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Abstract. Particle filters (PFs) are algorithms that approximate the so-called
filtering distributions in complex state-space models. We present a unified view

on PFs as importance sampling with adaptive mixture proposals. Existing PFs

can be derived as special cases by making specific choices for the components
of the mixture proposals and for the importance weights. Our perspective

clarifies that the existing PFs implicitly construct particular mixture propos-

als where the components are chosen independently of each other. We exploit
the introduced flexibility of our perspective to propose a class of algorithms,

adaptive mixture particle filters (AM-PF). Following IS arguments, the aim is

to optimize the mixture proposal to match (an approximation of) the filter-
ing posterior. We discuss two particular cases of the framework, the improved

APF (IAPF) and the optimized APF (OAPF). In both linear and nonlinear

dynamical systems models, our mixture particle filters consistently show im-
proved performance compared to widely used algorithms such as the bootstrap

particle filter (BPF) and the auxiliary particle filter (APF). We conclude by
outlining promising future directions opened by our framework. 1

1. Introduction. State-space models (SSMs) are widely used mathematical de-
scriptions of dynamical systems. Real-world tasks in SSMs reduce to computing
posterior distributions describing the uncertainty in the evolution of the underly-
ing dynamical system. Posteriors can be obtained without approximations only
for a restricted class of models making strong assumptions. Particle filters (PFs)
address this shortcoming, providing algorithms that approximate posterior distri-
butions in a much wider range of SSMs. The underlying principle behind PFs
is that of approximating posteriors with weighted samples, which are drawn from
user-chosen distributions called proposals. The publication of the bootstrap PF
(BPF) [38] sparked decades of methodological research into PFs, which are impos-
sible to summarize fully and spanned several communities including statistics [35],
signal processing [18], and machine learning [34]. [21] and later [24] described the
use of optimal proposals within PFs. [17] introduced sequential Monte Carlo sam-
plers (SMC), i.e., a framework that generalizes PFs and makes the methodology
applicable to general sequences of distributions outside the context of SSMs. [7]
proved foundational theoretical results for SMC including a central limit theorem.
For recent broad surveys on PFs and SMC, see [42, 23, 32, 36, 72, 56, 14, 75, 76].
A large number of real-world applications use PFs to approximate a sequence of
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distributions, including mobile robot localization [68, 69, 67], simultaneous local-
ization and mapping (SLAM) [25, 6], indoor tracking [15], weather forecasting [72],
option pricing [11], Bayesian phylogenetic inference [3, 45], and more.
The BPF is arguably the most popular PF. Its implementation is simple and eas-
ily parallelizable over the number of particles. While being generally robust, some
drawbacks of the BPF have been studied, including its poor performance when ob-
servations are very informative. [59] address this weakness by incorporating the
observation into the resampling probabilities by interpreting them as auxiliary vari-
ables, which leads to a class of algorithms named auxiliary particle filters (APFs).
The APF framework has received much attention and has been rederived under sev-
eral interpretations [37, 43, 22, 73]. Within the framework of APFs, locally optimal
choices for the resampling probabilities and the proposals lead to the fully adapted
APF (FA-APF) [8, Chapter 10.3.3], which however is intractable in practice. Previ-
ous approaches resort to approximating the resampling probabilities and proposals
of the FA-APF to develop PFs that can be implemented in practice.
In this paper, we introduce a framework for PFs where the auxiliary variables in
APF and the standard PF proposals are viewed as weights and components of an
overall mixture proposal. More specifically, we make the following contributions.
Contributions. Our contributions consist of the following. 2


 We propose a framework where previous PF algorithms (BPF, APF, marginal
PF) can be interpreted as constructing a mixture proposal where each com-
ponent and weight is chosen to approximate certain locally optimal choices
(i.e., the choices of the FA-APF), independently of each other.


 These insights lead us to propose a framework where the mixture weights
and/or the components are treated as free parameters. The parameters can
then be jointly optimized or selected to minimize a measure of discrepancy
between the mixture proposal and the filtering posterior which leads to new
practical filtering algorithms.


 We connect and unify our framework with other previous PFs working with
mixtures, in particular the multiple importance sampling views of [28] and the
marginal particle filtering of [44]. We extend these PFs to allow for a mixture
whose parameters can be adapted jointly.


 We outline several promising directions opened up by our framework, which
could lead to new efficient particle filters where mixture weights and compo-
nents depend on all the particles from the previous iteration.

Structure of the paper. We start in Section 1.1 by introducing state-space models
with the associated notation used throughout the paper. Then, we introduce PFs
in a generic form leading to Algorithm 1. We explain the original perspective on the
auxiliary PF (APF) of [59] to highlight the underlying assumptions that are used in
practice to select resampling probabilities. We introduce our framework interpreting
PFs as importance sampling with mixtures in Section 2. The framework leads to a
class of algorithms, adaptive mixture particle filters (AM-PF), that allows for the
adaptation of the mixture proposal, summarized in Algorithm 3. In Section 2.1
we expand on the justification behind the proposed AM-PF framework and we
connect it to the fully adapted APF (FA-APF). In Section 3 we discuss several

2The present work is an extended version of [4]. With respect to that paper, we: (1) establish
a unified framework that includes previous mixture-based PFs, (2) connect extensively with the
related literature on PFs using marginal importance weights, (3) connect with the fully-adapted

APF, and (4) explore further the choice of free parameters experimentally.
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concrete choices for the various components of Algorithm 3, which lead to concrete
algorithms such as the improved APF (IAPF) [27] and the optimized APF (OAPF)
[4]. Concluding in Section 5, we discuss promising future directions opened up by
our framework.

1.1. State-space models and particle filtering. The temporal evolution of
a dynamical system can be modelled with the framework of state-space models
(SSMs). The key component of an SSM is a stochastic discrete-time Markovian
process of a hidden state txtut¥1 where xt P Rdxt , which can only be observed via

corresponding noisy measurements tytut¥1, where yt P Rdyt . SSMs are fully speci-
fied by a prior probability density function (pdf), ppx0q, and by the transition and
observation densities, fpxt|xt�1q and gpyt|xtq, respectively, defined for t ¥ 1. Note
that fpxt|xt�1q is a conditional pdf in xt, while gpyt|xtq is a likelihood function
since the observations are fixed. We focus on models where densities (i.e., pdfs)
exist. In these models, the filtering task consists of the sequential estimation (i.e.,
online) of the filtering measures πpdxt|y1:tq for t � 1, . . . (whose corresponding pdf
is ppxt|y1:tq), as well as expectations of the form

Eπpdxt|y1:tqrhtpxtqs �

»
htpxtqπpdxt|y1:tq, (1)

for (integrable) functions of interest ht. Most SSMs of interest require approximate
inference, due to several reasons, for example: (a) ppxt|y1:tq has unknown parame-
ters θ, which need to be estimated from observations; (b) ppxt|y1:tq is not available
in closed form (c) even if ppxt|y1:tq is a Gaussian, hpxtq is nonlinear.
In this context, particle filters (PFs) are the most popular class of algorithms to ap-
proximate the distributions of interest and their associated integrals such as Eq. (1).
PFs are a sequential implementation of importance sampling (IS) [57, Chapter 9],

generating at each time step t a set ofM particles (Monte Carlo samples) tx
pmq
t uMm�1

from a proposal pdf and assigning them normalized importance weights. First, we
describe how the importance weights are computed, then how the weighted samples
can be used to approximate the filtering distributions.

Derivation of the importance weights using smoothing densities. Many
particle filtering algorithms are derived by considering a sequence of IS target den-
sities (pdfs) tppx1:t|y1:tqut¥1, which are smoothing pdfs [64, 53]. The reason that
smoothing pdfs are used, even if filtering pdfs tppxt|y1:tqut¥1 are ultimately of inter-
est, is that they allow for a convenient (recursive) decomposition of the importance
weights, which are defined as target ppx1:t|y1:tq divided by proposal

wtpx1:tq �
ppx1:t|y1:tq

qpx1:t|y1:tq
�
ppx1:t�1|y1:t�1qppyt,xt|xt�1q

qpx1:t�1|y1:t�1qqpxt|yt,xt�1q
� wt�1px1:t�1q

gpyt|xtqfpxt|xt�1q

qpxt|yt,xt�1q
, (2)

where a proposal for the trajectory x1:t, i.e. qpx1:t|y1:tq �
qpx1:t�1|y1:t�1qqpxt|yt,xt�1q is used. The decomposition in Eq. (2) is convenient
because it allows obtaining new weights by multiplying the previous weights by a
factor that is constant in t. Sampling from the proposal in the space of particle tra-

jectories,i.e., x
pmq
1:t � qpx1:t|y1:tq, amounts to sampling from the so-called proposal

kernel x
pmq
t � qpxt|yt,x

pmq
t�1q and appending it to the previously simulated particles

at t�1, t�2, . . . . From now, we denote as w
pmq
t the expression in Eq. (2) evaluated

at the particular trajectory x
pmq
1:t , i.e., w

pmq
t � wtpx

pmq
1:t q . The aim of PFs is to use

samples from the proposal and their associated weights to construct approximations
of the filtering distribution. However, the weights given by Eq. (2) assume that we
can point-wise evaluate the normalizing constant of ppx1:t|y1:tq, i.e. ppy1:tq, which
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Algorithm 1: Particle Filter

1. Initialization. Obtain initial particle approximation t1{M,x
pmq
0 uMm�1

as a sample from the prior pdf ppx0q. Recall, xt denotes a resampled
particle.

2. Recursive step. For t � 1, . . . , T


 Sampling. Sample x
pmq
t � qpxt|x

pmq
t�1,ytq , for m � 1, . . . ,M


 Weighting. Set the unnormalized importance weights as

rwpmq
t � rwpmq

t�1

gpyt|x
pmq
t qfpx

pmq
t |x

pmq
t�1q

qpx
pmq
t |x

pmq
t�1,ytq

m � 1, . . . ,M, (5)

where rwpmq
t�1 � 1{M since resampling is performed at every itera-

tion. The normalized weights are given by swpmq
t � rwpmq

t {
°M

j�1 rwpjqt


 Resampling. Resample t swpmq
t ,x

pmq
1:t u

M
m�1 to obtain

t1{M,x
pmq
1:t u

M
m�1, the particles used for t� 1.

3. Output t swpmq
t ,x

pmq
t uM,T

m,t�1 as particle approximations of

tπpdxt|y1:tqu
T
t�1

is usually not known.

Particle approximations with self-normalized weights. In these cases, we de-
fine weights with a weight function rwpx1:tq that uses the unnormalized smoothing
distribution, ppx1:t,y1:tq � ppx1:t|y1:tq � ppy1:tq, in the numerator of the IS weights.

The evaluation of rwpx1:tq at the m-th trajectory x
pmq
1:t is then

rwpmq
t � rwpxpmq

1:t q �
ppx

pmq
1:t ,y1:tq

qpx
pmq
1:t |y1:tq

� rwpmq
t�1

gpyt|x
pmq
t qfpx

pmq
t |x

pmq
t�1q

qpx
pmq
t |x

pmq
t�1,ytq

. (3)

Note. Eq. (3) differs from Eq. (2) as the unnormalized target is used in Eq. (3).

The weights rwpmq
t can be used to consistently estimate expectations (Eq. (1)) with

self-normalization [57, Chapter 9], i.e., normalizing the weights such that they sum

to one as swpmq
t � rwpmq

t {
°M

j�1 rwpjqt . With normalized weights, the particle approxi-
mations to filtering and smoothing measures are

πpdx1:t|y1:tq �
M̧

m�1

swpmq
t δ

x
pmq
1:t
pdx1:tq ñ πpdxt|y1:tq �

M̧

m�1

swpmq
t δ

x
pmq
t
pdxtq, (4)

where δ
x
pmq
t
pdxtq is the Dirac delta measure for the random variable xt, placing

all of its mass at x
pmq
t . We denote these empirical measures with a “hat”, i.e.,pπpdxt|y1:tq �

°M
m�1 swpmq

t δ
x
pmq
t
pdxtq, since they are (random) approximations of the

true measures. A simple proof that Eq. (4) converges in distribution to the true
filtering measure can be found in [31, Chapter 2].

Note that in Eq. (4), by constructing a particle representation of the smooth-
ing measure πpdx1:t|y1:tq, we were able to obtain one for the filtering distribu-

tion πpdxt|y1:tq as a consequence of the fact that for particle approximations
³ ptq
� � �³

δ
x
pmq
0:t

pdx0:tq � δ
x
pmq
t

pdxtq.The marginalization over previous states x1:t�1 does
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not affect the importance weight rwpmq
t , which is the same in both expressions in

Eq. (4). As we will see in Section 2, marginalizing in the IS weights also leads to a
different class of PFs.

Resampling. Before simulating the particles at time t � 1 from the proposal(s)

tqpxt�1|x
pmq
t quMm�1, a particle filter performs resampling, i.e., it replaces the weighted

particle set t swpmq
t ,x

pmq
t uMm�1 with a new, equally weighted particle set

t1{M,x
pmq
t uMm�1. The resampled particles x

pmq
t are obtained by sampling with re-

placement from the previous particle set, with probabilities swpmq
t . Many resampling

schemes with different properties exist [19, 41, 50], and it is often good practice not
to resample at every iteration, but only when a certain condition is satisfied. This
is called adaptive resampling (see, e.g., [8, Chapter 10.2]). The most popular choice

for qpxt|yt,x
pmq
t�1q is fpxt|x

pmq
t�1q and leads to the bootstrap particle filter (BPF) [38].

An advantage of this choice is that the weights in Eq. (3) simplify to rwpmq
t�1gpyt|x

pmq
t q,

so that the transition densities fpxt|x
pmq
t�1q do not need to be point-wise evaluated.

Pseudocode. See Algorithm 1 for the pseudocode of a PF algorithm with generic
proposal qpxt|xt�1,ytq that is allowed to depend on yt. In summary, a PF se-

quentially updates a set of normalized weights and particles t swpmq
t ,x

pmq
t uMm�1 as a

representation of the filtering pdf, updating weights at each time step as in Eq. (2)
and sampling current particles the M available proposals (or “ proposal kernels”)

qpxt|x
pmq
t�1,ytq.

Metrics. PFs are generally evaluated by measures of accuracy of the particle
approximations to the T filtering distributions involved. Concretely, this reduces
to approximate notions such as (approximations of the) effective sample size (ESS)
[54, 64, 30] when the true filtering distribution is not available in closed form, which
is related to the variance of the PF estimator of the likelihood ppy1:tq. It is impor-
tant to note that approximations of the ESS, especially in the context of PFs, can
be unreliable; see [30].

Standing assumptions and notation. We assume for simplicity of presenta-
tion that resampling is performed at each iteration, although many possibilities for
adaptive resampling exist [8] and we also assume multinomial resampling is used.
This article does not deal with parameter estimation, i.e., transition and observa-
tion densities are assumed to be known. For two functions fpnq and gpnq (usually
on N¥0), we write fpnq � Opgpnqq as nÑ8 if there are constants C, n0 such that
|fpnq| ¤ Cgpnq whenever n ¥ n0. Similarly, fpnq � Ωpgpnqq as n Ñ 8 if there
are constants C, n0 such that |fpnq| ¥ Cgpnq whenever n ¥ n0. Hence, we write
fpnq � Θpnq if both fpnq � Opnq and fpnq � Ωpgpnqq.

1.2. Auxiliary Particle Filters. In this section, we review the auxiliary PF
(APF) which was introduced by [59] to address certain weaknesses of the BPF.
Algorithmically, as shown in Algorithm 2, the only two differences with Algorithm
1 are in the resampling and weighting steps. Our focus in this Section will be on
the original derivation and justification of the APF, to highlight how it implicitly
restricts the choices of proposals, resampling weights and IS weights to certain kinds
of approximations of the so-called fully adapted APF (FA-APF). Our framework in
Section 2 will relax this restriction.
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Algorithm 2: Auxiliary Particle Filter

1. Initialization. Obtain initial particle approximation t1{M,x
pmq
0 uMm�1

as a sample from the prior pdf ppx0q. Recall, x
pmq
t denotes a resampled

particle.
2. Recursive step. For t � 1, . . . , T


 Select trλpmq
t uMm�1 to approximate t swpmq

t�1ppyt|x
pmq
t�1qum�1, normalize

them to get probabilities tλ
pmq
t uMm�1


 Resampling. Resample tλ
pmq
t ,x

pmq
1:t�1u

M
m�1 to obtain

t1{M,x
pmq
1:t�1u

M
m�1. Let ti

pmquMm�1 be the resampled indices.


 Sampling. Sample x
pmq
t � qpxt|x

pmq
t�1,ytq , for m � 1, . . . ,M


 Weighting. Set the unnormalized importance weights as

rwpmq
t � rwpmq

t�1

gpyt|x
pmq
t qfpx

pmq
t |x

pipmqq
t�1 q

λ
pipmqq
t qpx

pmq
t |x

pipmqq
t�1 ,ytq

, for m � 1, . . . ,M, (6)

where rwpmq
t�1 � 1{M since resampling is performed at every itera-

tion.
3. Output t swpmq

t ,x
pmq
t uM,T

m,t�1 as particle approximations of

tπpdxt|y1:tqu
T
t�1

Original derivation of APF [59] noticed that informative observations (i.e., out-
liers, or when gpyt|xtq has little uncertainty as a pdf in yt) lead to high variance in

the resulting importance weights swpmq
t from Algorithm 1. It is easy to show that

in this case, the distributions πpdxt|y1:tq and πpdxt|y1:t�1q (so-called predictive)
are far apart, which complicates the filtering task. To address these issues, they
consider the following approximation to the unnormalized filtering density

ppxt|y1:tq 9 ppxt,yt|y1:t�1q � gpyt|xtq
M̧

m�1

swpmq
t�1fpxt|x

pmq
t�1q. (7)

[59] then cast the aim of a PF as simulating particles approximately distributed ac-
cording to the normalized version of Eq. (7). However, they stop further developing
this solution due to the computational cost implied by the evaluation of Eq. (7),
which requires ΘpM2q point-wise evaluations of densities, when maintainingM par-
ticles. The approach was later revisited and studied further in auxiliary marginal
PFs and multiple importance sampling PFs (see Section 2).

Remark (1). Arguably, the setting where the likelihood gpyt|xtq is informa-
tive, i.e., the distributions πpdxt|y1:tq and πpdxt|y1:t�1q differ significantly,
is the more interesting scenario for online filtering. When πpdxt|y1:tq and
πpdxt|y1:t�1q are similar, the filtering distribution is changing little from
time t� 1 to t.

Introduction of the auxiliary variable. [59] proposed instead to attempt
(approximate) simulation from a certain extended space joint ppxt, i

pmq|y1:tq in

Rdxt�t1, . . . ,Mu, which has marginals the pdf ppxt|y1:tq and a pmf tipmq, λ
pmq
t uMm�1,
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with λ
pmq
t � Pripkq � ms, whose values we discuss below. The joint function

ppxt, i
pmq|y1:tq is a hybrid discrete/continuous object, which often appears in simula-

tion methods (e.g., [78]) 3. While ppxt, i
pmq|y1:tq is not rigorously defined, we resort

to an operational definition, being able to define sampling and point-wise evaluation
straightforwardly. The key observation is that, if the pair xt, i

pmq � ppxt, i
pmq|y1:tq,

then by discarding the sampled index ipmq, we obtain xt distributed according to
the filtering pdf ppxt|y1:tq. In practice, it will be possible to do so only approx-
imately. Crucially, this process avoids sampling from or evaluating the expensive
mixture in Eq. (7). We now discuss how to construct ppipmq|y1:tq, which is the pmf
corresponding to a certain empirical measure, and how approximations of this pmf
are used to sample from an approximation of ppxt, i

pmq|y1:tq.

Remark (2). In the APF, the goal of particle filtering can be interpreted
as sampling from an approximation of the extended space joint function
ppxt, i

pmq|y1:tq for a discrete auxiliary random variable ipmq.

Note that ipmq is a r.v. and we will often abuse notation slightly (analogously to

pdfs) by writing, e.g., ppxt|x
pipmqq
t�1 q instead of ppxt|x

pipmq�kq
t�1 q for some value k.

Approximations in APF. Sampling from the joint function ppxt, i
pmq|y1:tq

can be decomposed with ancestor sampling, i.e., since ppxt, i
pmq|y1:tq �

ppxt|i
pmq,y1:tqppi

pmq|y1:tq � ppxt|x
pipmqq
t�1 ,ytqppi

pmq|y1:tq, one can sample an index

ipmq from the pmf ppipmq|y1:tq and then sample from the kernel corresponding to

that index ppxt|x
pipmqq
t�1 ,ytq. However, both steps are intractable in general. The

kernel ppxt|x
pmq
t�1,ytq is known as optimal kernel [24] and it is usually impossible

to sample from. The M probabilities of the pmf ppipmq|y1:tq, i.e., λ
pmq
t , are set

as the weights of a particle approximation of πpdxt�1|y1:tq (a one-step smoothing
distribution) as

Pripkq � ms � λ
�,pmq
t , λ

�,pmq
t �

rλ�,pmq
t°M

p�1
rλ�,ppqt

, k � 1, . . . ,M,m � 1, . . . ,M, (8)

where we now use the � to denote that these weights will need to be approximated,
and rλ�,pmq

t � swpmq
t�1ppyt|x

pmq
t�1q, m � 1 . . .M, (9)

so that
M̧

m�1

λ
�,pmq
t δ

x
pmq
t�1
pdxt�1q � πpdxt�1|y1:tq. (10)

The validity of Eq. (9) can be noted by inspecting the identity of the correspond-
ing density for the smoothing distribution ppxt�1|y1:tq � ppyt|xt�1qppxt�1|y1:t�1q.

Since the term ppyt|x
pmq
t�1q involves an intractable integral, rλ�,pmq

t needs to be ap-
proximated. Therefore, in practice, an APF scheme selects an approximation of

the optimal kernels qpxt|x
pmq
t�1,ytq � ppxt|x

pmq
t�1,ytq that can be sampled from and

3Here, m can be interpreted as a mixture index of Eq. (7), or it can be also viewed as an
auxiliary variable without statistical meaning.
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an approximation of the weights rλpmq
t � rλ�,pmq

t in Eq. (9), which constitute the ele-
ments of an approximation qpipmq|y1:tq of the pmf ppipmq|y1:tq. Once these approxi-
mations are chosen, we obtain a particle approximation of the filtering distributionpπpdxt|y1:tq as in Section 1.1 using (a normalized version of) the following IS weights
as target divided by proposal (in the extended space)

w
pmq
t �

ppx
pmq
t , ipmq|y1:tq

qpx
pmq
t , ipmq|y1:tq

�
ppx

pmq
t |x

pipmqq
t�1 ,ytq rλ�,ipmq

t

qpx
pmq
t |x

pipmqq
t�1 ,ytq rλpipmqq

t

�
w
pmq
t�1gpyt|x

pmq
t qfpx

pmq
t |x

pipmqq
t�1 q

qpxt|x
pipmqq
t�1 ,ytq rλpipmqq

t

, (11)

We emphasize that both terms in the denominator of Eq. (11) are part of an
overall proposal and, therefore can be chosen by the user.

Remark (3). The choices of rλpmq
t � rλ�,pmq

t and qpxt|x
pmq
t�1,ytq �

ppxt|x
pmq
t�1,ytq correspond to the so-called fully adapted APF (FA-APF) [73]

and minimize the conditional variance of the IS weights in Eq. (11)

Since the FA-APF choices are intractable for most models, we now discuss in

particular how to choose λ
pmq
t in practice.

Connection to resampling and the fully adapted APF (FA-APF). The

probabilities λ
pmq
t corresponding to the pmf qpipmq|y1:tq and used to simulate the

auxiliary variables, sometimes called simulation weights or first-stage weights [59,
27], can be seen equivalently as the resampling weight in a standard (non-extended
space) PF such as Algorithm 1 [22]. Notice that, in the best case scenario (i.e., when
exact simulation from the joint function ppxt, i

pmq|y1:tq is feasible or equivalently
when we can use the FA-APF) we obtain a simulation weight that depends on

the observation, since from Eq. (9), rλ�,pmq
t � swpmq

t�1ppyt|x
pmq
t�1q, which is sometimes

presented as the main intuitive motivation behind using APF over BPF [22].
In practice, we need to approximate the FA-APF choice of simulation weights,

which means designing approximations to the M intractable integrals in Eq. (9),

given by the terms tppyt|x
pmq
t�1qu

M
m�1. The most common choice for practical imple-

mentations is to approximate each integral at a point associated with the transition

kernels fpxt|x
pmq
t�1q (e.g., the mode or the mean) as

ppyt|x
pmq
t�1q �

»
gpyt|xtqfpxt|x

pmq
t�1qdxt �

»
gpyt|xtqδµpmq

t|t�1

pdxtqdxt � gpyt|µ
pmq

t|t�1q, (12)

where µ
pmq
t|t�1 � E

fpxt|x
pmq
t�1q

rxts. This reduces to evaluating the observation density

gpyt|xtq at µ
pmq
t|t�1. Other choices are described in [22, 56], and include, e.g., a

Gaussian approximation of a linearized version of the integral Eq. (12). Then,
selecting the unnormalized resampling weights asrλpmq

t � swt�1gpyt|µ
pmq
t|t�1q, (13)

and sampling particles with the transition kernels tqpxt|x
pmq
t�1,ytqu

M
m�1 �

tfpxt|x
pmq
t�1qu

M
m�1 leads to IS weights as (by plugging into Eq. (11))

rwpmq
t �

gpyt|x
pmq
t q

gpyt|µ
pipmqq
t|t�1 q

, for m � 1, . . . ,M, (14)
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which consists of the most common concrete instantiation of the APF framework.
In summary, the APF scheme can be seen as a generalization of the standard PF
with (extended space) IS weights as in Eq. (2). We recover the BPF by choos-

ing the probabilities of qpipmq|y1:tq, i.e., tλ
pmq
t uMm�1 to be the normalized weights

t swpmq
t�1u

M
m�1, and the proposal kernels to be qpxt|x

pmq
t�1,ytq � fpxt|x

pmq
t�1q.

Limitation of the APF. A drawback of the presented derivation of the APF is

that in practice PFs are designed by selecting each λ
pmq
t as an approximation to

the corresponding FA-APF optimal choice λ
�,pmq
t and similarly qpxt|x

pmq
t�1,ytq as an

approximation of ppxt|x
pmq
t�1,ytq. However, as we will show in the next Section, the

FA-APF can be equivalently thought of as an algorithm sampling from the following
mixture

M̧

m�1

λ
�,pmq
t ppxt|x

pmq
t�1,ytq, (15)

since resampling with weights λ
�,pmq
t and propagating particles with kernels

ppxt|x
pmq
t�1,ytq is equivalent to sampling from Eq. (15). Indeed, we will interpret all

PFs as IS algorithms with a proposal given by a mixture. Since in practice, it is not

possible to approximate perfectly each weight λ
�,pmq
t and component ppxt|x

pmq
t�1,ytq

of the mixture in Eq. (15), we will introduce PFs where the proposed weights

tλ
pmq
t uMm�1 and components tqpxt|x

pmq
t�1,ytqu

M
m�1 jointly try to match the full mix-

ture in Eq. (15), as opposed to its individually matching the components.

2. Particle filters based on adaptive mixtures. In this Section, we introduce
our framework for particle filters based on interpreting PFs as sequential importance
sampling with mixture proposals. The framework builds on and extends [28] to
consider adaptive mixtures. We also expand on the connections with other PFs
based on mixtures such as marginals PFs [44] in Section 2.2. In Section 2.1 we
summarize the components of the framework and introduce the pseudocode for the
resulting class of particle filters, i.e., adaptive mixture particle filters (AM-PF).

2.1. Overview of the framework and justification. Recall that a PF aims
to produce, for each timestep t, an approximation of the filtering distributionpπpdxt|y1:tq � πpdxt|y1:tq in the form of a weighted empirical measure, summa-

rized by a weighted set of particles t swpmq
t ,x

pmq
t uMm�1. In our framework, for each

timestep t, samples are obtained from a single mixture proposal with K components

ψtpxtq �
Ķ

k�1

λ
pkq
t q

pkq
t pxtq. (16)

Then, the following three steps are carried out in each iteration t:

1. Adaptation of the mixture proposal
2. Sampling from the mixture proposal
3. Weighting of the generated samples.

The three steps generate a weighted set of particles that approximates the fil-
tering distribution at time t. The pseudocode for the full algorithm is given by
Algorithm 3 (following pages). The sampling and weighting steps follow the rea-
soning of the previous multiple importance sampling (MIS) particle filters [28]. The
sampling step, therefore, replaces the traditional resampling plus sampling from
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Algorithm 2. The weighting is done by following IS arguments as target divided
by proposal. The target distribution is an approximation since the true filter-
ing distribution cannot be evaluated point-wise due to an intractable integral, as
ppxt|y1:tq9 gpyt|xtq

³
fpxt|xt�1qppxt�1|y1:t�1qdxt�1, for which a typical approxi-

mation is gpyt|x
pmq
t q

°M
i�1 w

piq
t�1fpx

pmq
t |x

piq
t�1q [44, 28]. Therefore, we write the IS

weight as the approximation to the unnormalized filtering pdf divided by the mix-
ture proposal

rwpmq
t �

gpyt|x
pmq
t q

°M
i�1 w

piq
t�1fpx

pmq
t |x

piq
t�1q°K

k�1 λ
pkq
t q

pkq
t px

pmq
t q

m � 1, . . . ,M. (17)

We will refer to Eq. (17) as the MIS weights or the marginal weights.
We now discuss the justification behind the first of the three steps, i.e., the

adaptation of the mixture proposal ψtpxtq. We later provide concrete examples of
its implementation that go beyond the standard implicit choices made by BPF and
APF in Section 3.

Adaptation of the mixture proposal. In order to define a criterion to choose
the proposal ψtpxtq, as common in IS [57] we first aim to define an optimal proposal.
Ideally, we would target the filtering pdf, but we have seen in Eq. (17) that we can
only evaluate an approximation. Additionally, by rearranging the approximation of
the filtering pdf as

gpyt|xtq
M̧

m�1

swpmq
t�1fpxt|x

pmq
t�1q �

M̧

m�1

swpmq
t�1ppyt|x

pmq
t�1qppxt|x

pmq
t�1,ytq, (18)

we can obtain a normalized density by normalizing the mixture weights of the RHS
in Eq. (18). Doing so leads to the following mixture approximation of the filtering
pdf

ψ�t pxtq �
M̧

m�1

swpmq
t�1ppyt|x

pmq
t�1q°M

k�1 swpkq
t�1ppyt|x

pkq
t�1qlooooooooooooomooooooooooooon

mixture weights

ppxt|x
pmq
t�1,ytqlooooooomooooooon

mixture component

�
M̧

m�1

λ
�,pmq
t ppxt|x

pmq
t�1,ytq. (19)

Notice that Eq. (19) is the same as Eq. (15), i.e., the mixture weights are the

FA-APF resampling weights λ
�,pmq
t and the mixture components are the optimal

PF kernels. Because sampling from a mixture is equivalent to resampling with
weights given by the mixture weights and propagating particles with the mixture
components, the resampling and propagating steps of the FA-APF can be inter-
preted as sampling from ψ�t pxtq, which is a particular approximation of the filtering
distribution. Notice that we can consider ψ�t pxtq as the IS target distribution in
our framework, because (up to normalization) it is equivalent to the numerator in
Eq. (17). The introduced flexibility of our framework leads to the following impor-
tant remark.

Remark (4): While previous works implicitly attempt to approximate the
optimal mixture term-by-term, we can now consider algorithms where the
mixture proposal attempts to match the whole optimal mixture ψ�t pxtq which
corresponds to the FA-APF.

We exemplify this remark concretely for the APF. APF as a special case.
Consider the APF framework as per Algorithm 2. By selecting, in our framework,
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K � M (recall, M is the number of particles maintained at each time t) and

specifically associating each mixture component q
pmq
t pxtq with one of the particles

at time t � 1, i.e., tx
pmq
t�1u

M
m�1, which can be represented as standard in PFs by

writing q
pmq
t pxtq � qpxt|x

pmq
t�1,ytq (adding optional dependence on the observation as

well). Consider, for simplicity of the argumentation, that we can select the optimal

kernels ppxt|x
pmq
t�1,ytq, so there remains to choose the mixture weights. As discussed

in Section 1.2, typical strategies for selecting λ
pmq
t in APF consist in constructing,

for each m, an approximation such that λ
pmq
t � λ

�,pmq
t . These approximations are

imperfect. As we show in Section 3 and later in the experiments, by choosing

mixture weights in a joint manner, i.e., where the value of each λ
pmq
t depends on

all of the other values λ
pjq
t , j � m we can obtain a mixture ψtpxtq that is closer to

ψ�t pxtq.

2.2. Relationship with other particle filters based on mixtures. Our frame-
work extends the multiple importance sampling (MIS) PFs of [28] by (a) allowing
for an adaptive mixture (b) connecting the choice of the optimal mixture to the
fully adapted APF as discussed in Section 2.1 and (c) detaching the number of
kernels K in the mixture proposal to the number of particles used, M . We discuss
the selection of K in Section 3. We use the view of [28] in replacing resampling plus
sampling from kernels by sampling from a mixture, as well as their derivation of the
IS weights in Eq. (17). [44] presented the marginal PFs (MPFs) also derived the IS
weights in Eq. (17) (with a different mixture in the denominator) from a different
interpretation, that is by considering the extended space discussed in Section 1.2
and marginalizing the auxiliary variable in the IS weight from Eq. (11). However,
the MPF perspective does not offer any additional insights into how to select mix-
ture weights or components w.r.t to the APF, thus it is limited to proposing the
use of the marginalized IS weight. Notably, [31, Chapter 4, Section 3.2] earlier
presented the marginalized IS weight. Other PFs using the marginal IS weights are
reviewed in [13] (see references therein), where the authors also prove several theo-
retical results on these types of PFs. Further, [12] proposed a particle filter based
on Gaussian mixtures where remarkably they can prove an explicit convergence rate
to the true filtering measure in terms of the number of mixture components.

Other related works. [46] proposed to simulate particles, instead of using the
transition kernel f (as in the BPF), with a mixture between f and a function
proportional to the observation density g. Differently from our work, MIS concepts
in their perspective help in selecting good proposal kernels (mixture components,
in our framework). Their IS weight is based on Eq. (11). Their work could be
combined in our framework for a better selection of mixture components. [10]
present another perspective on SMC as adaptive importance sampling but do not
use the marginal IS weight of [31], [44] and [28] that we also use in this work.
Finally, much methodological research has been devoted to improving the BPF and
incorporating future observations as early as possible, including online schemes [50]
and offline schemes such as twisted APFs [74, 39, 40]. Other recent PFs introduce
deterministic transformations to move the particles in high posterior probability
regions [1], some even considering the removal of resampling [61, 9] or weighting
[77, 52].
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2.3. Theoretical properties of mixture particle filters. [4] proved that using
IS weight as in Eq. (17) still leads to unbiased and consistent estimators of the
likelihood ppy1:T q for a generic class of mixture proposals in the context of the
optimized auxiliary particle filter (OAPF), which is a special case of the AM-PF
framework. We report the result here for completeness.

Let an estimator of the likelihood of all of the observations be constructed by
multiplying estimators of the normalizing constants pppyt|y1:t�1q as

pppy1:T q � pppy1q
T¹

t�2

pppyt|y1:t�1q, (20)

where pppyt|y1:t�1q �
1
M

°M
m�1 rwpmq

t , using the IS weight as per Eq. (17).

Theorem 2.1. [4] Assume the following: (1) observations tytut¥0 are fixed, i.e.,
not random; (2) likelihoods are bounded, supxt

gpyt|xtq   8; (3) likelihoods are
nonzero, gpyt|xtq ¡ 0 for all xt; (4) weights are bounded, i.e., Erwpxtqs  
8. For any set of mixture proposals tψtpxtqu

T
t�1 the normalizing constant es-

timator in Eq. (20) is unbiased and consistent, i.e., Erpppy1:T qs � ppy1:T q and
limMÑ8 pppy1:T q � ppy1:T q a.s. for any T P R�.

Proof. The proof is presented in the Appendix. Unbiasedness of the likelihood forms
the basis for the inclusion of PF schemes into particle Markov Chain Monte Carlo
(PMCMC), which we do not expand on here. [13] recently studied more in-depth
the theoretical properties of particle filters using the IS weight in Eq. (17), showing
that typical CLT results can be extended to this case.

Algorithm 3: Adaptive Mixture Particle Filter (AM-PF)

1. Initialization. Obtain initial particle approximation t1{M,x
pmq
0 uMm�1

as a sample from the prior pdf ppx0q. Recall, x
pmq
t denotes a resampled

particle.
2. Recursive step. For t � 1, . . . , T


 Adaptation of the mixture proposal. Adapt weights

tλ
pkq
t uKk�1 and/or components tq

pkq
t pxtqu

K
k�1 of the mixture pro-

posal

ψtpxtq �
Ķ

k�1

λ
pkq
t q

pkq
t pxtq (21)

using the particle approximation from t� 1, i.e., t swpmq
t�1 ,x

pmq
t�1u

M
m�1

and the current observation yt


 Sampling. Obtain M i.i.d. new samples from the mixture pro-
posal

x
pmq
t � ψtpxtq, m � 1, . . . ,M (22)


 Weighting. Obtain the unnormalized IS weights as

rwpmq
t �

g
�
yt | x

pmq
t

	°M
j�1 w

pjq
t�1f

�
x
pmq
t | x

pjq
t�1

	
°K

k�1 λ
pkq
t qpkq

�
x
pmq
t

	 , (23)

3. Output t swpmq
t ,x

pmq
t uM,T

m,t�1
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3. Implementations of the AM-PF framework. In this Section, we describe
two concrete implementations of our framework, the improved APF (IAPF) of [27]
and the optimized APF (OAPF) of [4]. We emphasize that differently to the previ-
ous mixture-based PFs such as the marginal PFs of [44], both algorithms can choose
mixture weights by targeting the full mixture ψ�t pxtq in Eq. (19). As we expand
on in Section 3.2, we did not study algorithms that adapt the kernel parameters,
which we leave to future work.

3.1. Selecting the mixture weights: Improved APF. [27] exploits the MIS
perspective to derive the that are jointly selected (informally, “cooperate”) to ap-
proximate the unnormalized filtering pdf, deriving an algorithm that consists of an
implementation of Algorithm 3 with a certain choice of mixture weights. The choice
is in contrast to common choices of mixture weights derived by algorithms based on

Algorithm 2 because each weight λ
pmq
t depends on all of the particles tx

pmq
t�1u

M
m�1.

[27] selects the mixture weight as the ratio of two mixtures, the unnormalized tar-

get and the equally weighted mixture of transition kernels 1
M

°M
j�1 ppxt | x

pjq
t�1q,

evaluated at the means of the transition kernels tµ
pmq
t|t�1u

M
j�1 � tE

fpxt|x
pmq
t�1q

rxtsu
M
j�1

as

rλpmq
t �

gpyt|µ
pmq
t|t�1q

°M
j�1 swpjqt�1fpµ

pmq
t�1|x

pjq
t�1q

1
M

°M
j�1 f

�
µ
pmq
t|t�1 | x

pjq
t�1

	 m � 1, . . . ,M, (24)

where rλpmq
t is the unnormalized weight. Note that the RHS of Eq. (24) is a scalar,

since all expressions are evaluated at tµ
pmq
t|t�1u

M
j�1.

Remark (5). While the above definition uses the transition kernels

tfpxt|x
pmq
t�1qu

M
m�1, in the general case these would be replaced with proposal

kernels tqpxt|x
pmq
t�1,ytqu

M
m�1.

We, therefore, proceed with the following slightly more general version of
Eq. (24), as

rλpmq
t �

gpyt|µ
pmq
t|t�1q

°M
j�1 swpjqt�1fpµ

pmq
t�1|x

pjq
t�1q

1
M

°M
j�1 qpµ

pmq
t|t�1|x

pjq
t�1,ytq

m � 1, . . . ,M, (25)

By employing the assumption that the proposal kernels are well separated 4, i.e.,
the particle ipmq which was sampled from them-th kernel needs to be only evaluated
at that kernel (other evaluations are negligible), we can simplify Eq. (25) as

rλpmq
t �

gpyt|µ
pmq
t|t�1q swpipmqq

t�1 fpµ
pmq
t�1|x

pipmqq
t�1 q

1
M qpµ

pmq
t�1|x

pipmqq
t�1 ,ytq

. (26)

Note that after this approximation, rλpmq
t does not depend on all the particles

tx
pmq
t�1u

M
m�1 anymore. Plugging Eq. (26) into the expression of the IS weight in

4(see [28] for details)
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Eq. (17), gives

rwpxpmq
t q �

qpµ
pmq
t�1|x

pipmqq
t�1 ,ytqgpyt|x

pmq
t qfpx

pmq
t |x

pipmqq
t�1 q

gpyt|µ
pipmqq
t�1 qfpµ

pipmqq
t�1 |x

pipmqq
t�1 qqpx

pmq
t |x

pipmqq
t�1 ,ytq

. (27)

Using the transition kernels to simulate the particles tqpxt|x
pmq
t�1,ytqu

M
m�1 �

tfpxt|x
pmq
t�1qu

M
m�1 reduces Eq. (27) to the most common implementation of the APF,

with unnormalized IS weights as in Eq. (14).
The weight in Eq. (25) is more costly than Eq. (26), i.e., it requires ΘpM2q

density evaluations versus ΘpMq, but it is more appropriate when the assumption
of separated kernels does not hold. In those cases, it is expected to lead to a mixture
proposal that better matches the posterior. As mentioned, in Eq. (25), the value of

each rλpmq
t depends not only on µ

pmq
t , but on the whole set tµ

pjq
t uMj�1. As we show

experimentally in Section 4, this often leads to better mixture proposals.

3.2. Optimizing the mixture weights: OAPF. Next, we define an optimiza-
tion objective where the aim is to optimize mixture weights such that our proposal
ψtpxtq is close to ψ�t pxtq. This can adapt better to a wider range of situations com-
pared to the approach described in the previous subsection. We design a method
that can be applied, without additional generation of particles, to optimize the mix-
ture weights. In this way, additional cost w.r.t. algorithms such as APF is only
due to additional density evaluations and any other operations that are not sample
generation.

To start, recall that in IS we can frame the problem of having a proposal that
is close to the optimal pdf as minimizing the variance of the IS weights. In the
best case, the IS weights are constant. Since we cannot evaluate the IS weights

everywhere in xt space, in each timestep t we select a set of points tz
peq
t uEe�1, where

the IS weights are going to be evaluated. For concreteness, an example would be
the case with K � E, where the evaluation points are the centers (means) of the
K kernels in the mixture proposal. We now show that setting the IS weights in

Eq. (17), evaluated at the points tz
peq
t uEe�1, equal to one is equivalent to obtaining

a linear system of equations in the mixture weights.

Let us define the the vectors λ � pλ
p1q
t , . . . , λ

pKq
t qJ,w � pw

p1q
t�1, . . . w

pMq
t�1 q

J and

f peq � pfpz
peq
t |x

p1q
t�1q, . . . , fpz

peq
t |x

pMq
t�1 qq

J, qpeq � pq
p1q
t pz

peq
t q, . . . , q

pKq
t pz

peq
t qqJ. Then,

setting the IS weights in Eq. (17) equal to one leads to

qpeq
J

λ � gpyt|z
peq
t q dwJf peqlooooooooooomooooooooooon
rπpeq

, e � 1, . . . , E, (28)

where d is elementwise multiplication and defining additionally the right-hand side

to be rπpeq. Note that this is indeed a system of linear equations where the unknowns
are the mixture weights λ.

Remark (5): The typical APF concrete choice of λ of given by Eq. (13)

can be obtained from Eq. (28) by setting K � E �M , selecting q
pmq
t pxtq �

fpxt|x
pmq
t�1q and tz

pmq
t uMm�1 � tµ

pmq
t|t�1u

M
m�1.
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To proceed, we express Eq. (28) more compactly in matrix form as

E�Khkkkkkkkkkkkkikkkkkkkkkkkkj��� qp1q
J

...
...

...

qpEq
J

���
K�1hkkikkj�� λ

�� �

E�Mhkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkj����
gpyt|z

p1q
t q d f p1q

J

...
...

...

gpyt|z
pMq
t q d f pEq

J

����
M�1hkkkikkkj�� w

��
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

rπ

, (29)

defining Q as the E�K matrix on the left-hand side of (29) and rπ as the resulting
E � 1 vector on the right-hand side. We can now obtain the mixture weights λ in
a joint manner as the solution of the following constrained optimization problem

λ� � argmin
λ

L pQλ, rπq , subject to : λ P RK
¥0 , (30)

where L represents a generic loss function. Note that L could be any measure
of distance or discrepancy between two vectors. We optimize the unnormalized
mixture weights to then normalize them afterwards, but alternative approaches
could consider optimization directly in the simplex tλ : λk ¥ 0 @k,λJ1 � 1u.

Concrete loss choice: Regression with non-negative least-squares. [4]
implement a concrete version of the framework and consider the mean squared loss,
leading to the optimization problem

λ� � argmin
λ

}Qλ� π̃}22 subject to : λ P RK
¥0 (31)

The above is a constrained quadratic program. Therefore, it is convex and the
non-negativity constraints form a convex feasible set. When Q has full column
rank, then there is a unique solution. The resulting algorithm, following these
choices of λ, is named optimized auxiliary PF (OAPF) in [4]. Note that as in
the IAPF, described in the previous section, each mixture weight formulated in
Eq. (31) λk is not necessarily a good approximation to the k-th optimal resampling
weight corresponding to the FA-APF, which is also only meaningful when K �M .
Following the new perspective, the mixture weights λ are chosen jointly such that
the resulting mixture proposal is close to the approximation to the filtering posterior.

Choice of K and kernels. We did not study adaptive algorithms to optimize the
kernel parameters. Such an attempt will lead to expectation-maximization style
algorithms, similar to [10] or [5], which could be made jointly convex (together with
mixture weights) only under certain assumptions. The exploration of algorithms
adapting mixture weights and component parameters jointly is beyond this work.
The choice of the number of kernels K is driven by computational constraint, as a
mixture proposal with more kernels is never going to be worse than one with fewer
kernels. Implicitly, frameworks like APF and BPF constrainK �M and each kernel
is in some way associated with a particle at time t�1. In our experiments, we show
that we can sometimes select K    M by selecting the kernels corresponding to

the evaluation points leading to largest values of rπpeq from Eq. (28), i.e., values of
the approximation to the unnormalized posterior.

Choice of evaluation points. The evaluation points determine the locations in
the xt space where the proposal is going to be matched to the approximate filtering
posterior.
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A natural choice is to choose the means of the transition kernels fpxt|x
pmq
t�1q, i.e.,

tµ
pmq
t uMm�1. This is the choice implicitly made by concrete implementations of the

APF when mixture weights are not jointly optimized but selected as Eq. (13), as
mentioned in a previous remark. An important consideration lies in the computa-
tional cost required to obtain the evaluation point set. In this work, we assume that
the evaluation points are not newly generated samples and therefore do not incur
additional costs.

Sparsity of the mixture weights. For the particular choice of loss of Eq. (31),
several works [65, 55] show that non-negative least squares problem solutions be-
come sparse as K (in our notation) increases. In our context, this can be advan-
tageous, since if many kernels in the proposals have 0 weight, then sampling from
the mixture is faster and evaluation of the IS weight also is. However, since typ-
ically we will select K � M or less, the dominant factor in the IS weight cost is
M , and therefore reducing K does not contribute in the O or Θ sense. In a non-
asymptotic sense, a low K contributes to reducing the time complexity of the IS
weight computation and the sampling step.

3.3. Computational complexity and statistical efficiency. The computa-
tional complexity as a function of the number of particles M is ΘpM2q due to
the evaluation of the marginal/MIS weight since the numerator has a sum with M
terms. [44] discusses a class of methods that can be used to approximate the sum
in time ΘpM logMq. [66, 70] investigated a different approximation that leads to a
fast computation of the IS weights. Further on reducing this computation, [13] pro-
vide additional references. In our context, an asymptotic analysis involving E and
K as well requires strategies for selecting these in practice, since they will typically
both depend on M .

We note that algorithms following the schemes in Algorithm 3 will perform more
point-wise density evaluations of the likelihood gpyt|xtq, proposal kernels q

pkqpxtq,

and transition densities fpxt|x
pmq
t�1q when compared to the BPF or the standard APF

implementations deriving from Algorithm 2. However, the number of particles sim-

ulated M is the same. In many applications, sampling a particle x
pmq
t � ψtpxtq has

a very different cost than point-wise evaluating either the transition or the observa-
tion density. It is common for some PF algorithms to target a specific setting where
some operations are more expensive than others due to a specific application, see,
e.g., [48]. As of now, a default implementation of the AM-PFs benefits applications
where sampling is significantly more costly than other operations (we generate no
additional samples, just additional target or proposal evaluations). To distinguish
computational cost from the number of particles/samples generated, [47] (among
others) discusses the concept of statistical efficiency. An estimator is said to be more
statistically efficient than another one if it reduces estimation error, given the same
budget of samples. This may involve doing (potentially many) additional computa-
tional steps, but this is accepted, as long as new samples are not generated in the
process. Efficient estimators in multiple importance sampling have exploited this
concept to reduce variance, e.g., [26, 51]. Sampling from a mixture distribution can
be implemented concretely by resampling followed by propagation of the resampled
particles with the components. The time complexity of resampling schemes as a
function of the number of particles is studied in e.g. [50]. A detailed analysis is
beyond the scope of the present work.
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4. Numerical examples. In this section, we present numerical examples to il-
lustrate the performance of the AM-PF framework. The concrete algorithms (in-
stantiations of the framework) are the IAPF and OAPF described in Section 3.1
and Section 3.2. In Section 4.1, we illustrate with a toy example on univariate
distributions how the proposal constructed with AM-PF algorithms is qualitatively
closer to the true posterior. This is also measured quantitatively by the χ2 di-
vergence in Table 1. In Section 4.2, we study a typical linear Gaussian SSM
(Fig. 2). Finally, in Section 4.3 we demonstrate performance along with a study
of computational cost in a Lorenz 63 model (Fig. 3). The code is available at
https://github.com/nicola144/optimized_auxiliary_particle_filters.

4.1. Toy example. We start illustrating the benefits of our framework with a
toy example where a proposal is built choosing mixture weights with the choices
made by BPF, APF, IAPF ([27]) and OAPF [4]. The last two PFs exploit our
perspective and are special cases of the AM-PF framework. The toy example is
reproduced from [4], with some additional examples. In Table 1, we show how
OAPF generally constructs proposals that are closer, in the χ2 divergence sense,
to the target distribution compared to the alternatives. In the Appendix, all the
details for reproducibility can be found.

4.2. Linear Gaussian SSM. We now study the performance of OAPF in a typ-
ical linear Gaussian state-space model, where the exact posterior can be obtained
with the Kalman Filter (KF). We focus on estimating the mean of the posterior
distribution. In this setting, we can also compare against the fully adapted APF
(FA-APF) [43], since its choices of optimal resampling weights and transition ker-
nels are available in closed form. Recall that the FA-APF is only “optimal” in
terms of conditional variance of the weights up to time t, so it is not guaranteed
to outperform any of the algorithms ([43] in particular show an example where it
is outperformed by BPF). However, it will generally perform well when compared
to APF and BPF. In Fig. 1, we show the results obtained for a linear SSM in 2
dimensions with 1000 Monte Carlo replications, with transition matrix 0.2I and
observation matrix 0.3I.

Table 1. Values of the Pearson χ2 divergence between the mixture
proposal and the target; lower is better.

Algorithm χ2 (Fig. 1a) χ2 (Fig. 1b) χ2 (Fig. 1c) χ2 (Fig. 1d)

BPF 1.89 0.22 2.31 1.72
APF 0.30 0.16 0.27 0.36
IAPF 0.12 0.24 0.31 0.28
OAPF 0.0043 0.09 0.08 0.08

4.3. Lorenz 63. We now study a challenging nonlinear example, the Lorenz 63
dynamical system, very often used to benchmark PFs [1, 58, 62]. The system is
described by the following stochastic differential equations for the evolution of the
hidden state

dxr1s � σpxr2s � xr1sqdτ � dwxr1s (32)

dxr2sq � pρxr1s � xr3sxr1s � xr2sqdτ � dwxr2s (33)

https://github.com/nicola144/optimized_auxiliary_particle_filters
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(a) In this first example we choose a uni-
modal posterior. Note that the choices of the
AM-PF-based algorithms (i.e., IAPF and
OAPF) lead to proposals that are closer to
the true posterior (in black).
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(b) In this example, the true posterior (in
black) is bimodal. OAPF is the only al-
gorithm that can match well both modes
simultaneously (others only match one of
them).
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of their modes compared to OAPF
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(d) In this example, the APF and IAPF are
not putting enough mass in the true mode
and are tilted to the left.

Figure 1. Toy Example. In this experiment we show that the
proposals of AM-PF-based algorithms (IAPF and OAPF) are closer
to true posteriors compared to the competitors. In the first row, we

show the transition kernels fpxt|x
pmq
t�1q and the likelihood associated

with the true filtering distribution. We calculated χ2-divergence for
these examples in Table Table 1. Note that here OAPF uses tran-

sition kernels for the proposal and their means µ
pmq
t|t�1 as evaluation

points, with K �M .

dxr3s � pxr1sxr2s � βxr3sqdτ � dwxr3s (34)

where τ denotes continuous time, wxr1s , wxr2s , wxr3s are independent one-dimensional
standard Wiener processes and pσ, ρ, βq are parameters of the model. We use the
increment ∆t in the discretization and partially observe the hidden state (only
the first dimension) with scalar yt � Nytpx

p1q, σ2
yt
� 1q, using standard values for

pσ, ρ, βq. We used standard parameters pσ, ρ, βq � p10, 28, 2.667q. We also used 1
2I

for transition covariance and I for observation covariance. In Fig. 3, we show how
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Figure 2. (Linear Gaussian SSM.) Normalized (divided by the
true value) MSE for the mean of a posterior distribution in the lin-
ear Gaussian state-space model, with 100 Monte Carlo replications.
In this experiment, K was set to 5 for all numbers of particles, re-
taining performance. We found similar qualitative results for other
values of the SSM parameters.

the AM-PFs lead to better ESS values. As Fig. 3 shows, in this more challenging
example, reducing the number of kernels K with our heuristic is less effective than
in the linear Gaussian system. Further, we show a study of the computational cost
for this example in Fig. 4. Clearly, as discussed earlier in Section 3.3, the AM-PF
algorithms suffer from theM2 computational cost. However, our implementation is
on CPU (as opposed to GPU) and does not exploit recent research exactly targeted
at reducing this cost in mixture PFs, see our Section 5.

5. Discussion and conclusions. We have proposed a framework that unifies par-
ticle filters under the perspective of importance sampling with mixture proposals
that can be adapted in an online manner. We have reframed the task of selecting re-
sampling probabilities and proposal kernels to that of selecting mixture weights and
components in a mixture proposal. The perspective allows us new methodological
opportunities in the design of PFs, such as: detaching the number of components in
the mixture from the number of particles used in the PF, which in some cases allows
for some computational savings; jointly selecting the mixture weights, as opposed
to separately like in the APF, so that the mixture proposal is a good approximation
of the filtering distribution.

Future avenues. Our framework opens up many directions for future research. On
the algorithmic side, more research is needed to define concrete choices of evaluation
points, including choices that use information from both the transition densities
f and the observation densities g. For example, a wide range of active learning
strategies for the evaluation points could be considered [71, 33].

A theoretical analysis in terms of variance of the likelihood estimator could study
the benefits of mixture weights as those proposed in this work, even with K �M , in

the setting where kernels cannot be chosen to be the optimal kernels ppxt|x
pkq
t�1,ytq.



20 NICOLA BRANCHINI AND VÍCTOR ELVIRA
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Figure 3. (Lorenz 63 system.) The plot shows effective sample
size (ESS) over timesteps for 1000 Monte Carlo replications. In the
legend we show the value of K, which was set based on M � 1000,
the number of particles. In this example, we show that unlike in
the linear Gaussian system, unfortunately reducing too much the
number of kernels K impacts performance for these settings of the
system parameters. When K � M , OAPF outperforms the other
algorithms, which suggests that indeed the proposal constructed by
the optimization of the mixture weights better matches the poste-
rior distribution.

Optimization of the mixture components with expectation-maximization type
algorithms [20, 5, 16] will likely have to consider additional sample generation into
the cost of the procedure but could be interesting future work, as suggested by a
reviewer. Similarly, the inclusion of gradient-based schemes such as [63, 2] could
lead to better mixture proposals with the benefit of theoretical guarantees.

Finally, in the machine learning literature, there has been recent interest in the
problem of jointly estimating SSMs parameters and proposal parameters (where
both are given by neural networks) 5 with an end-to-end gradient-based algorithm.
When a PF algorithm is used for filtering, the introduction of resampling steps
poses a challenge for computing gradients w.r.t. proposal parameters, because the
resampling operation is not continuous. [9] proposed to replace resampling with
a deterministic transformation of the particles derived from an optimal transport
problem. However, later [49] show that by employing a recently proposed method
for differentiating through mixtures in the machine learning literature, it is suffi-
cient to employ the mixture view of PF to obtain a differentiable algorithm in the
abovementioned context. In this context, the AM-PF framework opens up the pos-
sibility of reducing the variance of gradient estimates with control variates similarly
to [51].

5In this setting, called “variational” parameters, due to the objective function being a KL
divergence.
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Figure 4. Here, we show for the Lorenz 63 experi-
ment, (i) runtime (in seconds) per iteration in t (ii)
ESS and (iii) ESS/runtime, vs the number of particles
M P t100, 200, 300, 400, 500, 600, 700, 800, 900, 1000u. The
AM-PF algorithms (IAPF,OAPF) clearly suffer from the M2

computational cost as discussed in Section 3. Recall that ESS is
bounded by M . Also, notice how the ESS for OAPF grows almost
linearly as a function of M .

Appendix A. Appendix.

A.1. Theoretical properties. The theoretical properties of our estimators are
analysed from the importance sampling perspective. In the case of the mixture
proposals ψt, we assume that each time t, the support of ψt is a superset of the
support of ppxt|y1:tq, i.e., that ψtpxtq ¡ 0 for all xt where ppxt|y1:tq ¡ 0. Let

us define the partial normalizing constants as Zt ≜ ppyt|y1:t�1q, the joint nor-

malizing constant as Z1:t ≜ ppy1:tq, and also Zt�h:t ≜ ppyt�h:t|y1:t�h�1q. In the
OAPF framework, we can build estimator of those quantities, e.g., the partial es-

timator pZτ ≜ 1
M

°M
m�1 rwpmq

τ , the joint estimator pZ1:t �
±t

τ�1
pZτ , and also the

estimator pZt�h:t �
±t

τ�t�h
pZτ , with and the estimator pZt ≜ 1

M

°M
m�1 rwpmq

t . We
also assume that the estimators of all the partial normalizing constants have fi-
nite variance (see for instance [29]). We define the set of weighted samples at
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time t as At ≜ tx
pm
t , rwpmt uMm�1. In order to avoid ambiguities when evaluat-

ing pdfs, we define the functions gpyt|xtq ≜ ppyt|xtq, gpyt|xt�1q ≜ ppyt|xt�1q,

gpyt,xt|xt�1q ≜ ppyt,xt|xt�1q and gpyt�h:t,xt|xt�1q ≜ ppyt�h:t,xt|xt�1q.
In the following, we show that OAPF provides an unbiased estimator of the

normalizing constant ppy1:tq, which follows a proof by induction, in a similar spirit as
in [60], but with more generic results. In particular, here the (approximate) filtering
distribution is the marginalized version of the one in [60] and is constituted by a
mixture in the numerator of the importance weights (see [44] for an explanation).
In OAPF the proposal density can be any mixture ψtpxtq fulfilling the standard
regularity conditions described above, hence in the denominator of the importance
weights, a second mixture appears. Theorem A.3 is here the main result, and is
supported by Lemmas A.1 and A.2 which we present first.

Lemma A.1. We have that

E
� pZt|At�1

�
�

M̧

m�1

w
pmq
t�1gpyt|x

pmq
t�1q. (35)

Proof.

E
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Now, since given At�1 the particles at time t are conditionally independent with
pdf ψtpxtq, then we have that the integrals within (38) are identical:

E
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Lemma A.2. For any h P t1, ..., t� 1u we have that

E
� pZt�h:t|At�h�1

�
�

M̧

m�1

w
pmq
t�h�1gpyt�h:t|x

pmq
t�h�1q. (43)

Proof. We follow a proof by induction. First, note that (43) is true for h � 0 due
to Lemma A.1. Then, we assume that (43) holds for a given h and we will prove
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that it then holds for h � 1. Let us start developing the left-hand side of (43) for

h� 1 by first noting that pZt�h�1:t � pZt�h:t
pZt�h�1. Then,

E
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� E

�
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where we have simply substituted Eq. (43) that we assume to hold for h. Next,
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where we have substituted with the importance weights rwpmq
t�h�1 of Eq. 7 of the man-

uscript. Since, given At�h�2, the particles at time t are conditionally independent
with pdf ψt�h�1pxt�h�1q, all M expectations are identical:
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Step (50) to (51) is justified since yt�h:t KK yt�h�1|xt�h�1, so we can replace
gpyt�h:t|xt�h�1q in 50 with gpyt�h:t|yt�h�1,xt�h�1q and then gpyt�h�1:t|xt�h�1q �
gpyt�h:t|xt�h�1qgpyt�h�1|xt�h�1q follows by the chain rule. Next,
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which is the right-hand side of (43).

Theorem A.3. The OAPF estimator of the normalizing constant is unbiased, i.e.,

Er pZ1:ts � ppy1:tq.

Proof. The unbiasedness is a consequence of Lemma 2 with h � t� 1.
Now we look at the variance of the normalizing constant estimators. First, we

establish a superiority in performance (i.e., equal or less variance) of the OAPF
importance weights. This result is also used below to prove the convergence of the
estimators by standard results in particle filtering.
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Let us particularize importance weights in OAPF for the case with K �M as

rwpmq
t �

gpyt|x
pmq
t q

°M
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pmq
t |x
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i�1 λ
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t q
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t |x̄
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. (54)

We also consider the generalized APF weights given by

rvpmq
t �

gpyt|x
pmq
t qw

pmq
t�1fpx

pmq
t |x

pmq
t�1q

λ
pmq
t q

pmq
t px
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t |x̄

pmq
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. (55)

These are generalized in the sense that the concrete APF described in the main

paper is obtained by setting λ
pmq
t 9w

pmq
t�1gpyt|µ

pmq
t q and propagating particles with

transition kernels fp�q, thus our following discussion holds for any choice of λ
pmq
t .

Lemma A.4. The conditional variance of pZOAPF
t using the OAPF weights in (54)

is always less or equal than the same estimator pZAPF
t using the APF weights in

(55).

Proof. First, note that rvpmq
t can be interpreted as an importance weight in an

extended space on xt and the auxiliary variable m (see for instance [44, Section

3.1] and [59, 36]). Next, rwpmq
t can be interpreted as a version of rvpmq

t where both
in the numerator (approximate filtering pdf) and denominator (proposal pdf), the
auxiliary variable has been marginalized. Then, the variance inequality for each
importance weight holds from the application of the variance decomposition lemma
(also known as law of total variance). This proof generalizes the result in [44] for

any set of mixture weights tλ
pmq
t uMm�1, with

°M
j�1 λ

pjq
t and λ

pmq
t ¥ 0, for all m.

Finally, since both ẐOAPF
t and ẐAPF

t are constructed as the average of the OAPF

and APF weights, respectively, the conditional variance of ẐOAPF
t is necessarily

upper-bounded by that of ẐAPF
t .

We now address the consistency of the normalizing constant, pZ1:t, and the self-

normalized IS (SNIS) estimator pIphtq � °M
m�1 w

pmq
t htpx

pmq
t q.

Corollary A.5. The OAPF estimator of the normalizing constant pZ1:t and

the SNIS estimator pIphtq are consistent, i.e., limMÑ8
pZ1:t � ppy1:tq and

limMÑ8
pIphtq � Iphtq a.s. (almost surely) for a finite t.

Proof. The consistency of pZ1:t is a consequence of its unbiasedness, proved in The-
orem A.3, and the variance inequality in Lemma A.4, which ensures the variance
convergence to zero a.s. when N Ñ 8 since the APF, which upper-bounds its
variance, is also consistent [22, Section 3.6]. A similar argumentation can be done

for the SNIS estimator pIphtq. Note that the SNIS estimator can be re-expressed aspIphtq � °M
m�1

rw
pmq
t

MxZt
htpx

pmq
t q � 1

M

°M
m�1

rw
pmq
t

xZt
htpx

pmq
t q. Since pZt is a consistent esti-

mator of ppyt|y1:t�1q, the denominator converges to ppyt|y1:t�1q while the numera-
tor converges to ppyt|y1:t�1qIphtq, when N Ñ8. Therefore, the ratio converges to
Iphtq a.s.

A.2. Experimental details. The Python code is available at https://github.
com/nicola144/optimized_auxiliary_particle_filters.

https://github.com/nicola144/optimized_auxiliary_particle_filters
https://github.com/nicola144/optimized_auxiliary_particle_filters
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A.2.1. Toy example. We provide all necessary parameters to reproduce Fig. 1 in
the main paper. We recall that in this toy example we do the Bayesian recursion
from t� 1 to t with M � 4 particles.


 In Fig. 1a, we have set the particles tx̄
pmq
t�1u

M�4
m�1 � t2, 2.5, 3, 3.5u, the normal-

ized weights t3{10, 3{10, 1{5, 1{5u, likelihood centered at 3, and σlik � 0.8,
and σkern � 0.5.


 In Fig. 1b, tx̄
pmq
t�1u

M�4
m�1 � t2, 2.5, 5, 5.5u, the normalized weights are

t7{22, 1{11, 1{2, 1{11u, the likelihood is centered at 3.5, and σlik � 1.2, and
σkern � 0.5.


 In Fig. 1c, tx̄
pmq
t�1u

M�6
m�1 � t2., 2.5, 5., 5.5, 6, 7u, the unnormalized weights are

t7{22, 1{11, 1{2, 1{11, 9{12, 8{11u, the likelihood is centered at 4, and σlik �
0.8, and σkern � 0.5.


 In Fig. 1d, tx̄
pmq
t�1u

M�6
m�1 � t2., 2.5, 3., 5.5, 6, 1.5u, the unnormalized weights are

t1, 6{25, 1{3, 1, 4{10, 2u, the likelihood is centered at 3.5, and σlik � 0.8, and
σkern � 0.8.

The proposals of all algorithms are then calculated as:

M̧

m�1

λ
pmq
t fpxt|µ

pmq
t�1q, (56)

where the mixture weights λ
pmq
t for BPF are w

pmq
t�1 , for APF are 9w

pmq
t�1gpyt|µ

pmq
t�1q,

for IAPF 9gpyt|µ
pmq
t�1q

°M
m�1 w

pmq
t�1fpµ

pmq
t�1|x

pmq
t�1q{

°M
m�1 fpµ

pmq
t |x

pmq
t�1q and finally for

OAPF they are the solution to the non-negative least squares optimization problem.
As specified in the main paper and can be seen from (56), we used transition kernels
as proposal kernels for OAPF. Moreover, we used the centers of the transition kernels

µ
pmq
t as evaluation points, which in this case they correspond to the resampled

particles tx̄
pmq
t�1u

M�4
m�1 .
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[1] Ö. D. Akyildiz and J. Mı́guez, Nudging the particle filter, Statistics and Computing, 30
(2020), 305-330.
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