news feeds, social

networks, and video streaming platforms. Over the past decade,

research in this field has progressed from traditional collaborative
filtering methods to advanced online learning-based approaches. By

interacting with users and collecting data such as click rates and

browsing histories, these systems employ sophisticated algorithms

to learn user preferences and adaptively adjust their recommenda-

tions. However, one significant challenge faced by recommender

systems is the cold start problem [5, 15], which arises when dealing

with new users who lack sufficient historical data. In such cases,

the system struggles to generate high-quality, personalized recom-

mendations because it relies solely on passive user feedback, such

as clicks or views, which usually take time to accumulate.

To address the cold start problem, conversational recommender
systems [10, 31, 42] adopt a more proactive approach by initiating

conversations with users. Instead of passively waiting for users

to click or view, these systems actively engage users by asking

questions to quickly gather information about their preferences,

thus accelerating the learning process. The questions are usually

related to categories of items such as movie genres and news topics,

which help to rapidly narrow down the user’s interests. For example,

asking a direct question like “Do you enjoy comedy movies?” can

provide immediate insights into a user’s tastes, enabling the system

to offer faster and more accurate recommendations.

Selecting optimal queries in conversational recommender sys-

tems is a critical challenge that has been widely studied as a sequen-

tial decision-making problem. A prominent line of research, known

as preference elicitation [21], focuses on designing criteria to select

queries that best elicit user preferences. One commonly used crite-

rion is the expected value of information (EVOI) [16, 18, 26, 34, 35],
which measures the quality of a query based on the expected im-

provement in recommendation quality resulting from incorporating

the user’s anticipated response. Intuitively, selecting queries that

maximize EVOI can help elicit user preferences with minimal in-

teractions, which is particularly valuable for reducing user fatigue

and improving the overall recommendation experience. Although

conceptually attractive, the EVOI method faces two major chal-

lenges. First, as a Bayesian approach, EVOI requires maintaining

and updating a probabilistic model of the user’s preferences based

on their responses. However, performing exact posterior updates

for EVOI via Bayes’ rule is computationally intractable, even for

simple distributions such as multivariate Gaussians. Consequently,

1
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existing studies frequently focus on computational aspects [26, 34],

and practical implementations often rely on simplifications or ap-

proximations [11, 14, 16]. Second, the typical usage of EVOI is

myopic, meaning that it focuses on one-step planning without con-

sidering long-term outcomes. This greedy approach does not offer

theoretical guarantees for long-term performance metrics such

as cumulative regret, which is crucial for evaluating the overall

effectiveness of sequential decision-making strategies.

Recently, another line of research, known as conversational ban-
dits [10, 24, 25, 36, 40, 41], models conversational recommendation

as a multi-armed bandit [22] problem. In this framework, recom-

mendable items are modeled as “arms”, and queries are modeled

as conversational “key terms”. Online learning strategies such as

Upper Confidence Bound (UCB) [41] and Thompson Sampling

(TS) [24] are employed to balance the exploration-exploitation

trade-off in both query selection and item recommendation. While

conversational bandits consider long-term performance and pro-

vide provable cumulative regret upper bounds, the query selection

strategies proposed so far have only yielded marginal regret im-

provements over non-conversational bandits. For example, both the

standard linear bandit algorithm LinUCB [2] and the conversational
linear bandit algorithm ConUCB [41] achieve the same regret bound

of order𝑂 (𝑑
√
𝑇 ), where 𝑑 is the dimension of the feature space and

𝑇 is the time horizon. Identifying query selection strategies that can
significantly improve the order of regret remains an open problem in
the conversational bandit literature.

In this work, we address the computational challenges and lim-

ited theoretical guarantees of EVOI, as well as the marginal regret

improvements in existing conversational bandits, by integrating

EVOI into the conversational bandit framework. EVOI and conversa-

tional bandits complement and improve each other: EVOI provides

an effective query selection strategy, while conversational bandits

offer theoretical guarantees on long-term performance. Specifically,

we employ two key techniques. First, we propose a novel gradient-
based EVOI method that replaces the complex Bayesian posterior

updates with efficient stochastic gradient descent, directly leverag-

ing the linear reward structure of conversational bandits (details

in Section 4.1). This approach significantly reduces computational

complexity and facilitates our theoretical analysis. Second, we in-

troduce the concept of smoothed key term contexts, inspired by the

smoothed analysis framework [30], where queries are randomly

perturbed to enhance exploration (details in Section 4.2). For exam-

ple, instead of querying about “jazz”, perturbations like “smooth

jazz” or “jazz fusion” can help uncover more specific preferences in

users’ musical tastes. We show that the combination of these two

key techniques is not only intuitive but also has strong theoretical
implications, leading to substantial and provable improvements in

cumulative regret. We incorporate our methods into both Bayesian

and frequentist variants of conversational bandits, proposing two

new algorithms: ConTS-EVOI, based on conversational Thompson

sampling (ConTS [24]), and ConUCB-EVOI, based on conversational

LinUCB (ConUCB [41]). Through theoretical analysis, we demon-

strate that our methods achieve improved regret bounds compared

to existing conversational bandit algorithms (details in Section 6).

To the best of our knowledge, our contributions are threefold:

First, we are the first to demonstrate the theoretical implications

of integrating EVOI into bandit learning in terms of cumulative

regret, establishing a new understanding of how EVOI can enhance

query efficiency in conversational recommender systems. Second,

we provide a novel and practical query selection strategy that sub-

stantially improves regret bounds, advancing the state of the art

in conversational bandit literature. Third, our work bridges the

gap between two previously separate lines of research, potentially

leading to new research opportunities.

In summary, our contributions are listed as follows.

• Innovative Conversational Mechanism: We propose a novel

conversational mechanism for conversational recommender sys-

tems that consists of two key techniques: gradient-based EVOI
and smoothed key term contexts. Gradient-based EVOI provides

a computationally efficient criterion for query selection, while

smoothed key term contexts enhance exploration by introducing

random perturbations to queries.

• New Algorithms and Theoretical Improvements: We inte-

grate our conversational mechanism into conversational bandits

and propose two new algorithms, ConTS-EVOI and ConUCB-EVOI.

We prove that ConTS-EVOI achieves a regret bound of 𝑂 (𝑑
√
𝑇 )

and ConUCB-EVOI achieves 𝑂 (
√
𝑑𝑇 + 𝑑), both offering a

√
𝑑 im-

provement in their dependence on 𝑇 over prior studies.

• Extensive Empirical Evaluations: We conduct comprehen-

sive evaluations on both synthetic and real-world datasets. Our

algorithms ConTS-EVOI and ConUCB-EVOI consistently outper-

form baseline methods, reducing regret by over 8.5% and 10.7%,

respectively, and validating the effectiveness of our approach.

2 Related Work
The problem of query selection and recommendation in conver-

sational recommender systems has been extensively studied in

both the recommender systems and online learning communities.

The primary focus has been on devising effective query selection

strategies to better elicit user preferences. Two orthogonal lines of

research have emerged to address this problem.

The first line of research is known as preference elicitation [21],

which focuses on how to select queries to efficiently elicit user pref-

erences. A key concept in this area is the Expected Value of Informa-

tion (EVOI) [18], which provides a principled criterion for selecting

queries and determining when to make recommendations within

Bayesian settings. EVOI selects queries that maximize the expected

quality (i.e., reward) of the posterior decision (i.e., recommendation)

based on possible user responses. Several studies have explored

the application of EVOI for query selection. For example, Guo and

Sanner [16] select high-EVOI queries by assuming a Gaussian dis-

tribution over rewards. Viappiani and Boutilier [35] propose an

approximate iterative algorithm for optimizing EVOI, making the

computation more tractable. Vendrov et al. [34] introduce a contin-

uous formulation of EVOI as a differentiable network and optimize

it using gradient-based methods. Martin et al. [26] develop model-

free variants of EVOI that rely on function approximation to obvi-

ate specific modeling assumptions. Despite its conceptual appeal,

EVOI faces significant computational challenges even for simple

distributions. To mitigate the computational issue, some studies

employ alternative approaches with similar underlying ideas, such

as maximum information gain [7, 44], entropy-based methods [1],
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polyhedral/volumetric methods [19], ellipsoidal methods [28], and

minimax-regret methods [6]. Our proposed gradient-based EVOI
aligns with these studies in that it retains the core idea of the origi-

nal EVOI but enhances computational efficiency by replacing the

Bayesian posterior updates with incremental updates using sto-

chastic gradient descent. This adjustment not only addresses the

computational challenges but also facilitates theoretical analysis.

The second line of research focuses on conversational contextual
bandits, initially introduced by Zhang et al. [41]. This framework

enables recommenders to launch conversations and obtain feed-

back on “key terms” to accelerate user preference elicitation. Since

then, numerous follow-up studies have extended this framework,

exploring various enhancements both empirically and theoreti-

cally. For example, CtoF-ConUCB [37] introduces clustering to au-

tomatically learn key terms and reduce human labeling efforts.

RelativeConUCB [39] proposes comparison-based interactions to

get comparative feedback from users. GraphConUCB [43] integrates

knowledge graphs as additional information and uses D-optimal de-

sign to select key terms. Hier-UCB and Hier-LinUCB [45] leverage

the hierarchical structure between key terms and items to improve

recommendation efficiency. DecUCB [38] employs causal inference

to handle biases resulting from items and key terms. ConLinUCB [36]
proposes computing the barycentric spanner of the key terms as an

efficient exploration basis. FedConPE [25] studies conversational

bandits under federated settings and uses an adaptive approach

for initiating conversations. However, most of these studies extend

the ConUCB algorithm proposed by Zhang et al. [41] without in-

troducing significant theoretical improvements. In contrast, our

work presents a novel conversational mechanism that achieves

substantially improved regret bounds.

3 Background and Problem Formulation
In this section, we introduce the problem settings of conversational

bandits and present the original form of the Expected Value of

Information (EVOI). In the following, we use boldface letters for

vectors and matrices. We denote [𝑀] := {1, . . . , 𝑀} for 𝑀 ∈ N+
.

For any real vector 𝒙,𝒚 and positive semi-definite (PSD) matrix 𝑽 ,
∥𝒙 ∥ denotes the ℓ2-norm of 𝒙 , and ∥𝒙 ∥𝑽 denotes the Mahalanobis

norm

√
𝒙T𝑽𝒙 . We use 𝜆min (·) and 𝜆max (·) to denote the minimum

and maximum eigenvalue.

3.1 Conversational Bandits
Following prior work [13, 24, 36, 41], we model the conversational

multi-armed bandit as a sequential decision-making problem. At

each time step 𝑡 ∈ [𝑇 ], the learner (i.e., recommender system)

receives a set of arms A𝑡 (i.e., recommendable items), where each

arm 𝑎 ∈ A𝑡 is associated with a known feature vector 𝒙𝑎 ∈ R𝑑 .
We denote the set of feature vectors as {𝒙𝑎}𝑎∈A𝑡

⊆ R𝑑 , which
constitutes the context at time 𝑡 . Then the learner selects an arm

𝑎𝑡 ∈ A𝑡 (i.e., recommend an item) and receives a reward 𝑟𝑡 ∈ R
from the environment (i.e., whether the user clicks on the item).

We assume the reward follows a linear structure: 𝑟𝑡 = 𝒙T𝑎𝑡 𝜽
∗ + 𝜂𝑡 ,

where 𝜽 ∗ ∈ Θ ⊆ R𝑑 is a fixed but unknown preference vector

that the learner aims to learn, and 𝜂𝑡 is zero-mean, 1-sub-Gaussian

noise. The objective is to design a learning policy that minimizes

the cumulative regret 𝑅(𝑇 ), defined as the difference between the

cumulative rewards of the optimal policy and the learner’s policy:

𝑅(𝑇 ) =
𝑇∑︁
𝑡=1

(
max

𝑎∈A𝑡

𝒙T𝑎𝜽
∗ − 𝒙T𝑎𝑡 𝜽

∗
)
. (1)

In addition to pulling arms (i.e., recommending items), the learner

can also occasionally engage in conversations with the user by

querying on key terms and obtain feedback to accelerate the elicita-

tion of user preferences. Specifically, a key term refers to a keyword

or topic associated with a subset of arms (e.g., the key term “pro-

gramming language” may relate to arms like “C/C++”, “Python”,

“Java”). Let K represent the finite set of key terms, with each ele-

ment 𝑘 ∈ K associated with a known feature vector 𝒙𝑘 ∈ R𝑑 . At
time 𝑡 , the learner can choose to query a key term 𝑘𝑡 ∈ K , and

receive user feedback modeled as �̃�𝑡 = 𝒙T
𝑘𝑡
𝜽 ∗ + 𝜂𝑡 , where 𝜽 ∗ is

the same user preference vector as in the arm selection and 𝜂𝑖,𝑡 is

zero-mean, 1-sub-Gaussian noise. It is important to note that in

the literature, the preference vectors for arms and key terms are

often assumed to be either very close or identical. In our setting,

we follow the formulation of Li et al. [24, 25], Wang et al. [36] and

assume that they are identical. Following the standard assumptions

in bandit literature [22], without loss of generality, we assume that

feature vectors for both arms and key terms are normalized, i.e.,

∥𝒙𝑎 ∥ = ∥𝒙𝑘 ∥ = 1 for all 𝑎 ∈ A𝑡 and 𝑘 ∈ K . We also assume that

the unknown preference vector is bounded, i.e., ∥𝜽 ∗∥ ≤ 1.

3.2 Bayesian Preference Elicitation
In the Bayesian approach of recommendation and preference elici-

tation, the recommender system maintains a probability distribution
over the unknown user preference vector 𝜽 ∗ and updates this distri-
bution as more information is gathered through interactions with

the user. While a fully Bayesian approach uses this distribution to

generate both recommendations and elicitation queries, alternative

criteria may be preferred for computational efficiency consideration.

Here we introduce the general concepts and notations following

previous studies [34]. Detailed constructions and computations of

our gradient-based method will be presented in Section 4.

The system starts with a prior distribution 𝑃0 over the unknown

preference vector 𝜽 ∗ defined on Θ, which reflects the system’s

initial belief about the user’s preferences. It is worth noting that

the choice of 𝑃0 does not affect our theoretical results and can be

derived based on past interactions with other users in practice.

As the recommender system interacts with the user and collects

feedback, the prior distribution is updated to form the current belief,

denoted by 𝑃 . Mathematically, both 𝑃0 and 𝑃 are probability density

functions over the preference vector space Θ. Given the current

belief 𝑃 , the expected reward of an arm 𝑎 ∈ A𝑡 is defined as:

ER(𝑎; 𝑃) = E
𝜽∼𝑃

[𝒙T𝑎𝜽 ] = 𝒙T𝑎 E
𝜽∼𝑃

[𝜽 ] = 𝒙T𝑎

∫
𝜽 ∈Θ

𝜽𝑃 (𝜽 ) d𝜽 .

At each round 𝑡 , the optimal arm given the current belief 𝑃 is the

arm that maximizes the expected reward:

𝑎∗𝑡,𝑃 = argmax

𝑎∈A𝑡

ER(𝑎; 𝑃); ER
∗
𝑡 (𝑃) = ER(𝑎∗𝑡,𝑃 ; 𝑃) .

For each key term𝑘 ∈ K , letR𝑘 be the set of possible user responses

(e.g., “yes” or “no”). The recommender system has a response model

that specifies the probability𝑄 (𝑟 | 𝑘, 𝜽 ) that a user with preference

3
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𝜽 responds 𝑟 ∈ R𝑘 when queried with key term 𝑘 ∈ K . Under the

current belief 𝑃 , the expected probability of observing response 𝑟

when querying key term 𝑘 is𝑄 (𝑟 | 𝑘 ; 𝑃) = E𝜽∼𝑃 [𝑄 (𝑟 | 𝑘, 𝜽 )]. After
receiving response 𝑟 to key term 𝑘 , the posterior belief 𝑄 (𝜽 | 𝑟, 𝑘)
(denoted as 𝑄𝑘

𝑟 (𝜽 ) for convenience) is updated using Bayes’ rule:

𝑄𝑘
𝑟 (𝜽 ) ≜ 𝑄 (𝜽 | 𝑟, 𝑘) = 𝑄 (𝑟 | 𝑘, 𝜽 )𝑃 (𝜽 )∫

𝜽 ∈Θ𝑄 (𝑟 | 𝑘, 𝜽 )𝑃 (𝜽 ) d𝜽
. (2)

3.3 Expected Value of Information
We focus on a myopic (greedy) query selection strategy known as

the Expected Value of Information (EVOI) [9, 18], which employs a

one-step look-ahead to select queries that maximize the expected

reward. Specifically, after querying a key term 𝑘 at time 𝑡 given the

current belief 𝑃 , the posterior expected reward can be written as:

PER𝑡 (𝑘 ; 𝑃) =
∑︁
𝑟 ∈R𝑘

𝑄 (𝑟 | 𝑘 ; 𝑃)ER∗ (𝑄𝑘
𝑟 )

=
∑︁
𝑟 ∈R𝑘

𝑄 (𝑟 | 𝑘 ; 𝑃) max

𝑎∈A𝑡

𝒙T𝑎

∫
𝜽 ∈Θ

𝜽𝑄𝑘
𝑟 (𝜽 ) d𝜽

= max

𝑎∈A𝑡

𝒙T𝑎

∫
𝜽 ∈Θ

𝜽
∑︁
𝑟 ∈R𝑘

𝑄 (𝑟 | 𝑘 ; 𝑃)𝑄𝑘
𝑟 (𝜽 ) d𝜽︸                                      ︷︷                                      ︸

≜𝜽𝑘
𝑃

, (3)

where 𝜽𝑘
𝑃
represents the expected preference vector after querying

key term 𝑘 based on belief 𝑃 , accounting for all possible responses

weighted by their probabilities. Intuitively, PER𝑡 (𝑘 ; 𝑃) is the ex-

pected reward of the best possible recommendation after querying
key term 𝑘 and updating the belief based on the user’s potential

responses. The expected value of information (EVOI) is then defined

as the difference between the posterior expected reward and the

expected reward without additional information:

EVOI𝑡 (𝑘 ; 𝑃) = PER𝑡 (𝑘 ; 𝑃) − ER
∗
𝑡 (𝑃). (4)

The EVOI measures the expected improvement in the maximum

reward achievable by the recommender system after querying key

term 𝑘 , relative to the current belief 𝑃 . Therefore, by selecting a

key term that maximizes EVOI𝑡 (𝑘 ; 𝑃) (which also maximizes the

posterior expected reward PER𝑡 (𝑘 ; 𝑃)), the learner gains the most

valuable information that will lead to better recommendations.

4 Key Techniques
In this section, we introduce the key techniques used in our al-

gorithms. First, we present a novel gradient-based EVOI method,

inspired by the incremental update in stochastic gradient descent.

This method leverages the linear reward structure to avoid the com-

putationally expensive Bayesian posterior updates via Bayes’ rule.

Second, we introduce the concept of smoothed key term contexts,
following insights from Kannan et al. [20], Raghavan et al. [27],

where random perturbations are added to key term contexts to

accelerate the exploration of user preferences.

4.1 Gradient-based EVOI
While the conventional EVOI introduced in Section 3 is theoretically

sound, its Bayesian updating process is computationally intensive,

especially in high-dimensional settings, and can be unnecessary

given the linear reward structure in conversational bandits. To ad-

dress this, inspired by the incremental updates of stochastic gradient

descent (SGD), we propose gradient-based EVOI, which eliminates

the need for Bayesian updates as in Equation (2). Specifically, in-

stead of maintaining probability distributions 𝑃 and𝑄 to model the

preference vector and query responses as outlined in Section 3.2,

we maintain two vectors 𝜽
prior

𝑡 and 𝜽𝑡 . Here, 𝜽
prior

𝑡 represents the

prior estimate of the user’s preference vector at the beginning of

round 𝑡 , and 𝜽𝑡 represents the updated belief after incorporating

any user feedback received during round 𝑡 .

Recall that in stochastic gradient descent for linear regression,

the estimated parameter is updated as:

𝜽𝑡+1 = 𝜽𝑡 − 𝛼∇𝐿(𝜽𝑡 ) = 𝜽𝑡 − 𝛼 (𝒙T𝜽𝑡 − 𝑦)𝒙,
where 𝛼 is the learning rate, ∇𝐿(𝜽𝑡 ) is the gradient of the loss

function at 𝜽𝑡 , and (𝒙, 𝑦) is the newly observed data point. Inspired
by this, and similar to the calculation of 𝜽𝑘

𝑃
in Equation (3), we

simulate the potential update to our preference estimate that would

result from querying key term 𝑘 based on the current estimate.

Since we have not yet observed the user’s actual response, the same

as the calculation of 𝜽𝑘
𝑃
, we consider the expected feedback based

on our current estimate: 𝑟 = 𝒙T
𝑘
𝜽𝑡 . We then simulate the updated

preference vector after querying key term 𝑘 based on the prior

estimate 𝜃𝑡 by computing:

𝜽𝑘𝑡 = 𝜽𝑡 − 𝛼 (𝒙T𝑘𝜽𝑡 − 𝑟 )𝒙𝑘 . (5)

Then similar to Equation (3), the posterior expected reward at time

𝑡 is computed as PER𝑡 (𝑘) = max𝑎∈A𝑡
𝒙T𝑎𝜽

𝑘
𝑡 . And we select the key

term that maximizes it:

𝑘𝑡 = argmax

𝑘∈K
max

𝑎∈A𝑡

𝒙T𝑎𝜽
𝑘
𝑡 . (6)

In Table 1, we summarize the notations used in the original

EVOI and our gradient-based EVOI, highlighting their one-to-one

correspondence for better understanding. In Section 5, we apply

gradient-based EVOI to our algorithms, and in Section 6, we show

that the simplicity of this method facilitates our theoretical analysis

and leads to tighter regret bounds.

Table 1: Comparison between EVOI and gradient-based EVOI.

Meaning EVOI Gradient-based EVOI

Current belief/estimate of 𝜽 ∗ 𝑃 𝜽
prior

𝑡

Belief/estimate after query feedback 𝑄 𝜽𝑡
Expected preference vector after query 𝜽𝑘

𝑃
𝜽𝑘𝑡

Posterior expected reward max𝑎∈A𝑡
𝒙T𝑎𝜽

𝑘
𝑃

max𝑎∈A𝑡
𝒙T𝑎𝜽

𝑘
𝑡

4.2 Smoothed Key Term Contexts
To better explore users’ preferences and facilitate our theoretical

analysis, we introduce the concept of smoothed key term contexts.
This idea is inspired by the smoothed adversary setting, originally

introduced by Kannan et al. [20], which studies how greedy algo-

rithms behave in multi-armed bandits. In our context, smoothed

key term contexts allow for a more nuanced exploration of user

preferences by adding random perturbations to the feature vectors

associated with key terms. The goal is to extend the exploration
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space, thus revealing a richer set of user preferences. For example,

instead of using the key term “jazz”, perturbations like “smooth

jazz”, “jazz fusion”, or “bebop” could help uncover more specific

preferences in users’ musical tastes. This randomness facilitates

exploration beyond what a static set of key terms might capture,

ultimately improving user modeling and personalization. The per-

turbations are formally modeled as Gaussian noise as follows.

Definition 1 (Smoothed key term contexts). Given a set of key

terms K and their associated feature vectors {𝒙𝑘 }𝑘∈K , define the

smoothed feature vector for each key term 𝑘 ∈ K as �̃�𝑘 = 𝒙𝑘 + 𝜺𝑘 ,
where 𝜺𝑘 ∈ R𝑑 is a noise vector independently sampled from a

truncated multivariate Gaussian distribution with mean zero and

covariance matrix 𝜎2𝑰 , and each dimension of the noise is truncated

within the interval [−𝑅, 𝑅]. That is, 𝜺𝑘 ∼ N(0, 𝜎2𝑰 ) subject to
| (𝜺𝑘 ) 𝑗 | ≤ 𝑅,∀𝑗 ∈ [𝑑]. We refer to the resulting set of perturbed

feature vectors {�̃�𝑘 }𝑘∈K as the smoothed key term context.

5 Algorithm Design
In this section, we apply gradient-based EVOI and smoothed key

term contexts to both conversational linear Thompson sampling

(Bayesian approach) and conversational LinUCB (frequentist ap-

proach) based on ConTS [24] and ConUCB [41].
The general workflow of our algorithms is illustrated in Figure 1.

When the recommender system initiates conversations with the

user, it generates smoothed key term contexts and selects appropri-

ate key terms based on gradient-based EVOI. The feedback received

during the conversation, along with item feedback, is then inte-

grated into the recommendation process. For decision-making on

items, the system (learner) utilizes either a Bayesian approach such

as Thompson Sampling (TS) or a frequentist approach like Upper

Confidence Bound (UCB) to recommend items to the user.

User
Item Feedback

Platform 

Recommended Items

Conversational Feedback

Bayesian Approach (TS)

Frequentist Approach (UCB)

Decision-making

Smoothed Key Term Contexts

(e.g., jazz fusion instead of jazz)
Select key terms 

based on EVOI 

Conversational Mechanism

Figure 1: The general workflow of our algorithm design.

5.1 Conversational LinTS with EVOI
As shown in Algorithm 1, at each round 𝑡 = 1, 2, . . ., the learner

receives a set of recommendable items (arms)A𝑡 and the algorithm

operates in two decision-making phases: key term selection (i.e., se-

lecting queries, Lines 5 to 11) and arm selection (i.e., recommending

items, Lines 12 to 16). To determine when and how many queries

to initiate, we follow Zhang et al. [41] and define an increasing

function 𝑏 : N+ ↦→ R+
to control the conversation frequency. At

each round 𝑡 , if 𝑞𝑡 = ⌊𝑏 (𝑡)⌋ − ⌊𝑏 (𝑡 − 1)⌋ > 0, the recommender is

permitted to conduct 𝑞𝑡 conversational queries (Line 5); otherwise,

no conversation is initiated.

Algorithm 1: ConTS-EVOI
Input: 𝜆, 𝛿 , 𝛼 , 𝛽𝑡 , 𝜎 , 𝑅, 𝑏 (𝑡)
Init: 𝑽1 = 𝜆𝑰𝑑×𝑑 , 𝒃1 = 0𝑑×1, 𝜽1 = 0𝑑×1, 𝚺1 = 𝛽21𝑽

−1
1

1 for 𝑡 = 1, 2, . . . do
2 Receive arm set A𝑡

3 𝜽
prior

𝑡 = 𝜽𝑡
4 𝑞𝑡 = ⌊𝑏 (𝑡)⌋ − ⌊𝑏 (𝑡 − 1)⌋
5 while 𝑞𝑡 > 0 do
6 Generate smoothed key term context {�̃�𝑘 }𝑘∈K
7 Let 𝜽𝑘𝑡 ≜ 𝜽

prior

𝑡 −𝛼 (�̃�T
𝑘
𝜽
prior

𝑡 − �̃�T
𝑘
𝜽𝑡 )�̃�𝑘 for all 𝑘 ∈ K

8 Select key term 𝑘𝑡 = argmax𝑘∈K max𝑎∈A𝑡
𝒙T𝑎𝜽

𝑘
𝑡

9 Receive key term-level reward �̃�𝑡

10 Update statistics:

𝑽𝑡 = 𝑽𝑡 + �̃�𝑘𝑡 �̃�
T
𝑘𝑡
, 𝒃𝑡 = 𝒃𝑡 + �̃�𝑡 �̃�𝑘𝑡 , 𝜽𝑡 = 𝑽−1

𝑡 𝒃𝑡

11 𝑞𝑡 = 𝑞𝑡 − 1

12 Draw 𝜽TS𝑡 ∼ N(𝜽𝑡 , 𝚺𝑡 )
13 Select arm 𝑎𝑡 = argmax𝑎∈A𝑡

𝒙T𝑎𝜽
TS

𝑡

14 Receive reward 𝑟𝑡

15 Update statistics:

𝑽𝑡+1 = 𝑽𝑡 + 𝒙𝑎𝑡 𝒙T𝑎𝑡 , 𝒃𝑡+1 = 𝒃𝑡 + 𝑟𝑡𝒙𝑎𝑡 , 𝜽𝑡+1 = 𝑽−1
𝑡+1𝒃𝑡+1

16 Compute covariance matrix: 𝚺𝑡+1 = 𝛽2𝑡+1𝑽
−1
𝑡+1

5.1.1 Key Term Selection. When the algorithm is allowed to initiate

conversations, it first stores the current preference estimate 𝜽𝑡 as

the prior estimate 𝜽
prior

𝑡 (Line 3). Then it generates the smoothed

key term context by adding random perturbations to each key term

𝑘 ∈ K according to Definition 1 (Line 6). Note that the smoothed

context is regenerated every time a conversation is initiated. Here

we slightly abuse the notation and always use {�̃�𝑘 }𝑘∈K to denote

the smoothed key term contexts across different conversations.

The algorithm computes the gradient-based EVOI for each key

term using Equation (5) (Line 7) and selects the key term 𝑘𝑡 that

maximizes the posterior expected reward as in Equation (6) (Line 8).

After receiving user feedback �̃�𝑡 on the key term 𝑘𝑡 , the algorithm

updates the preference estimate 𝜽𝑡 using ridge regression (Line 10).

5.1.2 Arm Selection. In the arm selection phase, ConTS-EVOI em-

ploys the Thompson sampling algorithm [32] to select arms for

recommendation. Following existing studies [3, 4], we assume that

the user’s true preference vector 𝜽 ∗ follows a multivariate Gaussian

distributionN(𝜽𝑡 , 𝚺𝑡 ), where 𝜽𝑡 denotes the estimated mean of 𝜽 ∗

and 𝚺𝑡 denotes the covariance matrix capturing the uncertainty in

the estimate. The algorithm proceeds by sampling 𝜽TS𝑡 from the pos-

terior distribution (Line 12) to get an estimate of the preference vec-

tor with uncertainty. Then it selects the arm 𝑎𝑡 that maximizes the

expected reward under the sampled preference vector 𝜽TS𝑡 (Line 13).

Finally, upon receiving the reward 𝑟𝑡 from recommending 𝑎𝑡 , the
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algorithm updates the preference estimate 𝜽𝑡 using ridge regres-

sion (Line 15) and recalculates the covariance matrix 𝑽𝑡 to reflect

the updated uncertainty (Line 16). The parameter 𝛽𝑡 in Line 16 is

defined according to our theoretical analysis as follows:

𝛽𝑡 =

√︂
2 log( 1

𝛿
) + 𝑑 log

(
1 +

(
𝑡 + (1 +

√
𝑑𝑅)𝑏 (𝑡)

)
/𝜆𝑑

)
+
√
𝜆,

where 𝛿 ∈ (0, 1) is a confidence parameter, and 𝜆 is the regulariza-

tion parameter used in ridge regression to calculate 𝜽𝑡 .

5.2 Conversational LinUCB with EVOI
As shown in Algorithm 2, the ConUCB-EVOI algorithm follows a

similar structure to ConTS-EVOI. The key difference lies in the arm

selection phase, where ConUCB-EVOI employs the LinUCB algo-

rithm [2] to select arms for recommendation. Specifically, it main-

tains a confidence ellipsoid around the estimated preference vector

𝜽𝑡 and selects the arm 𝑎𝑡 with the highest upper confidence bound
at each round 𝑡 (Line 12). Then based on the observed reward 𝑟𝑡 ,

the algorithm updates the covariance matrix 𝑽𝑡 and the preference

estimate 𝜽𝑡 using ridge regression (Line 14).

Algorithm 2: ConUCB-EVOI
Input: 𝜆, 𝛿 , 𝛼 , 𝛽𝑡 , 𝜎 , 𝑅, 𝑏 (𝑡)
Init: 𝑽1 = 𝜆𝑰𝑑×𝑑 , 𝒃1 = 0𝑑×1, 𝜽𝑡 = 0𝑑×1

1 for 𝑡 = 1, 2, . . . do
2 Receive arm set A𝑡

3 𝜽
prior

𝑡 = 𝜽𝑡
4 𝑞𝑡 = ⌊𝑏 (𝑡)⌋ − ⌊𝑏 (𝑡 − 1)⌋
5 while 𝑞𝑡 > 0 do
6 Generate smoothed key term context {�̃�𝑘 }𝑘∈K
7 Let 𝜽𝑘𝑡 ≜ 𝜽

prior

𝑡 −𝛼 (�̃�T
𝑘
𝜽
prior

𝑡 − �̃�T
𝑘
𝜽𝑡 )�̃�𝑘 for all 𝑘 ∈ K

8 Select key term 𝑘𝑡 = argmax𝑘∈K max𝑎∈A𝑡
𝒙T𝑎𝜽

𝑘
𝑡

9 Receive key term-level reward �̃�𝑡

10 Update statistics:

𝑽𝑡 = 𝑽𝑡 + �̃�𝑘𝑡 �̃�
T
𝑘𝑡
, 𝒃𝑡 = 𝒃𝑡 + �̃�𝑡 �̃�𝑘𝑡 , 𝜽𝑡 = 𝑽−1

𝑡 𝒃𝑡

11 𝑞𝑡 = 𝑞𝑡 − 1

12 Select arm 𝑎𝑡 = argmax𝑎∈A𝑡
𝒙T𝑎𝜽𝑡 + 𝛽𝑡 ∥𝒙𝑎 ∥𝑽 −1

𝑡

13 Receive reward 𝑟𝑡

14 Update statistics:

𝑽𝑡+1 = 𝑽𝑡 + 𝒙𝑎𝑡 𝒙T𝑎𝑡 , 𝒃𝑡+1 = 𝒃𝑡 + 𝑟𝑡𝒙𝑎𝑡 , 𝜽𝑡+1 = 𝑽−1
𝑡+1𝒃𝑡+1

6 Theoretical Analysis
This section presents the theoretical results of the cumulative re-

grets of our algorithms. The proofs of Theorems 1 and 2 are given

in Appendices B and C, respectively.

Theorem 1 (Regret of ConTS-EVOI). With probability at least 1−𝛿 ,
the cumulative regret of ConTS-EVOI scales in 𝑂

(
𝑑
√
𝑇 log(𝑇 )

)
.

Theorem 2 (Regret of ConUCB-EVOI). With probability at least 1−𝛿 ,
the cumulative regret of ConUCB-EVOI scales in𝑂

(√︁
𝑑𝑇 log(𝑇 ) + 𝑑

)
.

Table 2: Comparison of theoretical regret bounds.

Strategy Algorithms Conversational Regret

Thompson

Sampling (TS)

LinTS [3, 4] ✗ 𝑂 (𝑑
3

2

√
𝑇 )

ConTS [24] ✓ 𝑂 (𝑑
3

2

√
𝑇 )*

ConTS-EVOI (Ours, Theorem 1) ✓ 𝑂 (𝑑
√
𝑇 )

UCB

LinUCB [2] ✗ 𝑂 (𝑑
√
𝑇 )

ConUCB [41], ConLinUCB [36] ✓ 𝑂 (𝑑
√
𝑇 )

ConUCB-EVOI (Ours, Theorem 2) ✓ 𝑂 (
√
𝑑𝑇 + 𝑑)

*
The original ConTS paper does not present the regret but it can be easily derived.

We summarize the regret bounds for our proposed algorithms

and compare them with related algorithms in Table 2, using big-𝑂

notation to suppress logarithmic factors for clearer comparison. We

categorize the algorithms into two groups based on their arm selec-

tion strategies: Thompson Sampling-based algorithms and LinUCB-

based algorithms. As shown in the table, existing algorithms for

conversational bandits (ConTS, ConUCB, ConLinUCB) do not achieve
substantial improvements over their non-conversational counter-

parts (LinTS, LinUCB). This limitation is primarily because they do

not fully leverage the additional information obtained from conver-

sations. In contrast, our algorithms employ a novel query selection

strategy that enhances exploration and effectively integrates user

feedback from queries into the learning process. Consequently, the

regret bounds of ConTS-EVOI and ConUCB-EVOI both have a

√
𝑑

improvement in their dependence on the time horizon 𝑇 , where

𝑇 may be very large in practice. This improvement highlights the

effectiveness of our approach in utilizing conversational queries to

enhance recommendation quality.

7 Evaluation
In this section, we conduct extensive experiments to demonstrate

the effectiveness of our proposed algorithms. Specifically, we aim

to answer the following research questions:

(1) Do our algorithms ConTS-EVOI and ConUCB-EVOI outperform

existing state-of-the-art conversational bandit algorithms?

(2) How does the additional information obtained from conver-

sational queries affect the estimation of user preferences and

overall performance?

(3) What is the impact of the conversation frequency function 𝑏 (𝑡)
on performance?

7.1 Experiment Settings
7.1.1 Datasets. Following previous studies [12, 38, 39, 41, 43], we

generate a synthetic dataset and use the following real-world datasets.

• MovieLens-25M [17]: The MovieLens-25M dataset is collected

from themovie recommendation website MovieLens
1
. It contains

25,000,095 ratings, created by 162,541 users for 62,423 movies.

• Last.fm [8]: The Last.fm dataset is collected from the online

music platform Last.fm
2
. It contains 186,479 tag assignments that

link 1,892 users with 17,632 artists.

• Yelp3: The Yelp dataset is collected by Yelp, a platform where

users contribute reviews and ratings for various businesses such

1
https://movielens.org/

2
https://www.last.fm

3
https://www.yelp.com/dataset

6
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as restaurants and shops. It contains 6,990,280 reviews for 150,346

businesses created by 1,987,897 users.

7.1.2 Data Generation and Preprocessing. Our synthetic dataset
is generated following the methodology used in previous stud-

ies [25, 36, 37, 41]. We set the feature dimension 𝑑 = 50, the number

of users (i.e., the number of unknown preference vectors) 𝑁 = 200,

the number of arms |A| = 5000, and the number of key terms

|K | = 1000. To reflect the relationship between key terms and arms,

we generate the dataset as follows. We first sample |K | pseudo
feature vectors { ¤𝒙𝑘 }𝑘∈K , where each component of ¤𝒙𝑘 is indepen-

dently drawn from the uniform distribution U(−1, 1). Then for

each arm 𝑎, we uniformly sample a subsetK𝑎 ⊂ K consisting of 𝑛𝑎
key terms, where 𝑛𝑎 is a random integer selected uniformly from

{1, 2, . . . , 5}. We assign a weight 𝑤𝑎,𝑘 = 1/𝑛𝑎 for each key term

𝑘 ∈ K𝑎 . Finally, the feature vector for each arm 𝑎, denoted by 𝒙𝑎 , is
drawn from a multivariate Gaussian N(∑𝑗∈K𝑎

¤𝒙 𝑗/𝑛𝑎, 𝑰 ). And the

feature vector for each key term 𝑘 , denoted by 𝒙𝑘 , is computed as

𝒙𝑘 =
∑
𝑎∈A

𝑤𝑎,𝑘∑
𝑗 ∈A 𝑤𝑗,𝑘

𝒙𝑎 . This models the idea that each key term

is related to a few arms. Each user 𝑢 ∈ [𝑁 ] is represented as a

preference vector 𝜽𝑢 ∈ R𝑑 . We generate 𝑁 preference vectors by

sampling each component of 𝜽𝑢 independently fromU(−1, 1).
For the real-world datasets, we considermovies/artists/businesses

as arms. To facilitate data analysis, we extract a subset of |A| =
5, 000 arms with the highest number of user-assigned ratings/tags,

and a subset of 𝑁 = 200 users who have provided the most rat-

ings/tags. Key terms are identified using the associated metadata:

movie genres, business categories, or tag IDs in the MovieLens,

Yelp, and Last.fm datasets, respectively. For example, each movie

is associated with a list of genres, such as “Action”, “Comedy”, or

“Drama”, and each business (e.g., restaurant) has a list of categories,

such as “Burgers”, “Seafood”, or “Steakhouses”. Using the data ex-

tracted above, we create a feedback matrix 𝑹 of size 𝑁 × |A|, where
each element 𝑹𝑖, 𝑗 represents the user 𝑖’s feedback to arm 𝑗 . We

assume that the user’s feedback is binary. For the MovieLens and

Yelp datasets, 𝑹𝑖, 𝑗 = 1 if user 𝑖’s rating for arm 𝑗 is higher than 3;

otherwise, 𝑹𝑖, 𝑗 = 0. For the Last.fm dataset, 𝑹𝑖, 𝑗 = 1 if user 𝑖 assigns

a tag to artist 𝑗 ; otherwise, 𝑹𝑖, 𝑗 = 0.

Next, we generate the feature vectors for arms {𝒙𝑎}𝑎∈A and

the preference vectors for users {𝜽𝑢 }𝑢∈[𝑁 ] following the exist-

ing works [36, 37, 43]. We decompose the feedback matrix 𝑹 us-

ing Singular Value Decomposition (SVD) as 𝑹 = 𝚯𝑺𝑨T
, where

𝚯 = {𝜽𝑢 }𝑢∈[𝑁 ] , and𝑨 = {𝒙𝑎}𝑎∈A . Then we extract the top 𝑑 = 50

dimensions of these vectors associated with the highest singular

values in 𝑺 . The feature vectors for key terms {𝒙𝑘 }𝑘∈K are gener-

ated following Zhang et al. [41], which maintains equal weights for

all key terms corresponding to each arm.

7.1.3 Baseline Algorithms. We select the following algorithms from

existing studies as baselines for comparison with our methods.

• LinUCB [2, 23]: The standard linear contextual bandit algorithm

designed for infinite arm sets. It does not consider conversational

interactions and relies only on arm-level feedback.

• LinTS [4]: The standard Thompson sampling algorithm for linear

contextual bandits, also utilizing only arm-level feedback.

• ConUCB [41]: The original algorithm proposed for conversational

contextual bandits. It initiates conversations by querying key

terms when allowed and leverages the feedback from these

queries to accelerate the learning of user preferences.

• ConLinUCB [36]: A series of algorithms that modify the key

term selection strategy of ConUCB. It contains three variants:

ConLinUCB-BS computes the barycentric spanner of key terms

to form an efficient exploration basis. ConLinUCB-MCR chooses
key terms with the maximum confidence radius. ConLinUCB-UCB
chooses key terms with the largest upper confidence bound.

7.1.4 Performance Metrics. To measure the performance of our

algorithms, we employ two metrics. First, we use the cumulative

regret defined in Equation 1, which is a standard metric in bandit

literature. A lower cumulative regret signifies better performance.

Second, we evaluate the estimation error of the unknown prefer-

ence vector by computing the ℓ2-norm of the difference between

the estimated vector 𝜽𝑡 and the true preference vector 𝜽 ∗. This
metric quantifies how closely the algorithm’s estimate aligns with

the user’s actual preferences at each time step. To ensure statistical

reliability, we repeat each experiment 20 times and report the aver-

age results. The confidence intervals derived from these repetitions

are also included in the figures. All the experiments were conducted

on a MacBook Pro with M1 Pro 8-core CPU and 16GB of RAM.

7.2 Evaluation Results
7.2.1 Cumulative Regret. we evaluate and compare our proposed

algorithms, ConTS-EVOI and ConUCB-EVOI, against all the baseline
algorithms in terms of cumulative regret. The evaluation is con-

ducted over 𝑇 = 4, 000 rounds. In each round, we randomly sample

𝐾 = 50 arms from A to form the arm set for that round. For gen-

erating the smoothed key term contexts, we set both the variance

of perturbation 𝜎2 and the truncation limit 𝑅 to 1. For computing

gradient-based EVOI, the learning rate 𝛼 is set to 0.1. Following

existing studies [36, 41], we adopt the conversation frequency func-

tion 𝑏 (𝑡) = 5⌊log(𝑡)⌋. The results are presented in Figure 2, where

the 𝑥-axis is the number of rounds and the 𝑦-axis is the cumula-

tive regret. Among all the datasets, we observe consistent trends

that align with the findings from previous studies. Specifically, all

the algorithms exhibit sublinear growth in cumulative regret over

time, indicating effective learning and adaptation. Algorithms that

do not utilize key term queries (i.e., LinUCB and LinTS) show the

poorest performance (highest cumulative regret). In contrast, algo-

rithms that incorporate conversational interactions by querying

key terms perform significantly better, showing the importance of

conversations in accelerating preference elicitation. Our algorithms

ConTS-EVOI and ConUCB-EVOI consistently achieve the best per-

formance, reducing cumulative regret by more than 8.5% and 10.7%,

respectively, compared to the best baseline. This demonstrates the

effectiveness of our novel conversational mechanism by integrat-

ing gradient-based EVOI and smoothed key term contexts into the

conversational bandit framework.

7.2.2 Accuracy of Estimated Preference Vectors. In Figure 3, we

present the average distance between the estimated vector 𝜽𝑡 and
the ground truth 𝜽 ∗ for all algorithms from rounds 𝑡 = 100 to

900, illustrating how accurately each algorithm learns the user’s

preferences over time. It is important to note that although all al-

gorithms initiate conversations simultaneously and with the same
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Figure 2: Comparison of cumulative regret.

frequency (since they use the same conversation frequency func-

tion 𝑏 (𝑡)), only our algorithms ConTS-EVOI and ConUCB-EVOI ex-
hibit distinct staircase-like curves in the figure. Each steep drop in

these curves corresponds to a round of conversations. This pat-

tern demonstrates that, by leveraging our novel conversational

mechanism, ConTS-EVOI and ConUCB-EVOI can gather more infor-

mative feedback during the conversation, thus sharply decreasing

the estimation error, whereas other algorithms do not show such ad-

vantages. As a result, our algorithms estimate the user’s preference

vector more quickly and accurately than the baseline algorithms.
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Figure 3: Comparison of estimation error.

7.2.3 Influence of Conversation Frequency. We evaluate the im-

pact of the conversation frequency function 𝑏 (𝑡), which determines

how often conversations occur as the number of rounds 𝑡 increases.

Similar to Zhang et al. [41], we employ a series of conversation fre-

quency functions defined as 𝑏 (𝑡) = 𝑛 · ⌊log(𝑡)⌋, where 𝑛 is the num-

ber of questions asked during each round of conversation, and the

interval between consecutive conversations grows exponentially.

We measure the cumulative regret and the cumulative estimation

error ∥𝜽𝑡 − 𝜽 ∗∥2 over 𝑇 = 1, 000 rounds. Due to space constraints,

we present results only for the real-world Last.fm dataset; other

datasets exhibit similar patterns. As illustrated in Figures 4 and 5,

for all the conversational algorithms, the cumulative regret and esti-

mation error consistently decrease with increasing 𝑛, underscoring

the benefits of more frequent conversations. Notably, ConTS-EVOI
and ConUCB-EVOI show the most significant improvements as 𝑛

increases, indicating that they benefit more from frequent con-

versations. This suggests that our algorithms are more effective at

leveraging conversational information than the baseline algorithms.
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Figure 4: Cumulative regret with different 𝑏 (𝑡).
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Figure 5: Cumulative estimation error with different 𝑏 (𝑡).

8 Conclusion
In this paper, we bridged the gap between two previously separate

lines of research by incorporating the expected value of information

(EVOI) into the conversational bandit framework. We introduced

a novel conversational mechanism built on two key techniques:

gradient-based EVOI and smoothed key term contexts. Based on these
techniques, we proposed two new algorithms, ConTS-EVOI and

ConUCB-EVOI, and proved that they achieve significantly tighter

regret bounds than existing approaches. Our extensive evaluations

further confirmed that our algorithms outperform current state-of-

the-art conversational bandit algorithms.
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A Technical Lemmas for Gradient-based EVOI
and Smoothed Key Term Contexts

Lemma 1. For any round 𝑡 ∈ [𝑇 ], with the smoothed key term con-
texts in Definition 1, gradient-based EVOI key term selection strategy
has the following lower bound on the minimum eigenvalue of the
matrix E[�̃�𝑘𝑡 �̃�T𝑘𝑡 ] for the selected key term 𝑘𝑡 ∈ K :

𝜆min

(
E
[
�̃�𝑘 �̃�

T
𝑘

] )
≥ 𝑐1

𝜎2

log |K | ≜ 𝜆K ,

where 𝑐1 ∈ (0, 1) is some constant.

Proof. Fix a time 𝑡 , and denote the key term selected at this time

as 𝑘𝑡 . Note that althoughmultiple key terms may be selected at each

time step, they all satisfy this lemma. Therefore, we do not distin-

guish between them and use only a single subscript 𝑡 . For each arm𝑎,

let 𝑸𝑎 be a unitary matrix that rotates the feature vector 𝒙𝑎 to align

it with the 𝑥-axis, maintaining its length but zeroing out all com-

ponents except the first component, i.e., 𝑸𝑎𝒙𝑎 = (∥𝒙𝑎 ∥, 0, 0, . . . , 0).
Such matrices {𝑸𝑎}𝑎∈A𝑡

always exist because they just rotate

the space. Recall the key term selection of gradient-based EVOI

in Equation (6): 𝑘𝑡 = argmax𝑘∈K max𝑎∈A𝑡
𝒙T𝑎𝜽

𝑘
𝑡 , where 𝜽𝑘𝑡 =

𝜽
prior

𝑡 −𝛼 (�̃�T
𝑘
𝜽
prior

𝑡 − �̃�T
𝑘
𝜽𝑡 )�̃�𝑘 . For simplicity, we also define a short-

hand 𝛼𝑘𝑡 ≜ −𝛼 (�̃�T
𝑘
𝜽
prior

𝑡 − �̃�T
𝑘
𝜽𝑡 ) and 𝒚𝑘𝑡 ≜ 𝜽

prior

𝑡 + 𝛼𝑘𝑡 𝒙𝑘 . We have

𝜆min

(
E
[
�̃�𝑘𝑡 �̃�

T
𝑘𝑡

] )
= 𝜆min

(
E

[
𝒙𝒙T

��� 𝒙 = argmax

𝒙𝑘 :𝑘∈K
max

𝑎∈A𝑡

𝒙T𝑎𝜽
𝑘
𝑡

])
= min

𝒘:∥𝒘 ∥=1
𝒘T E

[
𝒙𝒙T

��� 𝒙 = argmax

𝒙𝑘 :𝑘∈K
max

𝑎∈A𝑡

𝒙T𝑎𝜽
𝑘
𝑡

]
𝒘

= min

𝒘:∥𝒘 ∥=1
E

[
(𝒘T𝒙)2

��� 𝒙 = argmax

𝒙𝑘 :𝑘∈K
max

𝑎∈A𝑡

𝒙T𝑎𝜽
𝑘
𝑡

]
≥ min

𝒘:∥𝒘 ∥=1
Var

[
𝒘T𝒙

��� 𝒙 = argmax

𝒙𝑘 :𝑘∈K
max

𝑎∈A𝑡

𝒙T𝑎𝜽
𝑘
𝑡

]
= min

𝒘:∥𝒘 ∥=1
Var

[
𝒘T𝒙

��� 𝒙 = argmax

𝒙𝑘 :𝑘∈K
max

𝑎∈A𝑡

𝒙T𝑎 (𝜽
prior

𝑡 + 𝛼𝑘𝑡 �̃�𝑘 )
]

= min

𝒘:∥𝒘 ∥=1
Var

[
𝒘T𝒙

��� 𝒙 = argmax

𝒙𝑘 :𝑘∈K
max

𝑎∈A𝑡

𝒙T𝑎 (𝒚𝑘𝑡 + 𝛼𝑘𝑡 𝜺𝑘 )
]

(7)

=min
𝒘:

∥𝒘 ∥=1
Var

[
𝒘T𝒙

��� 𝒙 = argmax

𝒙𝑘 :𝑘∈K
max

𝑎∈A𝑡

(𝑸𝑎𝒙𝑎)T𝑸𝑎 (𝒚𝑘𝑡 + 𝛼𝑘𝑡 𝜺𝑘 )
]

(8)

=min
𝒘:

∥𝒘 ∥=1
Var

[
𝒘T𝒙

��� 𝒙 = argmax

𝒙𝑘 :𝑘∈K
max

𝑎∈A𝑡

∥𝒙𝑎 ∥(𝑸𝑎 (𝒚𝑘𝑡 + 𝛼𝑘𝑡 𝜺𝑘 ))1

]
(9)

=min
𝒘:

∥𝒘 ∥=1
Var

[
𝒘T𝜺

��� 𝜺 = argmax

𝜺𝑘 :𝑘∈K

[
(𝑸𝑎𝜺𝑘 )1 + max

𝑎∈A𝑡

(
𝑸𝑎

𝛼𝑘𝑡

𝒚𝑘𝑡

)
1

] ]
(10)

= min

𝒘:∥𝒘 ∥=1
Var

[
𝒘T𝜺

��� 𝜺 = argmax

𝜺𝑘 :𝑘∈K

[
(𝜺𝑘 )1 + max

𝑎∈A𝑡

(
𝑸𝑎

𝛼𝑘𝑡

𝒚𝑘𝑡

)
1

] ]
(11)

where Equation (7) uses the definition of smoothed key term �̃�𝑘 =

𝒙𝑘 + 𝜺𝑘 . Equation (8) uses the property of unitary matrices: 𝑸T
𝑎𝑸𝑎 =

𝑰𝑑 . Equation (9) applies matrix 𝑸𝑎 so only the first component

is non-zero. Equation (10) follows because the randomness of a

smoothed key term �̃�𝑘 = 𝒙𝑘 + 𝜺𝑘 stems from 𝜺𝑘 , and adding a

constant a to a random variable does not change its variance. Equa-

tion (11) is due to the rotation invariance of symmetrically truncated

Gaussian distributions.

Since 𝜺𝑘 ∼ N(0, 𝜎2𝑰𝑑 ) conditioned on | (𝜺𝑘 ) 𝑗 | ≤ 𝑅,∀𝑗 ∈ [𝑑],
by the property of (truncated) multivariate Gaussian distributions,

the components of 𝜺𝑘 can be equivalently regarded as 𝑑 indepen-

dent samples from a (truncated) univariate Gaussian, i.e., (𝜺𝑘 ) 𝑗 ∼
N(0, 𝜎2) conditioned on | (𝜺𝑘 ) 𝑗 | ≤ 𝑅,∀𝑗 ∈ [𝑑]. Therefore, we have

Var

[
𝒘T𝜺

]
= Var

[
𝑑∑︁
𝑖=1

𝒘𝑖 (𝜺)𝑖

]
=

𝑑∑︁
𝑖=1

𝒘2

𝑖 Var [(𝜺)𝑖 ] ,

where the exchanging of variance and summation is due to the inde-

pendence of (𝜺)𝑖 . Therefore, by denoting 𝑧𝑘𝑡 = max𝑎∈A𝑡

(
𝑸𝑎

𝛼𝑘
𝑡

𝒚𝑘𝑡

)
1

,

we can write

min

𝒘:∥𝒘 ∥=1
Var

[
𝒘T𝜺

��� 𝜺 = argmax

𝜺𝑘 :𝑘∈K

(
(𝜺𝑘 )1 + 𝑧𝑘𝑡

)]
= min

𝒘:∥𝒘 ∥=1

𝑑∑︁
𝑗=1

𝒘2

𝑗 Var

[
(𝜺) 𝑗

��� 𝜺 = argmax

𝜺𝑘 :𝑘∈K

(
(𝜺𝑘 )1 + 𝑧𝑘𝑡

)]
= min

𝒘:∥𝒘 ∥=1

{
𝒘2

1
Var

[
(𝜺)1

��� 𝜺 = argmax

𝜺𝑘 :𝑘∈K

(
(𝜺𝑘 )1 + 𝑧𝑘𝑡

)]
+

𝑑∑︁
𝑗=2

𝒘2

𝑗 Var

[
(𝜺) 𝑗

��� 𝜺 = argmax

𝜺𝑘 :𝑘∈K

(
(𝜺𝑘 )1 + 𝑧𝑘𝑡

)]
= min

𝒘:∥𝒘 ∥=1

𝒘2

1
Var

[
(𝜺)1

��� 𝜺 = argmax

𝜺𝑘 :𝑘∈K

(
(𝜺𝑘 )1 + 𝑧𝑘𝑡

)]
+

𝑑∑︁
𝑗=2

𝒘2

𝑗 Var
[
(𝜺) 𝑗

]
= min

𝒘:∥𝒘 ∥=1

{
𝒘2

1
Var

[
(𝜺)1

��� 𝜺 = argmax

𝜺𝑘 :𝑘∈K

(
(𝜺𝑘 )1 + 𝑧𝑘𝑡

)]
+ (1 −𝒘2

1
)𝜎2

}
=min

{
Var

[
(𝜺)1

��� 𝜺 = argmax

𝜺𝑘 :𝑘∈K

(
(𝜺𝑘 )1 + 𝑧𝑘𝑡

)]
, 𝜎2

}
≥ 𝑐1

𝜎2

log |K | ,

where in the last inequality, we use Lemma 15 and Lemma 14 in

Sivakumar et al. [29] and get

Var

[
(𝜺)1

��� 𝜺 = argmax

𝜺𝑘 :𝑘∈K

(
(𝜺𝑘 )1 + 𝑧𝑘𝑡

)]
≥ Var

[
(𝜺)1

��� 𝜺 = argmax

𝜺𝑘 :𝑘∈K
(𝜺𝑘 )1

]
≥ 𝑐1

𝜎2

log |K | .

□

Lemma 2. Let 𝑏 (𝑡) = 𝑏𝑡 for some 𝑏 ∈ (0, 1). With probability at

least 1 − 𝛿 for any 𝛿 ∈ (0, 1), if 𝑡 ≥ 𝑇0 ≜ 8(1+
√
𝑑𝑅)2

𝑏𝜆K
log

(
𝑑
𝛿

)
, we have

𝜆min

©­«
𝑡∑︁

𝑠=1

∑︁
𝑘∈K𝑠

�̃�𝑘 �̃�
T
𝑘

ª®¬ ≥ 𝜆K𝑏𝑡
2

.

where 𝜆K = 𝑐1
𝜎2

log |K | is defined in Lemma 1, and K𝑡 denotes the set
of key terms queried at round 𝑡 .
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Proof. To apply the matrix Chernoff bound (Lemma 6), we first

verify the required two conditions for the self-adjoint matrices

�̃�𝑘 �̃�
T
𝑘
for any 𝑘 ∈ K𝑠 and 𝑠 ∈ [𝑡]. First, �̃�𝑘 �̃�T𝑘 is obviously positive

semi-definite. Second, by the Courant-Fischer theorem,

𝜆max (�̃�𝑘 �̃�T𝑘 ) = max

𝒘:∥𝒘 ∥=1
𝒘T�̃�𝑘 �̃�

T
𝑘
𝒘 = max

𝒘:∥𝒘 ∥=1
(𝒘T�̃�𝑘 )2

≤ max

𝒘:∥𝒘 ∥=1
∥𝒘 ∥2∥�̃�𝑘 ∥2 ≤ (1 +

√
𝑑𝑅)2 .

Next, by Lemma 1 and the super-additivity of the minimum eigen-

value (due to Weyl’s inequality), we have

𝜇min = 𝜆min

©­«
𝑡∑︁

𝑠=1

∑︁
𝑘∈K𝑠

E
[
�̃�𝑘 �̃�

T
𝑘

]ª®¬ ≥
𝑡∑︁

𝑠=1

∑︁
𝑘∈K𝑠

𝜆min

(
E
[
�̃�𝑘 �̃�

T
𝑘

] )
≥ 𝜆K𝑏𝑡,

where the last inequality is because there are at most 𝑏𝑡 key terms

selected by round 𝑡 , so the summation has at most 𝑏𝑡 terms. So by

Lemma 6, we have for any 𝜀 ∈ (0, 1),

Pr

𝜆min

©­«
𝑡∑︁

𝑠=1

∑︁
𝑘∈K𝑠

�̃�𝑘 �̃�
T
𝑘

ª®¬ ≤ (1 − 𝜀)𝜆K𝑏𝑡


≤ Pr

𝜆min

©­«
𝑡∑︁

𝑠=1

∑︁
𝑘∈K𝑠

�̃�𝑘 �̃�
T
𝑘

ª®¬ ≤ (1 − 𝜀)𝜇min


≤𝑑

[
𝑒−𝜀

(1 − 𝜀)1−𝜀

]𝜇min/(1+
√
𝑑𝑅)2

≤ 𝑑
[

𝑒−𝜀

(1 − 𝜀)1−𝜀

] 𝜆K𝑏𝑡

(1+
√
𝑑𝑅)2

,

where the last inequality is because 𝑒−𝑥 is decreasing. Choosing

𝜀 = 1

2
, we get

Pr

𝜆min

©­«
𝑡∑︁

𝑠=1

∑︁
𝑘∈K𝑠

�̃�𝑘 �̃�
T
𝑘

ª®¬ ≤ 𝜆K𝑏𝑡
2

 ≤ 𝑑
(√

2𝑒−
1

2

) 𝜆K𝑏𝑡

(1+
√
𝑑𝑅)2 .

Letting the RHS be𝛿 , we get 𝑡 =
2(1+

√
𝑑𝑅)2 log( 𝑑

𝛿
)

𝜆K𝑏 (1−log(2) ) ≤ 8(1+
√
𝑑𝑅)2

𝜆K𝑏
log

(
𝑑
𝛿

)
.

Therefore, 𝜆min

(∑𝑡
𝑠=1

∑
𝑘∈K𝑠

�̃�𝑘 �̃�
T
𝑘

)
≥ 𝜆K𝑏𝑡

2
holds with probability

at least 1 − 𝛿 when 𝑡 ≥ 8(1+
√
𝑑𝑅)2

𝜆K𝑏
log

(
𝑑
𝛿

)
. □

B Regret Analysis of Algorithm 1
First, we introduce some notations to facilitate our analysis.

Recall that 𝛽𝑡 =

√√
2 log ( 1

𝛿
) + 𝑑 log

(
1 +

𝑡+
(
1+

√
𝑑𝑅

)
𝑏 (𝑡 )

𝜆𝑑

)
+
√
𝜆. For

each time step 𝑡 , we define the event E𝜽
𝑡 as follows:

E𝜽
𝑡 =

{���𝒙T𝑎𝜽𝑡 − 𝒙T𝑎𝜽
∗
��� ≤ 𝛽𝑡 ∥𝒙𝑎 ∥𝑽 −1

𝑡
,∀𝑎 ∈ A𝑡

}
.

Let 𝑎∗𝑡 = argmax𝑎∈A𝑡
𝒙T𝑎𝜽

∗
be the optimal arm at time step

𝑡 . The mean reward gap between the optimal arm and any arm

𝑎 ∈ A𝑡 is given by Δ𝑎𝑡 = 𝒙T
𝑎∗𝑡
𝜽 ∗ − 𝒙T𝑎𝜽

∗
.

We define a filtration {F𝑡 }𝑡≥0, where F𝑡−1 captures all relevant
information up to time step 𝑡 − 1 and includes the contexts of all

arms at time step 𝑡 , i.e.,

H𝑡−1 =
{
{𝒙𝑎}𝑎∈A𝑠

, 𝑎𝑠 , 𝑟𝑠 , D̃𝑠 ,K𝑠 , {�̃�𝑠,𝑘 }𝑘∈K𝑠
, 𝑠 ≤ 𝑡 − 1, {𝒙𝑎}𝑎∈A𝑡

}
,

where K𝑠 denotes the set of key terms queried at time step 𝑠 and

{�̃�𝑠,𝑘 }𝑘∈K𝑠
denotes the corresponding rewards from pulling the

key terms in K𝑠 . K𝑠 = ∅ if no key term is queried at time step 𝑠 .

Next, we present some lemmas used in the proof of Theorem 1.

Lemma 3 (Lemma 4 in Agrawal and Goyal [4]). For any 𝑡 ≥ 1, for
any F𝑡−1 such that the event E𝜽

𝑡 holds, we have

E[Δ𝑎𝑡𝑡 | F𝑡−1] ≤𝐺𝑡 𝛽𝑡 E[∥𝒙𝑎𝑡 ∥𝑽 −1
𝑡

| F𝑡−1] +
2

𝑡2
,

where 𝐺𝑡 and 𝛽𝑡 are defined as 𝐺𝑡 =

(
2

1

4𝑒
√
𝜋
− 1

𝑡2

+ 1

)
and 𝛽𝑡 =

(2
√︁
𝑑 log 𝑡 + 1)𝛽𝑡 respectively.

Lemma 4. For any 𝛿 ∈ (0, 1), for all 𝑡 ≥ 1 and all arm 𝑎 ∈ A𝑡 , with
probability at least 1 − 𝛿 , we have���𝒙T𝑎𝜽𝑡 − 𝒙T𝑎𝜽

∗
��� ≤ 𝛽𝑡 ∥𝒙𝑎 ∥𝑽 −1

𝑡
.

Lemma 4 is equivalent to that the event E𝜽
𝑡 holds for all 𝑡 ≥ 1

with probability at least 1 − 𝛿 . It demonstrates that the estimated

reward of each arm is close to the true reward with high probability.

Proof. Before selecting arm 𝑎𝑡 at time 𝑡 , 𝜽𝑡 = 𝑽−1
𝑡 𝒃𝑡 , and

𝑽𝑡 =
𝑡−1∑︁
𝑠=1

𝒙𝑎𝑠𝒙
T
𝑎𝑠

+
𝑡∑︁

𝑠=1

∑︁
𝑘∈K𝑠

�̃�𝑘 �̃�
T
𝑘
+ 𝜆𝑰𝑑×𝑑 ,

𝒃𝑡 =
𝑡−1∑︁
𝑠=1

𝑟𝑠𝒙𝑎𝑠 +
𝑡∑︁

𝑠=1

∑︁
𝑘∈K𝑠

�̃�𝑠,𝑘 �̃�𝑘 .

For any 𝑎 ∈ A𝑡 , we have

𝒙T𝑎𝜽𝑡 − 𝒙T𝑎𝜽
∗ = 𝒙T𝑎

(
𝑽−1
𝑡 𝒃𝑡 − 𝜽 ∗

)
=𝒙T𝑎

©­«𝑽−1
𝑡

©­«
𝑡−1∑︁
𝑠=1

𝑟𝑠𝒙𝑎𝑠 +
𝑡∑︁

𝑠=1

∑︁
𝑘∈K𝑠

�̃�𝑠,𝑘 �̃�𝑘
ª®¬ − 𝜽 ∗ª®¬

=𝒙T𝑎
©­«𝑽−1

𝑡
©­«
𝑡−1∑︁
𝑠=1

𝒙𝑎𝑠

(
𝒙T𝑎𝑠𝜽

∗ + 𝜂𝑠
)
+

𝑡∑︁
𝑠=1

∑︁
𝑘∈K𝑠

�̃�𝑘

(
�̃�T
𝑘
𝜽 ∗ + 𝜂𝑠

)ª®¬ − 𝜽 ∗ª®¬
=𝜆𝒙T𝑎𝑽

−1
𝑡 𝜽 ∗ + 𝒙T𝑎

©­«𝑽−1
𝑡

©­«
𝑡−1∑︁
𝑠=1

𝒙𝑎𝑠𝜂𝑠 +
𝑡∑︁

𝑠=1

∑︁
𝑘∈K𝑠

�̃�𝑘𝜂𝑠
ª®¬ª®¬. (12)

For the first term, we have

|𝜆𝒙T𝑎𝑽−1
𝑡 𝜽 ∗ | =𝜆∥𝒙𝑎 ∥𝑽 −1

𝑡
∥𝜽 ∗∥𝑽 −1

𝑡

≤𝜆∥𝒙𝑎 ∥𝑽 −1
𝑡

∥𝜃∗∥
√
𝜆

=
√
𝜆∥𝒙𝑎 ∥𝑽 −1

𝑡
, (13)

where the inequality follows that ∥𝜽 ∗∥2
𝑽 −1
𝑡

≤ ∥𝜃 ∗ ∥2
𝜆min (𝑽𝑡 ) and 𝜆min (𝑽𝑡 ) ≥

𝜆, and the last equality follows the assumption that ∥𝜽 ∗∥ = 1.

According to Theorem 1 in Abbasi-Yadkori et al. [2], for any

𝛿 ∈ (0, 1), with probability at least 1 − 𝛿 ,for all 𝑡 ≥ 1, we have





𝑡−1∑︁
𝑠=1

𝒙𝑎𝑠𝜂𝑠 +
𝑡∑︁

𝑠=1

∑︁
𝑘∈K𝑠

�̃�𝑘𝜂𝑠








𝑽 −1
𝑡

≤

√√√
2 log

(
det(𝑽𝑡 )1/2 det(𝜆𝑰𝑑×𝑑 )−1/2

𝛿

)
.
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Besides, we have

tr(𝑽𝑡 ) ≤𝑑𝜆 +
𝑡−1∑︁
𝑠=1

tr(𝒙𝑎𝑠𝒙T𝑎𝑠 ) +
𝑡∑︁

𝑠=1

∑︁
𝑘∈K𝑠

tr(�̃�𝑘 �̃�T𝑘 )

≤𝑑𝜆 + 𝑡 +
(
1 +

√
𝑑𝑅

)
𝑏 (𝑡),

where tr(𝑨) denotes the trace of matrix 𝑨, The last inequality

follows from the fact that ∥�̃�𝑘 ∥ ≤ 1 +
√
𝑑𝑅 for all 𝑘 ∈ K𝑠 by

Definition 1, and there are at most 𝑏 (𝑡) key terms selected by 𝑡 .

Then based on the determinant-trace inequality (Lemma 7),

det(𝑽𝑡 ) ≤
(
tr(𝑽𝑡 )
𝑑

)𝑑
≤

©­­«
𝑑𝜆 + 𝑡 +

(
1 +

√
𝑑𝑅

)
𝑏 (𝑡)

𝑑

ª®®¬
𝑑

.

Therefore, we have





𝑡−1∑︁
𝑠=1

𝒙𝑎𝑠𝜂𝑠 +
𝑡∑︁

𝑠=1

∑︁
𝑘∈K𝑠

�̃�𝑘𝜂𝑠








𝑽 −1
𝑡

≤

√√√√√√
2 log

(
1

𝛿

)
+ 𝑑 log

©­­«1 +
𝑡 +

(
1 +

√
𝑑𝑅

)
𝑏 (𝑡)

𝜆𝑑

ª®®¬. (14)

Applying Cauchy-Schwarz inequality to Equation (12) and plug-

ging Equations (13) and (14) into it, we have

|𝒙T𝑎𝜽𝑡 − 𝒙T𝑎𝜽
∗ |

≤𝜆 |𝒙T𝑎𝑽−1
𝑡 𝜽 ∗ | + ∥𝒙𝑎 ∥𝑽 −1

𝑡







𝑡−1∑︁
𝑠=1

𝒙𝑎𝑠𝜂𝑠 +
𝑡∑︁

𝑠=1

∑︁
𝑘∈K𝑠

�̃�𝑘𝜂𝑠








𝑽 −1
𝑡

≤∥𝒙𝑎 ∥𝑽 −1
𝑡

©­­­«
√
𝜆 +

√√√√√√
2 log

(
1

𝛿

)
+ 𝑑 log

©­­«1 +
𝑡 +

(
1 +

√
𝑑𝑅

)
𝑏 (𝑡)

𝜆𝑑

ª®®¬
ª®®®¬

=𝛽𝑡 ∥𝒙𝑎 ∥𝑽 −1
𝑡
,

where the last inequality follows the definition of 𝛽𝑡 . □

Following Wang et al. [36], we choose 𝑏 (𝑡) = 𝑏𝑡 for some 𝑏 ∈
(0, 1). We now present the following lemma and prove Theorem 1.

Lemma 5. When 𝑡 ≥ 𝑇0 ≜ 8(1+
√
𝑑𝑅)2

𝑏𝜆K
log

(
𝑑
𝛿

)
, for any 𝑎 ∈ A𝑡 , with

probability at least 1 − 𝛿 for some 𝛿 ∈ (0, 1), we have ∥𝒙𝑎 ∥𝑽 −1
𝑡

≤√︃
2

𝜆K𝑏𝑡
.

Proof. Note that for any 𝑎 ∈ A𝑡 ,

∥𝒙𝑎 ∥𝑽 −1
𝑡

=

√︃
𝒙T𝑎𝑽

−1
𝑡 𝒙𝑎 ≤

√︃
𝜆max (𝑽−1

𝑡 )𝒙T𝑎𝒙𝑎 =

√︂
1

𝜆min (𝑽𝑡 )
, (15)

where the inequality is due to the matrix operator norm, and the

last equality follows from the assumption that ∥𝒙𝑎 ∥ = 1.

According to the definition of 𝑽𝑡 in Algorithm 1, we have

𝜆min (𝑽𝑡 ) = 𝜆min

©­«
𝑡−1∑︁
𝑠=1

𝒙𝑎𝑠𝒙
T
𝑎𝑠

+
𝑡∑︁

𝑠=1

∑︁
𝑘∈K𝑠

�̃�𝑘 �̃�
T
𝑘
+ 𝜆𝑰𝑑×𝑑

ª®¬
≥ 𝜆min

©­«
𝑡∑︁

𝑠=1

∑︁
𝑘∈K𝑠

�̃�𝑘 �̃�
T
𝑘

ª®¬ ≥ 𝜆K𝑏𝑡
2

, (16)

where the last inequality follows from Lemma 2.

Combining Equations (15) and (16), we know ∥𝒙𝑎 ∥𝑽 −1
𝑡

≤
√︃

2

𝜆K𝑏𝑡
.

□

Theorem 1 (Regret of ConTS-EVOI). With probability at least 1−𝛿 ,
the cumulative regret of ConTS-EVOI scales in 𝑂

(
𝑑
√
𝑇 log(𝑇 )

)
.

Proof of Theorem 1. We define the instantaneous regret at

time 𝑡 as reg𝑡 = Δ𝑎𝑡𝑡 = 𝒙T
𝑎∗𝑡
𝜽 ∗−𝒙T𝑎𝑡 𝜽

∗
, and denote reg

′
𝑡 = reg𝑡1[E𝜽

𝑡 ],
where 1[E𝜽

𝑡 ] is the indicator function that takes the value 1 if the

event E𝜽
𝑡 holds and 0 otherwise.

Define 𝑌0 = 0 and 𝑌𝑡 =
∑𝑡
𝑠=1 reg

′
𝑠 −𝐺𝑠𝛽𝑠 ∥𝒙𝑎𝑠 ∥𝑽 −1

𝑠
− 2

𝑠2
for all

𝑡 ≥ 1. We first show that {𝑌𝑡 }𝑡≥0 is a super-martingale with respect

to the filtration {F𝑡 }𝑡≥0, i.e., E[𝑌𝑡 − 𝑌𝑡−1 | F𝑡−1] ≤ 0 for all 𝑡 ≥ 1.

When the event E𝜽
𝑡 holds, we have reg

′
𝑡 = reg𝑡 , then

E[𝑌𝑡 − 𝑌𝑡−1 | F𝑡−1] = E[reg′𝑡 −𝐺𝑡 𝛽𝑡 ∥𝒙𝑎𝑡 ∥𝑽 −1
𝑡

− 2

𝑡2
| F𝑡−1]

≤𝐺𝑡 𝛽𝑡 E[∥𝒙𝑎𝑡 ∥𝑽 −1
𝑡

| F𝑡−1] +
2

𝑡2
−𝐺𝑡 𝛽𝑡 E[∥𝒙𝑎𝑡 ∥𝑽 −1

𝑡
| F𝑡−1] −

2

𝑡2

≤0,

where the first inequality follows from Lemma 3.

When the event E𝜽
𝑡 does not hold, we have reg

′
𝑡 = 0, then the

inequality E[𝑌𝑡 − 𝑌𝑡−1 | F𝑡−1] ≤ 0 holds naturally.

Besides, |𝑌𝑡 − 𝑌𝑡−1 | is bounded as follows:

|𝑌𝑡 − 𝑌𝑡−1 | ≤reg′𝑡 +𝐺𝑡 𝛽𝑡 ∥𝒙𝑎𝑡 ∥𝑽 −1
𝑡

+ 2

𝑡2

≤4 +𝐺𝛽𝑇
1

√
𝜆
≜ 𝐵,

where the second inequality follows from the fact that reg
′
𝑡 ≤

2, ∥𝒙𝑎𝑡 ∥𝑽 −1
𝑡

≤ 𝜆
−1/2
min

(𝑉𝑡 )∥𝑥𝑎𝑡 ∥ ≤ 1√
𝜆
, 𝐺 ≜ max𝑡=1,2,... |𝐺𝑡 | is a

constant, and 𝛽𝑡 is increasing in 𝑡 . We define 𝐵 as the upper bound

of |𝑌𝑡 − 𝑌𝑡−1 | for all 𝑡 ≥ 1.

Recall that 𝑇0 =
8(1+

√
𝑑𝑅)2

𝑏𝜆K
log

(
𝑑
𝛿

)
. Applying Azuma-Hoeffding

inequality (Lemma 8) to the super-martingale {𝑌𝑡 }𝑡≥𝑇0 , we know
with probability at least 1 − 𝛿 it holds that

𝑌𝑇 − 𝑌𝑇0 ≤

√√√√
2 log

(
1

𝛿

) 𝑇∑︁
𝑡=𝑇0+1

|𝑌𝑡 − 𝑌𝑡−1 |2 ≤ 𝐵

√︄
2 log

(
1

𝛿

)
𝑇,

which implies that with probability at least 1 − 𝛿 , we have

𝑇∑︁
𝑡=𝑇0+1

reg
′
𝑡 ≤ 𝐵

√︄
2 log

(
1

𝛿

)
𝑇 +

𝑇∑︁
𝑡=𝑇0+1

𝐺𝑡 𝛽𝑡 ∥𝒙𝑎𝑡 ∥𝑽 −1
𝑡

+
𝑇∑︁

𝑡=𝑇0+1

2

𝑡2
. (17)
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By Lemma 5, we have that with probability at least 1 − 𝛿 ,

𝑇∑︁
𝑡=𝑇0+1

𝐺𝑡 𝛽𝑡 ∥𝒙𝑎𝑡 ∥𝑽 −1
𝑡

≤𝐺𝛽𝑇
𝑇∑︁

𝑡=𝑇0+1
∥𝒙𝑎𝑡 ∥𝑽 −1

𝑡

≤𝐺𝛽𝑇

√︄
2

𝜆K𝑏

𝑇∑︁
𝑡=𝑇0+1

1

√
𝑡

≤2𝐺𝛽𝑇

√︄
2

𝜆K𝑏
𝑇 , (18)

where the first inequality follows from that 𝐺 ≜ max𝑡=1,2,... |𝐺𝑡 | is
a constant and 𝛽𝑡 is increasing in 𝑡 , the second inequality follows

from Lemma 5, and the last inequality follows from the fact that∑𝑇
𝑡=1

1√
𝑡
≤ 2

√
𝑇 .

Combining Equations (18) and (17), we have that with probability

at least 1 − 2𝛿 , it holds that

𝑇∑︁
𝑡=1

reg
′
𝑡 ≤

𝑇0∑︁
𝑡=1

reg
′
𝑡 +

𝑇∑︁
𝑡=𝑇0+1

reg
′
𝑡

≤
𝑇0∑︁
𝑡=1

reg
′
𝑡 + 𝐵

√︄
2 log

(
1

𝛿

)
𝑇 + 2𝐺𝛽𝑇

√︄
2

𝜆K𝑏
𝑇 +

𝑇∑︁
𝑡=𝑇0+1

2

𝑡2

≤2𝑇0 + 𝐵

√︄
2 log

(
1

𝛿

)
𝑇 + 2𝐺𝛽𝑇

√︄
2

𝜆K𝑏
𝑇 + 4,

where the last inequality follows from the fact that reg
′
𝑡 ≤ reg𝑡 ≤ 2

for all 𝑡 and
∑𝑇
𝑡=1

1

𝑡2
≤ 2.

When E𝜽
𝑡 holds for all 𝑡 , we have

∑𝑇
𝑡=1 reg𝑡 =

∑𝑇
𝑡=1 reg

′
𝑡 . Accord-

ing to Lemma 4, we have that with probability at least 1−𝛿 , it holds
that

∑𝑇
𝑡=1 reg𝑡 =

∑𝑇
𝑡=1 reg

′
𝑡 .

Therefore, with probability at least 1 − 3𝛿 , we have

𝑅(𝑇 ) =
𝑇∑︁
𝑡=1

reg𝑡 ≤2𝑇0 + 𝐵

√︄
2 log

(
1

𝛿

)
𝑇 + 2𝐺𝛽𝑇

√︄
2

𝜆K𝑏
𝑇 + 4.

Note that 𝛽𝑇 = (2
√︁
𝑑 log𝑇 + 1)𝛽𝑇 = 𝑂 (𝑑 log𝑇 ), 𝐵 = 4 +𝐺𝛽𝑇 1√

𝜆

is in the order of 𝑂 (𝑑 log𝑇 ), and 𝑇0 = 8(1+
√
𝑑𝑅)2

𝑏𝜆K
log

(
𝑑
𝛿

)
defined in

Lemma 5 is independent of𝑇 . Then, with probability at least 1− 3𝛿 ,

𝑅(𝑇 ) =
𝑇∑︁
𝑡=1

reg𝑡 = 𝑂 (𝑑
√
𝑇 log𝑇 ).

□

C Regret Analysis of Algorithm 2
We present the proof of Theorem 2 in this section. For convenience,

we follow the same notations as in Appendix B.

Theorem 2 (Regret of ConUCB-EVOI). With probability at least 1−𝛿 ,
the cumulative regret of ConUCB-EVOI scales in𝑂

(√︁
𝑑𝑇 log(𝑇 ) + 𝑑

)
.

Proof of Theorem 2. We first decompose the instantaneous

regret at time 𝑡 under the event E𝜽
𝑡 as follows:

reg𝑡 = 𝒙T
𝑎∗𝑡
𝜽 ∗ − 𝒙T𝑎𝑡 𝜽

∗

=𝒙T
𝑎∗𝑡

(
𝜽 ∗ − 𝜽𝑡

)
+

(
𝒙T
𝑎∗𝑡
𝜽𝑡 + 𝛽𝑡 ∥𝒙𝑎∗𝑡 ∥𝑽 −1

𝑡

)
− 𝛽𝑡 ∥𝒙𝑎∗𝑡 ∥𝑽 −1

𝑡

−
(
𝒙T𝑎𝑡 𝜽𝑡 + 𝛽𝑡 ∥𝒙𝑎𝑡 ∥𝑽 −1

𝑡

)
+ 𝒙T𝑎𝑡

(
𝜽𝑡 − 𝜽 ∗

)
+ 𝛽𝑡 ∥𝒙𝑎𝑡 ∥𝑽 −1

𝑡

≤𝒙T
𝑎∗𝑡

(
𝜽 ∗ − 𝜽𝑡

)
+ 𝒙T𝑎𝑡

(
𝜽𝑡 − 𝜽 ∗

)
+ 𝛽𝑡 ∥𝒙𝑎𝑡 ∥𝑽 −1

𝑡
(19)

≤𝛽𝑡 ∥𝒙𝑎∗𝑡 ∥𝑽 −1
𝑡

+ 𝛽𝑡 ∥𝒙𝑎𝑡 ∥𝑽 −1
𝑡

− 𝛽𝑡 ∥𝒙𝑎∗𝑡 ∥𝑽 −1
𝑡

+ 𝛽𝑡 ∥𝒙𝑎∗𝑡 ∥𝑽 −1
𝑡

(20)

≤2𝛽𝑡 ∥𝒙𝑎𝑡 ∥𝑽 −1
𝑡
,

where Equation (19) follows from the definition of UCB, Equa-

tion (20) follows from the definition of E𝜽
𝑡 .

Therefore, according to Lemma 4, with probability at least 1−𝛿 , it
holds that reg𝑡 ≤ 2𝛽𝑡 ∥𝒙𝑎𝑡 ∥𝑽 −1

𝑡
for all 𝑡 ≥ 1. Then with probability

at least 1 − 𝛿 , it holds that

𝑅(𝑇 ) =
𝑇0∑︁
𝑡=1

reg𝑡 +
𝑇∑︁

𝑡=𝑇0+1
reg𝑡

≤ 2𝑇0 +
𝑇∑︁

𝑡=𝑇0+1
2𝛽𝑡 ∥𝒙𝑎𝑡 ∥𝑽 −1

𝑡

≤ 2𝑇0 + 2𝛽𝑇

𝑇∑︁
𝑡=𝑇0+1

√︄
2

𝜆K𝑏𝑡
(21)

≤ 2𝑇0 + 4𝛽𝑇

√︄
2

𝜆K𝑏
𝑇 , (22)

where Equation (21) follows from Lemma 5, and Equation (22)

follows from the fact that

∑𝑇
𝑡=1

1√
𝑡
≤ 2

√
𝑇 .

Recall that𝑇0 =
8(1+

√
𝑑𝑅)2

𝑏𝜆K
log

(
𝑑
𝛿

)
defined in Lemma 5 and 𝛽𝑇 =

𝑂 (
√︁
𝑑 log𝑇 ), we have with probability at least 1 − 𝛿 , it holds that

𝑅(𝑇 ) = 𝑂 (
√︁
𝑑𝑇 log𝑇 + 𝑑).

□

D Technical Inequalities
Lemma 6 (Matrix Chernoff, Corollary 5.2 in Tropp [33]). Consider
a finite sequence {𝑿𝑘 } of independent, random, self-adjoint matrices
with dimension 𝑑 . Assume that each random matrix satisfies

𝑿𝑘 ⪰ 0 and 𝜆max (𝑿𝑘 ) ≤ 𝑅 almost surely.

Define

𝒀 :=
∑︁
𝑘

𝑿𝑘 and 𝜇min := 𝜆min (E[𝒀 ]) = 𝜆min

(∑︁
𝑘

E[𝑿𝑘 ]
)
.

Then, for any 𝛿 ∈ (0, 1),

Pr

[
𝜆min

(∑︁
𝑘

𝑿𝑘

)
≤ (1 − 𝛿)𝜇min

]
≤ 𝑑

[
𝑒−𝛿

(1 − 𝛿)1−𝛿

]𝜇min/𝑅

.
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Lemma 7 (Determinant-trace inequality, Lemma 10 in Abbasi-Yad-

kori et al. [2]). Suppose 𝑿1,𝑿2, . . . ,𝑿𝑡 ∈ R𝑑 and for any 1 ≤ 𝑠 ≤ 𝑡 ,
∥𝑿𝑠 ∥2 ≤ 𝐿. Let 𝑽 𝑡 = 𝜆𝑰 +

∑𝑡
𝑠=1 𝑿𝑠𝑿T

𝑠 for some 𝜆 > 0. Then,

det(𝑽 𝑡 ) ≤
(
𝜆 + 𝑡𝐿

2

𝑑

)𝑑
.

Lemma 8 (Azuma-Hoeffding inequality). If {𝑋𝑡 }𝑡≥0 is a super-
martingale corresponding to a filtration {F𝑡 }𝑡≥0, and {𝑋𝑡 }𝑡≥0 sat-
isfies |𝑋𝑡 − 𝑋𝑡−1 | ≤ 𝑐𝑡 for all 𝑡 = 1, . . . ,𝑇 . Then for any 𝜀 > 0, we
have

Pr[𝑋𝑇 − 𝑋0 ≥ 𝜀] ≤ exp

(
− 𝜀2

2

∑𝑇
𝑡=1 𝑐

2

𝑡

)
.
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