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Abstract. Multi-objective optimization problems are highly relevant in
practice, and algorithms to solve these types of problems abound in the
literature. This survey focuses explicitly on surrogate-based algorithms
that use the decision-maker’s preference information to guide the search
toward the most preferred areas of the Pareto front. Considering such
preferences not only facilitates the decision-making process for the user
but also helps the analyst to save expensive computational budget. The
way in which user preference information is handled in the algorithms
differs across publications. We classify them according to the type and
timing of the preference information. We provide an overview of the state-
of-the-art, highlight the most important shortcomings in the literature,
and present promising directions for further research.
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1 Introduction

There has been an increasing amount of literature on multi-objective (MO) op-
timization problems in recent decades. MO problems indeed occur frequently in
real-life settings, for instance, in logistics and supply chain management [37],
engineering [51], and machine learning [4]. In general, a MO problem can be ex-
pressed as “min f1(x), f2(x), ..., fn(x)” where x is a d-dimensional decision vector
in the decision space D ⊂ Rd, n ≥ 2 is the number of objective functions. Typ-
ically, the objective functions are conflicting. The goal of the analyst then is to
find the set of non-dominated or Pareto-optimal solutions, i.e., those solutions
where no single objective can be improved without deteriorating any other ob-
jective(s). The set of Pareto optimal solutions in the decision space is referred to
as the Pareto set ; the evaluation of these Pareto optimal solutions in objective
space yields the Pareto front [14]. As an illustration, Figure 1 shows three points
(A, B, and C) in a bi-objective problem that are not Pareto optimal (however,
point B dominates point C, and point A dominates both points B and C ). The
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figure also shows the ideal point (which combines the optima of the individual
objective functions, see [34]), and the Nadir point (which combines the worst
objective values of the Pareto optimal solutions). MO algorithms estimate the
Pareto front, known as the experimental Pareto front, and their performance is
measured by how closely this estimation aligns with the true Pareto front.

Many MO algorithms do not include any decision maker (DM) preferences in
the search process; consequently, they aim to yield an approximation of the whole
Pareto front as output. In such algorithms, the DM selects the most preferred
solution(s) a posteriori, based on the available trade-off information. This leads
to two inefficiencies. Firstly, it puts a big burden on the DM, who is confronted
with a (potentially large) set of solutions. This is particularly problematic in set-
tings with many objectives (i.e., large n) and/or a relatively large search space
(i.e., large d), as the number of Pareto optimal solutions then grows very fast,
and they can no longer be visualized straightforwardly [12]. This makes it much
harder for the DM to detect the preferred set. More importantly, estimating the
entire Pareto front causes an inefficient use of the computational budget, as the
process generates potentially many unpreferred solutions. This is particularly
relevant in settings with limited computational budget, due to time and/or cost
constraints [19]. Consequently, efforts have been made to include DM preferences
in the search process, such that the resulting solutions focus on that area of the
front that is relevant for the DM (also referred to as the region of interest (RoI),
e.g., [11]). The resulting algorithms are of high importance in many industrial
optimization problems, where function evaluations may require expensive (phys-
ical or computer) experiments: these algorithms help to reduce the number of
experiments and facilitate the decision-making process. Most of the efforts to
incorporate decision-maker (DM) preferences have been conducted within the

Fig. 1. Illustration of Pareto front in a bi-objective minimization problem
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framework of evolutionary algorithms, as highlighted in the overviews provided
by [8] and [45].

In optimization problems with expensive-to-evaluate functions, it is even
more vital to focus efforts on finding solutions preferred by the DM [21]. Yet,
in spite of the increased interest in surrogate-based algorithms to solve MO
problems in recent years, algorithms incorporating DM preferences remain very
scarce. Surrogate-based optimization algorithms are specifically designed to re-
duce the computational cost of optimization by approximating the objective
function [18], and the inclusion of DM preferences naturally aligns with this
goal by narrowing the search space to the most relevant regions. Despite their
conceptual alignment, surprisingly, considerably fewer studies have focused on in-
corporating DM preferences within the surrogate-based optimization literature.
This gap is especially striking given the potential of surrogate-based approaches
to significantly enhance data efficiency while facilitating targeted exploration of
the decision space.

This article surveys surrogate-based algorithms for MO optimization with DM
preferences; It explicitly focuses on algorithms that take into account DM pref-
erences during the search; hence, we do not consider a posteriori selection. The
classification proposed in this article is in line with the classification proposed by
[48] and [2], two papers that focus solely on interactive multi-objective optimiza-
tion, mostly discussing evolutionary algorithms and just a few surrogate-based
algorithms. To the best of our knowledge, our work presents the first compre-
hensive survey that particularly focuses on the surrogate-based optimization al-
gorithms and discusses how the incorporation of the decision-maker preferences
(either a priori or interactively) can contribute to the main goal of increasing
data efficiency in these algorithms. We focused on articles indexed in the Scopus
and Web of Science databases, book chapters, and conference proceedings to
identify the most recent research directions. The search terms such as “multi-
objective optimization”, “surrogate-based optimization”, “meta model-based op-
timization”, and “user preference” were used to select a primary set of papers,
which were then checked for relevance. By applying the ancestry approach [6],
we selected a set of 13 articles (Table 1) that are relevant for this review.

2 Surrogate-based multi-objective optimization

In many optimization problems, the objectives are evaluated using computation-
ally expensive simulations or costly physical experiments [18, 9]. This limits the
number of evaluations that may be performed [23]. Evolutionary approaches are
ill-suited in such cases, as they require many function evaluations to solve the
problem. Surrogate-based algorithms, particularly those using Gaussian Process
Regression (GPR) and Radial Basis Functions (RBF), have been widely used
for solving single-objective expensive optimization problems [44, 23]. In the con-
text of multi-objective optimization, research on surrogate-based methods has
gained increasing attention in recent years, with various approaches proposed in
the literature [23].
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The main idea in surrogate-based optimization is to approximate the ex-
pensive objectives by means of one or multiple surrogates (also referred to as
meta-models), and then gain more information about these unknown objective
functions efficiently (i.e., with a limited number of additional function evalu-
ations), by exploiting the knowledge present in the surrogate(s) [31]. A surro-
gate model can be considered as a simplified and computationally controllable
model of the true objective function(s). Contrary to the evolutionary approaches,
surrogate-based approaches can predict the unknown function outputs at unob-
served points in the design space, by exploiting the model information.

Figure 2 shows the general steps in a surrogate-based MO optimization algo-
rithm with DM preferences. The first step is the generation of an initial design.
The purpose of this step is to create a space-filling set of design points cho-
sen throughout the domain of the problem; Latin Hypercube Sampling is the
most common choice in the literature for its space-filling and non-collapsing fea-
tures. After evaluating the objective functions on the initial design, the surrogate
model(s) are fit to the observed input/output data. Next, an infill criterion (also
referred to as acquisition function in Bayesian optimization [20], and sampling
strategy in Radial Basis Functions literature), is used to determine which input
combination to evaluate next: this criterion uses the surrogate model informa-
tion in such a way that it typically balances exploitation (i.e., sampling in areas
with promising predictor values) and exploration (sampling in areas with high
uncertainty for the objective function(s)). The point where the acquisition func-
tion is maximized is chosen as the next one to sample and is referred to as the
so-called infill point.

Depending on the properties of the problem, different infill criteria can be
used; common choices in the literature are Expected Improvement (EI), Proba-
bility of Improvement (PoI), and (relatively recently) Entropy Search (ES) [20].
To integrate the DM’s preference information in the algorithms, the acquisition
function can be modified such that the search of the infill point is guided to the
most interesting areas of the Pareto front. Section 4 discusses such acquisition
functions. After evaluating the infill point using the expensive function, the sur-
rogate model is updated, and the algorithm continues until a stopping criterion
(e.g., computational budget) is met. Finally, the algorithm identifies the Pareto
front and the corresponding Pareto set.

Fig. 2. Main steps in surrogate-based MO optimization algorithms with DM preferences
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3 Preference information: type and timing

The way in which DM preference information shows up in the algorithms differs
in two respects (see Figure 3): (1) when the preference information is collected
(see Section 3.1), and (2) which type of preference information is collected (see
Section 3.2). The collected preference information then is considered in an overall
utility function. A utility function quantitatively evaluates solutions for their
conformity with the DM’s preferences. Often, the utility function is not explicitly
known; several methods have been developed in the literature to estimate the
DM’s utility function based on the collected preference information (see Section
3.2).

3.1 Timing of the preference information

MO algorithms that take into account DM preferences during the search can
do so a priori (meaning that preferences are known explicitly upfront), or in-
teractively (meaning that preference information is collected, often iteratively,
during the optimization). A priori methods are efficient and straightforward in
theory; yet, in practice, it is often difficult (and in cases with a large number
of objectives, even almost impossible) for the decision-maker to provide specific
preference information upfront. In an interactive algorithm, contrarily, the DM
progressively specifies preference information during the search, as more insight
about the problem is gained [39]. This is particularly relevant in black-box prob-
lems, where a priori knowledge is unavailable. Most interactive methods also
provide the opportunity for the DM to change her preferences during the search
and, as a result, the algorithm’s parameters; this is evidently not the case in a
priori algorithms. In practice, the number of interactions with the DM is often
limited. A disadvantage of interactive methods is that they may collect incon-
sistent user preferences; especially when the number of interactions with the
decision maker increases, the preferences provided by the DM may contain con-
tradictory information due to the cognitive burden of the DM [27]. Inconsistent
user preferences emerging over the optimization process of black-box objectives
could be due to the fact that the DM learns more about the problem after every
query.

Fig. 3. DM preference information: type and timing
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3.2 Types of preference information

We classify the preference information of the DM into three categories: (i) ref-
erence point information (i.e., the DM provides a goal to meet, or defines the
worst acceptable values), (ii) objective ranking (i.e., the DM assigns weights to
the objectives), or (iii) solution ranking (i.e., the DM either compares the pro-
posed solutions pairwise or ranks multiple solutions). This section discusses the
main features of these information types, with their pros and cons. Furthermore,
we discuss how this information is integrated into utility functions to guide the
optimization algorithms through the search.

Reference points: As expressing preferences through objective function val-
ues is cognitively easy for the DM [24], reference point methods are the most
straightforward and common approach in the literature. Two types of reference
points (also known as goals or target values) are used: (i) those defining an as-
piration level, for instance, when trying to keep costs within a certain budget, or
(ii) those defining a reservation level, i.e., setting a minimum acceptable level ;
for instance, when trying to achieve at least a certain amount of profit. Reference
points can be varied during the search via interaction with the DM. After each
interaction, a set of solutions is then presented to the DM, and she can modify
the reference point(s). Reference points can also be defined by the analyst (in
case of a non-expert DM; see, e.g., [22].

With reference point information, an achievement function is commonly used
as an objective to be minimized or maximized. If the reference point defines an
aspiration level, the algorithm will try to minimize the deviation between this
point and the proposed solutions; in the case of a reservation level, the devia-
tion should be maximized. Equation (1) represents a widely used achievement
function [47] from mathematical optimization literature, where ri stands for the
reference point for objective i (aspiration level, provided by the DM) and the λi

are normalising parameters. The solution found by solving problem (1) is Pareto
optimal if all the deviations from the reference point, fi(x)− ri, are strictly pos-
itive [40]. One can easily adapt the conditions for a maximization problem. The
same concept has been utilized to develop surrogate-based optimization algo-
rithms where fi(x) is replaced by its expectation as provided by the associated
surrogate model.

min
x∈D⊂Rd

n∑
i=1

λi

(
fi(x)− ri

)
s.t. fi(x)− ri ≥ 0 ∀ i = 1, ..., n

(1)

The objective function in (1) is a weighted L1 norm between the vector-valued
function at x, that is f(x), and the n-dimensional reference point r. However,
other norm could be considered, such as L2 norm (i.e., Euclidean distance).
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Objective ranking: Preference information can also be articulated by assign-
ing weights to the objectives. The weights then reflect the importance of each
objective for the DM, and are used to aggregate the multiple objectives into a sin-
gle objective (this presumes that the objective functions are commensurable; the
resulting function is also referred to as the scalarization function). The weighted
sum scalarization function in equation (2) is one of the most widely used scalar-
ization functions; other common scalarization functions are the weighted Tcheby-
cheff function, see equation (3), and the augmented Tchebycheff, see equation
(4). In these equations, n is the number of objective functions, the weights λi

are in range [0, 1] and
∑n

i=1 λi = 1. In equations (3) and (4), ρ is a small positive
value, and z is the reference point.

f(x) =

n∑
i=1

λifi(x) (2)

f(x) = {max
i

λi(fi(x)− zi)} (3)

f(x) = {max
i

λi(fi(x)− zi) + ρ

n∑
i=1

λifi(x)} (4)

The weights can be defined a priori, either by choosing a single weight vec-
tor (yielding a single Pareto optimal solution), or multiple vectors (in view of
finding a set of desirable solutions, though there is no theoretical guarantee that
multiple vectors will indeed result in multiple different solutions [40]). Alterna-
tively, the weights can be varied during the search via interaction with the DM.
After each iteration, a set of solutions is then presented to the DM, and she can
modify the weights. The main drawback of scalarization is that it only generates
supported solutions; i.e., algorithms using scalarization functions can only inves-
tigate the convex parts of the Pareto front, while solutions in non-convex areas
cannot be generated by this method (except when using the augmented Tcheby-
cheff function (equation 4); some authors tried to mitigate this problem in their
research, see for instance [13] and [46]). Moreover, when facing a large number of
objectives, weight-based methods typically become ineffective as it becomes too
challenging for the DM to steer the search process towards the region of interest
through a well-chosen weighting scheme [33]. Finally, scalarization is not always
possible as the different objective functions may not be commensurable [38].

Solution ranking: In this approach, the DM compares sets of objective values
belonging to different solutions, resulting in a ranking or classification. Usually,
in the literature, pairwise comparison of solutions is applied, which may result
in (i) one solution being preferred to the other, (ii) the DM being indifferent
between both solutions. Solution ranking needs not necessarily be pairwise: the
DM can also be asked to reveal her preference information on a set of multiple
solutions, e.g., to classify them into preferred versus not-preferred solutions or
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to determine the best (or the worst) solution. Based on such ranking informa-
tion, the algorithm tries to learn an overall utility function. As the number of
objectives increases, it typically becomes impossible for the DM to compare the
solutions in a consistent way.

4 Results and discussion

In the literature, all possible combinations of preference information and timing
occur (apart from a priori timing and solution ranking, for obvious reasons),
within different algorithmic approaches. In this section, we discuss these links
between algorithmic approaches and preference information types in more detail.
Table 1 summarizes the algorithms surveyed in this section.

Table 1. Overview of Surrogate-Based Multi-Objective Optimization Algorithms In-
corporating Decision Maker Preferences

Algorithm Surrogate Timing Information Type

R/C-mEI [21] GPR a priori reference point
EAPLI [25] GPR a priori reference point
TEHVI-EGO [50] GPR interactive reference point
iParEGO [24] GPR interactive reference point
SURROGATE-ASF [39] RBF interactive reference point
EWHI [16] GPR a priori objective ranking
MOBO-PC [1] GPR a priori objective ranking
SAMOO-RBF [29] RBF a priori objective ranking
MOBO-RS [36] GPR interactive objective ranking
EI-UU/TS-UU [5] GPR interactive solution ranking
Modified EI-UU[43] GPR interactive solution ranking
Interactive MOBO [42] GPR interactive solution ranking
TRIPE [26] GPR interactive solution ranking

4.1 Algorithms with reference point

Both interactive and a priori algorithms exist that work with reference point
information. The algorithm proposed in [21] uses the multiplied Expected Im-
provements (mEI) infill criterion to focus the search on the preferred region of the
Pareto front (which is determined by an aspiration point, which can be explicitly
provided by the DM, or implicitly defined by the analyst). This infill criterion
proposed by the authors can be considered as a very particular instance of the
one developed in [50], and is equivalent to a truncated EHI with infinite lower
bounds (where the Expected Hypervolume Improvement (EHI) is an acquisition
function that quantifies the volume of objective space dominated by the Pareto
front—resulting from the evaluation of a new candidate solution). Yet, the mEI
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is simpler to tune and cheaper to compute, since it has a closed-form expression
for any number of objectives. Moreover, its complexity grows only linearly in the
number of objectives and is independent of the number of non-dominated solu-
tions. The EAPLI algorithm proposed in [25] uses reference vectors defined based
on the provided a priori reference point information. These reference vectors are
used to decompose the original MO problem into a number of single-objective
subproblems: the acute angle between the candidate solutions and the reference
vectors indicates the degree of satisfaction of the user preferences.

Three interactive algorithms using reference point information are included in
this survey. By asking the DM to determine both the aspiration and reservation,
reference point information can define a preferred range for each objective func-
tion (as in [50] and [24]). The preference region in [50] is represented by truncat-
ing the objective space; the infill criterion used in the algorithm is the truncated
expected hypervolume improvement (TEHVI) [49], which combines information
on the predictors for the objective functions, the variance of the predictors, and
the preferred region. The authors of [24] extend the work by [30], developing
an interactive version of the ParEGO algorithm (iParEGO) that replaces the
weighted Tchebycheff scalarization function with an achievement function, and
uses reference points instead of weights to include DM preferences. The DM
can change her preferences, so as to visit areas of the solution space that pre-
viously were not considered. The DM iteratively provides feedback on a subset
of non-dominated solutions by specifying the preferred range for each objective
(by determining aspiration and reservation points). The algorithm samples ref-
erence points within these ranges, and uses a GPR model to approximate an
achievement function (single-objective) to solve the problem.

The algorithm proposed by [39] is the only algorithm in this part of the
literature that uses RBF instead of GPR as a surrogate model. This algorithm
consists of an initialisation and decision-making phase. In the initialisation phase,
the decision space is decomposed into a finite number of hyper-boxes. For each
hyper-box, a single RBF surrogate of the achievement function is built using a
set of predetermined reference points. These surrogate functions are used in the
decision-making phase, where the algorithm interacts with the DM and collects
a reference point at each iteration. The algorithm uses this reference point and
the surrogate model to find an optimal solution, which is then evaluated with the
original functions and shown to the DM. This loop (asking for a new reference
point, solving the surrogate optimization problem, and evaluating the resulting
solution with the original objective functions) iterates until the DM is satisfied.

4.2 Algorithms with objective ranking

All surrogate-based algorithms with objective ranking surveyed in this article use
a priori preference information. [16] propose the expected weighted hypervolume
improvement (EWHI): the weight functions are defined by the DM, and the sur-
rogate model exploits these functions to focus on the most preferred regions. The
authors use examples of weight functions suggested in [52] to demonstrate the
effectiveness of the proposed algorithm on a bi-objective optimization problem.
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The authors highlight the relation between EWHI and the expected hypervol-
ume improvement (EHVI) criterion proposed in [15]. The other algorithm in
this group, the MOBO-PC algorithm proposed in [1], formulates a new infill cri-
terion based on expected improvement in dominated hypervolume (EHI). The
algorithm formulates preference-order constraints on the objectives, by asking
DM to compare objectives w.r.t. their importance. In the infill criterion, the
contribution of each point to the hypervolume is weighted by the probability
that it satisfies the constraints.

Paria et al. [36] propose an algorithm that uses random scalarizations of the
objectives to flexibly explore the Pareto front. The method requires the user to
specify a class of scalarization functions and a prior distribution over weights,
which guide the optimization process. Weights are sampled iteratively, and the
posterior distributions of the objectives are computed. The resulting scalarized
acquisition function is used to select the next evaluation point. While the authors
report promising results, particularly in terms of flexibility and computational
efficiency, the work does not provide a systematic method for estimating or
updating the distribution of weights. This omission leaves the responsibility of
weight specification to the user, which could limit the algorithm’s applicability
in settings where domain expertise is lacking or preferences are dynamic.

The only algorithm using RBF as a surrogate model in this part of the
literature is [29]. This algorithm consists of three phases. In the first phase, the
algorithm looks for a Pareto optimal solution for the surrogate model using an
initial set of points, and the weights provided by the DM. This solution is then
sampled and evaluated via the original function. The second phase aims at an
exploration of the Pareto front, using the density function (unlimited repetition
of this step may result in exploring the whole Pareto front). Finally, the Pareto-
fitness function is used to add new samples around the Pareto optimal solution
found, without solving the multi-objective optimization problem. The loop of
these three phases iterates until the termination criterion (i.e., computational
budget) is met.

4.3 Algorithms with solution ranking

Astudillo and Frazier [5] propose a framework for multi-attribute Bayesian op-
timization with interactive preference learning. As previously discussed, the so-
lution ranking approach is inherently suited to interactive settings and cannot
be effectively implemented in a non-interactive manner. The algorithm learns
a Bayesian posterior over the decision maker’s utility function based on pair-
wise comparisons, collected iteratively during the optimization process. The ob-
jectives are modeled using a multi-output Gaussian Process, and two acquisi-
tion functions, Expected Improvement under Utility Uncertainty (EI-UU) and
Thompson Sampling under Utility Uncertainty (TS-UU), are introduced to guide
the search. While EI-UU demonstrates superior performance in numerical exper-
iments, its computational complexity presents a challenge.

Ungredda et al. [43] propose a single-interaction multi-objective Bayesian
optimization algorithm. Instead of presenting the DM with a discrete set of
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Pareto-optimal solutions at the end of the optimization process, the algorithm
involves the DM once before the end of the evaluation budget. The DM selects
their most preferred solution from an approximated continuous Pareto front,
constructed using surrogate models. This preference information is then used to
focus the remaining evaluations on finding the DM’s most preferred solution or
an even better one. The authors demonstrate empirically that this approach re-
duces opportunity cost compared to traditional methods, though it relies on the
accuracy of the approximated Pareto front and the preference elicitation step.
In another paper by Ungredda and Branke [42], they propose a framework that,
instead of following predefined intervals or patterns for querying preferences,
the algorithm dynamically decides whether to evaluate a new solution or elicit
preferences. Preferences are collected through pairwise comparisons, which are
used to construct a Bayesian posterior over the decision maker’s utility function.
While the approach demonstrates effective reduction in opportunity cost and
adaptability to problem characteristics, its reliance on accurate preference mod-
eling and potential computational complexity raises questions about scalability
in real-world, high-dimensional scenarios.

Finally, two scalarization-based Bayesian algorithms for interactive multi-
objective optimization have been proposed in [26]. The TRIPE method employs
a triangulation-based approach to explore regions near the decision maker’s
preferred solution in the input space. It is hyperparameter-free but is con-
strained by scalability to problems with more than five input dimensions. In
contrast, WAPE, the other algorithm they proposed, is better suited for higher-
dimensional problems but incurs greater computational costs due to its reliance
on a secondary surrogate model and acquisition function.

5 Conclusion and further research directions

In this paper, we reviewed algorithms that explicitly consider DM preferences
in the search for Pareto optimal solutions. Despite the numerous works in evo-
lutionary algorithm literature, only very recently surrogate-based approaches
have been proposed. Evolutionary approaches require a considerable amount of
function evaluations to converge to the DM’s region of interest; surrogate-based
approaches, by contrast, are much more data-efficient, and thus more suitable
in problems where objective evaluations are expensive. While the results so far
are promising, the capability of surrogate-based approaches to work with differ-
ent types of preference information has not yet been well studied. Many infill
criteria exploit scalarization methods to account for the DM preferences; care
should thus be taken to choose a scalarization method that is able to also detect
non-convex parts of the front, such that no solutions are overlooked. The results
show that Gaussian Process Regression is by far the most often used surrogate
model type for solving MO problems with DM preferences; RBF has also been
used but to a much lower extent.

While a priori methods are a straightforward approach to incorporate DM
preferences in MOPs, the DM does not necessarily know the possibilities and lim-
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itations of the problem beforehand, resulting in expectations that are either too
optimistic or too pessimistic. In an iterative approach, by contrast, the DM can
learn during the solution process. The implementation of interactive algorithms
generally requires more caution from the analyst, though: recent research on the
role of the DM in interactive MOPs [32] has revealed that the DM’s inputs have
a significant effect on the search process, and consequently on the solutions ob-
tained. Furthermore, inconsistencies in the preference updates by the DM have
a clear and irreversible negative effect on the optimization process. While the
DM learns more about the target problem, she may change her preferences over
the sequential optimization process and, consequently, the weights in the scalar-
ization of the multi-objective function. However, this means that the objective
function might be dynamic because it changes over time. Research on Dynamic
Bayesian Optimiziation (DBO) [35, 3] could represent a promising perspective
for the research topic of this survey. Interactive algorithms also have a higher
risk of converging prematurely to only a subset of the solutions that are in the
DM’s region of interest: indeed, the DM is likely to provide preference informa-
tion that builds on the “good” solutions that have already been presented, which
may limit explorations into completely novel (yet potentially interesting) areas
of the search space. Real-world decision scenarios may involve a group of DMs,
which may differ in terms of priorities, the perception of the problem, and the
degree to which they can impact the collective outcome. Although such problems
have been investigated in a separate stream of literature (i.e., the group deci-
sion making literature), a few recent papers ([17]; [41]; [7]) suggest to combine
insights from group decision making and multiple objective decision making.
Considering its relevance in practice, handling group preferences in MOP will
likely be a growing research field in the future.

Last but not least, it is quite surprising that all algorithms that appeared
so far (with the exception of [36]) assume that the objectives can be observed
with perfect accuracy. In many real-life settings, these observations are noisy:
e.g., noise can result from sampling variance, when the objective evaluations
result from a stochastic simulation [10, 28]. In settings where preferences have
to be learned based on the DM’s information, uncertainty may also occur in
the feedback that the algorithm receives from the DM: so far, [5] are the only
authors to acknowledge this type of uncertainty in the learned preferences. While
we acknowledge that accounting for these different types of uncertainties in the
optimization approach is highly challenging, we strongly believe that such efforts
are necessary to further increase the relevance of MO algorithms for solving
practical problems. As such, we consider this to be an important avenue for
future research.
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