
Under review as a conference paper at ICLR 2024

ADAPT ON-THE-GO: BEHAVIOR MODULATION FOR
SINGLE-LIFE ROBOT DEPLOYMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

To succeed in the real world, robots must cope with situations that differ from those
seen during training. We study the problem of adapting on-the-fly to such novel
scenarios during deployment, by drawing upon a diverse repertoire of previously-
learned behaviors. Our approach, RObust Autonomous Modulation (ROAM),
introduces a mechanism based on the perceived value of pre-trained behaviors
to select and adapt pre-trained behaviors to the situation at hand. Crucially, this
adaptation process all happens within a single episode at test time, without any
human supervision. We provide theoretical analysis of our selection mechanism and
demonstrate that ROAM enables a robot to adapt rapidly to changes in dynamics
both in simulation and on a real Go1 quadruped, even successfully moving forward
with roller skates on its feet. Our approach adapts over 2x as efficiently compared
to existing methods when facing a variety of out-of-distribution situations during
deployment by effectively choosing and adapting relevant behaviors on-the-fly.

Figure 1: On-The-Go Adaptation via Robust Autonomous Modulation (ROAM). An agent will inevitably
encounter a wide variety of situations during deployment, and handling such situations may require a variety of
different behaviors. We propose Robust Autonomous Modulation (ROAM), which dynamically employs and
adapts relevant behaviors as different situations arise during a single trial of deployment.

1 INTRODUCTION

A major obstacle to the broad application of sequential decision-making agents is their inability to
adapt to unexpected circumstances, which limits their uses largely to tightly controlled environments.
Even equipped with prior experience and pre-training, agents will inevitably encounter out-of-
distribution (OOD) situations at deployment time that may require a large amount of on-the-fly
adaptation. In this work, we aim to enable a robot to autonomously handle novel scenarios encountered
during deployment, while drawing upon a diverse set of pre-trained behaviors that may improve
its versatility. We hypothesize that by doing some of the adaptation in the space of pre-trained
behaviors (rather than only in the space of parameters), we can much more quickly react and adapt to
novel circumstances. Accumulating a set of different behavior policies is a relatively straightforward

1

Under review as a conference paper at ICLR 2024

task through online or offline episodic reinforcement learning, using different reward functions or
skill discovery methods. However, the on-the-fly selection and adaptation of these behaviors during
deployment, particularly in novel environments, present significant challenges. Consider tasking a
quadrupedal robot that has acquired many different behaviors, e.g., walking, crouching, and limping
via training in simulation, with a search-and-rescue mission in the real world. When deployed on this
task with unstructured obstacles, the robot may bump into an obstacle and damage its leg, and it must
be able to dynamically adapt its choice of behaviors to continue its mission with the damage.

Existing adaptation methods often operate within the standard, episodic training paradigm where
the agent is assumed to be reset and have another chance to attempt the task each time (Cully et al.,
2015; Song et al., 2020; Julian et al., 2020). However, these are idealized conditions that in practice
often rely on human intervention. In the above search-and-rescue example, the robot’s state cannot be
arbitrarily restored; during deployment, the robot cannot be repaired, and it is not feasible for a human
to fetch it if it gets stuck in a situation it is not equipped to handle. This situation necessitates adapting
at test time both quickly and autonomously, to succeed at the task within a single episode. Therefore,
we frame our problem setting as an instantiation of single-life deployment (Chen et al., 2022), where
the agent is given prior knowledge from ‘past lives’ but evaluated on its ability to successfully
complete a given task later in a ‘single-life’ trial, during which there are no human-provided resets.
The robot is provided with a diverse set of prior behaviors trained through episodic RL, and the single
life poses a sequence of new situations.

To solve this problem, the robot must identify during deployment which behaviors are most suited to
its situation at a given timestep and have the ability to fine-tune those behaviors in real time, as the
pre-trained behaviors may not optimally accommodate new challenges. We introduce a simple method
called RObust Autonomous Modulation (ROAM), which foremost aims to quickly identify the most
appropriate behavior from its pre-trained set at each point in time during single-life deployment.
Rather than introducing an additional component like a high-level controller to select behaviors,
we leverage the value function of each behavior. The value function already estimates whether
each policy will be successful, but may not be accurate for states that were not encountered during
training of that behavior. Therefore, prior to deployment, we fine-tune each behavior’s value function
with a regularized objective that encourages behavior identifiability: the regularizer is a behavior
classification loss. Then, at each step during deployment, ROAM samples a behavior proportional
to its classification probability, executes an action from that behavior, and optionally fine-tunes the
selected behavior for additional adaptation.

The main contribution of this paper is a simple algorithm for autonomous, deployment-time adaptation
to novel scenarios. In our theoretical analysis, we show that at a given state, with the additional
cross-entropy regularizer, ROAM can constrain each behavior’s value to be lower than the value of
behaviors for which that state appears more frequently. Consequently, our method incentivizes each
behaviors to differentiate between familiar and unfamiliar states, allowing ROAM to better recognize
when a behavior will be useful. We conduct experiments on both simulated locomotion tasks and on
a real Go1 quadruped robot. In simulation, our method completes the deployment task more than
two times faster on average than existing methods, including two prior methods designed for fast
adaptation. We also empirically analyze how the additional cross-entropy term in the loss function
of ROAM contributes to more successful utilization of the prior behaviors. Furthermore, ROAM
enables the Go1 robot to adapt on-the-go to various OOD situations without human interventions or
supervision in the real world. With ROAM, the robot can successfully pull heavy luggage, pull loads
with dynamic weights, and even slide forward with two roller skates on its front feet, even though it
never encountered loads or wore roller skates during training.

2 RELATED WORK

We consider the problem of enabling an agent to act robustly when transferring to unstructured
test-time conditions that are unknown at train-time. One common instantiation of this problem is
transfer to different dynamics, e.g., in order to transfer policies trained in simulation to the real
world. A popular approach in achieving transfer under dynamics shift is domain randomization, i.e.,
randomizing the dynamics during training (Cutler et al., 2014; Rajeswaran et al., 2016; Sadeghi &
Levine, 2016; Tobin et al., 2017; Peng et al., 2018; Tan et al., 2018; Yu et al., 2019; Akkaya et al.,
2019; Xie et al., 2021; Margolis et al., 2022; Haarnoja et al., 2023) to learn a robust policy. Our
approach is similar in that it takes advantage of different MDPs during training; however, a key
component of ROAM is to leverage and modulate diverse skills rather than a single, robust policy.

2

Under review as a conference paper at ICLR 2024

We find in Section 5 that challenging test-time scenarios may require distinctly different behaviors at
different times, and we design our method to be robust to those heterogeneous conditions.

A class of methods that use domain randomization has also utilized different ‘behaviors’ instead
of a one-size-fits-all policy. Especially effective in locomotion applications, these methods involve
training policies that exhibit different behavior when conditioned on dynamics parameters, then
distilling these policies into one that can be deployed in target domains where this information is not
directly observable. The train-time supervision can come in the form of the parameter values (Yu
et al., 2017; Ji et al., 2022) or a learned representation of them (Lee et al., 2020; Kumar et al., 2021).
Thereafter, there are several ways prior work have explored utilizing online data to identify which
behavior is appropriate on-the-fly, e.g., using search in latent space (Yu et al., 2019; Peng et al., 2020;
Yu et al., 2020b), or direct inference using proprioceptive history (Lee et al., 2020; Kumar et al., 2021;
Fu et al., 2022), or prediction based on egocentric depth (Miki et al., 2022; Agarwal et al., 2022;
Zhuang et al., 2023; Yang et al., 2023). In this work, we do not rely on domain-specific information
nor external supervision for when particular pre-trained behaviors are useful. Moreover, in contrast
to many of the above works, we focus on solving tasks that may be OOD for all prior behaviors
individually. By re-evaluating and potentially switching behaviors at every timestep, ROAM can take
the most useful parts of different behaviors to solve such tasks, as we find in Section 5.

Meta-RL is another line of work that achieves rapid adaptation without privileged information by
optimizing the adaptation procedure during training (Wang et al., 2016; Duan et al., 2016; Finn
et al., 2017; Nagabandi et al., 2018; Houthooft et al., 2018; Rothfuss et al., 2018; Rusu et al., 2018;
Mendonca et al., 2020; Song et al., 2020) to be able to adapt quickly to a new situation at test-time.
Meta-RL and the aforementioned domain randomization-based approaches entangle the training
processes with the data collection, requiring a lot of online samples that are collected in a particular
way for pre-training. The key conceptual difference in our approach is that ROAM is agnostic to
how the pre-trained policies and value functions are obtained. Moreover, while meta-RL methods
often use hundreds of pre-training tasks, or more, our approach can provide improvements in new
situations even with a relatively small set of pre-trained behaviors (e.g. just 4 different behaviors
improve performance in Section 5). Other transfer learning approaches adapt the weights of the
policy to a new environment or task, either through rapid zero-shot adaptation (Hansen et al., 2020;
Yoneda et al., 2021; Chen et al., 2022) or through extended episodic online training (Khetarpal et al.,
2020; Rusu et al., 2016; Eysenbach et al., 2020; Xie et al., 2020; Xie & Finn, 2021). Unlike these
works, we focus on adaptation within a single episode to a variety of different situations.

Another rich body of work considers how to combine prior behaviors to solve long-horizon tasks,
and some of these works also focus on learning or discovering useful skills (Gregor et al., 2016;
Achiam et al., 2018; Eysenbach et al., 2018; Nachum et al., 2018a; Sharma et al., 2019; Baumli et al.,
2021; Laskin et al., 2022; Park & Levine, 2023). Many of these methods involve training a high-level
policy that learns to compose learned skills into long-horizon behaviors (Bacon et al., 2017; Peng
et al., 2019; Lee et al., 2019; Sharma et al., 2020; Strudel et al., 2020; Nachum et al., 2018b; Chitnis
et al., 2020; Pertsch et al., 2021; Dalal et al., 2021; Nasiriany et al., 2022). We show in Section 5 that
training such a high-level policy is not needed for effective on-the-go behavior selection. Moreover,
our work does not focus on where the behaviors come from – they could be produced by these prior
methods, or their rewards could be specified manually. Instead, we focus on quickly selecting and
adapting the most suitable skill in an OOD scenario, without requiring an additional online training
phase to learn a hierarchical controller.

3 PRELIMINARIES

In this section, we describe some preliminaries and formalize our problem statement. We are given a
set of n prior behaviors, where each behavior i is trained through episodic RL for a particular MDP
Mi = (S,A,Pi,Ri, ρ0, γ) where S is the state space, A is the agent’s action space, Pi(st+1|st, at)
represents the environment’s transition dynamics, Ri : S → R indicates the reward function,
ρ0 : S → R denotes the initial state distribution, and γ ∈ [0, 1) denotes the discount factor. Each of
the n MDPsMi has potentially different dynamics and reward functions Pi andRi, often leading to
different state visitation distributions. Each behavior corresponds to a policy πi and a value function
Vi as well as a buffer of trajectories τ ∈ Di collected during this prior training and relabeled with the
reward Rtarget from the target MDP. At test time, the agent interacts with a target MDP defined by
Mtarget = (S,A,Ptarget,Rtarget, ρ0, γ), which presents an aspect of novelty not present in any of the
prior MDPs, in the form of new dynamics Ptarget(st+1 | st, at), which may change over the course

3

Under review as a conference paper at ICLR 2024

of the test-time trial. We operate in a single-life deployment setting (Chen et al., 2022) that aims to
maximize J =

∑h
t=0 γ

tR(st), where h is the trial horizon, which may be∞. The agent needs to
complete the desired task in this target MDP in a single life without any additional supervision or
human intervention by effectively selecting and adapting the prior behaviors to the situation at hand.

Off-policy reinforcement learning (RL) algorithms train a parametric Q-function, represented as
Qθ(s, a), via iterative applications of the Bellman optimality operator, expressed as

B∗Q(s, a) = r(s, a) + γEs′∼P (s′|s,a)

[
max
a′

Q(s′, a′)
]
.

In actor-critic frameworks, a separate policy is trained to maximize Q-values. These algorithms
alternate between policy evaluation, which involves the Bellman operator BπQ = r + γPπQ, and
policy improvement, where the policy π(a|s) is updated to maximize expected Q-values.

The dataset Dβ , containing tuples (s, a, r, s′) gathered by a behavior policy πβ , typically lacks full
coverage of all possible transitions. Therefore, an empirical Bellman operator, denoted as B̂π , is used
during policy evaluation. Specifically, the respective policy evaluation and improvement updates are:

Qk+1 ← argmin
Q

Es,a,s′∼D

[(
r(s, a) + γEa′∼πk(a′|s′)[Q

k(s′, a′)]−Q(s, a)
)2]

πk+1 ← argmax
π

Es∼D,a∼πk(a|s)
[
Qk+1(s, a)

]
.

We use a state-of-the-art off-policy actor-critic algorithm RLPD (Ball et al., 2023) as our base
algorithm for pre-training and fine-tuning, as it has been shown to be effective especially in the latter
regime. RLPD builds on regularized soft actor-critic (SAC) (Haarnoja et al., 2018), using Layer
Normalization (Ba et al., 2016) in particular as a key component.

4 ROBUST AUTONOMOUS MODULATION

We now present our method, Robust Autonomous Modulation (ROAM), which fine-tunes value
functions with an additional loss and provides a mechanism for choosing among them, so that at
deployment time, the agent can quickly react to its current situation at every timestep by honing
in on the most appropriate behavior from its prior behaviors. Our key observation is that with
proper regularization, value functions provide a good indication of how well different behaviors
will perform, so we can leverage them to quickly identify appropriate behaviors in a given situation,
which circumvents the need to learn a separate meta-controller or adaptation module. In the following
subsections, we describe our method in detail and provide theoretical analysis on how our method
leads to more efficient utilization of the prior behaviors by encouraging the value functions of the
behaviors to better distinguish between familiar and OOD states.

4.1 ALGORITHM DESCRIPTION

Behavior Modulation using Value Functions. The core idea of our method is to directly utilize
the expressive power of value functions for adaptive behavior selection, as they inherently contain
detailed information about potential rewards associated with different states for each behavior. We
propose to use value functions of the behaviors to select the most appropriate behavior for a given
state—namely, at each timestep during deployment, choosing one of the behaviors with the high
values at that state. Since we already have access to value functions from pre-training the behaviors,
this approach does not require any additional training or data collection. Using value functions as the
proxy selector also gives much more versatility to the selection mechanism, which can be flexibly
controlled on the go by updating the value functions of different behaviors.

However, naively using the pre-trained value functions may not lead to high-reward behaviors, due to
overestimation of the value functions on new states, as the pre-trained Q-functions may not generalize
well to OOD situations. Recent studies in offline RL, for example, have observed an overestimation
bias (Levine et al., 2020) due to OOD training-time actions, which can lead to poor performance
when deploying the policy in a new environment. To mitigate these issues, works in offline RL have
proposed a number of various modifications aimed at regularizing either the policy or the value
function (Kumar et al., 2020; Yu et al., 2020a; 2021). Although our setting is different, as we deal
with OOD states, we face a similar problem of poor generalization of the value functions of the prior
behaviors to unfamiliar situations. In the following section, we describe how we can conservatively
regularize the value functions to improve their generalization.

4

Under review as a conference paper at ICLR 2024

Figure 2: Robust Autonomous Modulation (ROAM). During the initial fine-tuning phase of ROAM, we
fine-tune each behavior using its existing data buffer and standard Bellman error, with an additional cross-entropy
loss between the softmax values of all behaviors and the behavior index (as the label) from which the state was
visited. Then at test-time, at each time-step, we sample from the softmax distribution of the behaviors’ values at
the current state and execute the sampled policy.

Fine-Tuning Value Functions with ROAM. We desire value functions that accurately reflect the
expected reward of using a behavior at a given state. Thus, we would like to fine-tune the value
functions of the behaviors to minimize overestimation of the values at states for which a different
behavior is more suitable. We can do so by incentivizing the value functions of the behaviors to be
higher for states that are visited by that behavior and lower for states visited by other behaviors.

Given a set of prior behaviors B with policies πi and critics Qi, we first fine-tune the value functions
of the behaviors with an additional cross-entropy loss on top of the Bellman error that takes in the
values at a given state as the logits. Values at a given state s for behavior i are obtained by averaging
Qi(s, a) over N = 5 sampled actions a ∼ πi(· | s). More formally, with each prior data buffer Di,
we fine-tune the critic Qi(s, a) of each behavior i with the following update:

Lfine-tune = (1− β)LBellman + βLcross-entropy

= (1− β)
∑
i

Es,a,s′∼Di

[(
r(s, a) + γEa′∼πi(a′|s′)Qi(s

′, a′)−Qi(s, a)
)2]

+ β
∑
j

Es∼Dj

[
− log

exp(Vj(s))∑n
k=1 exp(Vk(s))

]
,

(1)

where 0 < β < 1 is a hyperparameter, Vi(s) = Ea∼πi(a|s)[Qi(s, a)] is the average value of behavior
i at state s, and Di is a replay buffer collected by behavior i. Consider the derivative of the cross-
entropy term with respect to the value functions Vi(s) and Vk(s), where i ̸= k, for a state s visited by
behavior i:

∂Lcross-entropy

∂Vi(s)
=

exp(Vi(s))∑n
j=1 exp(Vj(s))

− 1 < 0,
∂Lcross-entropy

∂Vk(s)
=

exp(Vk(s))∑n
j=1 exp(Vj(s))

> 0.

So when minimizing the cross-entropy loss, the value function Vi(s) will be pushed up (since its
derivative is negative), and Vk(s) for k ̸= i will be pushed down. Thus, the cross-entropy loss term in
Equation 1 pushes up the value functions of the behaviors for states that are visited by that behavior
and pushes down for states that are visited by other behaviors. The value functions are then less likely
to overestimate at OOD states, enabling the behaviors to specialize in different parts of the state
space, which will help us at test time to better infer an appropriate behavior from the current state.

Full Procedure and Single-Life Deployment. To summarize the full procedure of ROAM, we
are given a set of policies πi and critics Qi, and a set of prior data buffers Di for each behavior.
Alternatively, this can be relaxed and we can assume that we are given a set of prior data buffers Di

for each behavior, and we can train the policies πi and critics Qi using these buffers with offline RL.
We then fine-tune the value functions of the behaviors with the additional cross-entropy loss term in
Equation 1 to obtain the final value functions Vi.

Then during each timestep at test time, we sample a behavior from the softmax distribution given
by the behaviors’ values Vi at the current state. Formally, given the current state s, we sample an
action ai ∼ πi(a|s) from behavior i with probability proportional to exp(Vi(s)). The transition
(st, at, rt, st+1) is then added to the online buffer Di

online for behavior i and the critic Vi and policy

5

Under review as a conference paper at ICLR 2024

πi are fine-tuned using data from Di
online. In this manner, we can choose and adapt the most suitable

behavior for a given state on-the-fly. The ROAM fine-tuning objective and single-life deployment are
depicted in Figure 2 and the full algorithm is summarized in Algorithms 1 and 2 in Appendix A.2.

4.2 THEORETICAL ANALYSIS

Next, we theoretically analyze ROAM to show that the additional cross-entropy loss in ROAM will
lead to more suitable behaviors being chosen at each timestep. In particular, ROAM rescales the
value functions of the behaviors so that they are less likely to overestimate in states that are out of
distribution for that behavior. Our main result, given in Theorem 4.2, is that with ROAM, for some
weight β > 0 on the cross-entropy term, at a given state, ROAM constrains each behavior’s value to
be lower than the value of behaviors for which that state appears more frequently. This theorem gives
us conservative generalization by reducing value overestimation in unfamiliar states–specifically,
if at least one behavior is familiar with the current state, our chosen behavior will not have much
worse performance than its value function estimate. Full proofs of the statements in this section are
presented in Appendix A.1.

Notationally, let behavior i be associated with a reward Ri(s) = Ea∼πi(·|s)[Ri(s, a)] and dynamics

function Pi for policy πi. Our modified Bellman operator is B̂πV =
[
B̂πiVi

]n
i=1

, where for each

value function Vi, for β ∈ (0, 1),

(B̂πiVi)(s) = (1− β)

Ri(s) + γ
∑

s′∈S,a∈A

πi(a|s)Pi(s
′|s, a)Vi(s

′)

+ β

(
exp(τVi(s))∑n

k=1 exp(τVk(s))

)
.

Lemma 4.1. There exists a temperature τ > 0 for which our modified Bellman operator B̂πV =[
B̂πiVi

]n
i=1

is a contraction under the L∞ norm.

By Lemma 4.1, for some temperature τ > 0, and by the contraction mapping theorem, our modified
Bellman operator will converge to a fixed point. In the following theorem, we characterize this fixed
point and use it to analyze how ROAM will adjust value estimates based on degree of familiarity. Let
pi(s) denote the state visitation probability for a behavior i at state s.
Theorem 4.2. For any state s that is out of distribution for behavior i and is in distribution for
another behavior j, i.e. pi(s) ≪ pj(s), if 0 < β < 1 is chosen to be large enough, then the
value of behavior i learned by ROAM will be bounded above compared to value of behavior j, i.e.,
Vi(s) ≤ Vj(s).

As a result, for any states s that are out of distribution for behavior i, if we choose β large enough,
the value learned Vi(s) will not overestimate the value compared to the behavior that is most familiar
with that state. Thus, at each time step, if one or more behaviors are familiar with the current state,
the performance of the chosen behavior will not be much worse than its value function estimate. In
this manner, ROAM adjusts value estimates based on degree of familiarity, mitigating overestimation
risks. The ability to adjust the β parameter offers a flexible framework to optimize for the behavior
with the highest value at a given state, which will be at least as suitable as the most familiar behavior.

In the next section, we find empirically that after fine-tuning with the additional cross-entropy loss,
ROAM is able to effectively select a relevant behavior for a given state on-the-fly, leading to robust
and fast adaptation to OOD situations.

5 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of ROAM empirically and assess how effectively it can
adapt on-the-fly to new situations. Concretely, we aim to answer the following questions: (1) In
simulated and real-world settings, how does ROAM compare to existing methods when given diverse
prior behaviors/data and deployed in novel situations? (2) How does the additional cross-entropy
term in the loss function of ROAM contribute to more successful utilization of the prior behaviors?
In the remainder of this section, we describe our experimental setup and present our results on both
a simulated and a real-world Go1 quadrupedal robot. For qualitative video results, see our project
webpage: https://sites.google.com/view/adapt-on-the-go/home.

6

https://sites.google.com/view/adapt-on-the-go/home

Under review as a conference paper at ICLR 2024

Figure 3: Results on the simulated Go1 robot. In both evaluation settings, ROAM is over 2x as efficient as all
comparisons in terms of both average and median number of steps taken to complete the task.

General Experimental Setup. We use the setting of locomotion deployment to evaluate ROAM, as
it is a challenging setting for adaptation, where the agent may naturally face a variety of different
situations and must adapt its walking behavior on-the-fly without any additional supervision or human
intervention. We use a Go1 quadruped robot from Unitree and MuJoCo (Todorov et al., 2012) for
simulation. We implemented all methods on top of the same state-of-the art implementation of
SAC from Smith et al. (2022) as the base learning approach, with regularization additions following
DroQ (Hiraoka et al., 2021), and RLPD (Ball et al., 2023) for methods that do online fine-tuning. We
include details and hyperparameters in Appendix A.5.

Comparisons. We evaluate ROAM along with the following prior methods: (1) RLPD Fine-tuning
(Ball et al., 2023), where we fine-tune a single policy using all the data from the prior behaviors
with RLPD; (2) RMA (Kumar et al., 2021), which trains a base policy and adaptation module that
estimates environment info; (3) High-level Classifier (HLC), which trains a classifier on the data
buffers of the pre-trained behaviors and uses it to select which behavior to use at a given state, as a
representative method for those that train an additional behavior selection network, similar to work by
Han et al. (2023). We additionally consider an ablation, ROAM-NoFT, which uses the values of the
prior behaviors to choose among behaviors but does not fine-tune with the additional cross-entropy
loss. We give RMA access to unlimited online episode rollouts in each of the prior MDPs during
pre-training, while all other methods use the same set of offline data and prior behaviors that are
pre-trained in the prior MDPs. All methods are evaluated in the target MDP in a single episode
without human interventions, and results are averaged across 10 trials.

5.1 SELECTING RELEVANT BEHAVIORS IN SIMULATION

Setup. In our simulation experiments, we evaluate in two separate settings. The first setting simulates
a situation where different joints become damaged or stuck during the robot’s lifetime. It uses 9 prior
behaviors: each is a different limping behavior with a different joint frozen. In the single life, the
agent must walk a total distance of 10 meters, and every 100 steps, one of the 3 remaining joints not
covered in the prior data is frozen, and the agent must adapt its walking behavior to continue walking.
The second setting simulates a situation where the robot encounters different friction levels on its
different feet due to variation in terrain. It uses 4 different prior behaviors, each of which is trained
with one of the 4 feet having low friction. During the single life, every 50 steps, the friction of one or
two of the feet is changed to be lower than in the prior behaviors. To collect the prior behaviors, we
train each behavior for 250k steps (first setting) or 50k steps (second setting) in the corresponding
MDP, and use the last 40k steps as the prior data. We report the average and median number of steps
taken to complete the task across 10 seeds along with the standard error and success rate (out of
10) in Figure 3. The agent is given a maximum of 10k steps to complete the task, and if it does not
complete the task within this time, it is considered an unsuccessful trial.

Results. As seen in Figure 3, ROAM outperforms all other methods in all three metrics of average
and median number of steps taken to complete the task as well as overall success rate. In particular,
in both settings, ROAM completes the task more than 2 times faster, in terms of average number of
timesteps, compared to the next best method. Both RLPD fine-tuning and RMA struggle on both
evaluation settings, especially the stiffness setting, demonstrating the importance of adapting in the
space of behaviors rather than the space of actions for more efficient adaptation. RLPD and RMA
perform better in the friction evaluation, where a single policy can still somewhat adapt to the various

7

Under review as a conference paper at ICLR 2024

HLC ROAM-noFT ROAM (ours)
Method

0

10

20

30

40

50

60

70

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

Single-Life Behavior Selection Accuracy

Figure 4: Single-life Behavior Selection Accuracy.
The percent of steps where different methods select a
relevant behavior for the current situation. ROAM is
able to choose a relevant behavior significantly more
often on average when adapting to test-time situations
than HLC and ROAM-noFT.

Figure 5: Effect of the Cross-Entropy Loss on ID
and OOD values. The average values of the different
behaviors in states visited by that behavior (ID) vs
states visited by other behaviors (OOD), before and
after fine-tuning with the additional cross-entropy term
for ROAM. ROAM is able to maintain high values of
the behavior in ID states, while decreasing the value
of the behavior in OOD states, which leads to better
distinction between relevant behaviors at a given state.

Figure 6: Real-world single-life tasks. We evaluate on: (1) pulling a load of heavy luggage 6.2 kg (13.6 lb), (2)
pulling luggage where the weight dynamically changes between 2.36 kg (5.2 lb) and 4.2 kg (9.2 lb), and (3)
moving forward with roller skates on the robot’s front two feet. For each trial, for each method, we also show the
locations of the robot before its first fall or readjustment (Red is Walking, Blue is HLC, and Purple is ROAM).

situations in the single life. On the other hand, HLC and ROAM-NoFT both struggle in the friction
eval suite, demonstrating the importance of the additional cross-entropy term in the loss function,
encouraging greater behavior specialization in different regions of the state space. These two methods
perform better when the behaviors are already more distinguished, as in the limping eval suite, but
they still struggle to adapt as efficiently as ROAM.

In Figures 4 and 5, we provide some additional empirical analysis of ROAM. First, in the stiffness
evaluation, we plot the percent of steps where different methods select a relevant behavior during
test-time deployment, where a held-out joint is frozen and a relevant behavior is one where an adjacent
joint on the same leg is frozen or the same joint on an adjacent leg is frozen, and we see that ROAM
is able to choose the most relevant behavior on average significantly more frequently than HLC and
ROAM-noFT, which often select a behavior that is not relevant to the current situation. In addition,
we record the average values of the different behaviors in states visited by that behavior (ID) vs states
visited by other behaviors (OOD), before and after fine-tuning with the additional cross-entropy
term for ROAM. We find that ROAM is able to effectively maintain high values of the behavior in
familiar states, while decreasing the value of the behavior in unfamiliar OOD states, leading to better
distinction between relevant behaviors at a given state.

5.2 ADAPTING ON-THE-GO1 IN THE REAL WORLD

Setup. On the Go1 quadruped robot, we evaluate ROAM in a setting where we have a fixed set of
five prior behaviors: walking, and four different behaviors where each of the legs has a joint frozen.
We pre-train a base walking behavior in 18k steps and train the other behaviors by fine-tuning the
walking behavior for an additional 3k steps with one of the joints frozen, all from scratch in the real

8

Under review as a conference paper at ICLR 2024

Heavy Luggage Dynamic Luggage Load Roller Skates

Avg. Time (s) ↓ Falls ↓ Avg. Time (s) ↓ Falls ↓ Avg. Time (s) ↓ Falls ↓
Walking 45.3 2.3 32 1 NC NC
HLC 42.7 3 28.3 1.3 62.3 2.7
ROAM (ours) 25.7 0.7 24.3 0.3 27.3 1

Table 1: Results on the real Go1 robot on 3 different tasks: On all 3 tasks, across 3 trials for each method,
ROAM significantly outperforms both comparisons in terms of both average wall clock time (s) and number of
falls or readjustments needed to complete the task in a single life. NC (no complete) indicates that the task was
not able to be successfully completed at all with the given method.

world using the system from Smith et al. (2022). During single-life deployment, we evaluate on the
following three tasks: (1) Heavy Luggage: the robot must walk from a starting line to a finish line,
while pulling a box that is 6.2 kg (13.6 lb) attached to one of the back legs. In addition, one of the
front legs is one leg is covered by a low-friction plastic protective layer and the robot has to figure out
how to adapt to walk with this leg. (2) Dynamic Luggage Load: the robot must walk from a starting
line to a finish line, while adapting on-the-fly to a varying amount of weight between 2.36 kg (5.2 lb)
and 4.2 kg (9.2 lb). We standardize each trial by adding and removing weight at the same distance
from the start position. (3) Roller Skates: we fit the robot’s front two feet into roller skates, and the
robot must adapt to its behavior to slide its forward legs and push off its back legs in order to walk
to the end line. for each of the three trials for each task. We report the average wall clock time in
seconds and number of falls or readjustments needed to complete the task in a single life across 3
trials for each method. If the robot falls, a get-up controller (we use the open-sourced policy from
Smith et al. (2022)) is triggered to reset the robot back to a standing position. If it walks into a wall,
it is readjusted to face the correct direction. The tasks are shown in Figure 6, along with the locations
of the robot before its first fall or readjustment for each method for each trial, where the red dots
correspond to the Walking policy, blue to HLC, and purple to ROAM.

Results. Although none of the prior behaviors are trained to handle these specific test-time scenarios,
the robot can leverage parts of the prior behaviors to complete the task. As shown in Table 1,ROAM
significantly outperforms using a high-level classifier (HLC) as well as the baseline walking policy
in terms of both average wall clock time and number of falls or readjustments at single-life time on
all three real-world tasks. Qualitatively, the other methods have trouble pulling luggage consistently
forward, whereas our method often chooses the behavior where a joint is frozen on the leg with
the luggage attached, as this behavior uses the robot’s other three legs to pull itself forward more
effectively. The other methods struggle particularly on the roller skates task, which has drastically
different dynamics from typical walking and especially relies on choosing relevant behaviors that
heavily use the back legs. As seen in Figure 6, for all three tasks, HLC and the standard walking
policy often fall or need to be readjusted very early in each single-life trial, whereas ROAM gets
much closer to the finish line and often even completes the task without any falls or readjustments.

6 CONCLUSION AND FUTURE WORK

We introduced Robust Autonomous Modulation (ROAM), which enables agents to rapidly adapt to
changing, out-of-distribution circumstances during deployment. Our contribution lies in offering
a principled, efficient way for agents to leverage pre-trained behaviors when adapting on-the-fly.
Through a value-based mechanism, ROAM identifies the most relevant pre-trained behaviors in
real-time at each time-step without any human supervision. Our theoretical analysis confirms the
effectiveness of our behavior modulation strategy, showing why a suitable behavior will be chosen for
a given state with ROAM. On simulated tasks and a complex real-world tasks with a Go1 quadruped
robot, we find that our method achieves over 2x efficiency in adapting to new situations compared
to existing methods. While ROAM offers significant advances in enabling agents to adapt to out-
of-distribution scenarios, one current limitation lies in the dependency on the range of pre-trained
behaviors; some scenarios may simply be too far out-of-distribution compared to the available prior
behaviors. For example, an agent trained primarily in walking tasks would struggle to adapt to
the requirement of jumping over an obstacle. Future work could explore integrating ROAM into a
lifelong learning framework, allowing agents to continuously expand their repertoire of behaviors,
thereby increasing their adaptability to more unforeseen situations. We hope that ROAM may open
new possibilities for more versatile and self-reliant autonomous systems.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational option discovery
algorithms. arXiv preprint arXiv:1807.10299, 2018.

Ananye Agarwal, Ashish Kumar, Jitendra Malik, and Deepak Pathak. Legged locomotion in chal-
lenging terrains using egocentric vision. In Conference on Robot Learning, 2022.

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a
robot hand. arXiv preprint arXiv:1910.07113, 2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI conference on artificial intelligence, volume 31, 2017.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
with offline data. arXiv preprint arXiv:2302.02948, 2023.

Kate Baumli, David Warde-Farley, Steven Hansen, and Volodymyr Mnih. Relative variational
intrinsic control. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp.
6732–6740, 2021.

Annie Chen, Archit Sharma, Sergey Levine, and Chelsea Finn. You only live once: Single-life
reinforcement learning. Advances in Neural Information Processing Systems, 35:14784–14797,
2022.

Rohan Chitnis, Shubham Tulsiani, Saurabh Gupta, and Abhinav Gupta. Efficient bimanual manip-
ulation using learned task schemas. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1149–1155. IEEE, 2020.

Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. Robots that can adapt like
animals. Nature, 521(7553):503–507, 2015.

Mark Cutler, Thomas J Walsh, and Jonathan P How. Reinforcement learning with multi-fidelity
simulators. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pp.
3888–3895. IEEE, 2014.

Murtaza Dalal, Deepak Pathak, and Russ R Salakhutdinov. Accelerating robotic reinforcement
learning via parameterized action primitives. Advances in Neural Information Processing Systems,
34:21847–21859, 2021.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl 2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

Benjamin Eysenbach, Swapnil Asawa, Shreyas Chaudhari, Sergey Levine, and Ruslan Salakhutdinov.
Off-dynamics reinforcement learning: Training for transfer with domain classifiers. arXiv preprint
arXiv:2006.13916, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Zipeng Fu, Xuxin Cheng, and Deepak Pathak. Deep whole-body control: learning a unified policy
for manipulation and locomotion. In Conference on Robot Learning, 2022.

Bolin Gao and Lacra Pavel. On the properties of the softmax function with application in game theory
and reinforcement learning. arXiv preprint arXiv:1704.00805, 2017.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. arXiv
preprint arXiv:1611.07507, 2016.

10

Under review as a conference paper at ICLR 2024

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Tuomas Haarnoja, Ben Moran, Guy Lever, Sandy H Huang, Dhruva Tirumala, Markus Wulfmeier,
Jan Humplik, Saran Tunyasuvunakool, Noah Y Siegel, Roland Hafner, et al. Learning agile soccer
skills for a bipedal robot with deep reinforcement learning. arXiv preprint arXiv:2304.13653,
2023.

Lei Han, Qingxu Zhu, Jiapeng Sheng, Chong Zhang, Tingguang Li, Yizheng Zhang, He Zhang,
Yuzhen Liu, Cheng Zhou, Rui Zhao, et al. Lifelike agility and play on quadrupedal robots using
reinforcement learning and generative pre-trained models. arXiv preprint arXiv:2308.15143, 2023.

Nicklas Hansen, Rishabh Jangir, Yu Sun, Guillem Alenyà, Pieter Abbeel, Alexei A Efros, Lerrel
Pinto, and Xiaolong Wang. Self-supervised policy adaptation during deployment. arXiv preprint
arXiv:2007.04309, 2020.

Takuya Hiraoka, Takahisa Imagawa, Taisei Hashimoto, Takashi Onishi, and Yoshimasa Tsuruoka.
Dropout q-functions for doubly efficient reinforcement learning. arXiv preprint arXiv:2110.02034,
2021.

Rein Houthooft, Yuhua Chen, Phillip Isola, Bradly Stadie, Filip Wolski, OpenAI Jonathan Ho, and
Pieter Abbeel. Evolved policy gradients. Advances in Neural Information Processing Systems, 31,
2018.

Gwanghyeon Ji, Juhyeok Mun, Hyeongjun Kim, and Jemin Hwangbo. Concurrent training of a
control policy and a state estimator for dynamic and robust legged locomotion. IEEE Robotics and
Automation Letters, 2022.

Ryan Julian, Benjamin Swanson, Gaurav Sukhatme, Sergey Levine, Chelsea Finn, and Karol Haus-
man. Never stop learning: The effectiveness of fine-tuning in robotic reinforcement learning. 2020.
URL https://arxiv.org/abs/2004.10190.

Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual reinforcement
learning: A review and perspectives. arXiv preprint arXiv:2012.13490, 2020.

Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid motor adaptation for
legged robots. arXiv preprint arXiv:2107.04034, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, Aravind Rajeswaran, and Pieter Abbeel. Cic:
Contrastive intrinsic control for unsupervised skill discovery. arXiv preprint arXiv:2202.00161,
2022.

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
quadrupedal locomotion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.

Youngwoon Lee, Jingyun Yang, and Joseph J Lim. Learning to coordinate manipulation skills via
skill behavior diversification. In International conference on learning representations, 2019.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Gabriel B Margolis, Ge Yang, Kartik Paigwar, Tao Chen, and Pulkit Agrawal. Rapid locomotion via
reinforcement learning. arXiv preprint arXiv:2205.02824, 2022.

Russell Mendonca, Xinyang Geng, Chelsea Finn, and Sergey Levine. Meta-reinforcement learning
robust to distributional shift via model identification and experience relabeling. arXiv preprint
arXiv:2006.07178, 2020.

Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter.
Learning robust perceptive locomotion for quadrupedal robots in the wild. Science Robotics, 2022.

11

https://arxiv.org/abs/2004.10190

Under review as a conference paper at ICLR 2024

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Near-optimal representation learning
for hierarchical reinforcement learning. arXiv preprint arXiv:1810.01257, 2018a.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018b.

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine, and
Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-reinforcement
learning. arXiv preprint arXiv:1803.11347, 2018.

Soroush Nasiriany, Huihan Liu, and Yuke Zhu. Augmenting reinforcement learning with behavior
primitives for diverse manipulation tasks. In 2022 International Conference on Robotics and
Automation (ICRA), pp. 7477–7484. IEEE, 2022.

Seohong Park and Sergey Levine. Predictable mdp abstraction for unsupervised model-based rl.
arXiv preprint arXiv:2302.03921, 2023.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. In 2018 IEEE international conference on robotics
and automation (ICRA), pp. 3803–3810. IEEE, 2018.

Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel, and Sergey Levine. Mcp: Learning
composable hierarchical control with multiplicative compositional policies. Advances in Neural
Information Processing Systems, 32, 2019.

Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine.
Learning agile robotic locomotion skills by imitating animals. arXiv preprint arXiv:2004.00784,
2020.

Karl Pertsch, Youngwoon Lee, Yue Wu, and Joseph J Lim. Guided reinforcement learning with
learned skills. arXiv preprint arXiv:2107.10253, 2021.

Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine. Epopt: Learning
robust neural network policies using model ensembles. arXiv preprint arXiv:1610.01283, 2016.

Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. Promp: Proximal
meta-policy search. arXiv preprint arXiv:1810.06784, 2018.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osin-
dero, and Raia Hadsell. Meta-learning with latent embedding optimization. arXiv preprint
arXiv:1807.05960, 2018.

Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real single-image flight without a single real image.
arXiv preprint arXiv:1611.04201, 2016.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. arXiv preprint arXiv:1907.01657, 2019.

Mohit Sharma, Jacky Liang, Jialiang Zhao, Alex LaGrassa, and Oliver Kroemer. Learning to compose
hierarchical object-centric controllers for robotic manipulation. arXiv preprint arXiv:2011.04627,
2020.

Laura Smith, Ilya Kostrikov, and Sergey Levine. A walk in the park: Learning to walk in 20 minutes
with model-free reinforcement learning. arXiv preprint arXiv:2208.07860, 2022.

Xingyou Song, Yuxiang Yang, Krzysztof Choromanski, Ken Caluwaerts, Wenbo Gao, Chelsea Finn,
and Jie Tan. Rapidly adaptable legged robots via evolutionary meta-learning. In 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 3769–3776. IEEE, 2020.

12

Under review as a conference paper at ICLR 2024

Robin Strudel, Alexander Pashevich, Igor Kalevatykh, Ivan Laptev, Josef Sivic, and Cordelia Schmid.
Learning to combine primitive skills: A step towards versatile robotic manipulation. In 2020 IEEE
International Conference on Robotics and Automation (ICRA), pp. 4637–4643. IEEE, 2020.

Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez, and
Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped robots. arXiv preprint
arXiv:1804.10332, 2018.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain
randomization for transferring deep neural networks from simulation to the real world. In 2017
IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 23–30. IEEE,
2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for
continuous control. Software Impacts, 6:100022, 2020.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763, 2016.

Annie Xie and Chelsea Finn. Lifelong robotic reinforcement learning by retaining experiences. arXiv
preprint arXiv:2109.09180, 2021.

Annie Xie, James Harrison, and Chelsea Finn. Deep reinforcement learning amidst lifelong non-
stationarity. arXiv preprint arXiv:2006.10701, 2020.

Zhaoming Xie, Xingye Da, Michiel Van de Panne, Buck Babich, and Animesh Garg. Dynamics
randomization revisited: A case study for quadrupedal locomotion. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pp. 4955–4961. IEEE, 2021.

Ruihan Yang, Ge Yang, and Xiaolong Wang. Neural volumetric memory for visual locomotion
control. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023.

Takuma Yoneda, Ge Yang, Matthew R Walter, and Bradly Stadie. Invariance through inference. arXiv
preprint arXiv:2112.08526, 2021.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020a.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. Advances in neural information
processing systems, 34:28954–28967, 2021.

Wenhao Yu, Jie Tan, C Karen Liu, and Greg Turk. Preparing for the unknown: Learning a universal
policy with online system identification. RSS, 2017.

Wenhao Yu, Visak CV Kumar, Greg Turk, and C Karen Liu. Sim-to-real transfer for biped locomotion.
In 2019 ieee/rsj international conference on intelligent robots and systems (iros), pp. 3503–3510.
IEEE, 2019.

Wenhao Yu, Jie Tan, Yunfei Bai, Erwin Coumans, and Sehoon Ha. Learning fast adaptation with
meta strategy optimization. IEEE Robotics and Automation Letters, 2020b.

Ziwen Zhuang, Zipeng Fu, Jianren Wang, Christopher G Atkeson, Sören Schwertfeger, Chelsea Finn,
and Hang Zhao. Robot parkour learning. In 7th Annual Conference on Robot Learning, 2023.

13

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 PROOFS FOR THEORETICAL ANALYSIS

In this section, we present the full proofs for Section 4.2. Following the same notation, let behavior i
be associated with reward Ri = Ea∈πi

[Ri(s, a)] and dynamics function Pi. Our modified Bellman

operator is B̂πV =
[
B̂πiVi

]n
i=1

, where for each value function Vi, the modified Bellman operator is
the following:

(B̂πiVi)(s) =

(1− β)

Ri(s) + γ
∑

s′∈S,a∈A

πi(a|s)Pi(s
′|s, a)Vi(s

′)

+ β

(
exp(τVi(s))∑n

k=1 exp(τVk(s))

) .

Lemma A.1. There exists τ > 0, our modified Bellman operator B̂πV = [B̂πiVi]
n
i=1 is a contraction

under the L∞ norm.

Proof. In order to show this, we first show that for any element Vi of the full vector of value functions
V , (B̂πiVi)(s) is a contraction. For all s ∈ S and any two Vi, V

′
i value functions:

|(B̂πVi)(s)− (B̂πV ′
i)(s)| = |(1− β)

Ri(s) + γ
∑

s′∈S,a∈A

πi(a|s)Pi(s
′|s, a)Vi(s

′)

+ β

(
exp(τVi(s))∑n

k=1 exp(τVk(s))

)

− (1− β)

Ri(s) + γ
∑

s′∈S,a∈A

πi(a|s)Pi(s
′|s, a)V ′

i (s
′)

− β

(
exp(τV ′

i (s))∑n
k=1 exp(τV

′
k(s))

)
|

= |(1− β)

γ(
∑

s′∈S,a∈A

πi(a|s)Pi(s
′|s, a)(Vi(s

′)− V ′
i (s

′))

+ β

(
exp(τVi(s))∑n

k=1 exp(τVk(s))
− exp(τV ′

i (s))∑n
k=1 exp(τV

′
k(s))

)
|.

The first term becomes

|Ea∈A(1− β)

γ(
∑

s′∈S,a∈A

πi(a|s)Pi(s
′|s, a)(Vi(s

′)− V ′
i (s

′))

 | ≤ γ(1− β)max
a∈A

∑
s′∈S

Pi(s
′|s, a)|Vi(s

′)− V ′
i (s

′))|

≤ γ(1− β)∥Vi − V ′
i ∥∞.

We now focus on the second term: Since the softmax function is Lipschitz continuous with respect to
the L2 norm (Gao & Pavel, 2017), for all V, V ′ ∈ R, there exists C > 0 such that

∥
(

exp(Vi)∑n
k=1 exp(Vk)

− exp(V ′
i)∑n

k=1 exp(V
′
k)

)
∥2 ≤ C∥Vi − V ′

i ∥2 ≤ C
√
|S|∥Vi − V ′

i ∥∞.

Let 0 < τ < 1/(C
√
|S|) <∞. Then

∥
(

exp(τVi)∑n
k=1 exp(τVk)

− exp(τV ′
i)∑n

k=1 exp(τV
′
k)

)
∥∞ ≤ C

√
|S|∥τVi − τV ′

i ∥∞ < ∥Vi − V ′
i ∥∞.

Therefore, by the triangle inequality, for any s ∈ S,

∥B̂πVi − B̂πV ′
i ∥∞ = max

s
|B̂πVi(s)− B̂πV ′

i (s)|

≤ γ(1− β)∥Vi − V ′
i ∥∞ + β∥Vi − V ′

i ∥∞
< ∥Vi − V ′

i ∥∞.

14

Under review as a conference paper at ICLR 2024

Thus, considering our full modified Bellman operator, on n value functions V1, ..., Vn, we have

∥B̂πV − B̂πV ′∥∞ = max
i

max
s
|B̂πVi(s)− B̂πV ′

i (s)|

< max
i
∥Vi − V ′

i ∥∞

< ∥V − V ′∥∞.

Theorem A.2. Let pi(s) denote the state visitation probability for a behavior bi at state s. For any
state s that is out of distribution for behavior bi and is in distribution for another behavior bj , i.e.
pi(s)≪ pj(s), if 1 > β > 0 is chosen to be large enough, then the value of behavior i learned by
ROAM will be bounded above compared to value of behavior bj , i.e. Vi(s) ≤ Vj(s).

Proof. By Lemma A.1, for some temperature τ > 0, by the contraction mapping theorem, our
modified Bellman operator will lead to a fixed point. In the following, we characterize this fixed
point and use it to analyze how ROAM will adjust value estimates based on degree of familiarity.
Our loss function is defined based on our modified Bellman operator, optimizing for the fixed point
B̂πV = V , as follows:

Lfine-tune = (1− β)
∑
i

∑
s∼Di

pi(s)
[
(Ri(s) + γEs′Vi(s

′)− Vi(s))
2
]
+ β

∑
j

∑
s∼Dj

pj(s)

[
−Vj(s) + log

n∑
k=1

exp(Vk(s))

]
.

Taking the derivative with respect to Vi(s), we have:

∂Lfine-tune

∂Vi(s)
= 2(1− β)pi(s)(γp(s|s, a)− 1) (Ri(s) + γEs′Vi(s

′)− Vi(s))

+ β

pi(s)(−1 + exp(Vi(s))∑n
k=1 exp(Vk(s))

)
+

∑
j ̸=i

pj(s)
exp(Vi(s))∑n

k=1 exp(Vk(s))

= 2(1− β)pi(s)(γPi(s|s, a)− 1) (Ri(s) + γEs′Vi(s

′)− Vi(s)) + β

−pi(s) +∑
j

pj(s)
exp(Vi(s))∑n

k=1 exp(Vk(s))

 .

Setting to 0, we have the following characterization of our fixed point, obtained as a result of
Theorem A.1 for some temperature τ > 0:

Vi(s) = (Ri(s) + γEs′Vi(s
′)) +

β

2(1− β)pi(s)(γPi(s|s, a)− 1)

−pi(s) +∑
j

pj(s)
exp(Vi(s))∑n

k=1 exp(Vk(s))

= (Ri(s) + γEs′Vi(s

′)) +
β

2(1− β)(1− γPi(s|s, a))

1−∑
j

pj(s)

pi(s)

exp(Vi(s))∑n
k=1 exp(Vk(s))

 .

We examine the behavior of Vi(s) under case pfreq(s) ≫ pi(s) for some behavior bfreq ̸= bi. Then
pfreq(s)
pi(s)

will dominate in the last term, so

∑
j

pj(s)

pi(s)

exp(Vi(s))∑n
k=1 exp(Vk(s))

>> 1.

15

Under review as a conference paper at ICLR 2024

Then comparing the fixed point values of Vi(s) and Vfreq(s), we have

Vfreq(s)− Vi(s) = (Rfreq(s) + γEs′Vfreq(s
′)) +

β

2(1− β)(1− γPfreq(s|s, a))

1−∑
j

pj(s)

pi(s)

exp(Vfreq(s))∑n
k=1 exp(Vk(s))

−

(Ri(s) + γEs′Vi(s
′)) +

β

2(1− β)(1− γPi(s|s, a))

1−∑
j

pj(s)

pi(s)

exp(Vi(s))∑n
k=1 exp(Vk(s))

= ((Rfreq(s) + γEs′Vfreq(s

′))− (Ri(s) + γEs′Vi(s
′)))

+
β

1− β

Cfreq

1−∑
j

pj(s)

pi(s)

exp(Vfreq(s))∑n
k=1 exp(Vk(s))

− Ci

1−∑
j

pj(s)

pi(s)

exp(Vi(s))∑n
k=1 exp(Vk(s))

> 0,

where 0 < Cfreq, Ci <∞ constants, if

β

1− β
>

((Ri(s) + γEs′Vi(s
′))− (Rfreq(s) + γEs′Vfreq(s

′)))(
Cfreq

[
1−

∑
j

pj(s)
pi(s)

exp(Vfreq(s))∑n
k=1 exp(Vk(s))

]
− Ci

[
1−

∑
j

pj(s)
pi(s)

exp(Vi(s))∑n
k=1 exp(Vk(s))

]) .
Thus, for some 0 < β < 1 large enough, Vi(s) < Vj(s).

To illustrate the effect of the cross-entropy loss, consider the following example of choosing between
two behaviors i and j at state s, where the true values V true

i (s) < V true
j (s). The optimal choice is to

choose behavior j and for sake of this example let us choose behavior j if V ROAM
i (s) < V ROAM

j (s).
There are the following four cases: (1) pi(s) < pj(s) and the initial estimated Vi(s) < Vj(s). Then
with any β > 0, the final V ROAM

i (s) < V ROAM
j (s); (2) pi(s) < pj(s) and the initial estimated

Vi(s) > Vj(s). Then by Theorem A.2, with large enough β > 0, the final V ROAM
i (s) < V ROAM

j (s);
(3) pi(s) > pj(s) and the initial estimated Vi(s) < Vj(s). Then as long as β is chosen to be not too
large, the final V ROAM

i (s) < V ROAM
j (s). (4) pi(s) > pj(s) and the initial estimated Vi(s) > Vj(s).

This is the only case where ROAM may not be adjusted to work well, but this case poses a difficult
situation for any behavior selection method.

A.2 ALGORITHM SUMMARY

We summarize ROAM in Algorithms 1 and 2.

Algorithm 1 ROAM FINE-TUNING

1: Require: Di, pre-trained critics Qi

2: while not converged do
3: for all i in 1, ..., Nbehaviors do
4: Sample (s, a, s′, r) ∼ Di

5: Update Qi according to Eq. 1
6: end for
7: end while
8: return Q1, ..., QNbehaviors

Algorithm 2 ROAM SINGLE-LIFE DEPLOYMENT

1: Require: Test MDP Mtest, Di, policies πi and fine-
tuned critics Qi;

2: Initialize: online replay buffers Di
online; timestep t = 0

3: while task not complete do
4: Compute values of each behavior {Vi(st)}Nbehaviors

1
5: Sample behavior b∗ according to the distribution

softmax(exp(Vi(st))).
6: Take action at ∼ πb∗(at|st).
7: Db∗

online ← Db∗

online ∪ {(st, at, rt, st+1)}
8: Qb∗(s, a), πb∗ ← RL(Qb∗(s, a), πb∗ ,Db∗

online)
9: Increment t

10: end while

A.3 ADDITIONAL EMPIRICAL ANALYSIS

The cross-entropy term is a regularizer that creates a preference for skills that visit a given state more
frequently. However, this is not the only criterion for selecting a skill; it is a regularizer. A skill with

16

Under review as a conference paper at ICLR 2024

higher value is still preferred if its visitation frequency is not too low, and ROAM does not exclusively
always just select the most high-frequency behavior. We show this with the following experiment
with results in Table 2. In the simulated stiffness suite, we held out most of the data from one of the
buffers corresponding to one of the behaviors, leaving only 5k transitions compared to the original
40k, and evaluated the agent at test time in an environment suited for that behavior. We find that even
with only 5k transitions (compared to 40k for all other behaviors), ROAM selects this less-frequent
but suitable behavior the majority of the time, leading to similar overall performance.

Transitions % Timesteps Chosen Avg # Steps

5k 53.2 591.3
40k 78.4 573.8

Table 2: ROAM selects high-value behaviors even with lower visitation frequency. We find that even with a
much smaller buffer, and therefore lower visitation frequency for many states, ROAM still chooses that behavior
when given situations suitable for it.

We next investigate the sensitivity of the β hyperparameter. We ran ROAM with 4 different values
(0.01, 0.1, 0.5, 0.9) of β in each simulated suite and show the performance in Table 3. For both
evaluations, 3 out of 4 of these values (all except 0.01) outperform all the other baselines.

Additionally, one benefit of ROAM is that the ability to switch between these policies at any timestep
allows the agent to adapt to new and unforeseen situations, including those for which no single
behavior is optimally suited. However, one hypothetical concern may be that frequent switching
of behaviors may lead to suboptimal performance. In Table 3, we measure how often behaviors
were switched and tried to see if frequency of behavior switches correlates with failure. We found
no such correlation. Below, we show the percent of timesteps where the agent decides to switch
behaviors, and more frequent switching does not correlate to a higher average number of steps needed
to complete the task.

Dynamic Friction Dynamic Stiffness
β Avg # Steps (↓) Frequency of Switching Avg # Steps (↓) Frequency of Switching

0.01 7610 +- 854 17.20% 2698 +- 844 2.92%
0.1 2082 +- 382 15.63% 1331 +- 263 8.25%
0.5 772 +- 179 11.85% 628 +- 19 12.35%
0.9 1466 +- 534 9.36% 735 +- 54 13.36%

Table 3: Sensitivity of β and frequency of behavior switching. We find that a range of β values give strong
performance for ROAM.

A.4 GENERAL EXPERIMENT SETUP DETAILS

As common practice in learning-based quadrupedal locomotion works, we define actions to be PD
position targets for the 12 joints, and we use a control frequency of 20 Hz. Actions are centered
around the nominal pose, i.e. 0 is standing. We describe the observations for the simulated and
real-world experiments below.

We first detail the reward function we use to define the quadrupedal walking task. First, we have a
velocity-tracking term defined as follows:

rv(s, a) = 1− |vx − vt
vt

|1.6

where vt is the target velocity and vx is the robot’s local, forward linear velocity projected onto the
ground plane, i.e., vx = vlocal · cos(ϕ) where ϕ is the root body’s pitch angle. We then have a term
rori(s, a) that encourages the robot to stay upright. Specifically, we calculate the cosine distance
between the 3d vector perpendicular to the robot’s body and the gravity vector ([0, 0, 1]). We then
normalize the term to be between 0 and 1 via:

rori(s, a) = (0.5 · dist+ 0.5)2

17

Under review as a conference paper at ICLR 2024

where dist is the cosine distance as described above. We multiply rv and rori so as to give
reward for tracking velocity proportionally to how well the robot is staying upright. We then have a
regularization term rqpos to favor solutions that are close to the robot’s nominal standing pose. This
regularization term is calculated as a product of a normalized term per-joint. Below, q̂j represents the
local rotation of joint j of the nominal pose, and qj represents the robot’s joint,

rqpos = 1−
∏
j

q distance(q̂j , qj)

where q distance is between 0 and 1 and decays quadratically until a threshold which is the
robot’s action limits. Specifically, we follow the reward structure put forth by Tunyasuvunakool et al.
(2020). These terms comprise the overwhelming majority of weight in the final reward. We also
include terms for avoiding undesirable behaviors like rocking or swaying that penalize any angular
velocity in the root body’s roll, pitch, and yaw. We also slightly penalize energy consumption and
torque smoothness. To encourage a walking gait in particular, we added another regularization term
to encourage diagonal shoulder and hip joints to be the same at any given time.

A.5 IMPLEMENTATION DETAILS AND HYPERPARAMETERS

We implemented all methods, including ROAM, RMA, and HLC, on top of the same state-of-the art
implementation of SAC from Smith et al. (2022) as the base learning approach. For all comparisons,
we additionally use a high UTD ratio, dropout, and layernorm, following DroQ (Hiraoka et al., 2021),
and for methods that do online fine-tuning, we use 50/50 sampling following RLPD (Ball et al., 2023).
We use default hyperparameter values: a learning rate of 3× 10−4, an online batch size of 128, and a
discount factor of 0.99. The policy and critic networks are MLPs with 2 hidden layers of 256 units
each and ReLU activations. For ROAM, we tuned β with values 0.01, 0.1, 0.5, 0.9.

Simulated Experiments. For the simulated experiments, the state space consists of joint positions,
joint velocities, torques, IMU (roll, pitch, change in roll, change in pitch), and normalized foot
forces for a total of 44 dimensions. For the position controller, we use Kp and Kd gains of 40 and 5,
respectively, and calculate torques for linearly interpolated joint angles from current to desired at
500Hz. We define the limits of the action space to be 30% of the physical joint limits.

Table 4: Simulated Reward Function Parameter Details

Parameter Value
Target Velocity 1.0
Energy Penalty Weight 0.008
Qpos Penalty Weight 10.0
Smooth Torque Penalty Weight 0.005
Pitch Rate Penalty Factor 0.6
Roll Rate Penalty Factor 0.6
Joint Diagonal Penalty Weight 0.1
Joint Shoulder Penalty Weight 0.15
Smooth Change in Target Delta Yaw Steps 5

For the first experimental setting, we train prior behavior policies with high stiffness (10.0) in 9
different individual joints. Specifically, we use the front right body joint, the front right knee joint,
the front left body joint, the front left knee joint, the rear right body joint, the rear right knee joint,
the rear left body joint, the rear left thigh joint, and the rear left knee joint. During deployment,
we switch between 3 conditions every 100 steps. Condition 1 is applying stiffness 15.0 to the rear
right thigh joint, condition 2 is applying stiffness 15.0 to the front left thigh joint, and condition 3 is
applying stiffness 15.0 to the front right thigh joint. For this setting, we use β = 0.5 for ROAM.

For the second experimental setting, we train prior behavior policies with low foot friction (0.4) in
each of the 4 feet. During deployment, we switch between 2 conditions every 50 steps. Condition 1
is applying a foot friction of 0.1 to the rear right foot and condition 2 is applying a foot friction of
0.01 to the front left foot and a foot friction of 0.1 too the rear right foot. For this setting, we use
β = 0.5 for ROAM.

18

Under review as a conference paper at ICLR 2024

Real-world Experiments. For the real-world experiments, the state space consists of joint positions,
joint velocities, torques, forward linear velocity, IMU (roll, pitch, change in roll, change in pitch),
and normalized foot forces for a total of 47 dimensions. We use an Intel T265 camera-based velocity
estimator to estimate onboard linear velocity. We use Kp and Kd gains of 20 and 1, respectively,
which are used in the position controller. We again use action interpolation, an action range of 35%
physical limits, and a 1 step action history. We also use a second-order Butterworth low-pass filter
with a high-cut value of 8 to smooth the position targets. Finally, to reset the robot, we use the
reset policy provided by Smith et al. (2022). We train 4 prior behavior policies for the real-world
experiments, each of which is trained with a frozen knee joint. Specifically, we train a policy with the
front right knee joint frozen, the front left knee joint frozen, the rear right knee joint frozen, and the
rear left knee joint frozen. β = 0.5 is used in all real-world experiments for ROAM.

Table 5: Real-world Reward Function Parameter Details

Parameter Value
Target Velocity 1.5
Energy Penalty Weight 0.0
Qpos Penalty Weight 2.0
Smooth Torque Penalty Weight 0.005
Pitch Rate Penalty Factor 0.4
Roll Rate Penalty Factor 0.2
Joint Diagonal Penalty Weight 0.03
Joint Shoulder Penalty Weight 0.0
Smooth Change in Target Delta Yaw Steps 1

HLC Details. For HLC, we have an MLP that takes state as input and outputs which behavior to
select in the given state. The MLP has 3 hidden layers of 256 units each and ReLU activations, and
we train by sampling from the combined offline data from all prior behaviors. We use a batch size of
256, learning rate of 3× 10−4, and train for 3, 000 iterations.

RMA Details. For RMA training, we changed the environment dynamics between each episode
and trained for a total of 2, 000, 000 iterations. The standard architecture and hyperparameter choices
from Kumar et al. (2021) were used along with DroQ (Hiraoka et al., 2021) as the base algorithm.

19

	Introduction
	Related Work
	Preliminaries
	Robust Autonomous Modulation
	Algorithm Description
	Theoretical Analysis

	Experimental Results
	Selecting Relevant Behaviors in Simulation
	Adapting on-the-Go1 in the Real World

	Conclusion and Future Work
	Appendix
	Proofs for Theoretical Analysis
	Algorithm Summary
	Additional Empirical Analysis
	General Experiment Setup Details
	Implementation Details and Hyperparameters

