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Inferring relationships that go beyond our direct experience is essential for understanding our environment.
This capacity requires either building representations that directly reflect structure across experiences as we
encounter them or deriving the indirect relationships across experiences as the need arises. Building structure
directly into overlapping representations allows for powerful learning and generalization in neural network
models, but building these so-called distributed representations requires inputs to be encountered in inter-
leaved order. We test whether interleaving similarly facilitates the formation of representations that directly
integrate related experiences in humans and what advantages such integration may confer for behavior. In a
series of behavioral experiments, we present evidence that interleaved learning indeed promotes the forma-
tion of representations that directly link across related experiences. As in neural network models, interleaved
learning gives rise to fast and automatic recognition of item relatedness, affords efficient generalization, and
is especially critical for inference when learning requires statistical integration of noisy information over
time. We use the data to adjudicate between several existing computational models of human memory
and inference. The results demonstrate the power of interleaved learning and implicate the formation of inte-
grated, distributed representations that support generalization in humans.

Public Significance Statement
The study provides evidence that presenting information in an intermixed order facilitates the storage of
this information in a format that promotes the efficient discovery of hidden relationships.

Keywords: associative inference, distributed representations, hippocampus, memory

Supplemental materials: https://doi.org/10.1037/xge0001415.supp

Adaptive behavior often requires inferring relationships that go
beyond what we have directly experienced. For example, we can
infer an efficient route through a city without having traveled the
particular path before. There are two broad classes of theories
for how we achieve this, which emphasize either discovering and
storing these indirect relationships during initial encoding or com-
puting them as needed at the time of a decision (Zeithamova,
Dominick, et al., 2012). The retrieval perspective assumes that
the representations of indirectly related experiences are kept sepa-
rate, but that these distinct representations can then interact during
retrieval to support inference and generalization (Banino et al.,
2016). The advantage of the retrieval-focused representational

scheme is that it allows flexibility in how the representations are
used; it retains the details of individual elements but allows for
these elements to interact and recombine to discover relationships
as needed at the time of a decision (Kumaran &McClelland, 2012).
The disadvantages are that this recombination process takes time
and computation at retrieval (Daw & Dayan, 2014), and this kind
of storage does not scale well (Hinton, 1984). The encoding per-
spective argues that we build representations that directly reflect
structure across experiences during initial learning, such that
related experiences are built as integrated, overlapping memory
representations (Eichenbaum, 2004; Eichenbaum et al., 1999;
Gluck & Myers, 1993; Howard et al., 2005; Shohamy &
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Wagner, 2008). The advantages of this form of “cached” represen-
tation are that it scales better and that inference and generalization
at retrieval are much more efficient and automatic (Hinton, 1986;
O’Reilly, 1998), but there is a cost in flexibility.
One especially powerful example of the encoding-based represen-

tation is the distributed representation used in the hidden layers of
neural network models. In this form of representation, “each entity
is represented by a pattern of activity distributed overmany computing
elements, and each computing element is involved in representing
many different entities” (Hinton, 1984). These representations have
proven crucial for modern machine learningmodels to effectively rep-
resent the structure and statistical regularities of complex environ-
ments (Hassabis et al., 2017). However, a fundamental limitation of
this kind of representation is that it is highly susceptible to interference
during distribution shift, that is, in changing environments where
exposure to one set of information is mostly completed before begin-
ning the next set (McClelland et al., 2020; McCloskey & Cohen,
1989). Consider blocked exposure to a set of associations AB, fol-
lowed by a related set BC. To the extent that the representations of
A and C overlap, learning BC will tend to overwrite the connections
that had been used for encoding AB (known as “catastrophic interfer-
ence”). When exposure is interleaved, such that AB and BC alternate,
their representations can be carefully built up without interference
(McClelland et al., 1995); with each input, there is a small amount
of interference to other related inputs, but when those related inputs
are soon presented again, they regain some lost ground. This delicate
back-and-forth allows representations to grow to reflect the full struc-
ture of the environment. After this process of interleaved learning,
generalization from A to C is then natural and instantaneous, as A
and C directly overlap in their representations.
This order-induced interference problem is avoided in retrieval-

based models that build distinct representations at encoding, also
known as localist or pattern-separated representations. Keeping rep-
resentations separate during encoding is very useful for rapid episodic
learning without interference, and indeed, there is strong evidence for
their use toward this purpose in the hippocampus (Hainmueller &
Bartos, 2020; Kumaran & McClelland, 2012; Norman & O’Reilly,
2003; O’Keefe, 1976). However, as outlined above, this strategy
likely limits the efficiency and power of inference and generalization.
There is evidence, on the other hand, that relationships are directly
encoded in neural patterns throughout the neocortex in the form of dis-
tributed representations (Desimone et al., 1984; McClelland et al.,
1995; Yamins et al., 2014), but these are believed to form quite
slowly, over days, months, and years.
Could distributed representations be supporting our prodigious

ability to make inferences and generalize on a faster timescale, over
minutes and hours (e.g., finding a good route through a building on
your first day encountering it)? There is evidence for the rapid forma-
tion of integrated (in addition to separated) representations in the hip-
pocampus (Schlichting & Preston, 2015), but it is unclear whether
these integrated representations take on the form of the distributed rep-
resentations found in neural network models and how they trade off
against the well-known pattern-separated representations. Here we
use some of the key behavioral signatures of distributed representa-
tions—a reliance on interleaved learning and affordance of efficient
inference and generalization—to test for their rapid formation. Our
predictions are motivated by our neural network model of the hippo-
campus (Schapiro et al., 2017), which instantiates the hypothesis that a
particular circuit, the monosynaptic pathway (MSP) connecting the

entorhinal cortex to subfield CA1, rapidly develops distributed repre-
sentations that allow the hippocampus to detect regularities across
novel experiences on the timescale of minutes (Schapiro et al.,
2012). The model also simulates the formation of localist representa-
tions in subfields CA3 and DG, differentiating individual episodes to
avoid interference. We refer to the model as Complementary
Hippocampal Operations for Representing Statistics and Episodes
(C-HORSE). Themodel is consistent with neural data: though the hip-
pocampus is known for its pattern-separated representations, rodent
work indicates that these reside mainly in the DG and CA3 subfields,
while representations appear more overlapping in CA1 (e.g., Leutgeb
et al., 2004). Our model thus motivates assessing the formation of dis-
tributed representations across the timescale of one human experimen-
tal session in the context of a hippocampally dependent task.

We adopted the hippocampally dependent associative inference task
(Bunsey & Eichenbaum, 1996; Preston et al., 2004), in which partic-
ipants learn novel object pairs AB and BC and are then tested on the
unobserved indirect AC relationship. The basic associative inference
task can be solved using either an encoding or retrieval-based strategy
(Zeithamova, Dominick, et al., 2012), but here we manipulated
whether pairs were learned in interleaved versus blocked order and
tested whether interleaved learning led to behavioral signatures of dis-
tributed representations, a particular and powerful flavor of the
encoding-based integrated representation. We predicted that, first,
interleaved learning should promote the implicit, automatic association
between A and C at test, whereas blocked learning would require reli-
ance on a localist style representation, requiring additional, and perhaps
more explicit, computation to achieve successful inference. Second,
integrated, distributed representations should more readily promote
generalization: Acquiring new knowledge about A should immedi-
ately transfer to C by virtue of their shared neural substrate (Hinton,
1986). Lastly, distributed representations should exhibit more robust
graded sensitivity to statistical regularities (Rogers & McClelland,
2004), which is not an inherent property of alternative kinds of
encoding-based integrated representations (Banino et al., 2016).

There have beenmany prior studiesmanipulating the order of expo-
sure of information, especially in the category learning literature.
While interleaved exposure benefits learning in many variants of cat-
egory learning tasks (Carvalho&Goldstone, 2015), blocked exposure
sometimes appears more beneficial (Carvalho & Goldstone, 2015;
Flesch et al., 2018; Schlichting et al., 2015). These findings often
appear to hinge on attention being drawn to category similarities
and differences across adjacent trials, which is a distinct mechanism
from those producing order effects in standard neural networkmodels.
We thus endeavored to design a study that would avoid these atten-
tional effects. In our paradigm, back-to-back trials always contain
unrelated pairs such that attention to specific features on adjacent trials
neither benefits nor harms learning, allowing us to isolate the effects
of order apart from sequential attention.

Each participant in our experiments learned some sets of AB and
BC pairs in interleaved order and other sets in blocked order. If
humans learn representations similarly to distributed neural network
models, only interleaved exposure should result in behavior that
shows the properties outlined above. We provide, to our knowledge,
the first evidence that interleaved exposure results in such behaviors.
The results indicate a true effect of order, as opposed to a simple influ-
ence of time or of trial-by-trial attention modulation. The results are
supported by simulations contrasting the behavior of different classes
of computational models—those using distributed representations,
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localist, or both, with the data best explained by the presence of both
kinds of representations. Together, the results reveal the benefits of
interleaved learning and suggest that humans rapidly form integrated,
distributed representations at encoding—likely in addition to more
separated representations—in the service of efficient inference.

Experiments 1a–c

In the first three experiments (Experiments 1a–c), each participant
learned triads of direct AB and BC associations, with the direct pairs
for half of the triads presented in interleaved order and the other half
in blocked order (Figure 1a). After this learning phase, participants
completed two tasks that probed their memory for object associa-
tions: a speeded recognition task, in which they quickly identified
whether a pair of objects shown on the screen was presented during
learning (Figure 1b), followed by an explicit inference task, in which
they more slowly and deliberately identified indirect associations
(Figure 1c). In the speeded recognition task, for all pairs of objects
except those forming an AB or BC pair, the correct answer was to
indicate that they were not shown together during learning. This
decision could be challenging for the indirectly related AC pairs,
as they were associated but not directly studied together. Our main
prediction was that this would be especially challenging in the inter-
leaved condition. If interleaving better facilitates overlapping repre-
sentations, there would be more difficulty rejecting ACs, resulting in
increased response time. This confusion could even result in false
alarms for interleaved ACs (deciding they had viewed A and C
directly together when they had not). For the blocked condition,
we predicted a reliance on separated, localist representations of
AB and BC, which should prevent this kind of confusion on AC rec-
ognition trials. For the subsequent inference task where participants

are encouraged to explicitly search for indirect links amongst objects
and have enough time to do so, we predicted no difference between
AC inference in the two conditions, as localist and distributed strat-
egies should both be available to solve this task. We consider the
speeded recognition task to be an implicit assessment of AC knowl-
edge because participants were not instructed to find AC associa-
tions, and the explicit inference task to be explicit in the sense that
finding indirect pairs was instructed. This distinction mirrors that
in the memory literature between slower associative retrieval-based
processes versus more automatic recognition (Cohn & Moscovitch,
2007; Nobel & Shiffrin, 2001). However, we do not assume that the
two tasks necessarily tap into implicit versus explicit learning pro-
cesses or knowledge representations (Shanks & John, 1994).

Method

Participants

In Experiment 1a, we recruited 33 participants, with 26 participants
remaining after exclusions (seven female, 18 male, one unknown; 19
White, two Black, three Asian, and two unknown; one Hispanic or
Latino; Mage= 33.24, standard deviation, SD= 7.70). Experiment
1b was a preregistered study (https://osf.io/ag42z) in which 83 new
participants were recruited, with 50 participants after exclusions (21
females, 29 males; 33 White, five Black, nine Asian, and three
unknown; four Hispanic or Latino; Mage= 38.08, SD= 9.07). The
sample size for Experiment 1b was determined by a power analysis
with a target power of 0.95 based on the effect size of the primary
effect (i.e., difference in reaction time [RT] between speeded inter-
leaved and blocked AC trials) observed in Experiment 1a.
Experiment 1c was an additional replication study in which we
recruited a total of 184 new participants, with 96 participants after
exclusions (51 females, 44 males, one nonbinary; 74 White, eight
Black, one American Indian/Native, 11 Asian, and two unknown;
five Hispanic or Latino; Mage= 36.41, SD= 9.91). We collected a
larger sample size in Experiment 1c for the purposes of analyses unre-
lated to this paper. Across all experiments, participants were recruited
through Amazon Mechanical Turk (MTurk). Participants indicated
their gender in a text box and reported ethnicity by selecting from
“Hispanic or Latino,” “Not Hispanic or Latino,” and “Prefer not to
answer.” Participants indicated their race by selecting from
“American Indian or Alaska Native,” “Asian,” “Black or African
American,” “Native Hawaiian or Other Pacific Islander,” “White,”
“More than one race”, “Unknown,” and “Prefer not to answer.” The
study protocol was approved by the local Institutional Review Board.

Across all three experiments, we excluded participants with
d-prime lower than 1.5 on the speeded recognition task. Our primary
motivation for this criterion was to exclude participants who showed
poor memory for the studied direct pairs since our theoretical predic-
tions regarding AC inference assume knowledge of direct pairs, and
prior associative inference studies have required and demonstrated
strong memory for direct pairs (Koster et al., 2018; Schlichting et
al., 2015; Shohamy & Wagner, 2008). This exclusion criterion
departed from our preregistered plan, which only considered the hit
rate in the speeded task, as we realized that it is also important to iden-
tify participants with high false alarm rates (participants who failed to
reject objects that were neither directly nor indirectly related). Based
on this exclusion criterion, we excluded seven out of 33 (or 21.2%)
participants in Experiment 1a, 33 out of 83 (or 39.8%) participants

Figure 1
Experiments 1a–c Design

A B
A B

B C
A B

A B
B C

B C
B C

Speeded recognition test Explicit inference test

Were these two objects shown as 
a pair during learning?

shown 
together
(press 1)

not shown 
together
 (press 2)

Which of these two objects below is 
associated with the object above?

(click the object)

Interleaved
Blocked

a

b c

Note. (a) During learning, participants viewed pairs of objects (see Hsu
et al., 2014). Pairs that shared a common object (i.e., AB and BC) appeared
either in interleaved (red) or blocked (blue) order. The relative horizontal
order of items within each pair was randomized (not shown here). (b) In
the speeded recognition test, participants quickly judged whether two
objects were paired during learning. (c) In the explicit inference test, partic-
ipants selected which of two objects was indirectly related to a cue object.
See the online article for the color version of this figure.
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in Experiment 1b, and 88 out of 184 (or 47.8%) participants in
Experiment 1c. Our exclusion rates are high but comparable to the
proportions of excluded participants often reported in studies con-
ducted on online platforms such as Amazon MTurk and Prolific
(e.g., Bokeria & Henson, 2022; Downs et al., 2010; Himberger et
al., 2019; Ludwin-Peery et al., 2021; Luo & Zhao, 2018). While it
was important, given our theoretical predictions, to limit our analyses
to participants who demonstrated memory for direct pairs, we note
that these exclusions may limit the generalizability of our findings.

Design and Procedure

We adopted a within-subject design in which, during learning,
each participant was shown a sequence consisting of presentations
of 12 pairs of novel visual objects. These pairs were made up of a
total of 18 items randomly sampled, for each participant, from 36
artificial object images (Hsu et al., 2014; Schlichting et al., 2015).
Each “direct” pair AB was uniquely related to another direct pair
BC through a linking item B. Each direct pair was shown 30
times. Among the six ABC triads shown to each participant, three
were interleaved, with AB and BC appearing in alternation, and
three were blocked, with all presentations of AB occurring before
the first presentation of BC (Figure 1a). The presentation of inter-
leaved and blocked pairs was intermixed throughout the learning
phase, and there was no demarcation of the halfway point. Pairs
that share an object were never shown back-to-back. Participants
were instructed to remember the pairings of objects by creating
quick narratives of how the two objects might interact. Each partic-
ipant completed a total of 360 trials, with the two objects displayed
side-by-side on the screen for 1,000 ms on each trial. Across
repeated presentations of each object pair, the horizontal position
of one item relative to the other was randomized (not counterbal-
anced). Subsequent to each pair presentation, participants saw the
question “on a scale of 1 ( failed to visualize a story) to 5 (clearly
visualized a story), how well were you able to visualize a story link-
ing the objects?” Participants made a total of 30 ratings for each pair.
Participants responded with a numerical rating with a 7,000 ms
response deadline in Experiments 1a and 1b and a 2,000 ms
response deadline in Experiment 1c.
After learning, participants completed two tasks that probed their

memory of learned object associations: a speeded recognition task
(Figure 1b), followed by an explicit inference task (Figure 1c).
During the speeded recognition task, on each trial, two objects were
displayed for 1,500 ms, and participants were asked to respond within
3,500 mswhether the two objects had been shown as a pair during the
learning phase. The task comprised 24 trials with directly paired
objects (e.g., AB), 12 trials with indirectly related objects (AC), and
12 trials with unrelated foil pairs (e.g., AD). Each object pair appeared
in two trials with two different vertical positions (A above C or C
above A), with the constraint that pairs could not be repeated on
back-to-back trials. At the onset of the explicit inference task, partic-
ipants were instructed that two items paired with the same item form
an indirect association (i.e., A andC items pairedwith the sameB) and
that they had to identify indirectly related items in this task. On each
trial, participants saw a cue object at the top of the screen (A or C) and
were instructed to select which of two objects shown below the cue
object was indirectly related to it. The foil was of the same type as
the target (and from the same interleaved or blocked condition) but
from a different triad. There was a 7,000 ms response deadline. The

explicit inference task consisted of 12 trials where each AC associa-
tion was tested twice, such that each item served as the cue object
in one trial and as the target object in the other.

In Experiment 1c, participants then completed an additional task
that employed the same design as the explicit inference task, assess-
ing memory for direct AB and BC pairs. This task consisted of 24
trials: 12 AB and BC pairs, each shown twice, with each object
shown as the cue in one trial and the target in the other. On each
trial, participants selected between a target object and a matched
foil with a 7,000 ms response deadline.

Analysis

For each RT analysis, we excluded participants who had no data
recorded for a condition of interest (e.g., missed all interleaved AC
trials for the analysis of the interleaved-blocked RT difference).
Across all experiments, RTs for trials during which participants
responded correctly were log-transformed before averaging. For
each variable of interest, we performed paired two-tailed t tests to
assess the significance of within-subject differences between two
conditions of interest. We additionally computed Bayes factors
using the Jeffreys–Zellner–Siow prior as in Rouder et al. (2009) to
quantify the relative likelihood between the hypothesis H1 of a dif-
ference between conditions and the null hypothesisH0 that no differ-
ence exists between conditions given the data. H0 is favored when
B01 is greater than 1, whereas H1 is favored when B10 is greater
than 1.

Transparency and Openness

We report sample size, data exclusion, and details of methods,
materials, design, and analysis in accordance with journal article
reporting standards (Kazak, 2018). All data and analysis code are
available at https://github.com/schapirolab/itlblklearning. We pre-
registered the design and analysis of Experiment 1 on OSF
(https://osf.io/ag42z/) and performed replications for Experiments
1 and 3.

Results and Discussion

During learning, participants responded to 97.96% of trials in
Experiment 1a (standard error, SE= 1.8), with a mean visualization
score of 3.80 (SE= 0.16); 99.03% of trials in Experiment 1b
(SE= 0.8), with a mean visualization score of 3.54 (SE= 0.13);
and 90.74% of trials in Experiment 1c (SE= 2.6), with a mean visu-
alization score of 3.37 (SE= 0.10). The overall high response rates
indicate that participants were attentive in the learning phase. Lower
response rates in Experiment 1c than in Experiments 1a and 1b
were likely due to the shorter response window. In the speeded recog-
nition task, on trialswhere a responsewasmade, participants indicated
that they recognized the object pair 50.17% of the time in Experiment
1a (SE= 0.99), 51.87% of the time in Experiment 1b (SE= 0.78),
and 52.56% of the time in Experiment 1c (SE= 0.76). (The correct
proportion is 50%.)

In the speeded recognition task in Experiment 1a, consistent with
our predictions, participants were slower to correctly reject ACs as
not having been paired during learning in the interleaved relative to
blocked condition (Figure 2a): On correct trials, participants
responded slower to interleaved ACs than to blocked ACs
(Mdifference= 0.061, SE= 0.025, t[25]= 2.41, p= .02, Cohen’s
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d= 0.47, B10= 2.32; Figure 2a) to interleaved foils (i.e., pairs of
objects from different interleaved triads; Mdifference= 0.13, SE=
0.023, t[25]= 5.56, p, .001, d= 1.09, B10= 2,413.72; Figure S1
in the online supplemental materials) whereas RT did not significantly
differ between blocked ACs and foils (Mdifference= 0.017, SE= 0.018,
t[25]= 0.94, p= .35, d= 0.19, B01= 3.23; Figure S1 in the online
supplemental materials) nor between interleaved and blocked foils
(Mdifference=−0.05, SE= 0.028, t[25]=−1.78, p= .09, d= 0.34,
B01= 1.28; Figure S2 in the online supplemental materials). RT did
not differ between interleaved and blocked direct pairs
(Mdifference=−0.030, SE= 0.022, t[25]=−1.38, p= .18, d= 0.27,
B01= 2.08; Figure S10 in the online supplemental materials).
In addition to our main prediction of an increased response time,

we predicted that interleaving may also produce higher false alarm
rates. Indeed, participants exhibited higher false alarm rates to inter-
leaved than to blocked ACs (Mdifference= 0.13, SE= 0.047, t[25]=
2.70, p= .01, d= 0.53, B10= 4.01; Figure 2b), meaning they were
more likely to incorrectly indicate that they had seen these indirect
pairs when the direct constituents were presented in interleaved
order. There was no difference in false alarm rates between inter-
leaved and blocked foils (Mdifference= 0.013, SE= 0.026, t[25]=
0.49, p= .63, d= 0.10, B01= 4.32; Figure S3 in the online supple-
mental materials). These results support our prediction of an advan-
tage of interleaved exposure for forming representations that support
direct and automatic AC association.
To increase confidence in the results from Experiment 1a, we prereg-

istered (https://osf.io/ag42z/) and ran a replication of the experiment as
Experiment 1b. In the preregistration of Experiment 1b, we indicated
that our main prediction was increased response time on interleaved
AC trials, but we also hypothesized increased false alarms to interleaved
ACs in the speeded task. Experiment 1b confirmed ourmain prediction:
participants again responded significantly more slowly to interleaved
ACs than to blocked ACs (Mdifference= 0.057, SE= 0.018, t[49]=
3.15, p= .003, d= 0.44, B10= 11.35; Figure 2a) and to interleaved
foils (Mdifference= 0.10, SE= 0.024, t[49]= 4.37, p, .001, d=
0.62, B10= 342.91; Figure S1 in the online supplemental materials),

and RT was not significantly different between blocked ACs and
blocked foils (Mdifference= 0.041, SE= 0.021, t[49]= 1.94, p= .06,
d= 0.27, B01= 1.16; Figure S1 in the online supple-
mental materials) or between interleaved and blocked foils
(Mdifference=−0.0043, SE= 0.019, t[49]=−0.23, p= .82, d=
0.032, B01= 6.34; Figure S2 in the online supplemental materials).
There was again no difference in RT between interleaved and blocked
direct pairs (Mdifference=−0.03, SE= 0.017, t[49]=−1.80, p= .078,
d= 0.25,B01= 1.46; Figure S11 in the online supplemental materials).
Though numerically in the same direction as Experiment 1a, we did not
observe a significant difference in false alarm rates between interleaved
and blocked AC trials in Experiment 1b (Mdifference= 0.043, SE=
0.035, t[49]= 1.23, p= .22, d= 0.17, B01= 3.20; Figure 2b).

Experiments 1a and 1b provide evidence for ourmain prediction of an
interleaved advantage for rapid AC association. However, Experiments
1a and 1b only measured memory for AB and BC pairs in the speeded
recognition task, which does not assess the ability to explicitly identify
direct associations against competing alternatives. To verify that partici-
pants can do this equally well for the two conditions, we performed an
additional replication study, Experiment 1c, which additionally assessed
explicit identification of AB/BC pairs against foils at the end of the
experiment. Results of Experiment 1c again demonstrated stronger
AC associations in the interleaved condition: During the speeded rec-
ognition task, participants responded more slowly to interleaved ACs
than to blocked ACs (Mdifference= 0.060, SE= 0.017, t[93]= 3.41,
p= .001, d= 0.35, B10= 23.54; Figure 2a) and to matched foils
(Mdifference= 0.093, SE= 0.018, t[94]= 5.20, p, .001, d= 0.53,
B10= 11,793.94; Figure S1 in the online supplemental materials).
RT again did not significantly differ between interleaved and blocked
direct pairs (Mdifference= 0.0039, SE= 0.011, t[95]= 0.37, p= .72,
d= 0.037, B01= 8.30; Figure S12 in the online supplemental materi-
als). In Experiment 1c, we again observed, as in Experiment 1a, higher
false alarm rates to interleaved than to blocked ACs (Mdifference= 0.11,
SE= 0.027, t[95]= 4.13, p, .001, d= 0.42, B10= 235.86;
Figure 2b). RT (Mdifference= 0.024, SE= 0.015, t[95]= 1.64,
p= .10, d= 0.17, B01= 2.42; Figure S2 in the online supplemental
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materials) and false alarm rates (Mdifference= 0.028, SE= 0.018,
t[95]= 1.54, p= .13, d= 0.16, B01= 2.85; Figure S3 in the online
supplemental materials) were not significantly different between inter-
leaved and blocked foils. The strong false alarm effect arising again in
this highly powered replication suggests that the lack of effect in
Experiment 1b may have been spurious.
In the task that explicitly assessed AB/BC memory, participants

showed matched memory between the two conditions
(Mdifference=−0.0061, SE= 0.0093, t[95]=−0.66, p= .51, d=
0.067, B01= 7.19; Figure S4a in the online supplemental materials)
and between AB and BC pairs in both conditions (interleaved:
Mdifference= 0.012, SE= 0.012, t[95]= 1.04, p= .30, d= 0.11,
B01= 5.23; blocked: Mdifference=−0.014, SE= 0.0095, t[95]=
−1.47, p= .15, d= 0.15, B01= 3.14; Figure S15 in the online sup-
plemental materials). This result combined with the lack of differ-
ences in direct pair RTs suggests that the observed advantage for
rapid recognition of interleaved AC associations is unlikely to be
due to a difference in direct pair memory between conditions.
We examined whether recognition of individual direct pairs pre-

dicted performance on related indirect pairs in the speeded task in
Experiment 1c. As direct pair recognition accuracy was perfect for
many participants, we conducted the analysis using RT. We did a
median split for each participant on direct pair RT and assessed
whether responses to ACs were faster when the constituent pairs
were faster. We observed no evidence of such a difference across dif-
ferent types of direct trials (interleaved AB: t[86]=−0.70, p= .49,
d= 0.075, B01= 6.68; interleaved BC: t[85]= 0.42, p= .67, d=
0.046, B01= 7.70; interleaved AB and BC: t[82]=−0.82, p= .42,
d= 0.09, B01= 5.98; blocked AB: t[81]=−0.60, p= .55, d=
0.066, B01= 6.91; blocked BC: t[83]= 0.75, p= .46, d= 0.08,
B01= 6.35; blocked AB and BC: t[76]=−0.52, p= .60, d= 0.060,
B01= 6.98), suggesting that response speed to direct pairs does not
predict response speed to their indirect associations in this study.
Participants responded slower during the explicit inference task than

in this explicit direct pair assessment in both the interleaved
(Mdifference= 0.38, SE= 0.022, t[95]= 17.10, p, .001, d= 1.74,
B10. 1.0e+6; Figure S9 in the online supplemental materials) and
the blocked condition (Mdifference= 0.40, SE= 0.024, t[94]= 16.60,
p, .001, d= 1.70,B10. 1.0e+6).We also observed slower responses
to indirect than to direct speeded recognition trials across Experiments
1a (interleaved:Mdifference= 0.21, SE= 0.027, t[25]= 7.73, p, .001,
d= 1.52, B10= 324,731.5; blocked: Mdifference= 0.12, SE= 0.022,
t[25]= 5.18, p, .001, d= 1.02, B10= 988.07; Figure S8 in the
online supplemental materials), 1b (interleaved: Mdifference= 0.21,
SE= 0.021, t[49]= 10.332, p, .001, d= 1.46, B10. 1.0e+6;
blocked: Mdifference= 0.13, SE= 0.023, t[49]= 5.51, p, .001, d=
0.78, B10= 12,552.24), and 1c (interleaved: Mdifference= 0.18,
SE= 0.019, t[94]= 9.3625, p, .001, d= 0.96, B10. 1.0e+6;
blocked: Mdifference= 0.12, SE= 0.014, t[94]= 8.6209, p, .001,
d= 0.88, B10. 1.0e+6), suggesting that direct associations were
always more accessible than indirect associations. Experiments 1a–c
together provide strong evidence that interleaved exposure facilitates
direct and automatic association of indirectly related items.
As predicted, across Experiments 1a–c, we did not observe signifi-

cant accuracy differences between inference performance for inter-
leaved and blocked ACs in the explicit inference task (1a:
Mdifference= 0.064, SE= 0.059, t[25]= 1.10, p= .28, d= 0.21,
B01= 2.81; 1b: Mdifference= 0.043, SE= 0.027, t[49]= 1.61,
p= .11, d= 0.23, B01= 1.94; 1c: Mdifference= 0.012, SE= 0.024,

t[95]= 0.51, p= .61, d= 0.052, B01= 7.82; Figure 2c, Figure S16
in the online supplemental materials). The B01 value of 7.82 for
Experiment 1c, which had the highest power of the three versions of
Experiment 1 to detect an effect, provides especially strong evidence
for a lack of difference between conditions. There were also no differ-
ences in RT (1a: Mdifference=−0.030, SE= 0.066, t[24]=−0.45,
p= .66, d= 0.090, B01= 4.32, Figure S10 in the online supplemental
materials; 1b: Mdifference= 0.003, SE= 0.038, t[49]= 0.085, p= .93,
d= 0.012, B01= 6.48, Figure S11 in the online supplemental materi-
als; 1c: Mdifference=−0.020, SE= 0.023, t[94]=−0.86, p= .39,
d= 0.088, B01= 6.18, Figure S12 in the online supplemental materi-
als). Equivalent performance between the two conditions in this rela-
tively slow and explicit setting indicates that participants were able to
successfully link blocked AC associations despite displaying little sen-
sitivity to these associations in the implicit speeded setting. This pattern
of results is consistent with the use of relatively slower recurrent com-
putation across localist representations, as hypothesized by Recurrency
and Episodic Memory Results in Generalization (REMERGE)
(Kumaran & McClelland, 2012; Tamminen et al., 2015).

Experiment 2

Experiments 1a–c demonstrated enhanced sensitivity to indirect
associations after interleaved learning, but since the task asked partic-
ipants to report only the directly learned associations, interleaving was
arguably not advantageous in that setting. In the next set of experi-
ments, we aimed to highlight situations in which representations
learned through interleaving should be beneficial. In neural network
models, distributed representations support automatic generalization
(Hinton, 1984): Learning new knowledge about an object automati-
cally allows that knowledge to be transferred to related objects by vir-
tue of the overlap in their representations. By contrast, localist codes
do not as naturally support such transfer (they can, but only with addi-
tional, carefully constructed recurrent computation; McClelland et al.,
1986). In Experiment 2, we tested whether behavior after interleaved
learning reflects this quality of distributed representations. After par-
ticipants learned interleaved and blocked AB and BC associations
as in Experiment 1 (Figure 3a), they then learned to associate novel
nonsense properties with a subset of the objects (Figure 3b). For
each ABC triad, participants associated a unique property with either
A or C. Participants then completed three tests: property memory,
property generalization, and explicit direct pair recognition. In the
property memory test (Figure 3c), we assessed participants’ memory
for the trained property-object pairings, with no expectation of a dif-
ference in performance between conditions. In the property generali-
zation test, we assessed their ability to generalize the novel properties
to indirectly related objects (Figure 3d). We did not explicitly instruct
them about the presence of indirectly related objects, as we had in the
explicit inference task above. We predicted superior property general-
ization for interleaved relative to blocked ACs. Finally, participants
were explicitly assessed on their memory for AB and BC pairings
as in Experiment 1c (not shown in Figure 3).

Method

Participants

In Experiment 2, to match the sample size of the preregistered
Experiment 1b, we recruited 84 new participants through MTurk.
We excluded participants who missed more than half of explicit
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direct pair memory trials or more than one third of property memory
trials, resulting in a total of 53 participants (25 females, 28 males; 42
White, five Black, two Asian, and four unknown; five Hispanic or
Latino; Mage= 37.66, SD= 11.87), which corresponds to an exclu-
sion rate of 36.9%. We chose these criteria to exclude participants
who showed weak direct pair memory or property memory while
retaining enough data for our analyses.

Design and Procedure

After learning direct pair associations as in Experiments 1a–c, partic-
ipants learned novel properties of a subset of the objects and then com-
pleted a property memory and property generalization task. During
property learning (Figure 3b), each participant either learned to associate
the six A objects (26 participants) or the six C objects (27 participants)
across both conditions with six novel nonwords, including “smobs,”
“cwoads,” “flises,” “loarts,” “misks,” and “jolmbs,” selected from the
ARC nonword database (Rastle et al., 2002). Prior to property learning,
we instructed participants that each of the objects they saw had a hidden
property and that they would learn some of these properties. On each
property learning trial, an object was displayed for 2,500 ms along
with a text description of its associated property (“this object flises”).
After each object-nonword association presentation, participants rated
on a scale of 1–5 how well they felt they were able to learn the associ-
ation, with a 4,000 ms response deadline. Each object–property associ-
ation was displayed 12 times during property learning.

During the property memory task (Figure 3c), on each trial, partic-
ipants saw a property at the top of the screen (e.g., “flises”) and were
instructed to select, between a target object and a matched foil, the
object that had been associated with the property during learning.
There was a 4,000 ms response deadline. Each property association
was tested twice, with two different horizontal positions (i.e., target
on the left and foil on the right, and vice versa), for a total of 12 trials.

Before the property generalization task (Figure 3d), participants
were instructed that they would see a property they had studied
along with two objects that they had not learned hidden properties
for, and they would be asked to judge which of the two objects
also has that property. On each trial, participants saw a property at
the top of the screen (e.g., “flises”) and selected between a target
object and a matched foil, with a 4,000 ms response deadline. The
target object was always indirectly related to the associated object
(i.e., A–C). Each object-nonword association was tested twice,
with two different horizontal positions (i.e., target on the left and
foil on the right, and vice versa), forming a total of 12 trials.
Finally, participants were explicitly assessed on their memory for
AB and BC pairings as in Experiment 1c.

Results and Discussion

In Experiment 2, during learning, participants responded to 93.02%
of all trials (SE= 2.72) with a mean visualization score of 3.40 (SE=
0.14). As expected, participants’ memory for trained object–property

Figure 3
Experiment 2 Design and Results
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associations was not different between interleaved (M= 0.93, SE=
0.016) and blocked (M= 0.93, SE= 0.019) items in the property
memory test (Mdifference= 0.0, SE= 0.02, t[52]=−0.00, p= 1.00,
d= 0.0, B01= 6.68; Figure S6 in the online supplemental materials).
However, in the property generalization task, participants performed
significantly better for interleaved (M= 0.57, SE= 0.035, t[52]=
1.98, p= .053, d= 0.27, B01= 1.10; Figure 3f) than blocked
(M = 0.46, SE= 0.032, t[52]=−1.29, p= .20, d= 0.18, B01=
3.06; Figure 3f) triads (Mdifference= 0.11, SE= 0.040, t[52]= 2.78,
p= .008, d= 0.38, B10= 4.65; Figure 3e).
Unlike Experiment 1c, participants here showed superior explicit

memory (Mdifference= 0.035, SE= 0.017, t[52]= 2.07, p= .04, d=
0.28, B10= 1.10; Figure S5a in the online supplemental materials)
for interleaved (M= 0.86, SE= 0.022; Figure S5a in the online sup-
plemental materials) relative to blocked direct pairs (M= 0.83, SE=
0.021; Figure S5a in the online supplemental materials). This raises
the possibility that weak property generalization performance in the
blocked condition could be due to poorer memory of blocked direct
pairs, though therewas no reliable correlation between subjects’ overall
accuracy on blocked pairs and performance on property generalization
(r= .021, p= .83). To rule out this possibility, we ran analyses
restricted to a subsample of subjects (n= 44) who hadmatched perfor-
mance between conditions on direct pairs (Mdifference= 0.0019, SE=
0.016, t[43]= 0.12, p= .91, d= 0.02, B01= 6.08), by excluding sub-
jects who showed the weakest memory for blocked pairs relative to
interleaved pairs. Analyses based on this sample again revealed
matched memory for object–property associations between conditions
(Mdifference= 0.0038, SE= 0.025, t[43]= 0.15, p= .88, d= 0.023,
B01= 6.06) and superior property generalization performance for
interleaved relative to blocked triads (Mdifference= 0.10, SE= 0.044,
t[43]= 2.34, p= .024, d= 0.35, B10= 1.87). Thus, the advantage
of interleaved associations during property generalization is unlikely
to be due to the lack of retention of direct pairs in the blocked condition.
In sum, Experiment 2 provides evidence that representations formed
via interleaved exposure afford automatic generalization of new knowl-
edge to indirectly related objects.

Experiments 3a and b

Thus far, we have demonstrated that interleaved learning influ-
ences behavior in tasks that require relatively rapid judgments.
Experiments 1a–c did not identify a difference between interleaved
and blocked conditions in the slower, explicit AC inference task.
Indeed, we did not predict such a difference, due to the availability
of an alternative strategy in this case: indirect association through
recurrent computation across localist representations, as proposed
by the REMERGE model (Kumaran & McClelland, 2012). Are
there certain learning problems where, even given sufficient oppor-
tunity for retrieval-based computation, only interleaved exposure
can support successful behavior? One situation in which we expect
the localist strategy to fail is when direct associations are not clearly
demarcated during encoding, as AC inference using the localist strat-
egy requires clean conjunctive representations of direct AB and BC
pairs (Kumaran &McClelland, 2012; Schapiro et al., 2017). In tem-
poral statistical learning paradigms, objects are presented one at a
time in a continuous stream with embedded regularities (Luo &
Zhao 2018; Saffran et al., 1996). A localist strategy that quickly
forms robust conjunctive representations of every observed temporal
co-occurrence would encode both reliable and unreliable pairings.

AC inference using this strategy would be very difficult, as recurrent
processing at retrieval would activate the unreliable associations. In
contrast, distributed representations are very well suited to capturing
graded statistical regularities (Rogers &McClelland, 2004; Schapiro
et al., 2017). We, therefore, predicted that a statistical learning var-
iant of our paradigm would show a robust advantage for interleaved
exposure even in the slow explicit inference test.

Method

Participants

To determine the sample size required to detect reliable effects in
Experiment 3, we found a prior visual object statistical learning
study that evaluated the recognition of object pairs (Park et al.,
2018). This study had samples of 30 participants in each experiment,
and an average effect size d of 0.77 for performance on direct pairs,
which corresponds to a sample size of 24 to achieve 0.95 power. We
aimed to collect at least 30 participants after exclusions for these
studies (with variance above this due to uncertainty in yield with
online batch data collection). In Experiment 3a, 105 new participants
were recruited through MTurk. To exclude participants who showed
inattentiveness during learning or weak knowledge of direct associ-
ations after learning, we excluded participants who missed more
than half of learning phase responses or more than one third of
speeded direct trials, resulting in 43 participants (17 females, 26
males; 37 White, one Black, one American Indian/Native, three
Asian, and one unknown; four Hispanic or Latino; Mage= 37.49,
SD= 11.61). Experiment 3b was a replication study in which 100
new participants were recruited through MTurk, resulting in 35 par-
ticipants after exclusions (15 females, 19 males, one unknown; 26
White, six Black, two Asian, and one unknown; three Hispanic or
Latino, one unknown; Mage= 34.71, SD= 10.59). The exclusion
rates were 58.1% and 65% in Experiments 3a and 3b, respectively,
which are higher than those in previous experiments, reflecting the
fact that learning direct associations is more challenging in the stat-
istical learning setting. Indeed, it can be difficult to identify evidence
of successful statistical learning in online experiments (Himberger et
al., 2019). Because our hypotheses regarding AC inference are moti-
vated by models that assume knowledge of the direct associations, it
was important to restrict analyses to participants who successfully
learned direct associations, but, as before, this approach may limit
the generalizability of our results.

Design and Procedure

For each participant, a sequence of visual object pairs was gener-
ated following the same protocol as Experiments 1a–c, except that
each pair repeated 24 (instead of 30) times, and objects were pre-
sented one at a time in a continuous stream with no breaks, such
that two objects from the same pair were shown consecutively fol-
lowed by objects from a different pair (Figure 4a). For each occur-
rence of an object pair, the order of the objects was randomized.
Therefore, for an object pair AB or BC, the two objects always
appeared adjacent in the sequence, but each object would also appear
adjacent to objects that were neither directly nor indirectly related.
As a cover task, participants were instructed to quickly respond as
to whether the current object appeared heavier than the previous
object in the sequence. Participants pressed one key if the current
object seemed heavier than the preceding object and a different
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key if not. Each object was displayed for 1,000 ms, followed by an
intertrial interval of 500 ms. After learning, participants were
informed that there were object pairs embedded within the sequence
they saw. Participants then completed the speeded recognition task
followed by the explicit inference task as in Experiments 1a–c. In
3b, participants additionally completed an explicit direct pair recog-
nition task as in Experiments 1c and 2.

Results and Discussion

In Experiment 3a, in the learning phase, participants responded to an
average of 93.78% of all trials (SE= 1.55) and indicated that an object
appeared heavier than its preceding object on 51.48% of the trials they
responded to (SE= 1.28). In Experiment 3b, participants responded to
an average of 91.36% of learning trials (SE= 1.50) and indicated that
an object appeared heavier than its preceding object on 53.03% of the
learning trials they responded to (SE= 1.10). These numbers suggest
that participants were attentive during learning. As in Experiments 1a–
c, in the speeded recognition task, 50% of trials contained pairs that
were actually shown during learning. On trials where a response was
made, participants indicated that they saw an object pair during learn-
ing 64.21% of the time in Experiment 3a (SE= 1.59) and 69.64% of
the time in Experiment 3b (SE= 2.05). These high rates relative to
prior studies indicate that statistical learning induces higher familiarity
for some unpaired objects (as discussed below).
As in Experiments 1a–c, we observed evidence of stronger rapid

recognition of interleaved relative to blocked indirect associations.
Participants were again slower to correctly reject interleaved relative
to blocked ACs in 3a (Mdifference= 0.081, SE= 0.032, t[37]= 2.50,
p= .017, d= 0.41,B10= 2.66; Figure S7b in the online supplemental
materials) though not in 3b (Mdifference=−0.013, SE= 0.06, t[25]=
−0.21, p= .83, d= 0.041, B01= 4.73; Figure S7b in the online sup-
plemental materials), whereas there was no difference between inter-
leaved and blocked foils in 3a (Mdifference=−0.021, SE= 0.028,
t[36]=−0.74, p= .47, d= 0.12, B01= 4.40; Figure S7b in the
online supplemental materials) or 3b (Mdifference=−0.0067, SE=
0.043, t[27]=−0.16, p= .88, d= 0.03, B01= 4.93; Figure S7b in
the online supplemental materials). Participants exhibited higher

false alarm rates for interleaved than blocked ACs in both 3a
(Mdifference= 0.26, SE= 0.047, t[42]= 5.42, p, .001, d= 0.83,
B10= 6,726.25; Figure S7a in the online supplemental materials)
and 3b (Mdifference= 0.19, SE= 0.066, t[34]= 2.81, p= .008, d=
0.47, B10= 5.05; Figure S7a in the online supplemental materials).
Unlike in Experiments 1a–c, however, we observed evidence that
interleaving induced a false sense of familiarity even for unrelated
objects in the interleaved condition: response time was not signifi-
cantly different between interleaved ACs and foils in 3a
(Mdifference= 0.095, SE= 0.05, t[34]= 1.88, p= .069, d= 0.31,
B01= 1.15) or 3b (Mdifference=−0.012, SE= 0.068, t[26]=−0.17,
p= .87, d= 0.033, B01= 4.84), and participants showed higher
false alarm rates for interleaved than for blocked foils in 3a
(Mdifference= 0.21, SE= 0.049, t[42]= 4.34, p, .001, d= 0.66,
B10= 271.20; Figure S7a in the online supplemental materials) but
not in 3b (Mdifference= 0.10, SE= 0.067, t[34]= 1.57, p= .13, d=
0.27, B01= 1.80; Figure S7a in the online supplemental materials).
These results suggest that, when direct pair associations are not clearly
demarcated, temporal proximity may facilitate the learning of associ-
ations even for unrelated items.

Critically, in Experiment 3a, unlike in Experiments 1a–c, we
observed higher accuracy for interleaved than blocked AC pairs in
the explicit inference task (Mdifference= 0.15, SE= 0.049, t[42]=
3.02, p= .004, d= 0.46, B10= 8.30; Figure 4b; Figure S16 in the
online supplemental materials), despite no difference in direct pair
accuracy (Mdifference= 0.027, SE= 0.034, t[42]= 0.80, p= .43,
d= 0.12, B01= 4.49; Figure S19 in the online supplemental materi-
als) or RT (Mdifference=−0.024, SE= 0.019, t[42]=−1.26,
p= .21, d= 0.19, B01= 2.91; Figure S13 in the online supplemental
materials) between conditions. We found significant above chance
inference performance in the interleaved condition (M= 0.61,
SE= 0.035, t[42]= 3.22, p= .0025, d= 0.49, B10= 13.23) but
chance performance in the blocked condition (M = 0.47, SE=
0.032, t[42]=−1.10, p= .28, d= 0.17, B01= 3.44), suggesting
that only interleaved exposure permitted successful inference
(Figure 4c). Experiment 3b largely replicated these effects: perfor-
mance in the explicit inference task was superior in the interleaved
condition (M= 0.57, SE= 0.04) than the blocked condition (M=
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0.45, SE= 0.039; Mdifference= 0.12, SE= 0.060, t[34]= 2.06,
p= .047, d= 0.35, B10= 1.18; Figure 4b; Figure S16 in the online
supplemental materials) despite matched direct pair performance
(speeded recognition accuracy: Mdifference= 0.026, SE= 0.030,
t[34]= 0.88, p= .38, d= 0.15, B01= 3.85, Figure S19 in the online
supplemental materials; speeded recognition RT: Mdifference= 0.023,
SE= 0.028, t[34]= 0.80, p= .423, d= 0.14, B01= 4.10,
Figure S14 in the online supplemental materials; slow recognition
accuracy: Mdifference=−0.033, SE= 0.036, t[34]=−0.94, p= .35,
d= 0.16, B01= 3.67, Figure S4b in the online supplemental materi-
als; slow recognition RT: Mdifference=−0.013, SE= 0.029, t[33]=
−0.44, p= .66, d= 0.076, B01= 4.96, Figure S14 in the online sup-
plemental materials), indicating that the advantage in explicit infer-
ence for interleaved ACs was not due to a failure to learn direct AB
and BC associations in the blocked condition (though note enhanced
memory for blocked BC relative to AB pairs in this case:Mdifference=
0.10, SE= 0.048, t[34]= 2.17, p= .037, d= 0.37, B10= 1.42;
Figure S15 in the online supplemental materials). As in Experiment
1c, participants were slower during explicit recognition of indirect
than direct pairs for both interleaved (Mdifference= 0.18, SE= 0.038,
t[33]= 4.70, p, .001, d= 0.81, B10= 525.20; Figure S9 in the
online supplemental materials) and blocked trials (Mdifference= 0.32,
SE= 0.068, t[32]= 4.70, p, .001, d= 0.82, B10= 507.02;
Figure S9 in the online supplemental materials). Together, the results
indicate that in a setting where object pairings need to be inferred from
the statistics of co-occurrence over time, interleaving benefits even
explicit inference.

Model Simulations

To evaluate how different classes of models behave in our para-
digm, we contrasted three models of memory that have been pro-
posed to solve associative inference (Figure 5): the temporal
context model (TCM; Howard & Kahana, 2002; Howard et al.,
2009; Figure 5a–c), which employs distributed representations,
REMERGE (Kumaran & McClelland, 2012; Figure 5d–f), which
uses only localist representations, and our model of the hippocam-
pus, C-HORSE (based on Schapiro et al., 2017; Figure 5g–i),
which contains both kinds of representations separated across the
two pathways of the hippocampus. The code for these models can
be found at: https://github.com/schapirolab/itlblklearning.

Overview of Model Methods

Here we provide an overview of the implementation and mecha-
nisms of the three models we applied to our paradigm. Details and
equations are provided in the Appendix. TCM encodes items by
associating them with the contexts in which they are encountered.
Relationships between items are then reflected in the degree of over-
lap in distributed context representations. TCM learns by updating
item-to-context and context-to-item mappings. Prior to the experi-
ment, distinct items are assumed to be associated with nonoverlap-
ping contexts. During learning, each input item causes drift in a
context vector, and subsequent items are associated with this drifting
context. Through this process, the context representations tied to
items become overlapping to the extent that those items continue
to appear in similar contexts.
To simulate the task, we adopted a version of TCM designed to

simulate paired-associate learning (Howard et al., 2009; Table S1

in the online supplemental materials). To delimit trials of pair pre-
sentations (as in Experiment 1), a distractor vector drifts the context
prior to each new trial. The context drift caused by an item is deter-
mined by the item representation and a recency-weighted average of
past contexts of its occurrence. In the interleaved condition of our
design, the context drift caused by each B will consistently reflect
recent contexts in which its related A and C were presented. In con-
trast, the drift caused by each blocked item B will reflect only the
contexts of its related A initially, until it becomes gradually
swamped by that of its related C as BC pairs begin to appear.
Prior context exponentially decays as new contextual information
is incorporated. As a result of this interference, contexts in which
interleaved A and C appear will be more similar than those of
blocked A and C. Thus, in TCM, we expected that interleaved
ACs would develop stronger associations than blocked ACs.

In contrast to the distributed representations used in TCM,
REMERGE (Kumaran & McClelland, 2012; Figure 5d; Table S2
in the online supplemental materials) employs a localist code: AB
and BC are represented as nonoverlapping units in the conjunctive
layer, each of which is bidirectionally connected to individual
item units in the feature layer (i.e., AB in the conjunctive layer is
connected to A and B in the feature layer). This model employs an
idealized learning process whereby each pair presentation strength-
ens connections only to constituent items, such that each AB presen-
tation only updates bidirectional A-AB and B-AB connections.
Since weight updates are fully orthogonalized for different conjunc-
tive pairs, there is no basis for a difference between interleaving and
blocking in the model’s behavior.

To infer item associations at retrieval, REMERGE engages in a
search process by allowing activity to spread among connected
units (McClelland et al., 1986). At the onset of retrieval, an external
input activates the corresponding unit in the feature layer. At each
timestep during retrieval, the net input into each unit is a weighted
sum of its previous net input and the current inputs from connected
units. In the feature layer, each unit’s activity is a logistic function of
its net input. In the conjunctive layer, a version of the softmax func-
tion normalizes net inputs across units, mimicking competitive inhi-
bition. AC inference can be achieved when input A causes activity to
spread to AB, then B, BC, and finally C. REMERGE is intended to
simulate “big-loop” recurrence within the hippocampal system, in
which output activity from the hippocampus can be recirculated
back into the system as input via the entorhinal cortex.

C-HORSE (based on Schapiro et al., 2017; Figure 5g), inspired by
known circuitry and properties of the hippocampus, posits that both
distributed and localist representations are available via separate
pathways. The model consists of an input layer representing super-
ficial layers of entorhinal cortex (EC_in), an output layer represent-
ing deep layers of entorhinal cortex (EC_out), and hidden layers
representing hippocampal subfields dentate gyrus (DG), cornu
ammonis 3 (CA3), and CA1. We modified the architecture of our
previously published model (Schapiro et al., 2017; see Tables S3–
S5 in the online supplemental materials for comparison) to incorpo-
rate the topographic organization of projections from CA3 and
superficial EC to CA1, along its proximodistal axis (Sun et al.,
2014; Witter et al., 2000). We split the existing CA1 layer into
two parts (proximal/distal CA1), such that the trisynaptic pathway
(TSP) flow is EC_in→DG→CA3→ pCA1→ EC_out and the
MSP is EC↔ dCA1 (Figure 5g). This allows the model to more eas-
ily express the distinct contributions of the MSP and TSP relative to
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Figure 5
Model Architectures and Results
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TCM= temporal context model; TSP= trisynaptic pathway; MSP=monosynaptic pathway. See the online article for the color version of this figure.
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our prior version. Otherwise, the model was the same as in Schapiro
et al. (2017), with sparse connectivity and high inhibition in the TSP,
which give rise to the well-known pattern-separated representations
in DG and CA3 (Leutgeb et al., 2007), and dense connectivity and
lower inhibition in the MSP, which produce relatively overlapping
representations in dCA1. The TSP has a faster learning rate than
the MSP, consistent with evidence suggesting that the TSP can do
one-shot learning, whereas the MSP does more incremental learning
(Nakashiba et al., 2008). We expected that overlapping representa-
tions in the MSP would require interleaving to support inference,
whereas pattern-separated representations in the TSP would form
via either interleaved or blocked exposure and support inference
via recurrence, as in REMERGE.
For TCM and C-HORSE, we presented sequences of object pairs, in

which AB and BC were either interleaved or blocked, generated using
the same protocol and number of exposures as in Experiments 1a–c.
For REMERGE, we assumed that all connection weights are identical
by the end of learning, as in its original simulations, where the extent of
its weight strengthening depends only on the amount of training (i.e.,
the number of presentations), which is equivalent across all pairs. After
learning, we measured the amount of activation of item C (as output)
given A (as input), and vice versa, across 100 instantiations of each
model.

Results and Discussion

In TCM, as expected, interleaving led to stronger AC activation
relative to blocking (t[99]= 16.58, p, .001, B10. 1.0e+6) and
relative to matched foil pairs (t[99]= 13.29, p, .001, B10. 1.0e
+6) across learning (Figure 5b) and at test (Figure 5c). In addition,
there was greater activation for interleaved foils than blocked foils
(at the end of training: t[99]= 9.38, p, .001, B10. 1.0e+6;
Figure 5b), reflecting the fact that contexts associated with adjacent
trials are not fully orthogonalized. TCM can thus account for situa-
tions where interleaving benefits inference, but cannot explain
matched performance, as observed in the explicit inference task in
Experiment 1. We did not perform parameter fitting for this
model, but found that the interleaved advantage was highly robust
across parameter values, indicating a qualitative, inherent property
of the model.
In the input sequenceswe generated, the delay between related pairs

was, on average, shorter in the interleaved condition. Of the three
models we considered, TCM is the only one that might plausibly be
sensitive to this difference in time lag. To test whether the advantage
of interleaving in TCM arises from this property of the input, we per-
formed an additional simulation in which pairs from each triad in the
blocked condition appeared only in the first half or in the second half
of the full sequence. In this scenario, the mean time lag between
related pairs is shorter in the blocked than in the interleaved condition,
but we found that interleaving still resulted in stronger AC activation
(Figure S20 in the online supplemental materials) relative to blocking
(relative to ACs blocked in the first half: t[99]= 28.65, p, .001,
B10. 1.0e+6; relative to ACs blocked in the second half: t[99]=
29.17, p, .001, B10. 1.0e+6) and relative to matched foil pairs (rel-
ative to blocked foils in the first half: t[99]= 29.1, p, .001, B10.
1.0e+6; relative to blocked foils in the second half: t[99]= 29.0, p
, .001, B10. 1.0e+6). Thus, associating related ACs in TCM bene-
fits from the interleaved order of presentation, not simply the shorter
time lags in the interleaved condition.

In REMERGE, given opportunities for spreading activation
amongst related units, an input A always activates its associated
items more than matched foils (Figure 5f). This recurrent process
first activates B and AB, more than foils Y and XY, followed by
greater activation of BC than of YZ. Finally, C becomes activated
more than its matched foil Z. The model predicts no difference
between interleaved and blocked AC activations (Figure 5e). This
behavior is due to two critical features of REMERGE: there are no
shared weights between conjunctive direct pairs, and learning
depends on the number but not the order of presentations.
REMERGE thus provides an account of how inference performance
can be matched between conditions but fails to explain the observed
advantage of interleaved associations in the speeded recognition
task.

It is worth considering whether modifications to REMERGE
might allow it to show order effects that could explain the interleav-
ing advantage. REMERGE could be modified to incorporate a
weight decay mechanism, such that weights are higher for more
recently presented item pairs. This would result in weaker memory
for blocked ABs than BCs. Indeed, we generally see evidence for
somewhat weaker AB relative to BC memory (Figure S17 in the
online supplemental materials). However, in many implementations
of such a recency weighting and, critically, in our data, memory for
interleaved direct pairs is matched to memory for blocked direct
pairs (Figure S18 in the online supplemental materials), meaning
that interleaved direct pair memory falls evenly between blocked
AB and BC memory. REMERGE does not exhibit a stronger overall
connection from A to C in the interleaved condition under the con-
straint of matched overall direct pair memory. It is possible that the
matched memory we observed in Experiment 1 was due to a ceiling
effect, but the recognition of direct pairs in Experiment 3 was off
ceiling and also matched between conditions (Figure S19 in the
online supplemental materials). Mismatched direct pair strength
between conditions would also likely lead to differences in explicit
inference performance in Experiments 1a–c, which we did not
observe. In sum, it is possible in theory that an implementation of
recency weighting that results in stronger overall direct pair memory
in the interleaved condition could lead to an interleaved advantage in
speeded recognition for REMERGE, but we did not observe such an
advantage in direct pair memory in our data.

In C-HORSE, we simulated the speeded and explicit inference
tasks by modulating reliance on the MSP versus TSP. We assumed
a control mechanism that shifts the relative strength of dCA1/pCA1
outputs to EC_out during AC inference such that model dynamics
were predominantly driven by only one of the two pathways at a
time. Such a mechanism could potentially be implemented in inter-
actions between the medial prefrontal cortex and CA1, as the
medial prefrontal cortex is known to influence CA1 representations
as a function of task requirements (Eichenbaum, 2017; Guise &
Shapiro, 2017). We found that when relying primarily on the
sparse, pattern-separated representations of the TSP (Figure 5i),
the model demonstrates matched performance between the inter-
leaved and blocked conditions (t[99]=−0.03, p= .98, B01=
10.04; Figure 5h), akin to human participants on the explicit infer-
ence task. On the other hand, relying on the overlapping represen-
tations of the MSP (see overlap between A and C items in Figure 5i,
dCA1) leads to an advantage for the interleaved condition (t[99]=
12.17, p, .001, B10. 1.0e+6; Figure 5h), as in human perfor-
mance on the speeded recognition task.
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In sum, similar to generic neural network models employing dis-
tributed representations (McClelland et al., 1995), TCM predicts an
advantage of interleaved exposure for linking ACs. TCM shares with
neural network models the use of distributed representations of item
associations (mediated by shared context), rendering it similarly sen-
sitive to interference. Unlike generic neural network models and
TCM, REMERGE employs an idealized localist representation
that is insensitive to the ordering of input presentations and equally
supports interleaved and blocked AC inference. C-HORSE employs
both kinds of representations: representations in the MSP are over-
lapping, as those in generic neural network models and in TCM,
whereas the TSP hosts pattern-separated representations similar to
those in REMERGE. We propose that both representations exist in
the hippocampus, as their combination allows us to account for
the pattern of behavior we observed empirically.

General Discussion

Building direct overlap in representations to encode relationships
can promote efficient and powerful memory and generalization. In
neural network models that adopt these integrated, distributed repre-
sentations, information must be presented in interleaved order. Does
interleaved exposure similarly facilitate the formation of integrated,
distributed representations supporting generalization in humans?We
previously put forward a model proposing that, on the timescale of
one experimental session, the CA1 subfield of the hippocampus
can build distributed representations to integrate related inputs
(Schapiro et al., 2017). We thus tested this idea using the hippocam-
pally dependent associative inference task (Bunsey & Eichenbaum,
1996; Preston et al., 2004), assessing participants’ ability to link
indirect associations (AC) after interleaved or blocked exposure to
directly associated items (AB and BC). We found that, after inter-
leaved learning, participants exhibited an increased capacity to rap-
idly recognize item relatedness, to efficiently generalize novel
information based on learned associations, and to make inferences
according to statistical regularities of item associations. These
behaviors reflect properties of distributed representations built
from interleaved input in neural network models, consistent with
the idea that similar representations underlie human behavior.
Models that encode related items using distributed representations

support efficient judgments of item relatedness via directly overlapping
representations, whereas retrieval-based models require additional pro-
cesses to support such judgments (Kumaran & McClelland, 2012;
McClelland et al., 1986). We postulated that if distributed representa-
tions are available for learning on a short timescale, interleaving AB
andBC pairs across an experimental sessionwould drive the formation
of overlapping representations of A and C. These representations
would result in higher sensitivity to the AC association in a setting
in which participants make rapid judgments without deliberately
searching for AC associations. In a scenario with opportunity for addi-
tional retrieval-based processing, we would not expect an impact of
presentation order. Indeed, a previous study identified no behavioral
difference between interleaving and blocking when participants were
asked to deliberately infer associations between indirectly related
items (Schlichting et al., 2015). As in this prior study and as predicted,
in Experiment 1, there was no difference between blocked and inter-
leaved conditions in the standard explicit inference task. In an implicit,
speeded task, however, there was a significant slowing in the response
to interleaved ACs—it was more difficult to indicate that these items

had not been studied together. Participants also tended to false alarm
to the interleaved ACs, believing that they had studied these items
together directly. These patterns did not hold for pairs of items that
were unrelated but matched on the distribution of time between presen-
tations (foils), indicating an effect of interleaved order rather than a
simple effect of temporal proximity in the interleaved condition (see
below for a discussion of temporal proximity in interaction with inte-
grative encoding). The results suggest that interleaving supports direct
AC recognition, whereas blocked associations may require additional
retrieval-based processes (though see discussion on inferring encoding
vs. retrieval mechanisms below).

In the context of a recognition task, interleaving arguably
impaired performance, as it led participants to indicate that they rec-
ognized pairs of items that were never studied together. But we
expect that interleaving should often benefit behavior. If interleaving
builds distributed representations, it should afford automatic gener-
alization of new knowledge among related entities. In Experiment 2,
after learning AB and BC associations, participants learned novel
arbitrary attributes of some items, and we assessed their ability to
generalize such attributes between interleaved and blocked ACs.
We found that generalizing novel associations to indirectly related
items was superior in the interleaved condition.

Across the first two experiments, interleaved associations bene-
fited performance in tasks that required relatively rapid, implicit
judgments. Are there situations where interleaving would benefit
performance even under more explicit conditions? We hypothesized
that a statistical learning paradigm (Saffran et al., 1996) would pro-
vide such a situation, where direct associations need to be learned
over time from graded co-occurrence frequencies. Distributed repre-
sentations are especially sensitive to this kind of graded statistical
information—indeed, our model indicates a complete failure of
localist representations in the hippocampus to support this kind of
learning (Schapiro et al., 2017). In Experiment 3, we exposed partic-
ipants to objects with the same pair structure but presented one at a
time in a continuous sequence, with each object temporally adjacent
to its pairmate. Consistent with our prediction of a qualitative advan-
tage of interleaved associations in this scenario, performance was
superior in the interleaved condition during the explicit inference
task, with inference no different than chance in the blocked condi-
tion. The results suggest that interleaving is essential for forming
representations that permit inference in a scenario that requires inte-
grating statistical information across time.

We do not think our tasks are likely to be processed pure—inte-
grated and separated representations likely both contribute to all of
our tests. We do think there is evidence, though, for a change in
the relative contribution of distinct underlying processes. We
know that all of our tests are sensitive enough to detect a difference
between conditions, as each shows robust effects under the specific
conditions predicted by our framework. It is difficult to imagine just
one underlying process that could predict a positive effect for
speeded recognition and a null effect for explicit inference given dis-
cretely encoded pairs while also predicting a positive effect in
explicit inference given continuously presented pairs.

Simulations contrasting different computational models of associ-
ative inference in the hippocampus provided evidence that at least
two forms of representation are likely to contribute. We found that
an encoding-based strategy using exclusively distributed representa-
tions or a retrieval-based strategy using exclusively localist internal
representations rendered a model unable to account for the full
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pattern of data: TCM (Howard et al., 2009; Howard & Kahana,
2002), employing a distributed code, predicts an advantage of inter-
leaving over blocking but fails to account for the possibility of equiv-
alent performance, as in explicit inference. This advantage of
interleaving in TCM persists even when temporal delays are shorter
on average between blocked pairs than between interleaved pairs.
REMERGE (Kumaran & McClelland, 2012), a model that is exclu-
sively localist, accounts for the matched performance but never pre-
dicts the observed interleaving advantage. C-HORSE, employing
both kinds of representations via different pathways, can account
for both phenomena. These qualitatively different results across
models are useful in establishing which classes of models are likely
to be able to provide a full account of hippocampal-dependent learn-
ing and inference: We suggest that models including both separated
and integrated representations are likely needed.
There are many domains where interleaving has proven broadly

beneficial for learning (Brunmair & Richter, 2019), such as in educa-
tional settings (Samani & Pan, 2021; Taylor & Rohrer, 2010) and in
motor skill learning (Goode &Magill, 1986). There is extensive work
on the effects of interleaved and blocked exposure on learning catego-
ries of multidimensional stimuli (see Carvalho &Goldstone, 2015 for
a review). Though interleaving stimuli from different categories more
often benefits learning and generalization (Birnbaum et al., 2013;
Kang & Pashler, 2012; Kornell & Bjork, 2008; Noh, Bjork, &
Preston, 2021), this is modulated by several factors, such as the
kind of stimuli, the structure of the categories, and task instructions.
Many of these findings have been attributed to trial-by-trial attentional
effects to different features: Exposure to stimuli from the same cate-
gory back-to-back (blocking) promotes attention to within-category
similarities, whereas exposure to stimuli from different categories
back-to-back (interleaving) promotes attention to across-category dif-
ferences (Carvalho & Goldstone, 2015; Carvalho & Goldstone,
2017). Our study was designed to avoid these kinds of attentional
effects: Attention to features in adjacent trials wasmatched across con-
ditions, as back-to-back trials always, in both conditions, contained
completely unrelated pairs. The benefit of interleaving in our data is
thus more likely to be related to the benefit observed in neural network
models, which do not (typically) have these trial-by-trial attentional
biases.
One recent category learning paper found better performance

under blocked than interleaved conditions, which the authors argued
was supported by ‘factorized’ representations that they suggest may
be difficult to explain under an attentional account (Flesch et al.,
2018). The authors interpret the results as evidence that the neocor-
tex may not be as susceptible to catastrophic interference as neural
network models would predict. An alternative interpretation, consis-
tent with the current framework, is that orthogonalized representa-
tions in areas DG and CA3 of the hippocampus learn factorized
representations and thus can support behavior in scenarios where
it is not advantageous to integrate across conditions, as was the
case in that study.
In addition to the distributed and localist strategies considered

above, another influential proposal for how the hippocampus may
carry out associative inference is known as ‘integrative encoding’
(Schlichting & Preston, 2015; Shohamy & Wagner, 2008).
Integrative encoding posits that studying BC, after having studied
AB, triggers reinstatement of the ABmemory through pattern comple-
tion mechanisms, and an overlapping representation of AB and BC is
then encoded (which could, in its strongest form, result in a localist

ABC representation). Although this strategy, similar to our account,
employs overlapping AC representations formed during encoding to
support inference, it relies on the episodic encoding and pattern com-
pletionmechanisms ofDG andCA3. It is not clear whether integrative
encoding predicts an advantage for blocked or interleaved presenta-
tion. In theory, the temporal proximity between related AB and BC
presentations during interleaving could facilitate the formation of an
overlapping AB–BC representation. It could also allow integration
in two directions, through exposure to AB after BC in addition to
before BC. However, evidence has been presented for stronger inte-
grative encoding with blocking, where stronger AB memory after
repeated AB presentations permits more effective reinstatement of
AB during BC learning (Schlichting et al., 2015). It may thus be
the case that strength is more important than time lag for successful
integrative encoding and suggests that integrative encoding is unlikely
to underlie the findings of interleaved advantage in our tasks. It could
be that integrative encoding is more likely to occur when participants
are intentionally searching for indirect relationships between direct
pairs, which was unlikely to be occurring in our tasks, especially in
the statistical learning setting in Experiment 3. We also know that
the interleaved advantage in TCM and C-HORSE does not arise
from shorter time lags in the interleaved condition. Still, we cannot
rule out the possibility that humans could show the interleaved advan-
tage through integrative encoding that benefits from shorter time lags
in some situations. Future work using computational models that
implement integrative encoding could fruitfully explore these
possibilities.

Several prior imaging and behavioral studies speak to encoding-
and retrieval-based strategies and representations that can underlie
associative inference. Some have argued that the hippocampus
adopts an encoding-based approach, as in integrative encoding
(Schlichting et al., 2014; Schlichting et al., 2015; Shohamy &
Wagner, 2008; Zeithamova, Schlichting, et al., 2012), whereas oth-
ers have argued that inference is supported by retrieval-based
sequential activation (Banino et al., 2016; Barron et al., 2020;
Carpenter et al., 2021; Carpenter & Schacter, 2017; de Araujo
Sanchez & Zeithamova, 2023; Koster et al., 2018). We demonstrate
that repeated, interleaved exposure facilitates the encoding of inte-
grated representations. This is in line with evidence for encoding-
based mechanisms often coming from studies that use interleaved
exposure (Shohamy & Wagner, 2008; Zeithamova, Schlichting, et
al., 2012), while evidence for sequential, retrieval-based mecha-
nisms come from studies where related pairs are shown in a blocked
manner (Banino et al., 2016; Barron et al., 2020) or with limited
exposure (Banino et al., 2016; Carpenter et al., 2021; Carpenter &
Schacter, 2017; Koster et al., 2018). In both our explicit and implicit
assessments, we found faster RTs for direct than indirect pairs,
which has sometimes been interpreted as evidence for retrieval-
based mechanisms (de Araujo Sanchez & Zeithamova, 2023;
Shohamy & Wagner, 2008). However, models learning distributed
representations at encoding also predict stronger associations
among directly learned associates, which could lead to slower RTs
for indirect pairs in the absence of retrieval-based inference. (We
do not think that such a model can explain the full pattern of our
data, though, because it would always predict a difference between
interleaved and blocked conditions in the explicit inference task).
In potential tension with our results, an functional magnetic reso-
nance imaging (fMRI) study (Schlichting et al., 2015) found that
blocked exposure promoted the integration of related pairs in the
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anterior hippocampus. However, encoding- and retrieval-based
inference strategies could produce similar results in the slow fMRI
blood oxygen level-dependent signal: through spreading activation,
retrieval-based strategies will activate overlapping sets of items for
related inputs even if their underlying representations are not inte-
grated (Chen et al., 2021; Kumaran & McClelland, 2012).
Taken together, we provide behavioral and computational evi-

dence that interleaved exposure facilitates behaviors reflecting the
formation of integrated, distributed representations. The rapid time-
scale of the emergence of these behaviors—across one experimental
session—demonstrates great potential for further empirical investi-
gation of this powerful form of representation.
A version of this work that includes results from Experiments 1a,

1b, and 3a was presented at the 43rd Annual Meeting of the
Cognitive Science Society and appeared in the conference proceed-
ings. The manuscript was posted as a preprint to bioRxiv.
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Appendix

Model Descriptions

The Temporal Context Model

Temporal Context Model (TCM) (Howard et al., 2009; Howard &
Kahana, 2002; Figure 5a) learns distributed representations of input
items by associating them with the context in which they are pre-
sented. To simulate our task, we adopted a version of TCM designed
to model paired-associate learning (Howard et al., 2009). Across 100
simulations, we present a model with a sequence of object pairs gen-
erated following the same protocol as in Experiments 1 and 2. Items
in each pair are presented sequentially in a randomized order. In
TCM, each item α is represented by a unique one-hot vector fα in
which the unit representing the item has an activity of 1 and activities
for other units are 0. During learning, at each timestep i, each input
item fi evokes a contextual input tINi that drives the evolution of a
context vector ti−1 according to:

ti = rti−1 + btINi

where tINi is a combination of a fixed component cα and a changing
component h as in Howard et al. (2009). If α is the item presented at
timestep i, then tINi is:

tINi = (1− gh)ca + ghĥa

where cα is identical to fα and hα evolves each time α is presented
according to:

Dha = ti−1

Each time the context drifts, the model updates memory associa-
tions between the item and its present context according to:

DMft = gft tif
T
i

DMtf = gtf fit
T
i

where Mft and Mtf, respectively, denote item-to-context and
context-to-item associations, and γft and γtf are the rates at which
these two sets of associations are updated.
Prior to the presentation of a new object pair, we present a distrac-

tor pattern orthonormal to its current context, which evolves the con-
text at a rate of βdistractor. Across learning and at test, to probe the
development of item associations, we measured the amount of acti-
vation of other items via Mft and Mtf given an input item. See
Table S1 in the online supplemental materials for parameter values.

REMERGE

In simulations of paired-associate inference, REMERGE
(Kumaran & McClelland, 2012; Figure 5d) represents items (e.g.,
A and B) and direct pairs (e.g., AB and BC) using a localist code.
The model consists of two layers: a feature layer, in which each
unit represents a specific item, and a conjunctive layer, in which
each unit represents a direct pair. The two layers are connected by
bidirectional excitatory connections that link each conjunctive unit

with its directly related feature units (e.g., the conjunctive unit AB
is bidirectionally connected to feature units A and B). The model
employs an idealized learning procedure whereby each direct pair
presentation strengthens only connections between its conjunctive
unit and its constituent feature units (i.e., presentation of pair AB
updates only the weights between the conjunctive AB unit and fea-
ture units A and B).

At the onset of inference, all units are initialized with an activity of
0. To present a cue item (e.g., A), the activity of its corresponding
feature unit is set to 1. Then, activities spread amongst connected
units for 150 timesteps starting from t= 1.

At each timestep t. 1, the net input to a unit i, neti(t), is

neti(t) = lcneti(t)+ (1− l)cneti(t − 1)

where cneti(t) is the current net input and cneti(t− 1) is the net input
at the previous timestep, and cneti(t) is computed as

cneti(t) =
∑N

j=1

wijyj(t)+ 0.5× exti(t)

where yj is the activity of the jth unit connected to the unit i and exti-
(t) is the external input for the unit i, which is 1 for the cue item and 0
for all other items across all timesteps.

For a feature unit i, its activity yi is computed as a logistic function
of neti, such that:

yi = 1
1+ e−neti/t

where τ is a temperature parameter controlling the degree to which yi
varies with neti.

For the conjunctive unit layer, a hedged softmax function is
applied over all conjunctive units to determine the activity of each
unit i, such that

yi = eneti/t

C1/t +∑N
i=1 e

neti/t

in which τ is a temperature parameter, and C is a constant that con-
trols the total activity across conjunctive units. At each timestep, we
record activities of all feature and conjunctive units. See Table S2 in
the online supplemental materials for parameter values.

Complementary Hippocampal Operations for
Representing Statistics and Episodes

This neural network model of the hippocampus was originally
developed in Emergent v.7.0.1 in C++ (Aisa et al., 2008). We ported
the model to Golang Emergent v.1.0.5 (https://github.com/emer/
emergent), which required the parameter changes detailed in
Tables S3–S5 in the online supplemental materials. We also split
CA1 into two layers for this simulation, consistent with known ana-
tomical projections, which allowed more control over the impact of
the separate representations of the MSP and TSP on the output.

The model has units with activity levels ranging from 0 to 1. A
unit’s activity is proportional to the activity of all units connected

(Appendix continues)
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to it, weighted by the value of the connection weights between them,
and modulated by inhibition. The model is set up as an autoencoder,
tasked with duplicating the patterns presented to EC_in on EC_out.
Weights are adjusted to accomplish this task using a combination of
error-driven and Hebbian learning. The error-driven component
adjusts connection weights such that activity during two “minus
phases” becomes more similar to activity during a “plus phase.”
The equations for activity dynamics, inhibition, and learning can
be found in O’Reilly et al. (2012).
The learning procedure for this hippocampus model is based on

differences in projection strengths between subfields at different
phases of the hippocampal theta oscillation (Ketz et al., 2013). At
the trough of theta (as measured at the hippocampal fissure), EC
has a stronger influence on CA1, whereas at the peak, CA3 has a
stronger influence on CA1 (Brankǎk et al., 1993). For each learning
trial, two items are presented to EC_in (for example A and B,

represented by the two corresponding input units taking on a value
of 1). There is then one minus phase in which EC_in strongly pro-
jects to CA1 and CA3→CA1 is inhibited, which corresponds to
theta trough. Next, there is a minus phase where CA3 projects
strongly to CA1 and EC_in→CA1 is inhibited, which corresponds
to theta peak. There is then a plus phase, in which the target activity
(A and B on the output layer) is directly clamped to EC_out and
allowed to circulate. Activity throughout the network during each
of the minus phases is contrasted with activity during the plus
phase, and weights are adjusted so that the patterns of local unit coac-
tivity during each minus phase are shifted more toward those of the
plus phase.
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