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Abstract

Deciphering the relationship between a gene and its genomic context is fundamen-1

tal to understanding and engineering biological systems. Machine learning has2

shown promise in learning latent relationships underlying the sequence-structure-3

function paradigm from massive protein sequence datasets; However, to date,4

limited attempts have been made in extending this continuum to include higher5

order genomic context information. Here, we trained a genomic language model6

(gLM) on millions of metagenomic scaffolds to learn the latent functional and regu-7

latory relationships between genes. gLM learns contextualized protein embeddings8

that capture the genomic context as well as the protein sequence itself, and appears9

to encode biologically meaningful and functionally relevant information (e.g. enzy-10

matic function). Our analysis of the attention patterns demonstrates that gLM is11

learning co-regulated functional modules (i.e. operons). Our findings illustrate that12

gLM’s unsupervised deep learning of the metagenomic corpus is an effective and13

promising approach to encode functional semantics and regulatory syntax of genes14

in their genomic contexts and uncover complex relationships between genes in a15

genomic region.16

1 Introduction17

1.1 Background18

Evolutionary processes result in the linkage between protein sequences, structure and function.19

The resulting sequence-structure-function paradigm has long provided the basis for interpreting20

vast amounts of genomic data. Recent advances in neural network (NN)-based protein structure21

prediction methods Jumper (2021); Baek (2021), and more recently protein language models (pLMs)22

Rives (2021); Elnaggar (2020); Madani (2023) suggest that data-centric approaches in unsupervised23

learning can represent these complex relationships shaped by evolution. To date, These models largely24

consider each protein as an independent and standalone entity. However, proteins are encoded in25

genomes, and the specific genomic context that a protein occurs in is also determined by evolutionary26

processes, where each gene gain, loss, duplication and transposition event is subject to selection and27

drift Wright (1948); Lynch & Conery (2003); Cordero & Polz (2014). These processes are particularly28

pronounced in prokaryotic genomes where frequent horizontal gene transfers (HGT) shape genomic29

organization and diversity Treangen & Rocha (2011); Shapiro (2012). Thus, there exists an inherent30

evolutionary linkage between genomic context and gene function Kountz & Balskus (2021), which31

can be explored by characterizing patterns that emerge from large metagenomic datasets.32
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1.2 Related works33

Recent efforts to model genomic information have shown predictive power of genomic context in gene34

function Miller et al. (2022) and metabolic trait evolution Konno & Iwasaki (2023) in bacterial and35

archaeal genomes. However, both methods represent genes as categorical entities, despite these genes36

existing in continuous space where multidimensional properties such as phylogeny, structure, and37

function are abstracted in their sequences. On the other end of the spectrum of representations, there38

have been efforts to use unsupervised learning on nucleotide sequences to predict gene expression39

level Avsec et al. (2021) and detect regulatory motifs Avsec et al. (2021); Ji et al. (2021); Dalla-Torre40

et al. (2023); Nguyen et al. (2023). These models are largely trained and benchmarked on the41

human genome and focus on predicting gene regulation rather than function. Previous efforts to42

leverage diverse microbial sequences to model genome-scale information include GenSLMs Zvyagin43

et al. (2022), which is pretrained on codon-level representations of diverse bacterial and viral gene44

sequences and later fine-tuned on SARS-CoV-2 genomes. In order to learn generalizable gene-to-45

gene-context interactions across biology, a model needs to be pretrained on 1) diverse lineages of46

organisms, 2) rich and continuous representation of genes and 3) longer segments of genomes with47

multiple genes. To our knowledge, there has been no method that combines all three aspects of48

pretraining to learn genomic information across diverse lineages of biology (see summary of previous49

efforts in Table 1).50

1.3 Genomic language modeling51

In order to close the gap between genomic-context and gene sequence-structure-function, we de-52

veloped the first, to our knowledge, genomic language model (gLM) that represents proteins using53

pLM embeddings that have been shown to encode relational properties Rives (2021) and structure54

information Lin (2023). Our model, based on the transformer architecture Vaswani et al. (2017),55

is trained using millions of unlabelled metagenomic sequences. We trained gLM with the masked56

language modeling Devlin et al. (2018) objective, with the hypothesis that its ability to attend to57

different parts of a multi-gene sequence will result in the learning of gene functional semantics and58

regulatory syntax (e.g. operons). Here, we report evidence of the learned contextualized protein59

embeddings and attention patterns capturing biologically relevant information.60

2 Methods61

2.1 Masked language modeling of genomic sequences62

The genomic corpus was generated using the MGnifyRichardson (2023) dataset (released 2022-05-0663

and downloaded 2022-06-07). First, genomic contigs with greater than 30 genes were divided into 3064

gene non-overlapping subcontigs resulting in a total of 7,324,684 subcontigs with lengths between 1565

and 30 genes (subcontigs < 15 genes in length were removed from the dataset). To model genomic66

sequences, we trained a 19-layer (954M parameter) transformer model (Fig. 1A) on seven million67

metagenomic contig fragments consisting of 15 to 30 genes from the MGnify Richardson (2023)68

database. Each gene in a genomic sequence is represented by a 1280 feature vector (context-free69

protein embeddings) generated by using ESM2 pLM Rives (2021), concatenated with an orientation70

feature (forward or backward). For each sequence, 15% of genes are randomly masked, and the71

model learns to predict the masked label using the context. Based on the insight that more than72

one gene can legitimately be found in a particular genomic context, we allow the model to make73

four different predictions and also predict their associated probabilities. Thus, instead of predicting74

their mean value, the model can approximate the underlying distribution of multiple genes that75

can occupy a genomic niche We assess the model’s performance using a pseudo-accuracy metric,76

where a prediction is considered correct if it is closest to the masked protein in euclidean distance77

compared to the other proteins encoded in the sequence. Dataset used for training is available for78

download from the MGnify server: http://ftp.ebi.ac.uk/pub/databases/metagenomics/79
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Table 1: Comparison of gLM to previous efforts in modeling various aspects of biological sequences.

Multi-gene
interaction

Continuous
representation

of genes

Generalizable
across organisms

Self-
supervised
language

model

gLM (this study) ✓ ✓
✓(Metagenomic sequences
with bias towards bacteria,

archaea and viruses)
✓

pLMs Lin (2023);
Elnaggar (2020);
Madani (2023)

(e.g. ESM2,
ProtBert,
ProGen)

× ✓ ✓ ✓

Miller et al.
(2022) ✓ × ✓ ×

Enformer Avsec
et al. (2021) ✓ ✓ × (Pretrained on human and

mouse genomes only) ×

DNABERT Ji
et al. (2021)

× (Max context length of
DNABERT-6 is 3072 bp,
which is not sufficient to
include a median length

(26,288 bp) human protein
coding gene)

✓ × (Pretrained on human
genome) ✓

Nucleotide
Transformer

Dalla-Torre et al.
(2023)

× (Max context length is
6000 bp, which is not

sufficient to include a median
length (26,288 bp) human

protein coding gene)

✓ × (Heavily biased towards
human genome) ✓

HyenaDNA
Nguyen et al.

(2023)
✓ ✓ × (Pretrained on human

genome) ✓

GenSLM
Zvyagin et al.

(2022)
Foundation

model

× (Single genes used for
pretraining ✓ ✓ ✓

GenSLM-SARS-
CoV2 genome
model Zvyagin

et al. (2022)

✓ ✓ × (fine-tuned on
SARS-CoV2 genomes only) ✓

peptide_database/2022_05/. Training and inference code and analysis scripts are available at80

https://github.com/y-hwang/gLM.81

2.2 Enzyme Commission number prediction82

Custom MGYP-Enzyme Commission (MGYP-EC) dataset was created by first searching (mmseqs26183

with default setting) MGYPs against the “split30.csv” dataset previously used to train CLEAN Yu84

(2023). “split30.csv” dataset consists of EC numbers assigned to UniProt sequences clustered at85

30% identity. Only MGYP hits with >70% sequences to “split30.csv” were considered and MGYPs86

with multiple hits with >70% similarity were removed. Test split was selected by randomly selecting87

10% of “split30.csv” UniProt IDs in each EC category that map to MGYPs. EC categories with88

less than four distinct UniProt IDs with MGYP mapping were removed from the dataset, resulting89

in 253 EC categories. pLM (context-free) embeddings were calculated for each of MGYP with90

EC number assignment by mean-pooling the last hidden layer of its ESM2 embedding. gLM91

(contextualized) embeddings were calculated also for each layer by running inference without92

masking and subsequently extracting per-layer hidden representations for MGYPs with EC number93

assignments. Linear probing was conducted for these embeddings with a single linear layer. Linear94
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Figure 1: gLM training and inference schematics. A) For training, contigs (contiguous genomic
sequences) containing up to 30 genes are first translated into proteins, which are subsequently
embedded using a pLM encoder (ESM2). Masked inputs are generated by random masking at 15%
probability and gLM (a transformer encoder) is trained to make four predictions for each masked
protein, with associated likelihoods. Training loss is calculated on both the prediction and likelihoods.
B) At inference time, inputs are generated from a contig using ESM2 output. Contextualized protein
embeddings (last hidden layer of gLM) and attention patterns are used for various downstream tasks.

probes were trained with early stopping and batch size = 5000, and training results were replicated95

five times with random seeds to calculate error ranges.96

2.3 Attention and operon analysis97

Attention heads (n = 190) were extracted by running inference on unmasked subcontigs, and the raw98

attention weights were subsequently symmetrized. E.coli K12 RegulonDB Tierrafría (2022) was used99

to probe heads with attention patterns that correspond the most with operons. Pearson’s correlation100

between symmetrized raw attentions and operons were calculated for each head. We trained a logistic101

regression classifier that predicts whether two neighboring genes belong to the same operon based on102

the attention weights across all attention heads corresponding to the gene pair.103

3 Results104

3.1 Model performance105

We validate our model’s performance on the Escherichia coli K-12 genome by excluding from training106

5.1% of MGnify subcontigs in which more than half of the proteins are similar (>70% sequence107

identity) to E. coli K-12 proteins. The goal here is not to remove all E. coli K-12 homologs from108

the training, which would have removed a vast majority of training data as many essential genes are109

shared across organisms. Instead, our goal was to remove as many E.coli K-12-like genomic contexts110

(subcontigs) from training, which is more appropriate for the training objective. gLM achieves111

71.9% in validation pseudo-accuracy and 59.2% in validation absolute accuracy. Notably, 53.0%112

of the predictions made during validation are with high confidence (with prediction likelihood >113

0.75), and 75.8% of the high confidence predictions are correct, indicating gLM’s ability to learn114

a confidence metric that corresponds to increased accuracy. We baseline our performance with a115

bidirectional LSTM model trained using the same language modeling task on the same training116

dataset, where validation performance plateaus at 28% pseudo-accuracy and 15% absolute accuracy.117

We ablate the use of pLM representations as input to gLM by replacing them with one-hot amino118
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Figure 2: Contextualized protein embedding analysis and comparison with concepts in natural lan-
guage modeling. A) A word’s meaning upon contextualization varies across a continuous spectrum
and can be ambiguous even with contextualization (e.g. double entendre). B) Input protein embed-
dings of McrA sequences in genomes, colored by metabolic classification of the organism (ANME,
methanogen) based on previous studies and labeled by class-level taxonomy. C) Clustering of McrA
sequences upon contextualization, with the likelihoods in the direction of Reaction 1 that the MCR
complex carries out. D) Reaction 1, carried out by the MCR complex, either backward (Methan-
otrophy) or forward (Methanogenesis). E) Geometric relationship between contextualized protein
embeddings based on the semantic closeness of words. F) Input (context-free) protein embeddings of
Cas1, Cas2, lipopolysaccharide synthases (LPS) and polyketide synthases (PKS) showing clustering
based on structural and sequence similarity. G) Clustering of contextualized protein embeddings
where phage defense proteins cluster (Cas1 and Cas2) and biosynthetic gene products cluster (LPS
and PKS).

acid representations and report performance equivalent to random predictions (3% pseudo-accuracy119

and 0.02% absolute accuracy).120

3.2 Contextualized gene embeddings capture gene semantics121

The mapping from gene to gene-function in organisms is not one-to-one. Similar to words in natural122

language, a gene can confer many different functions Jeffery (2018) depending on its context Miskei123

(2017), and many genes can confer similar functions (i.e. convergent evolution Gherardini et al.124

(2007), remote homology Ben-Hur & Brutlag (2003)).125

We explored an ecologically important example of genomic “polysemy” (multiple meanings conferred126

by the same word) of methyl-coenzyme M reductase (MCR) complex (Fig. 2ABC). The MCR127

complex is able to carry out a reversible reaction (Reaction 1 in Fig. 2D), whereby the forward128

reaction results in the production of methane (methanogenesis) while the reverse results in methane129

oxidation (methanotrophy). We first examine the McrA (methyl-coenzyme M reductase subunit130

alpha) protein in diverse lineages of ANME (ANaerobic MEthane oxidizing) and methanogenic131

archaeal genomes. These archaea are polyphyletic and occupy specific ecological niches. Notably,132
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Figure 3: Contextualization of enzyme function. A) Linear probe EC classification accuracy for pLM
(ESM2) representations and gLM (1st hidden layer) representations. B) F1-score comparisons of
statistically significant (Benjamini/Hochberg corrected p-value < 0.05) differences in performance of
pLM- and gLM-based EC number linear probes. EC classes are ordered with the largest gain with
contextualization on the left to the largest loss with contextualization on the right. C) Precision-Recall
curves of pLM- and gLM-based EC number linear probes.

similar to how a semantic meaning of a word exists on a spectrum and a word can have multiple133

semantically appropriate meanings in a context (Fig. 2B), the MCR complex can confer different134

functions depending on the context. Previous reports demonstrate capacities of ANME (ANME-2135

in particular) carrying out methanogenesis Bertram (2013) and methanogens conducting methane136

oxidation in specific growth conditions Moran et al. (2007). The context-free ESM2 embedding137

of these proteins (Fig. 2E) shows little organization, with little separation between ANME-1 and138

ANME-2 McrA proteins. However, contextualized gLM embeddings Fig. 2C) of the McrA proteins139

show distinct organization where ANME-1 McrA proteins form a tight cluster, while ANME-2140

McrA proteins form a cluster closer to methanogens (silhouette score after contextualization: 0.24;141

before contextualization:0.027). This organization reflects the phylogenetic relationships between the142

organisms that McrAs are found in, and reflect distinct operonic and structural divergence of MCR143

complexes in ANME-1 compared to those found in ANME-2 and methanogens Shao (2022). As144

proposed by Shao et al., the preferred directionality in Reaction 1 (Fig. 2G) in ANME-2 and some145

methanogens may be more dependent on thermodynamics.146

We also demonstrate that contextualized gLM embeddings are more suitable for determining the147

functional relationship between gene classes. Analogous to how the words “dog” and “cat” are148

closer in meaning relative to “dog” and “train” (Fig. 2E), we see a pattern where Cas1 and Cas2149

that appear diffuse in multiple subclusters in context-free protein embedding space (Fig. 2F) cluster150

in contextualized embedding space (Fig. 2G). This reflects their similarity in function (e.g. phage151

defense). This is also demonstrated in biosynthetic genes, lipopolysaccharide synthase (LPS) and152

polyketide synthase (PKS) genes clustering closer together in contextualized embedding space153

distinct from the Cas proteins (Fig. 2G). We quantitate this pattern with a higher silhouette score154

measuring phage defense and biosynthetic gene separation (gLM representation: 0.105±0.012, pLM155

representation: 0.078±0.011; paired t-test, t-statistic: 4.6, p-value = 0.001, n=10). Contextualized156

protein embeddings are therefore able to capture relational properties semantic information Reif157

(2019), where proteins that are more similar in their function appear in more similar genomic contexts.158

3.3 Contextualization improves enzyme function prediction159

To test the hypothesis that the genomic context of proteins can be used to aid function prediction,160

we evaluated how contextualization can improve the expressiveness of protein representations for161

enzyme function prediction. First, we generated a custom MGYP-EC dataset where the train and162

test data were split at 30% sequence identity for each EC class Yu (2023). Second, we apply a linear163

probe (LP) to compare the expressiveness of representations at each gLM layer, with and without164

masking the queried protein (Extended Data 8). By masking the queried protein, we can assess gLM’s165
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Figure 4: Attention analysis. A) Correlation coefficients (Pearson’s rho) between attention heads
across layers and operons. Darker color corresponds to stronger correlation with previously identified
operons. Attention patterns of the second layer-seventh head [L2-H7] is most strongly correlated
with the operons. B) Three random examples of contigs and predicted operonic relationship between
neighboring proteins. Proteins are listed in the order they are encoded in the contig. Ground truth E.
coli K-12 operons (top row), raw attention scores in the attention head [L2-H7] most correlated with
operons (middle row) and logistic regression prediction using all attention heads (last row) where
false positive predictions are marked in red. C) Five-fold cross-validation precision-recall curves of
logistic regression trained using all operons and attention heads.

ability to learn functional information of a given protein, only from its genomic context, without the166

propagation of information from the protein’s pLM embeddings. We observed that a large fraction of167

contextual information pertaining to enzymatic function is learned in the first six layers of gLM. We168

also demonstrate that context information alone can be predictive of protein function, reaching up to169

24.4 ± 0.8% accuracy. In contrast, without masking, gLM can incorporate information present in170

the context with the original pLM information for each queried protein. We observed an increase in171

expressivity of gLM embeddings also in the shallower layers, with accuracy reaching up to 51.6 ±172

0.5% in the first hidden layer. This marks a 4.6 ± 0.5% increase from context-free pLM prediction173

accuracy (Fig. 3A) and mean average precision (Fig. 3C) Thus, we demonstrate that information174

that gLM learns from the context is orthogonal to information captured in pLM embedding. We also175

observed diminishing expressivity in enzyme function information with deeper layers of gLM; this176

reflects the masked pretraining objective that is independent of enzyme function prediction task and177

is consistent with previous examinations of LLMs, where specific layers perform better than others178

for downstream tasks. Finally, to further examine the expressiveness of these representations, we179

compared per-class F1 score gains (Fig. 3B). We observe statistically significant differences in F1180

scores (t-test, Benjamini/Hochberg corrected p-value < 0.05) between the two models in 36 out of181

67 EC classes with more than ten samples in the test set. Majority (27 out of 36) of the statistical182

differences resulted in improved F1 score in LP trained on gLM representations.183

3.4 Transformer’s attention captures operons184

The transformer attention mechanism models pairwise interaction between different tokens in the185

input sequence. Previous examinations of the attention patterns of transformer models in natural186

language processing (NLP) Rogers et al. (2020) have suggested that different heads appear to187

7



specialize in syntactic functions. Subsequently, different attention heads in pLMs Vig (2020) have188

been shown to correlate to specific structural elements and functional sites in a protein. For our189

gLM, we hypothesized that specific attention heads focus on learning operons, a “syntactic” feature190

pronounced in in microbial genomes where multiple genes form regulatory modules. We used the191

E.coli K-12 operon database Salgado (2018) consisting of 817 operons for validation. gLM contains192

190 attention heads across 19 layers. We found that heads in shallower layers correlated more193

with operons (Fig. 4A), with raw attention scores in the 7th head of the 2th layer [L2-H7] linearly194

correlating with operons with 0.44 correlation coefficient (Pearson’s rho, Bonferroni adjusted p-value195

< 1E-5) (Fig. 4B). We further trained a logistic regression classifier using all attention patterns across196

all heads. This classifier predicted the presence of an operonic relationship between a pair of proteins197

in a sequence with mean average precision of 0.77 (Fig. 4C).198

4 Discussion199

The work presented here demonstrates and validates the concept of genomic language modeling.200

Taken together, gLM presents a highly promising direction for interpreting biology and we propose201

key areas for further development: First, the transformer architecture has shown to be successful202

in efficient scaling; in both natural language Kiros et al. (2014) and protein language processing203

Lin (2023), increasing the number of parameters in the model along with the training dataset size204

have been shown to lead to vastly improved performance and generalizability. Our model consists205

of 1B parameters which is at least a magnitude smaller compared to state-of-the-art pLMs. With206

further hyperparameter tuning and scaling, we expect better performance of the model. Second,207

our model currently uses protein-level pLM embeddings to represent proteins in the input. These208

embeddings are generated by mean-pooling the amino acid residue-level hidden states across the209

protein sequence, and therefore the residue specific information and synonymous mutation effects are210

likely obscured. Future iterations of the model could use raw residue-level or codon-level embeddings211

as input to allow modeling of residue-to-residue co-evolutionary interactions between proteins and212

synonymous mutation effects on gene function. Third, the task of reconstructing masked protein213

embeddings requires modeling a distribution over possible embeddings; our method approximates214

this distribution using a fixed number of predictions. Future work could improve upon this by using215

a generative approach, such as a diffusion or GAN model. This may allow for better prediction216

accuracy and greater generalizability for unseen datasets. Fourth, adding non-protein modalities (e.g.217

non-coding regulatory elements) as input to gLM may also greatly improve gLM’s representation218

of biological sequence data, and can learn protein function and regulation conditioned upon other219

modalities Kiros et al. (2014). Finally, our model was trained largely on bacterial, archaeal and viral220

genomes, therefore, how this method can be adapted for eukaryotic genomes, especially those with221

extensive intergenic regions, remains to be further explored.222

One of the most powerful aspects of the transformer-based language models is their potential for223

transfer learning and fine-tuning. We tested some of the capabilities of gLM and successfully showed224

that higher order biological information including gene function and regulation can be learned using225

genomic sequences. Our results highlight the importance of contextualization of biological data,226

particularly as we scale our modeling efforts from biomolecules to whole organisms. We propose227

the following promising future directions for applying gLM for advancing biological research. 1)228

Feature-based transfer learning for predicting protein function (e.g. Gene Ontology [GO] term, EC229

number), particularly those with limited sequence and structural homology. 2) Fine-tuning gLM for230

the protein-protein-interactome prediction task. 3) Using gLM features to encode genomic contexts as231

additional input for improved and contextualized protein structure predictions. In conclusion, genomic232

language modeling is a powerful tool to unbiasedly condense important biological information from233

full metagenomic sequences. Coupled with the advances in long-read sequencing, we expect a drastic234

increase in the input data quality, quantity and diversity. Genomic language modeling presents an235

avenue to bridge the gap between atomic structure and organismal function, and thereby brings236

us closer to modeling biological systems, discovering novel biology, and ultimately, manipulating237

biology with precision (e.g. genome editing, synthetic biology).238
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