ROSE: Remove Objects with Side Effects in Videos
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Abstract

Video object removal has achieved advanced performance due to the recent success
of video generative models. However, when addressing the side effects of objects,
e.g., their shadows and reflections, existing works struggle to eliminate these
effects for the scarcity of paired video data as supervision. This paper presents
ROSE, termed Remove Objects with Side Effects, a framework that systematically
studies the object’s effects on environment, which can be categorized into five
common cases: shadows, reflections, light, translucency and mirror. Given
the challenges of curating paired videos exhibiting the aforementioned effects,
we leverage a 3D rendering engine for synthetic data generation. We carefully
construct a fully-automatic pipeline for data preparation, which simulates a large-
scale paired dataset with diverse scenes, objects, shooting angles, and camera
trajectories. ROSE is implemented as an video inpainting model built on diffusion
transformer. To localize all object-correlated areas, the entire video is fed into the
model for reference-based erasing. Moreover, additional supervision is introduced
to explicitly predict the areas affected by side effects, which can be revealed
through the differential mask between the paired videos. To fully investigate the
model performance on various side effect removal, we presents a new benchmark,
dubbed ROSE-Bench, incorporating both common scenarios and the five special
side effects for comprehensive evaluation. Experimental results demonstrate that
ROSE achieves superior performance compared to existing video object erasing
models and generalizes well to real-world video scenarios. The project page is
https://rose2025-inpaint.github.io.

1 Introduction

Removing objects in visual contents represents a valuable technique with widespread applications
in both daily and industrial scenarios. This task targets to re-fill the masked region of objects
via reasonable and consistent content, regarding the context in surrounding environment. Prior
works [[15} 138} [14} 3] towards either image or video object removal have explored to leverage flow-
based pixel propagation to restore the masked region with neighboring information [44]], or adopt
the inpainting paradigm to directly generate the masked content [33[23]. Powered by the significant
capability of large-scale models [27, 8l (19 23] on generalized visual creation, the inpainting-based
methods exhibit satisfying erasing performance in diverse scenarios of image and video.

Despite the advanced performance, however, existing works are still restricted due to the lack of
paired training samples that follows real-world physical rules. The paired samples represents data
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Figure 1: Video object removal results generated by ROSE (zoom in for better view). Every two
lines are an example where the above is input video with mask and the bottom is inference result. We
sequentially show cases of various side effects studied in this paper.

with and without the object, where the object’s influence on the environment is correspondingly
changed, such as its shadow on the ground. Most works leverage the segmentation dataset, e.g.,
DAVIS [26]] and YouTube-VOS [40], to construct artificial pairs, either directly pasting an object from
another sample, or masking the object with zero value. While simple and scalable, these strategies
fail to reflect the side effects of object, e.g., shadows, reflections and lighting changes. Therefore,
models supervised by the artificial pairs typically generate unnatural outputs with side effects left
in environment. To tackle this, OmniEraser [38]] manages to filter out such image pairs from the
sequential frames in videos with static camera motion. However, when confronting with video object
removal, it is impractical to leverage higher dimensional data to construct the paired dataset.

To address these problems, we propose to prepare the paired video samples via 3D rendering.
Recent advancements on the rendering engines [[7]] make it practical to generate high-qualified and
strictly-aligned synthetic video pairs. We design a fully-automatic data preparation pipeline to create a
large-scale video set for object removal. More concretely, we collect a batch of base environments and
split them into multiple scenes containing various objects. Following that, the pipeline automatically
generates cameras focusing on the objects to be removed, and apply random camera trajectories. The
rendering engine enables us to activate or disable the object, and also precisely render the object
masks. Thus, we could obtain a list of triples consisting of the original video, edited video with object
removed, and the corresponding mask video, which contain perfectly simultaneous temporal contents.
Furthermore, we systematically study the various types of side effects in videos, including light
source, mirror, reflection, shadow, and translucency. Equipped with the data preparation pipeline, we
efficiently construct a comprehensive dataset including all the above side effects on diverse scenes.

To fully utilize the synthetic data, we present ROSE, an efficient framework based on video inpainting
to remove object in videos with their side effects. To help distinguish the object-interacted region



in environment, we directly feed the whole video into the model, in contrast to previous works that
fills the object area with zero mask. The complete video serves as a powerful reference guidance
on model, to localize the side effects concerning the intrinsic attributes of the object. We also apply
random augmentation strategies on the mask to cope with various input in inference. Furthermore,
we introduce an additional supervision to explicitly predict the difference mask between edited and
original videos. We implement this by injecting a mask predictor based on the hidden representations
of the inpainting model. The aforementioned architectures of ROSE are observed to enhance the
model’s capability to attend and erase the side effects in videos.

To facilitate a comprehensive evaluation on the object removal results with side effects, we construct a
new benchmark, named ROSE-Bench, consisting of both realistic and synthetic video data. Through
extensive experiments, we demonstrate that ROSE achieves state-of-the-art performance on video
object removal, and effectively adapts to real-world scenarios.

2 Related Work

Diffusion Transformers for Video Generation. Recent diffusion models [[10} 28, 31, 32]] have
shown strong performance in text-to-video generation. By integrating transformers [34], diffusion
transformers (DiTs)[25]] improve video quality and temporal consistency. State-of-the-art methods
leverage large-scale video-text datasets[2, 41]] and hybrid architectures for efficiency and fidelity.
Recent DiT-based latent diffusion models, such as Wan2.1 [35] and MAGI-1 [1], excel in long video
generation: Wan2.1 uses causal 3D VAEs with 1:256 compression and flow matching for real-time
synthesis, while MAGI-1 employs an autoregressive DiT for chunk-wise generation with strict
causality. These advances underscore DiTs’ strength in balancing quality, efficiency, and control.

Video Inpainting.  Early video inpainting methods primarily used 3D CNNs [5] 36, [12] to
model spatial-temporal features, but their limited receptive fields hindered long-range propagation.
Subsequently, optical flow [16, 22| |46]] and homography [21} 4] were introduced to guide pixel
propagation. To improve efficiency and accuracy, Zhou et al.[44] proposed ProPainter, combining
optical flow and attention mechanisms. Recently, with the rise of diffusion models[10} 28], diffusion-
based video inpainting has emerged 30,120,139, 145, 29]]. Li et al.[23]] proposed DiffuEraser, extending
the image inpainting model BrushNet[[15] to videos via a two-stage training scheme.

3 Dataset Construction

3.1 Paired Erasing Videos Preparation using 3D data

Acquiring paired data samples that depict scenes with and without objects and their side effects
represents a significant challenge in object removal task. Though recent work explores generating
such image pairs from videos with static camera motion [38]], it is impossible to obtain video pairs in
a higher dimension using this technique. To tackle this problem, we propose to utilize the adequate
3D data together with advanced game engine, i.e., the Unreal Engine [7], to synthesize the paired
video data. As illustrated in Fig.[2} we present an automatic data preparation pipeline as follows:

Scene and Object Sampling. We begin by collecting large-scale virtual environments from public
3D asset platforms such as Fab [[6]. Each environment is sufficiently complex and diverse, covering a
wide range of indoor and outdoor scenes, including urban settings, natural landscapes, and artificial
constructions. We manually subdivide these base environments into smaller scenes, each containing
one or more candidate objects for removal. In total, we collect 28 high-quality environments and split
them into 450 unique scenes. The selected scenes include a wide variety of object types—both static
and dynamic—including vehicles, animals, plants, and more. This ensures a diverse training corpus
that enhances the generalization ability of the inpainting model.

Multi-view Generation with Object Masks. Given a sampled object in a scene, we randomly
assign multiple camera views with varying angles and distances within predefined ranges. A key
advantage of using a 3D engine is the ability to generate accurate object masks via programmable
post-process shaders, avoiding reliance on segmentation models [[17]. For each object, we apply a
custom shader that renders the object in white and masks the rest in black, producing precise binary
masks. Per-frame mask videos are automatically generated through scripting.
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Figure 2: Paired video preparation pipeline using 3D data, which can be divided into: scene and
object sampling, multi-view generation with masks, valid view filtering and video data rendering.

Valid View Filtering. To ensure the quality of videos and avoid object-occlusion cases, we further
filter out views by calculating the ratio of foreground pixels in the mask. Ratios lower than a threshold
suggest videos with insufficient mask coverage, e.g., due to occlusion or mislabeling. Such videos
are discarded to avoid introducing noisy supervision into the training set.

Video Pair Rendering. After filtering, we render both the unedited (original) and edited (object-
removed) video sequences by toggling the visibility of the selected objects in the engine. The camera
moving is sampled from a pre-defined set with random disturbing, e.g., zooming in and out. All video
pairs are rendered at a resolution of 1920 x 1080 and a frame length of 90 frames (6 seconds). Since
the camera trajectories and object placement are determined via scripted generation, the original
video, the corresponding mask video, and the edited video remain spatially and temporally aligned
on a per-frame basis. Such an alignment is critical for enabling pixel-wise supervised learning.

3.2 Categorize Side Effect in Videos

To improve the generalization ability of the model and its robustness under various complex real-
world conditions, we deliberately construct the dataset composed of six distinct categories. These
categories are carefully designed to simulate typical yet challenging side effects that commonly occur
in practical scenarios, such as object-light interactions, mirror reflections, and translucent materials.
By explicitly injecting such variations into the training process, we aim to equip the model with the
capacity to understand and handle diverse object-environment relationships beyond trivial inpainting
cases. We summarize the definition of side effects on the environment as follows:

Common: Objects with minimal interaction with surrounding context, representing typical inpainting
cases. Their removal causes little disruption to spatial layout or visual semantics.

Light Source: This category includes objects that function as light emitters. Their removal changes
the global illumination, affecting shadows, reflections, and overall scene appearance.
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Figure 3: Illustration of the various side-effect categories studied in the dataset of ROSE.
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Figure 4: The framework of ROSE. We concatenate the noisy latents with the original input video and
masks, consumed by a video inpainting model. An additional difference mask predictor is introduced
to predict the correlated area in video, automatically computed from the input video pairs.

Mirror: Objects reflected in mirrors require spatial reasoning and semantic understanding to inpaint
both the object and its mirrored counterpart, ensuring visual consistency.

Reflection: Compared to the Mirror category, it emphasizes reflective surfaces like water, requiring
the model to infer and complete indirect visual cues from reflections.

Shadow: Shadows linked to objects require joint removal, making inpainting sensitive to lighting
and spatial structure to ensure coherence across both object and shadow regions.

Translucent: Semi-transparent objects expose the background with blending or refraction. Inpainting
must recover both visible cues and hidden structures for realistic restoration.

4 Method

4.1 Overview

In this section, we elaborate the model architecture of ROSE for conducting video object removal,
as illustrated in Fig. 4] In brief, ROSE is implemented as an inpainting model continued from the
foundation video generative models [35, [18]] (the Wan2.1 model [35] in this paper). Following the
general architecture in diffusion-based inpainting models [19} 3]], we extend the model input with
the original input video together with object masks. Distinguished from the typical setting that
multiply the mask onto input video, we directly feed the whole video to assist the understanding on
environment. The input masks, with precise boundary generated by 3D engine, are further augmented
to enhance model robustness. To better supervise the model to localize the subtle object-environment
interactions, we introduce an additional difference mask predictor to explicitly predict the side effect
areas. We present the detail of ROSE in the following sub-sections.

4.2 Reference-based Object Erasing

We start by formulate the video inpainting task in ROSE. Given an input video V and a binary
mask sequence M, where the area of object to be removed is filled with value 1, the target is to
generate an object-erased video V. For the video condition consumed by the model, most prior
methods [23 15} 44! [36] follow a “mask-and-inpaint” paradigm, feeding the network with only the
non-object area V ® (1 — M), where © indicates point-wise product. Suppose the noisy latents
of diffusion model as X, then the model input can be regarded as [X;V ® (1 — M); M]. Such a
manner explicitly eliminate the object from input, and is friendly for model convergence. However,
when confronting the side effect removal, isolating the object from the model makes it challenging to
localize the object-related region. In contrast, recent work on image modality has explored to guide
the model with the masked region for reference [14]. In this paper, we adapt such reference-based
erasing, modifying the model input as [X; V; M]. Experimental results suggest introducing the whole
video as guidance significantly increase the performance. We attribute the advancement that the inner



mask mask © video

Original Bbox Circle Dilated Eroded Our paradigm
Figure 6: Comparison between the previous

Figure 5: Visualization of various mask augmen- paradigm and our reference-based paradigm.

tation strategies adopted in training.

attention mechanism is effective for seeking the inter-region correlations in videos. Given the object
region as input, the model thereby leverage it prior knowledge to localize the side effect regions, thus
outperforms the model with masked video input. Furthermore, the complete video as input serves to
enhance the temporal consistency of output video, for introducing the original object-environment
interactions. The visualization comparisons between the two paradigms are shown in Fig. [6]

4.3 Mask Augmentation

In real-world applications, user-provided masks often vary in precision, size, and shape—ranging
from accurate segmentation maps to coarse bounding boxes or sparse point annotations. Since the
masks generated by 3D engine is perfectly accurate, training solely on such ideal masks can lead
to a performance gap at deployment. To mitigate this, we introduce a set of mask augmentation
strategies that simulate diverse mask types likely to appear in practice. As shown in Fig.[5] we adopt
five variants: (i) Original mask, a precise binary map from ground-truth annotations; (ii) Point-wise
mask, an extremely sparse point simulating minimal user input; (iii) Bounding box mask, a coarse
rectangular region enclosing the target; (iv) Dilated mask, obtained via morphological dilation to
simulate loose annotations; and (v) Eroded mask, generated by erosion to mimic under-segmentation.
These variants are randomly sampled during training, which exposes the model to diverse, imperfect
masks and improves its generalization to real-world inputs.

4.4 Explicit Supervision via Difference Mask Prediction

Beyond the diffusion loss targeting reconstruct the regions of object and its side effect, we introduce
an additional supervision into ROSE. Specifically, we inject a difference mask predictor into the
framework, predicting binary masks indicating all the areas to be modified in video.

The core idea is to leverage the complementary information in the video pairs for training. When an
object is removed from a scene, it often leaves behind subtle but semantically significant side effects,
such as shadows, reflections, and occlusions. To explicitly guide the model in attending to these
regions, we compute a binary difference mask by comparing the original video xq € R¢*/*"x® and
its edited counterpart Xo. The difference mask dg € {0, 1}/*"*% is defined as:

1, if HX(()t,h,,w) _ i(()t,h,w)

0, otherwise

w >0
dét’h’ ) = ’2

ey

where § > 0 is a fixed threshold (§ = 0.09 in this paper). The resulting binary mask highlights
pixel-level differences induced by object removal and is downsampled to match the latent resolution,
yielding the ground-truth difference mask d, € {0, 1}/*/sxw/s,

Difference Mask Predictor. To guide the model in identifying regions influenced by object
removal, we design a difference mask predictor Dy, which takes as concatenated token features as
input, extracted from multiple transformer blocks. Let x € RB*LxDwa denote the fused feature
sequence, where L = I, x Hj, x W, represents the total number of tokens and D\, is the aggregated
channel dimension after selecting and concatenating multiple transformer layers. The difference
mask predictor consists of a two-layer MLP that reduces Dy, to a scalar prediction per token. Its
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Figure 7: Qualitative comparison between our method and existing approaches on real-world samples.
Our model demonstrates superior ability and effectively handles complex object-environment
interactions, including shadows, reflections, and illumination changes.

output is then reshaped into a 3D spatio-temporal grid with the same shape of video latents:

d; = Interpolate (Reshape(Dy(x)), size = (F, H,W)), 2)

where the predicted mask d, e [0, 1]BXIXEXHXW ig ypsampled via trilinear interpolation from a
coarse patch-level grid (F,, H,, W,,) to the full resolution (F, H, W). The module is trained under
MSE loss supervision against the ground-truth difference mask d; described in Eq. (3). It functions
as an auxiliary self-localization signal to encourage the model to be sensitive to subtle visual effects
introduced by object edits. Then the training objective of ROSE consists of two terms: the standard
diffusion denoising loss and the auxiliary mask prediction loss:

£ =Bty [lle—el3 +Ald: - aull3] &)

where ) balances the two objectives. This formulation enables the difference mask predictor to guide
the model in localizing and identifying regions where object-environment interactions occur.

5 Experiments

5.1 Experiment Settings

Training Data. Our dataset contains 16,678 synthetic video pairs rendered in Unreal Engine, each
6 seconds (90 frames) at 1920x1080 resolution. It features diverse urban, rural, and natural scenes
with dynamic weather, lighting, and interactive objects.



Table 1: Quantitative comparison on the synthetic paired benchmark (PSNR® / SSIM?T / LPIPS|)

Category Metric \ ROSE(Ours) DiffuEraser [23] ProPainter [44] FuseFormer [24] FIoED [9] FGT [42]
PSNR 36.5998 30.9326 31.9972 31.2325 29.8932 28.4331
Common SSIM 0.9517 0.9204 0.9466 0.9154 0.9066 0.8819
LPIPS 0.0413 0.0825 0.0515 0.0658 0.0738 0.0832
PSNR 33.7876 28.9976 30.2427 28.5520 27.8932 27.5809
Shadow SSIM 0.9225 0.9220 0.9353 0.8972 0.8834 0.8547
LPIPS 0.0626 0.1119 0.0619 0.1035 0.1208 0.1172
PSNR 30.0739 22.6541 23.4291 22.8571 22.3125 21.4579
Light Source ~ SSIM 0.9209 0.8832 0.8924 0.8630 0.8596 0.8433
LPIPS 0.0862 0.1403 0.1174 0.1410 0.1589 0.1347
PSNR 27.7344 26.2914 26.9373 25.7707 25.1018 24.3986
Reflection SSIM 0.8715 0.8619 0.8763 0.8345 0.8413 0.8421
LPIPS 0.1129 0.1405 0.1072 0.1437 0.1651 0.1520
PSNR 28.3498 22.1228 22.1206 22.3175 21.3789 22.6013
Mirror SSIM 0.9381 0.8855 0.8994 0.8671 0.8678 0.8594
LPIPS 0.0878 0.1751 0.1447 0.1596 0.1845 0.1653
PSNR 31.4264 28.4520 29.8910 28.1712 27.3924 27.4802
Translucent SSIM 0.9470 0.9259 0.9397 0.9168 0.8956 0.9034
LPIPS 0.0598 0.1036 0.0722 0.0914 0.1134 0.1210
PSNR 31.1221 26.5024 27.1991 26.2566 25.4847 25.2353
Mean SSIM 0.9170 0.8981 0.9148 0.8795 0.8697 0.8641
LPIPS 0.0772 0.1284 0.0946 0.1208 0.1324 0.1289

Evaluation Benchmark and Metrics. Existing benchmarks in the video inpainting domain mainly
suffer two limitations. First, most of them lack access to paired edited videos following real-world
physical rules, which restricts quantitative evaluation due to the absence of ground-truth. Second,
they overlook the side effects induced by object-environment interactions hat are critical for assessing
the semantic correctness and realism of inpainting. Consequently, these benchmarks fail to capture
fine-grained challenges that frequently arise in real-world applications.

To address these gaps, we construct ROSE-
Bench, a comprehensive evaluation bench-
mark on video object removal, consisting of
following subsets:

(1) Synthetic paired benchmark tailored for
evaluation under diverse physical interaction
effects. Using the same simulation approach
described in Sec. the benchmark con-
sists of 6 representative categories: common,
light source, mirror, reflection, shadow, and
translucent, each modeling a specific class
of object-environment interaction. Every
category contains 10 high-quality triplets of
video sequences, i.e., original, edited, and
mask videos, offering precise and controllable
evaluation of model behavior under different
side-effect conditions.

(i1) Realistic paired benchmark constructed
using a copy-and-paste strategy based on
the video segmentation dataset dataset
DAVIS [26]. We copy a masked object
from one video into another. The resulting
video with inserted object is treated as input,
while the original unaltered video serves as
the ground-truth. This process allows us
to construct realistic and diverse test cases
that mirror practical editing scenarios while
preserving access to ground-truth supervision.
For quantitative evaluation on paired bench-
mark, we compute PSNR [11]], SSIM [37]],

Table 2: Ablation study on ROSE-Bench (PSNRT /

SSIM{ / LPIPS|)
Category Metric ‘ Base w/MRG  w/MA  w/DMP
PSNR 32.58 3524 33.54 35.68
Common SSIM 0.937 0.950 0.949 0.943
LPIPS 0.053 0.040 0.046 0.045
PSNR 30.65 33.29 31.63 32.85
Shadow SSIM 0914 0.920 0.922 0.920
LPIPS 0.081 0.061 0.072 0.064
PSNR 24.99 30.37 28.89 30.13
Light SSIM 0.894 0.923 0.911 0.922
LPIPS 0.112 0.074 0.082 0.077
PSNR 25.39 27.71 26.97 27.41
Reflect. SSIM 0.836 0.843 0.845 0.841
LPIPS 0.131 0.109 0.111 0.110
PSNR 22.63 28.45 26.50 27.65
Mirror SSIM 0.905 0.941 0.932 0.932
LPIPS 0.142 0.076 0.086 0.092
PSNR 27.43 30.98 31.14 31.24
Translucent ~ SSIM 0.925 0.949 0.948 0.946
LPIPS 0.087 0.052 0.056 0.059
PSNR 27.28 30.84 29.77 30.82
Mean SSIM 0.902 0.918 0.916 0.917
LPIPS 0.101 0.071 0.076 0.074

Table 3: Quantitative comparison on realistic paired

benchmark.
Method PSNRT SSIMT LPIPS |
ROSE(Ours) 31.34 0.923 0.092
DiffuEraser [23] 29.97 0.901 0.128
ProPainter [44] 32.81 0917 0.122
FuseFormer [24] 26.52 0.885 0.151
FloED [9] 28.48 0.881 0.147
FGT [42] 27.53 0.874 0.135




and LPIPS [43] across both synthetic and real-world test sets. These metrics capture both low-level
structural fidelity and perceptual similarity, assessing the model performance under various side-effect
challenges.

(iii) Realistic unpaired benchmark containing real videos with masks. Different from the second
subset, we directly feed real-world videos into model, which are also sampled from DAVIS [26].
To conduct evaluation without ground-truth, we select related metrics from the VBench [13], a
widely-adopted benchmark on text-to-video generation, for evaluating the quality of output videos on
motion smoothness, background consistency and temporal flickering.

Implementation Details. In the training process, we resize all the video pairs into the resolution of
720 x 480 and use 81 frames for training. The backbone model is a controllable generation variant
of Wan2.1 1.3B version [35]. We fully train the model together with the difference mask predictor in
80000 optimization steps with 0.00002 learning rate on 4 NVIDIA H800 GPUs.

5.2 Comparisons with Previous Methods

Quantitative Evaluation. For quantitative evaluation, we compare our method with flow-
based transformers (ProPainter [44], FuseFormer [24], FGT [42]) and diffusion-based methods
(DiffuEraser [23], FLoED [9]]). We evaluate all methods on the three components of ROSE-Bench:
synthetic paired benchmark (Tab. [T}, realistic paired benchmark (Tab. [3), and real-world videos
(Tab. ). Our model achieves superior performance in object removal, as measured by PSNR [11],
SSIM [37]], and LPIPS [43], and excels in maintaining motion smoothness, background consistency,
and subject consistency in Tab.

Table 4: VBench-based evaluation on the realistic unpaired benchmark. (Best scores are bolded).

Method Motion Background Temporal Subject Imaging
Smoothness T Consistency T Flickering | Consistency T Quality 1
DiffuEraser 0.972 0.902 0.931 0.891 0.658
ProPainter 0.975 0.917 0.932 0.903 0.626
FuseFormer 0.971 0.905 0.938 0.892 0.625
FloED 0.973 0.904 0.932 0.889 0.618
FGT 0.971 0.897 0.933 0.895 0.614
ROSE(Ours) 0.975 0.923 0.936 0.908 0.630
Table 5: Inference Efficiency.

Method All Parameters(M) Average Runtime(s/frame) Average GPU Memory(G)

ROSE(Ours) 1564.4 1.39 21.05

DiffuEraser [23] 1952.3 1.02 26.12

ProPainter [44] 39.4 0.10 11.75

FuseFormer [24] 64.1 0.13 16.30

FloED [9] 1346.8 1.63 31.41

FGT [42] 423 1.43 14.38

Table 6: Ablation studies on the backbone model testing on synthetic paired benchmark.

Metrics  DiffuEraser [23] before training  DiffuEraser after training =~ Wan using baseline settings ~ ROSE(Ours)

PSNRT 26.5024 27.0162 27.2863 31.1221
SSIMT 0.8981 0.9010 0.9025 0.9170
LPIPS| 0.1284 0.1106 0.1013 0.0772

Qualitative Evaluation. For qualitatitve evaluation, we compare our method with ProPainter [44]],
FuseFormer [24] and DiffuEraser [23]. Qualitative visualization results can be seen in Fig.[/| In
the Fig.[7} we demonstrate cases with various different side effects like shadows, reflection and
lumination changes and we can obviously find that our model shows superior performance over other
methods. The side effects areas that previous works fail to fill in have been framed in red boxes.

Inference Efficiency. Tab.[5|compares the parameter scale, inference latency, and memory footprint
across different methods. All evaluations are conducted on 65-frame input videos with a resolution of
720 x 480, using float16 precision and NVIDIA H800 GPUs.



5.3 Ablation Study

We perform ablation studies to demonstrate the effectiveness of our designs. We keep training
settings same as in Sec.[5.1]to ensure the fairness of comparisons and we evaluate our methods on
the synthetic paired benchmark. We set the baseline with the following settings: use the "mask-and-
inpaint" paradigm, without mask augmentation and difference mask predictor. And in Tab.|2} MRG
stands for mask region guidance, MA stands for mask augmentation and DMP stands for difference
mask predictor. In Tab. [2] we have shown that our primary designs are effective and useful.

Also, Tab. [f]reports quantitative results comparing (i) DiffuEraser [23] without training on ROSE-
Dataset, (ii) DiffuEraser trained on ROSE-Dataset, (iii) Wan2.1 [35]] trained on ROSE-Dataset under
baseline settings, and (iv) our proposed method ROSE. The results demonstrate that training on our
ROSE-Dataset consistently improves overall performance, while the stronger base model further
enhances object removal capability.

6 Discussion

This paper introduces ROSE, a unified framework for video object removal that addresses both
target objects and their side effects, such as shadows, reflections, and lighting distortions. By
leveraging synthetic data from a 3D rendering pipeline, we alleviate real-world data scarcity while
ensuring diverse scenes and camera motions. Our diffusion transformer architecture excels in
object localization and side effect removal via differential mask supervision. The proposed ROSE-
Bench offers systematic evaluation for object-environment interactions, addressing a key gap in
video inpainting. Extensive experiments show that ROSE significantly outperforms prior methods
and generalizes well to real-world videos. These contributions advance video editing and set new
benchmarks for handling complex visual artifacts. Future work will explore real-time optimization
and broader environmental effects to further bridge synthetic and real-world domains. Despite its
strengths, ROSE has limitations: (1) It may produce flickering artifacts under large motion, as shown
in Tab. [4} (2) Inference time grows with video length, reducing efficiency on long sequences.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction accurately summarize the contributions
of the paper. Specifically, the paper proposes a novel framework that improves video inpainting
quality by introducing a Difference Mask Predictor and Mask Region Guidance. These components
are explicitly mentioned in the abstract and are substantiated by both qualitative and quantitative
experiments. The scope and generalizability are clearly discussed with respect to diverse scenarios in
the benchmark.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

» The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

¢ The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

« It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper includes a dedicated Limitations in Sec.[6} It acknowledges that the current
model still has some temporal flickering problems and the inference time increases with the video
length.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

¢ The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]
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Justification: The paper includes a theoretical formulation of the loss functions and optimization
objectives, all of which are fully stated with the necessary assumptions. While no formal theorems are
proved, the mathematical foundations are complete and clearly documented either in the main text or
supplemental material.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses the architectural details, dataset preprocessing steps, training
schedules, loss functions, and evaluation protocols used to produce the experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The code and pre-trained models will be released upon acceptance, and the supplemental
material contains detailed instructions to run experiments, including dataset preparation, model
training, and evaluation. An anonymized GitHub link is included for reviewing purposes.
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Guidelines:

¢ The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,

so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless

this is central to the contribution (e.g., for a new open-source benchmark).

The instructions should contain the exact command and environment needed to run to reproduce

the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if

applicable).

Providing as much information as possible in supplemental material (appended to the paper) is

recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: All relevant details regarding training (e.g., data splits, learning rate, optimizer, batch
size, and number of epochs) and evaluation (e.g., metrics, checkpoints) are clearly described in Sec. 3}
This allows readers to understand and replicate the experimental protocol.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

¢ The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We follow the convention in prior works and report the performance on the standard
settings.

Guidelines:

* The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.
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8.

10.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The paper specifies the compute infrastructure used, the number of training epochs, and
the total training time. An estimated compute cost for each model variant is also provided in the
supplemental material.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics. All datasets used are publicly
available and do not involve personally identifiable information or sensitive content. No human or
animal subjects were involved.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

¢ The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]
Justification: We discuss both of them in supplementary materials.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

« Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment
of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

¢ The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).
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11.

12.

13.

14.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA|
Justification: We describe the safeguards in the Appendix.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All datasets and codebases used are properly cited and used under their respective
licenses. License information is included in the supplemental material.

Guidelines:

* The answer NA means that the paper does not use existing assets.

» The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
¢ The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: The newly introduced benchmark subset and pre-trained models are fully documented
and will be made available with metadata, license information, and usage examples. Documentation is
provided in the supplemental material.

Guidelines:

* The answer NA means that the paper does not release new assets.

¢ Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?
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Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

» For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]
Justification: This paper does not involve LLMs as any important components.
Guidelines:

¢ The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A Dataset Details.

In the data preparation process, we synthesize video sequences within the Unreal Engine (UE) environment.
The virtual cameras are programmatically controlled to automatically focus on the target object designated for
removal. To simulate realistic motion, the cameras move randomly along one of the three principal axes—X,
Y, or Z—in the UE world coordinate system. The movement distance along the chosen axis is adaptively
adjusted according to the spatial scale and available space within each specific scene, ensuring plausible camera
trajectories without clipping or unnatural transitions. By rendering the scene under these controlled camera
motions, we obtain synchronized video triplets consisting of the original unedited video, the corresponding
masked video with the target object occluded, and the edited video where the object is removed.

B Training Details.

During training, we use a batch size of 1 and randomly select a continuous sequence of 81 frames from triplets
of the original, masked, and edited videos as input. We extract and concatenate features from Transformer layers
block.5, block.15, and block.25(30 blocks in total) , resulting in a feature tensor of shape [1, 28350, 4608],
where 28350 corresponds to the flattened patch grid (e.g., 10 x 15 x 189) and 4608 is the combined feature
dimension from the three layers. The Difference Mask Predictor consists of a linear layer projecting the 4608-
dimensional features to a 256-dimensional hidden space, followed by a GELU activation and a final linear layer
mapping to a single output channel. The output, initially [1, 28350, 1], is reshaped to [1,1, 10,15, 189] and
then upsampled via trilinear interpolation to the full resolution [1, 1, 81, 480, 720], matching the ground-truth
difference mask size. This design enables efficient patch-wise prediction of spatiotemporal difference masks,
providing fine-grained supervision for the video editing task.

C Potential impacts.

Positive Impact. This work is expected to significantly contribute to the field of video object removal by
providing a more robust and effective framework for erasing undesired regions in video sequences. By greatly
enhancing the quality, temporal consistency, and semantic coherence of the inpainting results, it will not only
push the boundaries of current video inpainting techniques but also offer a solid foundation for future research
and practical applications in video editing, surveillance anonymization, and content restoration.

Negative Impact. Video inpainting technology, while powerful for restoring or editing visual content, can
also bring about negative impacts such as facilitating misinformation through realistic content manipulation,
undermining the credibility of video evidence in legal and forensic contexts, and raising ethical concerns
regarding privacy and consent. If misused, it may distort historical records, violate intellectual property rights,
or propagate biased or misleading visual narratives, posing serious risks to information integrity and social trust.

D More Visualization Results.

In Figs. [8]to[I0] we provide additional qualitative results to further demonstrate the generalization ability of our
model. Specifically, Fig. [§] presents more representative examples under common scenarios. Fig. [9]shows cases
where the input masks are imperfect, illustrating that our model remains robust and can still generate plausible
results. Furthermore, Fig. @]includes results on unseen domains such as underwater, mobile, and drone footage,
revealing the model’s strong adaptability to diverse real-world conditions.

E More Comparison Visualization Results.

In Fig. we present more comparison results of our model with DiffuEraser [23[], ProPainter [44]], and
FuseFormer [24].

F Some Design Thinkings.

Applicability of Mask Region Guidance (MRG) to Other Models. The motivation of MRG is well justified
by its significant improvements as shown in Tab.[2] To further examine its generality, we initially considered
applying MRG to other representative video inpainting models, such as ProPainter [44] and DiffuEraser [23]].
However, we found that both models are structurally incompatible with our MRG paradigm, which makes
a fair comparison infeasible. ProPainter relies on an image propagation mechanism that requires a masked
video as input. This pipeline design fundamentally conflicts with the pixel-level regional supervision of MRG,
which operates on explicit mask-aware features. Consequently, adapting ProPainter to MRG would require
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Figure 8: More visualizations.

re-engineering its propagation module, rendering it impractical for our framework. DiffuEraser, on the other
hand, employs a dual-branch architecture built upon a pretrained image inpainting network (BrushNet). To
integrate MRG into DiffuEraser, one must redesign BrushNet’s architecture and introduce additional training
objectives for mask-region alignment. Such modifications would alter the model’s intrinsic inductive biases and
deviate from its original optimization setup, preventing a meaningful comparison.

Given these architectural and methodological constraints, we decided not to pursue further experiments with
these two models. Nonetheless, our investigation highlights that MRG is conceptually orthogonal and could, in
principle, be generalized to future architectures designed with explicit mask-aware conditioning.
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Figure 9: Cases about dealing with imperfect mask input.(The imperfect parts have been marked by
red box. Zoom in for better view.)

G Safeguards

All data used in this work are synthetically generated within Unreal Engine, containing no real human, biometric,
or copyrighted content. To prevent potential misuse, we plan to release the ROSE model and dataset under
a research-only license. Model checkpoints will be accessible only to verified academic users who agree to
responsible-use terms. We explicitly prohibit applications related to deepfake creation, disinformation, or any
malicious video manipulation.
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Figure 10: More unseen domain cases like underwater, mobile and drone footage.
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Figure 11: More comparisons.
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