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Abstract

Multilingual alignment of sentence represen-001
tations has mostly required bitexts to bridge002
the gap between languages. We investigate003
whether visual information can bridge this gap004
instead. Image caption datasets are very easy005
to create without requiring multilingual exper-006
tise, so this offers a more efficient alternative007
for low-resource languages. We find that mul-008
tilingual image-caption alignment can implic-009
itly align the text representations between lan-010
guages, languages unseen by the encoder in pre-011
training can be incorporated into this alignment012
post-hoc, and these aligned representations are013
usable for cross-lingual Natural Language Un-014
derstanding (NLU) and bitext retrieval. 1015

1 Introduction016

Encoder language models are still a very popular017

and widely used method for extracting semantic018

information from text to be used downstream for019

natural language understanding (NLU) tasks. In020

general, an encoder language model (LM) is pre-021

trained on a large corpus using self-supervision and022

then a smaller component is fine-tuned on anno-023

tated data using the representations produced by024

the pretrained LM. For widely spoken data-rich025

languages, this is no problem and the existence of026

task-specific, annotated data is a given (Joshi et al.,027

2020; Blasi et al., 2022). But for low-resource lan-028

guages this is rarely the case, as collecting data for029

each task in such languages is expensive and time030

consuming. Thus, cross-lingual knowledge trans-031

fer is a more practical direction for low-resource032

languages than further data collection.033

While multilingual encoder-only LMs have re-034

cently fallen out of favor compared to their large035

decoder-only counterparts, speakers from under-036

served communities express a need for proper037

language understanding in their languages, more038

1Data and code will be publicly released.

than any need for technologies that generate lan- 039

guage (Blaschke et al., 2024). 040

The internal representations of encoder models 041

trained on multilingual data tend to be disjoint, so 042

the representation of a sentence in language A may 043

not be similar to the representation of its transla- 044

tion in language B. Most likely, this is the result of 045

pretraining data imbalance and domain mismatch 046

across the languages included in their pretraining. 047

If these internal representations were aligned such 048

that representations of translations were similar, 049

cross-lingual transfer for NLU tasks should be 050

much easier to achieve, as Hu et al. (2021) showed. 051

This cross-lingual transfer of task knowledge can 052

greatly benefit speakers of low-resource languages 053

by giving them access to NLP tools without the 054

difficulty of annotating task-specific data in their 055

language. As an additional benefit, these aligned 056

representations can be used to mine bitexts from 057

large scraped corpora to build parallel translation 058

datasets (Team et al., 2022). 059

In this work, we explore whether one could en- 060

courage multilingual representation alignment with- 061

out any parallel data, but relying instead on images 062

as a grounding, shared modality across languages. 063

This is a worthwhile direction to pursue for two 064

reasons. First, parallel text curation through expert 065

translation is time-consuming and expensive. In 066

contrast, it is easy for any language speaker to de- 067

scribe an image to produce a caption (Madaan et al., 068

2020). Second, language documentation efforts of- 069

ten produce media accompanied with monolingual 070

audio or text in the language of interest. Develop- 071

ing techniques that would leverage such materials 072

could enable the creation of technologies for these 073

otherwise under-served languages. 074

To summarize, we (1) show that a multilingual 075

text-image contrastive learning setup can produce 076

aligned representations; (2) focus specifically on 077

Quechua, as an example of a language unseen 078

during pretraining that may benefit from such ap- 079
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proaches; and (3) show that this method does not080

degrade representation quality in other languages.081

2 Related Work082

Previous endeavors in multilingual alignment in the083

absence of parallel-text supervision have predomi-084

nantly concentrated on the alignment of static-word085

embeddings through adversarial techniques (Zhang086

et al., 2017; Chen and Cardie, 2018). Approaches087

that extend multilingual alignment to sentence-088

level representations have generally necessitated a089

bitext signal (Feng et al., 2022; Escolano et al.,090

2021; Artetxe and Schwenk, 2019), with lim-091

ited exceptions employing adversarial methodolo-092

gies (Aghajanyan et al., 2019; Tien and Steinert-093

Threlkeld, 2022). Even though multilingual align-094

ment may extend to languages not encountered dur-095

ing fine-tuning (Tien and Steinert-Threlkeld, 2022),096

we hypothesize that a more direct fine-tuning strat-097

egy using some pivot (even if not textual) could po-098

tentially produce superior alignment for languages099

with limited bitext resources.100

Contrastive methods have been used for text-text101

(Feng et al., 2022) encoder alignment as well text-102

image encoder alignment in both the monolingual103

(Radford et al., 2021) and multilingual (Muraoka104

et al., 2023; Bianchi et al., 2021) setting. One105

such text-image alignment work introduces an im-106

age representation into the input sequence of NLU107

tasks leading to improved cross-lingual transfer108

(Muraoka et al., 2023). This offers additional sup-109

port to our hypothesis that visual information can110

act as a semantic bridge between languages.111

3 Method, Experiments, and Results112

Our approach strings together a text encoder with a113

vision encoder. These two produce representations114

for each modality input, which are then used in115

a contrastive learning setup. In particular, given116

pairs of image representations Ei and caption117

representations Ec we use the following, simple118

contrastive loss function:119
120

S = Ec · E⊤
i ∗ t121

L(Ei, Ec) = CrossEntropy(S, I),122

where I is the identity matrix and t is a learned123

temperature parameter.124

This is similar to what CLIP (Radford et al.,125

2021) used for text-image alignment and LaBSE126

(Feng et al., 2022) for text-text alignment.127

3.1 Experimental Setup 128

Datasets We work with the MS-COCO 129

dataset (Lin et al., 2015), which provides 118k 130

English Image-Caption pairs. Using Google 131

Translate, we translate the English captions into 132

Spanish, Japanese, Hindi, and Quechua. From 133

this 5-way parallel image caption dataset, we now 134

derive 4 datasets for various experiments: 135

1. Eng-only: The plain MS-COCO dataset 136

without translations to other languages. 137

2. Eng-Pivot: The English captions from MS- 138

COCO paired with one translation per sample 139

from a rotation of Spanish, Japanese, Hindi. 140

3. Multilingual: The MS-COCO dataset but 141

each caption is from a rotation of English, 142

Spanish, Japanese, and Hindi with only one 143

language paired with each image. 144

4. Multilingual+Quechua: The same as the 145

Multilingual dataset but with Quechua added 146

into the rotation of languages. 147

While the other datasets are designed for use with 148

text-image alignment, the Eng-Pivot dataset is 149

used for text-text alignment to create a model simi- 150

lar to LaBSE (Feng et al., 2022) with a comparable 151

data size to our other models. 152

Training We fine-tune an XLM-Roberta-Large 153

(XLM-R) (Conneau et al., 2020) text encoder and 154

a VIT-Base-patch16-224-in21k (Dosovitskiy et al., 155

2021) image encoder. 156

The token-level representations are mean pooled 157

to create a sentence-level representation. Since the 158

hidden dimensions of these encoders do not match, 159

we add a linear layer to their outputs to adapt them 160

to a matching dimensionality of 512. Following 161

existing approaches to text-image alignment under 162

these circumstances (Bianchi et al., 2021), we al- 163

low these linear layers to warm up for a certain 164

number of steps before fine-tuning the encoders 165

themselves. In our case, we chose to "thaw" the 166

encoders halfway through the first epoch since the 167

learning curves had flattened out by that point. 168

3.2 Experiment 1: Does multilingual 169

text-image alignment lead to text-text 170

alignment? 171

We hypothesize that text-image alignment involv- 172

ing multiple languages will implicitly align text 173

representations between languages. 174

With the exception of the Eng-Pivot encoder 175

(which is trained on bitext alignment), our encoders 176

are only fine-tuned to align the text representations 177
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All in XLM-R not in XLM-R
Encoder (203 langs) (92 langs) (111 langs) Quechua

XLM-R 0.5 0.6 0.4 0.5
Eng-Only 18.3 27.5 10.7 7.2
Eng-Pivot 62.2 92.6 37.1 13.1

Multilingual 55.7 82.2 33.7 18.0
+ Quechua 50.4 76.6 28.6 29.2

Table 1: Bitext retrieval accuracy on All of flores-200,
on the subset of languages in/not in XLM-R’s pretrain-
ing, and just on Quechua.

to the image representations, but we evaluate them178

on their alignment between text representations.179

Specifically, we use the Flores-200 dataset (Team180

et al., 2022), which contains 200-way parallel sen-181

tences including all our test languages. We perform182

a formal analysis using the task of bitext retrieval183

(Heffernan et al., 2022; Duquenne et al., 2023) as184

well as a visual analysis via t-SNE.185

We compare against a baseline of the off-the-186

shelf XLM-R encoder, as well as one fine-tuned on187

our text-image pretraining using only the English-188

only dataset, and another trained directly on con-189

trastive text-text alignment with an English pivot190

similarly to LaBSE (Feng et al., 2022).191

For each sentence in each language, we search192

the English sentences in Flores-200 for the mini-193

mum cosine distance to find a match (translation).194

If the translation selected is the true translation,195

we count that sentence as correct. We calculate196

the retrieval accuracy over each language and then197

aggregate using the mean over all languages to pro-198

duce a final score. Since the language encoder has199

not seen all of these languages in pretraining, we re-200

port the retrieval accuracy over the disjoint subsets201

of languages on which it was trained (or not).202

While not quite matching the text-text aligned203

encoder (Eng-Pivot in table 1), the multilingual204

text-image aligned encoder (Multilingual in table 1)205

is still very capable in the bi-text retrieval task. The206

English-Only text-image alignment improves on207

the abysmal results of the plain XLM-R model, but208

does not compared with the multilingual alignment.209

This is likely because the pretraining of XLM-R210

does not scale to sentence level tasks well (Reimers211

and Gurevych, 2019). The text-image alignment,212

on its own, may expand the existing knowledge of213

XLM-R to the sentence level.214

To further visualize the multilingual alignment215

of our encoders we generate sentence-level rep-216

resentations for all sentences in the Flores-200217

dataset and use t-SNE to project them down to 2218

dimensions while preserving relative distances. We219

plot these embeddings in Figure 1 for the 4 fine-220

tuning languages with lines connecting parallel 221

cliques of translated sentences. This way we can 222

visualize whether an encoder produces language- 223

specific clusters or whether certain sentences are 224

encoded far from their translations. 225

Figure 1 shows that the original XLM-R repre- 226

sentations are not aligned at all. Tuning only on 227

the English image captions, although better than 228

the untuned model, the languages still form distinct 229

clusters. Our Multilingual approach falls just short 230

of the text-text aligned model in terms of the num- 231

ber of misaligned translations and adding Quechua 232

into the mix does not make it that much worse. 233

Interestingly, the text-image aligned models have 234

tighter clusters indicating that the image alignment 235

may have drawn connections between sentences 236

that were not there previously. 237

3.3 Experiment 2: Can a language unseen in 238

the encoder’s pretraining be added using 239

only image caption tuning? 240

Here we turn to investigating the possibility of us- 241

ing only caption-text data to obtain good represen- 242

tations for a language unseen during pretraining, 243

without any other parallel text data. This approx- 244

imates a real setting where we have access to a 245

newspaper or similar dataset with image captions 246

in a low-resource language and we want to add it 247

to the aligned language encoder for use in down- 248

stream tasks in a zero-shot cross-lingual transfer 249

setting (Madaan et al., 2020). 250

We find that languages not included in the pre- 251

training or fine-tuning still benefit from some align- 252

ment. But as one would expect, not to the same 253

degree as those which have been already included 254

in the model’s training data. 255

We retrained the encoder from Experiment 1, 256

but now with a dataset that also mixes in Quechua 257

captions. Indigenous Latin American languages, 258

including Quechua, are not included in the pretrain- 259

ing data of XLM-R. Quechua is also typologically 260

distinct from all other pretraining languages. 261

We calculate the retrieval accuracy on Flores- 262

200 from Quechua to English as well as the over- 263

all X→English accuracy to determine how well 264

Quechua has been integrated into the encoder and 265

aligned with other languages. 266

When Quechua is added to the image-caption 267

dataset, the overall performance goes down, but the 268

performance on Quechua is greatly improved (cf 269

last two columns of Table 1) from 18% to 29.2%. 270

Importantly, the average accuracy for all other lan- 271

3



Figure 1: t-SNE embeddings for the outputs of each encoder over flores-200 sentences. Translations are shown
as cliques with lines connecting them. Visible lines, such as those in the two leftmost panels, indicate that
representations of translated sentences are far from each other, ie., poor alignment. While not as clear as parallel
text alignment (Eng-Pivot), multilingual image-text alignment (two rightmost panels) shows promising reults.

guages remains largely unaffected – we attribute272

the small drop in performance to the fact that we re-273

duced the data in the other four languages to ensure274

experimental data-size comparability; in practice,275

this is not a requirement in the real world.276

3.4 Experiment 3: Are the downstream277

qualities of the representations preserved278

and is cross-lingual transfer possible?279

Here we go beyond intrinsic evaluation to test our280

embeddings for a downstream task: natural lan-281

guage inference (NLI). Since images and text con-282

tain different types of semantic information, we283

want to ensure that aligning a text encoder to an im-284

age encoder does not overwrite the features which285

are useful for downstream NLU tasks.286

We train simple feed-forward NLI models on287

frozen representations from each of the models288

in the previous experiments using the combined289

MultiNLI training and dev sets.290

We train using the MultiNLI train and dev291

datasets which only contain English samples. Any292

samples marked by the authors as lacking agree-293

ment were discarded. For evaluation of down-294

stream NLI quality, we use the XNLI test portion to295

measure both English NLI and cross-lingual trans-296

fer performance.297

For each encoder, we train identical NLI models298

with input features (⊕ stands for concatenation):299
300

xi = e(pi) ⊕ e(hi)⊕ |e(pi)− e(hi)|301

⊕ e(pi) ∗ e(hi)302

where e is the encoder and pi and hi are a premise303

and hypothesis respectively.304

The NLI models are a simple feed-forward ar-305

chitecture with 2 hidden layers and a hidden size of306

2048. They are trained using the Adam optimizer307

and a learning rate of 2 ∗ 10−5 for 100 epochs with308

early stopping.309

The results in Table 2 show that the alignment310

of the text encoder with the space of the image311

encoder does not damage the quality of the text312

Encoder ar de el en es hi ru sw th tr ur zh Avg

XLM-R 45 43 43 50 44 44 44 37 42 43 42 44 43.8
Eng-Only 47 49 48 53 50 46 50 42 47 47 45 48 48
Eng-Pivot 61 64 63 67 65 60 62 52 61 61 58 62 61.8
Multiling. 51 52 52 55 52 51 52 45 51 51 48 51 51.3

+ Quechua 51 53 53 56 53 51 53 45 50 51 49 51 51.6

Table 2: Rounded XNLI accuracy (on sample lan-
guages). Languages seen for alignment fine-tuning are
underlined. NLI models are only trained on English
data with frozen encoders; results in other languages
require cross-lingual transfer.

representations for downstream use, but actually 313

improves them. Comparing the Multilingual image 314

aligned model before and after adding Quechua, 315

downstream performance is somewhat uncoupled 316

from bitext retrieval performance. The addition 317

of Quechua matched or exceeded the performance 318

without it across nearly all languages, suggesting 319

that NLI performance benefits from increased lan- 320

guage coverage regardless of individual language 321

data size. English represents 1
4 of the Multilin- 322

gual dataset and 1
5 after adding Quechua, but the 323

addition of Quechua increased the NLI score on En- 324

glish! Additionally, fine-tuning the encoder on the 325

Eng-Only dataset only made a minimal improve- 326

ment to the XLM-R performance even though it 327

saw the largest portion of English data. 328

4 Conclusion 329

The task of multilingual text-image contrastive 330

alignment implicitly aligns text from multiple lan- 331

guages into the same space. This alignment carries 332

over into unseen languages, and performance on 333

a particular unseen language can be improved by 334

collecting image-caption pairs in that language. 335

While this technique does not outperform SOTA 336

methods, it performs remarkably well considering 337

the non-reliance on parallel corpora. For low re- 338

source languages, this method could act as a boot- 339

strapping step to scrape higher quality bitexts for 340

use in further alignment. 341
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5 Limitations342

With the addition of Quechua to the training set,343

the drop in overall bitext retrieval performance344

could be due to the decrease in data for the345

other languages to accommodate the Quechua data.346

Whether this is the case is not captured by our ex-347

periment, but can be taken into account in a follow-348

up work.349
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A Complete XNLI Results499

Table 3 presents all our results in the XNLI test set.500
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Encoder ar bg de el en es fr hi ru sw th tr ur vi zh Avg

XLM-R 45 43 43 43 50 44 47 44 44 37 42 43 42 46 44 43.8
Eng-Only 47 49 49 48 53 50 51 46 50 42 47 47 45 48 48 48
Eng-Pivot 61 63 64 63 67 65 65 60 62 52 61 61 58 63 62 61.8

Multilingual 51 53 52 52 55 52 53 51 52 45 51 51 48 52 51 51.3
+ Quechua 51 53 53 53 56 53 53 51 53 45 50 51 49 52 51 51.6

Table 3: Rounded XNLI accuracy. Languages seen for alignment fine-tuning are underlined. NLI models are only
trained on English data with frozen encoders; results in other languages require cross-lingual transfer.
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