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Abstract

In science we are interested in finding the gov-
erning equations, the dynamical rules, underlying
empirical phenomena. While traditionally scien-
tific models are derived through cycles of human
insight and experimentation, recently deep learn-
ing (DL) techniques have been advanced to recon-
struct dynamical systems (DS) directly from time
series data. State-of-the-art dynamical systems
reconstruction (DSR) methods show promise in
capturing invariant and long-term properties of
observed DS, but their ability to generalize to
unobserved domains remains an open challenge.
Yet, this is a crucial property we would expect
from any viable scientific theory. In this work, we
provide a formal framework that addresses gener-
alization in DSR. We explain why and how out-of-
domain (OOD) generalization (OODG) in DSR
profoundly differs from OODG considered else-
where in machine learning. We introduce math-
ematical notions based on topological concepts
and ergodic theory to formalize the idea of learn-
ability of a DSR model. We formally prove that
black-box DL techniques, without adequate struc-
tural priors, generally will not be able to learn
a generalizing DSR model. We also show this
empirically, considering major classes of DSR al-
gorithms proposed so far, and illustrate where and
why they fail to generalize across the whole state
space. Our study provides the first comprehensive
mathematical treatment of OODG in DSR, and
gives a deeper conceptual understanding of where
the fundamental problems in OODG lie and how
they could possibly be addressed in practice.
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1. Introduction

The majority of complex systems we encounter in physics,
biology, the social sciences, and beyond, can mathematically
be described as systems of differential equations, whose be-
havior is the subject of dynamical systems theory (DST).
Deriving accurate mathematical models of natural (or engi-
neered) systems from observations for mechanistic insight,
scientific understanding, and prediction, is the core of any
scientific discipline. Recent years have seen a plethora of
advances in the field of DS reconstruction (DSR) mostly
based on deep learning (DL) approaches for inferring DS
models directly from time series data and thus partly autom-
atizing the scientific model building process (Brunton et al.,
2016; Raissi et al., 2018; Vlachas et al., 2018; Platt et al.,
2021; Brenner et al., 2022; Vlachas et al., 2022; Hess et al.,
2023). Like any good scientific theory, a proper DS model
inferred from data should be able to generalize to novel
domains (dynamical regimes) not observed during training.
Here we develop a principled mathematical framework for
out-of-domain (OOD) generalization (OODG) in DSR. We
mathematically and numerically demonstrate that current
data-driven SOTA methods for DSR hit fundamental limits
regarding OODG, and provide some directions of how these
could potentially be addressed.

Current state of DSR  Current DSR models attempt to ei-
ther approximate the underlying system’s vector field (Brun-
ton et al., 2016), or try to directly learn the flow (solution)
operator of the data-generating DS (Lu et al., 2019; Vlachas
et al., 2020; Li et al., 2020; Brenner et al., 2022; Hess et al.,
2023; Chen & Wu, 2023). More specifically, DSR methods
have been developed based on symbolic regression (Brunton
etal., 2016; d’ Ascoli et al., 2023), on various forms of recur-
rent neural networks (RNNs) equipped with special training
algorithms (Vlachas et al., 2018; Brenner et al., 2022; Hess
et al., 2023), on ordinary or partial differential equation
(ODE/PDE)-based DL models such as Neural ODEs (N-
ODE; Chen et al. (2018); Ko et al. (2023)), on operator the-
ory (Luetal., 2019; Li et al., 2020; Chen & Wu, 2023) or on
reservoir computing (RC; Pathak et al. (2017); Verzelli et al.
(2021); Platt et al. (2022; 2023)). State-of-the-art (SOTA)
methods (Brenner et al., 2022; Platt et al., 2023; Hess et al.,
2023; Jiang et al., 2023) can generalize beyond the observed
time horizon and capture an underlying system’s dynamical
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Figure 1. In-distribution generalization within one basin (right; van-der-Pol oscillator) vs. OODG across basins (left; neuron model with a
limit cycle corresponding to spiking activity and an equilibrium point corresponding to the resting potential).

invariants and long-term properties, like the geometry of an
attractor trajectories are converging to (Fig. A1), while pro-
viding accurate short-term forecasts on in-distribution test
data. However, the current field of DSR has overwhelmingly
focused on synthetic benchmark systems, e.g. given by low-
order polynomial ODE and PDE systems, mostly in regimes
where either only one (globally) attracting object exists in
state space, as in the chaotic Lorenz system for common
parameter settings (Lorenz, 1963), or at least reconstruction
within just one dynamical regime was sought. Only a small
number of studies considered experimental data, and even
less consider systems which may harbor multiple attractor
objects simultaneously, so-called multistability (Fig. 1, left;
for a detailed overview of current benchmarks in use, see
Appx. A).

An unresolved challenge in DSR: generalization to unob-
served dynamical regimes While current SOTA methods
for DSR may generalize to nearby initial conditions close
to the domain covered by the training data, which ultimately
converge into the same limit set, at current their ability to
generalize to unobserved regions of state space is either not
given or remains unexplored (Fig. 1). Generalization across
the whole state space of the DS, or scientifically relevant por-
tions of it, is, however, a feature any sound scientific theory
should possess. The OODG problem is exacerbated in the
presence of multistability, i.e., if multiple dynamical objects
coexist in the same DS. In fact, even the simplest exam-
ples of low-dimensional nonlinear DS, like a damped-driven
pendulum, often have multistable regimes. The problem

is also of high practical relevance, as most complex DS
encountered in nature and society are likely extensively mul-
tistable, with examples ranging from neuroscience (Schiff
etal., 1994; Durstewitz et al., 2000; Izhikevich, 2007; Khona
& Fiete, 2022), optics (Brambilla et al., 1991), chemistry
(Ngonghala et al., 2011), biology (Dubinkina et al., 2019),
ecology (Mumby et al., 2007), to financial markets (Cavalli
& Naimzada, 2016) and climate science (Yoden, 1997). For
such DS, crossing the boundaries between different dynam-
ical regimes, as induced by noise or external inputs, may
lead to qualitatively completely different behavior (Fig. 1,
left; Fig. A2).

Current approaches toward OODG in DSR Several
recent studies at least partially or implicitly address the
question of OODG and multistability in DSR. For instance,
in Ghadami & Epureanu (2018); Patel & Ott (2022); Bury
et al. (2023), the authors attempt to anticipate tipping points
in non-autonomous DS and predict the post-tipping point
dynamics. A related topic is the forecasting of extreme
events (Farazmand & Sapsis, 2018; Guth & Sapsis, 2019;
Qi & Majda, 2020), which are events that are not, or only
very sparsely, represented in the training data, thus constitut-
ing a form of generalization. Others consider learning DS
across multiple environments defined by different param-
eter settings (Yin et al., 2022a; Bereska & Gavves, 2022).
However, essentially all this work implicitly or explicitly
assumed some observations from the domain on which gen-
eralization is sought to be available (i.e., reflecting more
a form of transfer learning rather than true OODG; Kirch-
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meyer et al. (2022); Yin et al. (2022a)). Another strategy to
enable better generalization is to include physical domain
knowledge into the model formulation or loss function, as
in physics-informed neural networks (PINNs) (Raissi et al.,
2019; Mehta et al., 2021; Subramanian & Mahadevan, 2023;
Mouli et al., 2023), or directly ground-truth parameters of
the DS studied (Fotiadis et al., 2023). This, again, assumes
we already have prior knowledge about the domain which
we would like to generalize to.

Promoting data-driven DSR models to viable scientific theo-
ries of complex systems requires a thorough understanding
of whether, how, and when reconstructions generalize to
the entire state space in the common empirical scenario
where the measurements sample only a limited portion of
that space (Fig. 1, left). This leads us to our central research
question: what are the precise mathematical conditions that
allow for successful reconstruction of a DS on the whole
state space?

2. Dynamical Systems Background
2.1. Dynamical Systems

A DS is generally comprised of a state space M C R", a
set of times 7 C R, and an evolution law. Here we focus
on continuous-time systems described by ODEs

where f € X(M) is a vector field (VF) from the set of
functions with continuous first derivative on the (compact,
metric, measurable) state space M. The VF gives rise to the
evolution operator ® : 7 x M — M that maps some initial
condition x( to the state a; at time ¢ (Kuznetsov, 1998):

x € M CR", (1

xr = O(t, xg). 2)

2.2. Dynamical Systems Reconstruction (DSR)

In data-driven DSR, the aim is to infer from time series
observations a generative model of the true underlying sys-
tem, approximating either its vector field f € X!(M) or
evolution operator ®(¢, x) (hence its governing equations)
given an inference algorithm from a hypothesis class .
This goes beyond mere time series forecasting, in that we
require the model to also capture dynamical invariants, that
is long-term statistics and topological properties, of the un-
derlying system. Thus, after training a DSR model should
ideally be topologically conjugate to the true system and
capable of producing trajectories with the same temporal
and geometrical structure as those of the true system (Fig.
ATl; Platt et al. (2022; 2023); Hess et al. (2023)). Note that
this subsumes various more specific goals one may have
in time series modeling and DS analysis. For instance, a
proper DSR model should also provide excellent time series

predictions, while, vice versa, a model optimized for time
series prediction would not necessarily reproduce invari-
ant statistics and the geometry and topology of a system’s
attractors.

2.3. Measure Theoretic Aspects

Measure theoretical approaches investigate the long-term
statistical properties of DS, the subject of ergodic theory
(Eckmann & Ruelle, 1985). Specifically, there is a stable
statistical property called the (average) occupation measure,
defined as

T
potB) = 1 [ Usanas o

where x(t) is a trajectory with ¢ € [0, T, starting from xo,
B C R" is some Borel measurable set, and 15 denotes
an indicator function that maps elements of the set B to
one, and all other elements to zero. Intuitively, g, 7(B)
measures the amount of time the trajectory x(t) spends in
the set B.

2.4. Topological Aspects and Attractors

Another way to capture the long-term behavior of a DS is by
studying special sets, so called invariant sets, which describe
the ‘anatomy’ of a DS. A set U C M is called invariant
under the flow, if ®(¢,U) C U V¢. We can associate any
point in state space with a special invariant set capturing its
long-term behavior, the so-called w-limit set

w(z, ®) = [ {et,2)[t > s}, )

seR

where the overline denotes closure. If there is a set of points
in state space with non-zero measure that have the same
w-limit set, it is called an attractor. More formally:

Definition 2.1. An attractor (Milnor, 1985; Perko, 1991) is
a closed invariant set A C M such that there exists an open
and forward-invariant set B(A) = {x € M|w(z, ®) C A},
called the basin of attraction, with w(B(A)) = A. We
further require that A is minimal (i.e., there is no proper
subset with that same property).

Stable equilibrium points, limit cycles and chaotic
(‘strange’) sets are examples of attractors with increasingly
complicated topology (see Fig. A3).

3. A General Framework for OODG in DSR

3.1. Multistability Induces Distribution Shifts

In statistical learning theory, out-of-sample generalization,
and — more importantly here — OODG, is already quite
well-studied (for a detailed treatment, see Appx. C.I,
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Ben-David et al. (2010)). Generally, one assumes to
have observed a set of training domains E on which the
data is distributed according to some domain specific dis-
tribution p®, e € E. The goal is to learn a function
f € F in hypothesis class F that yields minimum risk
Rewest(f) = E(x,y)~petest [0(f(x),y)] on an unseen test
domain ey ¢ E, where the data is distributed according
to p®est. Since p®test is unknown, one estimates the respec-
tive prediction error by taking the average loss across all
empirically accessible domains as empirical risk:
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Yin et al. (2022b) extend this definition to time-series data:

|E|Z Z (PRr(t,xg), zf),

ecE etl

E
Remp

(6)

where |E| is the number of domains and T, time series
length.! Yin et al. (2022b) mainly associate these domains
with different parameter settings of the ground-truth system.
For multistable DS, however, the different domains obtain a
very natural interpretation.

A DS is called multistable if it has at least two attractors
coexisting in its state space (Fig. 1, left). In this study,
we generally assume that multistable systems allow for a
decomposition of their state space into n disjoint basins of
attraction (Milnor, 1985):

M =U"_B(A,) UM such that u(]\;.f) =0, (7
where p is the Lebesgue measure. It is thus natural to define
the domains in Eq. (6) as the different basins of attraction,
each of which belongs to a different attractor. Different at-
tractors generally give rise to different long-term dynamics
with different topology (Fig. 1, left; Fig. A2), governed
by different physical measures (see Appx B.1). Hence, in
each basin the trajectories follow a different statistical law
(regarding their long-term evolution), implying that the chal-
lenge of reconstructing multistable DS is ultimately the
same as that of understanding OODG in DSR. In monos-
table DS, in contrast, each trajectory in the state space is
governed by the same long-term statistics (Fig. 1, right).
Hence, one (sufficiently long) trajectory is already enough
to specify the dynamics on the attractor. Accordingly, gen-
eralization for monostable systems essentially comes down
to classical in-distribution (out-of-sample) generalization.
Note that this is also true for chaotic attractors. Indeed,
as illustrated in Fig. A1l (and amply demonstrated in the
literature, e.g. Mikhaeil et al. (2022); Brenner et al. (2022);
Hess et al. (2023)), current SOTA methods fare very well

'For chaotic systems, both stationary and non-stationary proba-
bility distributions are possible (Parthasarathy & Rajasekar, 1998).

on even short trajectories from complex chaotic systems, as
long as these are monostable (or sufficient information from
all basins of attraction is available, see Fig. A7). Yet, the
DSR field overwhelmingly so far focused on just monos-
table hyperbolic attractor systems as benchmarks (Appx. A),
making OODG for DSR an essentially unstudied problem.

3.2. OODG Error

The most commonly employed loss function £ is the mean-
squared-error (MSE), derived from the maximum likelihood
principle assuming i.i.d. Gaussian model residuals. While
this is still the default when it comes to training RNNs, N-
ODEs or RCs, it cannot be used to assess the reconstruction
for three reasons: 1) The MSE breaks down as a suitable test
loss in Eq. (6) because of exponential trajectory divergence
in chaotic DS (Wood, 2010; Koppe et al., 2019). Even for a
perfectly reconstructed DS, numerical uncertainties in the
initial conditions or small amounts of noise quickly lead
to large prediction errors. This is accounted for in training
methods like generalized teacher forcing (Hess et al., 2023);
2) The MSE does not capture any long-term, invariant or
topological properties of the DS and its reconstruction. As
discussed in Sect. 2.3 & 2.4, these are the central mathe-
matical tools to study DS; 3) The MSE is not guaranteed to
be sensitive to multistability, yet this property of a measure
is much needed in light of Sect. 3.1. We thus propose a
novel way of assessing generalization across state space by
defining a statistical and a topological error that are provably
sensitive to multistability (Theorem 3.3).

Statistical error As the MSE is not a useful quantity for
comparing (chaotic) trajectories, we define the statistical
error through the sliced Wasserstein-1 distance (SW1; Bon-
neel et al. (2015)) between the occupation measures uff T

of the ground-truth DS & and ,u % of the DSR model @ r:

SW1 (g 1 1ig ) = Begy(an) W1(gstw3§,T,ggﬂu3%)}
(®)

where S"! = {¢ € R" | |€]|3 = 1} is the unit
hyper-sphere, g¢f1: denotes the pushforward of i, ge(x) =
&7z is the one-dimensional slice projection, and W the
Wasserstein-1 distance (Villani et al., 2009). Since the
expectation in Eq. (8) is intractable, it is commonly ap-
proximated by Monte Carlo sampling (see Appx. C.2 for
computational details).

Definition 3.1. The statistical error g, is defined as

Edlan (Pr) = /

UCM

SWilpg 7 iphy) de,  (9)

which integrates across initial conditions from a subset U
of state space.
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Topological error An important concept to assess if two
DS agree in their topology is fopological equivalence. Two
DS are called topologically equivalent if there exists a home-
omorphism between the two system’s orbits preserving
the direction of flow (see Appx. B.3 for more details).
However, this homeomorphism is usually not known a
priori and hard to access numerically. Hence, we will re-
place the condition of topological equivalence with three
weaker conditions based on the Lyapunov spectrum, which
contains topological and stability information about limit
sets of a DS. Let us denote the ordered, largest n Lya-
punov exponents of limit sets w(x, ®) and w(x, Pr) by
M <A < s < hpand A <A < <A e
spectively. First, we require that all Lyapunov exponents
agree in their signs, sgn()\;) = sgn(A\f)Vi. Second, we
demand that the maximum Lyapunov exponent is close in
relative error, |\, — AE| / |\,| < e),, where €, is a
tolerance. Lastly, the limit sets need to be close in state
space, di(w(x, Pr), w(x, P)) < £4,,, assessed through
the Hausdorff distance (see Appx. C.3 for more details). We
then define an indicator function on M, 14, (x), which is
equal to 1 for a given point ¢ € U C M iff the associated
limit sets fulfill all of the three conditions above.

Definition 3.2. We define the topological generalization
erroron U C M as

v 1
e (@) =1 o0 /UCMllch(a:)da:. (10)

In the following, we will use Egen as a placeholder for both
Etop and Egtat, and statements involving g, must hold for
both errors.” These errors are highly sensitive to a failure to
reconstruct multistable systems:

Theorem 3.3. Assume ® is multistable with decomposition
as in Eq. (7) and connected basins, and there exists one
attractor Ay, k < n, not reconstructed by ®r. Then, the
generalization error of ® g is proportional to the volume of
the basin of this non-reconstructed attractor:

Eftie= (D) o vol(B(Ag)). (11)

This statement naturally generalizes to the case of multiple
non-reconstructed attractors (with different proportionality
constants).

Proof. See Appx. E.1. O

3.3. OOD Learnability in DSR

Learnability is a fundamental concept in statistical learning
theory (Vapnik, 2000; Shalev-Shwartz et al., 2010), with

Note that E;op and Egtat are solely theoretical constructs we
introduce to formalize the OODG in DSR problem, not loss func-
tions to be used in training.

many different definitions advanced (Valle-Pérez & Louis,
2020). In its simplest form, a hypothesis class is called
learnable if, for any distribution of training data, the error
between the learned and ground-truth function decreases
monotonically with sample size and converges to zero in
the limit of infinitely many data points. This concept has
been extended to OODG settings in Fang et al. (2023).
To apply these definitions to DSR, assume the state space
segregates into n basins (domains), Eq. (7), |E| < n of
which form the training domains Miyain = UecpB(4A.)
and all others the test domains M;est. For simplicity, we
assume we have access to the data generating process ®
on My, ain, such that the training data can be expressed as
D C UMy @(T, o) where [0, T is the time interval
in which the trajectories are observed. In line with statistical
DL theory, we further assume that H includes hypotheses
consistent with both the training and test data (Valle-Pérez
et al., 2019; Belkin, 2021). In other words, there exist mod-
els within H that, in theory, achieve zero reconstruction
error on both the training and test domains (but in practice
will depend on uncertainties introduced by the DSR algo-
rithm). Denote by ©g = {0 € ©|E = (Py) = 0} the set
of parameters associated with models having (near) zero
reconstruction error on the training domain, and by H the
corresponding set of DS. Then, learnability in DSR boils
down to:

Definition 3.4. The OODG problem (#,D) defined by
hypothesis class H and dataset D is strictly learnable if

VOreHy: Eples(Pgr)=0. (12)

Hence, the OODG-problem is strictly learnable, if zero
reconstruction error on the training domain leads to zero
reconstruction error on the test domain.

For highly expressive hypothesis classes there can be multi-
ple, if not infinitely many, models in H, with different gener-
alization errors on M. If we assume we are dealing with
a parameterized function class Hy = {®9|0 € © C R},
as practically the case in all DL & DSR settings, the quantity
of interest becomes the distribution of generalization errors
of models in H:

Definition 3.5. We define the learnability-distribution of
the OODG problem (Hg, D) as

1
P(Egenl D) = /@ L[EMsest (D) = & genl 6,
0

vol(©g)
(13)

the probability of a model with zero reconstruction error on
the training domain having a generalization error of €gcy,
on M,est, where 1[] returns 1 if the condition in square
brackets holds and 0 otherwise. The more mass the distri-
bution has at zero, the better the problem is learnable. In
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the limit of p(€4en|D) being fully concentrated at egen = 0,
the OODG problem becomes strictly learnable. Table A17
summarizes the most important differences between OODG
from the perspectives of standard statistical learning theory
vs. of DST as advanced here.

4. Results

The learnability of an OODG problem depends both on
the hypothesis class H as well as the chosen prior in H
through the training algorithm. Therefore, we will examine
the following two scenarios:

* Strong prior (Sect. 4.1): Library-based algorithms
such as SINDy (Brunton et al., 2016) introduce a strong
inductive bias by explicitly providing a function class
for the underlying VF.

* No prior (Sect. 4.2): Approaches based on universal
approximators of DS, like RNNs (Funahashi & Naka-
mura, 1993; Kimura & Nakano, 1998; Hanson & Ra-
ginsky, 2020), do not incorporate any explicit prior (but
may still introduce implicit priors through the choice
of training algorithm and parameter initialization).

4.1. Strong Prior: Methods Based on Predefined
Function Libraries

Following the classical statistical approach of basis expan-
sions (Hastie et al., 2009; Durstewitz, 2017), some popular
DSR methods rest on a predefined library of basis func-
tions in the observables (Brunton et al., 2016; Reinbold
et al., 2020), most prominently SINDy and its further devel-
opments (Brunton et al., 2016; Loiseau & Brunton, 2018;
Kaiser et al., 2018; Cortiella et al., 2021; Messenger &
Bortz, 2021; Kaheman et al., 2022). These models usually
are linear in the parameters, thus easing statistical infer-
ence. Since the library of functions needs to be specified
a priori, these methods induce a strong inductive bias. A
strong sparsity prior on the parameters, and — correspond-
ingly — sparse regression methods like LASSO or sequential
thresholding (Brunton et al., 2016), ensure that only a small
subset of functions from the library is selected for model-
ing the vector field (for details on SINDy, see Appx. D.2).
More formally, this defines the class of finite-dimensional
linearly parameterized functions with m differentiable basis
functions ¢; : R - R,i=1,...,m,

B, = {fj(w;e) = i&iiji(x) ‘nge € R"’X”}, (14)
i=1

where these basis functions may be arbitrarily chosen. In
this hypothesis class, one trajectory is sufficient to fully
specify the DS, unless a certain uniqueness condition is
violated:

Theorem 4.1. Let f € By, be a multistable VF, and assume
SINDy (or related) is used to learn ® g, including the right
terms from By in its library. If there exists a trajectory
I'z, C D not solving an algebraic equation in the parame-
ters of Eq. (14), then the OODG problem given by (Br,, D)
is strictly learnable.

Proof. See Appx. E.2. O

This implies that a single trajectory from one basin is enough
for the DSR model to capture the dynamics on all other
basins, as long as D contains a trajectory not solving an
algebraic equation in the parameters of Eq. (14)* and the
correct function library is provided*. These observations
are illustrated in Fig. 2a. Appx. D.4 provides an efficient
formal procedure for checking whether the conditions on a
given trajectory are met, and hence a generalizing solution
could be found. In situations where the trajectory solves
an algebraic equation, we can further restrict the library to
find a unique solution (Corollary E.7). We remark that these
conditions are usually established by LASSO.

Reconstructed VF from
Non-Algebraic Trajectory

Wzt

N=

Reconstructed VF from

a) Ground Truth VF N A
Algebraic Trajectory
==

=

&S
N

Reconstructed VF with library: Reconstructed VF with library:
1,2,y 2% y% zy, a3 2%y, ay®. y [1,2,y.2% y% y

Figure 2. a) Example reconstructions using SINDy (details in
Appx. D.2). The underlying VF has two cycle solutions. One
solves an algebraic equation (red), while the other does not (black).
The VF is only correctly identified from a trajectory containing the
inner cycle (center), but not for the outer cycle (right). b) SINDy
needs the proper function library to correctly infer a system across
the whole state space (center). If the 3rd order term present in the
Duffing equations is lacking (right), the inferred VF may only be
locally correct (or not at all for more complex systems).

3There are in fact particular systems where each trajectory
may solve an algebraic equation, e.g. vector fields with a rational
first integral like algebraic Hamiltonians (see Appx. D.3 for more
details).

*If this is not the case, sometimes SINDy may still be able to
find a good approximation, depending on the degree of mismatch
and the expressiveness of the library
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As laid out in Appx. A, this has important implications,
since many benchmark systems and scientific models in
physics (Ramberg & Osgood, 1943), chemistry (Fernandez-
Ramos et al., 2006), ecology (Goel et al., 1971), or epidemi-
ology (Kermack & McKendrick, 1927), are expressed in
terms of polynomials. However, for many complex real-
world systems, like climate or the brain, which we observe
through time series measurements, this assumption is likely
to be violated, with polynomials at best a convenient simpli-
fication. As Figs. 2b and A10 make clear, library approaches
like SINDy will generally fail if the library does not con-
tain the right terms describing the GT model.> Hence, in
scientific ML we often turn to more flexible and expressive
models.

4.2. No Priors: Universal Approximators

Next, we examine the most common data-driven approach of
choosing a ‘black-box’ model, like an RNN, to approximate
the flow of the underlying system, i.e. without assuming
any prior knowledge about the to-be-modeled system. If we
assume that these models operate in the universal approxi-
mation limit, we can show that there is an infinity of models
in the hypothesis class having zero reconstruction error on
the training domain but a very high error on the whole state
space or for OOD data from M. This is in stark contrast
to SINDy, where — given the assumptions of Theorem 4.1
are met — every model with zero reconstruction error on the
training domain also has zero generalization error.

Theorem 4.2. Let ® be a multitstable flow that is not topo-
logically transitive (cf. Appx. B.4) on Mg, generated by
a VF f € X' Then, the OODG problem (X*,D) is not
strictly learnable. In fact, there exists an infinite family of
f € XY and an &€ > 0 such that the corresponding flows

fulfill

]\/Itrain — Ju’test
Eger™ (@) =0 and  Ere(P) > e (15)

Proof. See Appx. E.3. O

Note that this result is independent from the loss function
used in training. Fig. 3, where data were just sampled from
one basin of attraction of the multistable Duffing system (Eq.
(29)), illustrates this idea for three of the most commonly
used DSR models (in stark contrast to DSR performance on
monostable systems, cf. Fig. Al). We emphasize that this
is not a sampling issue: Regardless of how much data are
drawn from one basin, generalization fails, while increasing
sample size quickly helps to identify the whole state space
if data from both basins are available (Fig. A9). SINDy
on the other hand, provided the correct function library,
generalizes (Fig. 2b).

3In fact, SINDy fails on many empirical datasets from complex
systems (Brenner et al., 2022; Hess et al., 2023).

It is important to note that while on multistable settings like
the one above, if trajectories are drawn from just one basin
OODG will generally fail, the very same architectures can
be trained to approximately zero training error on the full
state space M (see Fig. AS). This implies there are indeed
regions in the loss landscape that would generalize, raising
the question of why these are hardly ever discovered by the
optimization algorithm.

4.3. Why OODG Fails
We will shed light on this failure, focusing on RNNs trained
with SGD. Given data D, the probability that an RNN after
training has a generalization error €4y, is formally given by
pscp(esin | D) = [ 1(EY, (@0,) = Eyen

e

Popt (05 | 05, D) pini (6;) dO;dOy,

(16)

where pi,; characterizes the initialization scheme and pop¢
formalizes the training process, quantifying the probability
of obtaining a final set of parameters 6 given an initial set
6;. Under certain assumptions (cf. Appx. D.5 for details),
Eq. (16) exactly aligns with the learnability distribution (Eq.
(13)). We now illustrate how the implicit biases in pj,; or
Dopt Will impede OODG.

Simplicity bias in p;;,; In recent studies of standard NNs
(Valle-Pérez et al., 2019; Mingard et al., 2023) and trans-
formers (Bhattamishra et al., 2023) it was shown that the
parameter-function map M (Appx. D.6) is biased towards
‘simple’ functions, which in turn may explain the good gen-
eralization capability of these models on i.i.d. data (of
course, time series data are not i.i.d. to begin with). Here
we show that RNNs also exhibit a bias towards simplic-
ity, which, in this case, unfortunately, manifests as a bias
towards monostable DS.

To this end we initialized a sShPLRNN &4 (Hess et al. (2023),
Appx. D.2) using the Glorot uniform and Glorot normal
(Glorot & Bengio, 2010) scheme where we systematically
varied the gain scaling the variance. We then uniformly drew
N7 initial conditions and evolved them with this randomly
initialized DSR model ®¢ until the resulting trajectories
had converged to a limit set. The distribution of these limit
set points across state space was then quantified through
the Shannon entropy, which gives a measure for the com-
plexity of the attractor structure at initialization (Fig. 4a).
In Fig. 4b, the mean entropy is plotted as a function of
gain (variance), revealing a clear trend (see also Fig. A12
for a higher-dimensional RNN example). Increasing the
parameter variance hence leads to more complex dynam-
ics at initialization. However, we empirically observe that
models initialized with high gains become almost impos-
sible to train by SGD, as commonly observed for vanilla
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Figure 3. Learnability of three SOTA DSR algorithms evaluated on the Duffing system in a multistable regime. a) Reconstructions of
DSR models trained on four ground-truth trajectories (blue) from one basin. Red trajectories are freely generated using initial conditions
of the training data and the respective DSR model. Grey trajectories comprise example ground-truth test trajectories and generated ones
from both the training basin and OOD basin. While training data trajectories align with the ground-truth, all models fail to properly
generalize to the unobserved attractor/basin. b) Empirical cumulative distribution function (¢CDF) of both Esat and E;op based on
N = 50 independent trainings of each DSR model evaluated over a grid of initial conditions covering both basins (see Fig. A4).
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Figure 4. a) Distribution of Shannon entropies (in Nat) for the limit
sets of SAPLRNNs (M = 2, H = 100) initialized with different
gains (parameter variances) using the Glorot uniform scheme. For
alow gain (o = 0.3), as predominantly used in DSR, the attractors
of all models at initialization had H = 0, which means that these
consisted only of a single equilibrium point. For higher gains,
further peaks at H > 0 started to appear, implying that either more
and/or higher-order objects (like cycles) exist upon initialization.
b) Mean Shannon entropy for the same data plotted against gain,
using the Glorot uniform and Glorot normal initialization scheme.

feed-forward NNs (Glorot & Bengio, 2010). This conflict
effectively biases all trainable (shPL)RNNs toward monos-
tability, and merely increasing the gain by itself is therefore
not a viable option for enhancing OODG.

Generalizing solutions are saddle points While the im-
plicit bias introduced by pin; plays a role in OODG failure,
uncertainties in the optimization, as quantified through pg,
turned out to be even more crucial. To illustrate this, we
consider the bistable Duffing oscillator (see Appx. A13 for
a chaotic multistable example) and denote by Oy, the pa-
rameters of a model generalizing across M, i.e., with close
to zero training loss £3; = £p(a,) + £B(a,) and reconstruc-

tion error gy, on both basins. We then retrain a model
initialized with By, on trajectories from just one of the two
basins, i.e. employing £p(4,) as a loss function. In Fig. 5a
we present the distribution of statistical errors for various
generalizing models @y, and retrained models @y, , across
the two basins, B(A;) and B(Az). We observe an about
20-fold increase in the reconstruction error of retrained com-
pared to initialized models on B(A,), even though the error
on B(A;) remained largely the same. Hence, the process
of retraining effectively leads the models to unlearn the
dynamics on the second basin. While here we illustrated

a)
B(A B(Aa)
gstit Y First basin logyo (EsuEL : ) Second basin
0.09
m generalizing models

T T
’ m generalizing models
1 m retrained models 1
0.06 - g

= retrained models 10
0.03 L=

2 2
(I)egen (I}Hm (I)egen (I}Qm

Figure 5. a) Statistical error distribution on basins B(A1) and
B(A>) for 20 generalizing models (green) and 20 x 20 models
retrained (purple) using only B(A1) data. b) Illustration of loss
landscapes using data from just one (left) or both (right) basin(s) of
attraction, with parameters corresponding to generalizing solution
(@gen), and to models retrained for 125k (0;.) and 250k (62,)
parameter updates, respectively. Note that ¢y does not exhibit the
spurious loss valley present in £g(a ;).
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that this issue arises even in fairly simple systems like the
bistable Duffing oscillator, Fig. A14 shows it is equally
present in higher-dimensional, more complex systems like
the generalized spatially extended chaotic Lorenz-96 (Pelzer
& Sterk, 2020) model of atmospheric convection.

Since Ogcn corresponds to a model that already agrees well
with trajectories from both basins (low £y & EXL,), this
raises the question of why the optimizer leaves this regime
during the retraining phase in the first place. To further
understand this, we studied the Hessian of the loss functions
evaluated on trajectories from just one (£g(4,)) or both
(£ar) basins W.r.t. O,c, (see Tab. AS). First, we noticed that
Ogen is not a minimum but a saddle in both loss landscapes.
Further, the Hessian of {p(4,) has much fewer positive
eigenvalues than that of £;;, implying that the saddle is
more stable (with less directions to escape) when trajectories
from both basins are provided. Hence, as soon as data from
one basin are removed from the training set, the optimizer
will run into new directions with zero or small negative
eigenvalue, thus forgetting the second equilibrium point. Fig.
5b further shows that the removal of data from the second
basin leads to the emergence of spurious extrema. Current
training routines may thus not be built to learn multistable
systems, as they unlearn the multistable property even upon
perfect initialization.

Generalizing minima are sharp In ’standard’ DL, the
width of minima correlates with generalization, with wider
minima generalizing better than narrow ones (Hochreiter &
Schmidhuber, 1997). While certain studies have contested
this correlation (Dinh et al., 2017), large-scale studies, such
as (Jiang et al., 2019), validate this association. Here, we
adopt a specific notion of width based on the minima vol-
umes or radii as outlined in Huang et al. (2020), where
Appx. D.7 explains how this concept also applies to saddle
regions. To further examine this idea, we trained shPLRNNs
— as above — with identical architecture and hyperparameters
once on a trajectory from just one basin and once from both
basins of attraction of the Duffing system (see Fig. A15
for the same analysis for a chaotic multistable system). We
made sure that both models have approximately the same
training error when evaluated only on a single trajectory
from the first basin. We then examined the width (radius)
7(0) = ||@ — Opmin||2 of the minimum 6.,;,, corresponding
to the loss evaluated only on the one trajectory common to
both (the mono- and the multistable) training setups, at a
height 5% above the minimum value (other heights gave
similar results, see Appx. D.7). On average, the minimum
valleys corresponding to generalizing models, i.e. those
trained on the whole state space, have a smaller radius (Fig.
6), in contrast to the more common observation in DL that
generalizing minima are usually wider. This, in addition
to the fact that SGD is more likely to converge to wider
minima (Chaudhari et al., 2019; Foret et al., 2020; Xie et al.,

2021), may further explain why generalizing minima are
avoided in DSR.

1.0 FT

eCDF

05 |
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non-generalizing model
: 4
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r(6)
Figure 6. eCDF of minima radii for generalizing and non-
generalizing models.

5. Discussion

Here we provide the first systematic mathematical treatment
of OODG in DSR. We aimed to lay a theoretical foundation
which could serve to guide the field toward future solutions
of the OODG problem in DSR, by providing a new set
of theoretically guided measures, providing theorems
which clearly state what is, and what is not, possible, and
by delineating where the hard problems lie and exactly
why current SOTA algorithms struggle with them. The
core problem is that most naturally observed DS will
harbor many co-existing dynamical regimes, characterized
by different VF topologies and long-term statistics, but
usually we have observed data only from one or few of
them. If we already know the correct function class, we
can infer models (like SINDy) which generalize across
the whole state space. But for the likely much more
common empirical scenario where this is not the case,
unique identification of a generalizing solution is no longer
possible. In fact, if a chosen library does not even work on
the training domain, this is already a strong hint that crucial
terms are missing. Unfortunately, intentionally choosing a
very expressive, too-large function library is not a remedy
either (let alone for computational reasons), as it makes the
problem underspecified.

Practically, one DS-agnostic way to potentially address
OODG may be by targeting implicit biases in the initial-
ization and, more importantly, the training processes (cf.
Sect. 4.3), for instance by promoting solutions that explic-
itly encourage multistability. Often, however, we may still
need to guide the training process by a more profound phys-
ical or biological understanding of the DS in question, and
evaluate trained models by explicitly (experimentally) test-
ing novel predictions. More generally, future work may
want to put the focus on training algorithms that encourage
and preserve multistability and avoid overfitting the training
basin.

All code used here is available at https://github.
com/DurstewitzLab/O0DG-in-DSR.
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A. Survey of Benchmark Systems
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Figure Al. In-distribution generalization in DSR.

We surveyed 59 papers in the field of DSR, containing a wide range of methods and applications, with respect to the
benchmark systems or datasets considered (Farmer & Sidorowich (1987); Wang & Lin (1998); Voss et al. (2004); Brunton
et al. (2016); Trischler & D’Eleuterio (2016); Sussillo et al. (2016); Linderman et al. (2016); Tran & Ward (2017); Pathak
et al. (2017); Raissi et al. (2018); Mohajerin & Waslander (2018) Vlachas et al. (2018); Lu et al. (2018); Lusch et al. (2018);
Karlsson & Svanstrom (2019); Otto & Rowley (2019); Raissi et al. (2019); Duncker et al. (2019); Ayed et al. (2019); Nguyen
et al. (2019); Qin et al. (2019); Fu et al. (2019) Champion et al. (2019); Singh et al. (2019); Lee & Carlberg (2020); Shalova
& Oseledets (2020); Vlachas et al. (2020); Zhao et al. (2020); Hernandez et al. (2020); Azencot et al. (2020); Strauss (2020);
Gilpin (2020); Nguyen et al. (2021) (Kraemer et al., 2021; Li & Duan, 2021; Lu et al., 2021; Schmidt et al., 2021; Jordana
etal., 2021; Kim et al., 2021; Lai et al., 2021; Gauthier et al., 2021; Goyal & Benner, 2021; Liu & Jin, 2021; Schlaginhaufen
et al., 2021) Mehta et al. (2021); Zhang et al. (2022); Uribarri & Mindlin (2022); Gilpin (2022); Yin et al. (2022b); Rusch
et al. (2022); Brenner et al. (2022); Lejarza & Baldea (2022); Chen et al. (2022); Geneva & Zabaras (2022); Mikhaeil et al.
(2022) Yang et al. (2023); Linot et al. (2023); Tripura & Chakraborty (2023); Hess et al. (2023)). This survey motivated the
classification in Table A1, where three types of systems dominate the literature:

» Simple, low-dimensional linear or nonlinear systems like the Fitz-Hugh-Nagumo equations, Lotka-Volterra system, or
coupled or damped harmonic oscillators/ pendulums like the van-der-Pol oscillator.

» Simple monostable 3d chaotic attractors, predominantly the Lorenz-63, Rossler or Duffing systems.

* Nonlinear PDEs as models of fluid dynamics and convection (e.g. Burgers equation, Navier Stokes equation, Lorenz-96
or Kuramoto—Sivashinsky equations).

Experimental data or explicitly multistable systems were rarely considered (or at least not explored in their multiple stable
regimes).

Table Al. Classification of benchmark systems in the field of dynamical systems reconstruction.

Category Counts
Linear Models/Oscillators 24
Chaotic 3D Models 29
Fluid Dynamics/PDEs 13
Experimental Data 6
Multistable 3
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Figure A2. lllustration of multistability. Different basins of attraction can lead to completely different dynamical regimes with different
topologies.

B. Further Details on Section 2
B.1. Ergodic Theory and Topology

Figure A3. Trajectories of systems with an equilibrium point (Duffing oscillator), cycle (van der Pol oscillator) and chaotic attractor
(Lorenz system).

Physical measure

Definition B.1. We call u* a physical measure, related to Sinai-Ruelle-Bowen (SRB) measures (Climenhaga et al., 2017), if
for some set U with positive Lebesgue measure (L"(U) > 0) and ¢ € U,

lim pip,r = p*. (17)

T—o0
In essence, this means that the measure is physically realisable. However, not every attractor (or even the DS itself) has to
have a physical measure.
Hausdorff Distance
Definition B.2. Let X,Y be two non-empty subsets of a metric space (M, d). The Hausdorff-distance is defined by

du(X,Y) = max { sup d(z,Y), sup d(X, y)} (18)
zeX yey

where d(a, B) = infyep d(a,b) witha € X and B C X.
The choice of Hausdorff distance in this context is motivated by its robustness and sensitivity to outliers between the two
sets, which in the context of the topological error makes it a suitable choice for assessing the closeness of the limit sets.
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Topological Equivalence

Definition B.3. Let Iy, F» € C'(U) with flow maps qStF ', ¢f %. The two vector fields (VFs) are topologically equivalent
(Perko, 1991), denoted by F; ~ F5, if there exists a homeomorphism h : U — U mapping orbits of the first system onto
orbits of the second system, i.e.

VteER, Ve eU: ¢f'(z) =h ool on(z), (19)

with7: U xR = R, w >0 Vz € U. This means the time direction of the orbits is preserved.

Loosely speaking, two VFs are topologically equivalent if we can continuously deform one VF into the other, i.e. such
that each orbit is only deformed in a continuous manner without ‘ripping it apart’. This implies that equilibrium points are
mapped onto equilibrium points, and closed orbits to closed orbits. An open orbit will not be closed through %, and vice
versa.

Topological Transitivity

Definition B.4. Let F' € C1(U) be a vector field on a topological space U, with its associated flow map ¢{". The dynamical
system induced by F' is said to be topologically transitive if for any two non-empty open sets A, B C U, there exists a time
t € R such that the flow map at time ¢, #f", maps some part of A into B; that is, ¢ (A) N B # ().

This implies that trajectories of the vector field F, starting from an arbitrary region in the space U, will eventually enter any
other region, given that these regions are open and non-empty.

C. Further Details on Section 3

C.1. O0ODG in Statistical Learning Theory

Consider a regression or classification setting, where X C R? and Y C R* are the input and output spaces, and
S ={(x;,y;) € X x Y}, denotes a dataset sampled from a distribution p(x, y) defined on the domain X x Y. Further
assume there is a set F of training domains with cardinality |E|. Let the dataset of size n. from a single environment
e€ EbeS°={(af,y) € X° x Y}, where samples are drawn i.i.d. from the unknown, data-generating distribution
p°(x,y). Consider the class F of functions f : X — Y and aloss function £ : Y x Y — Rt U {0} measuring the goodness
of fit. In OODG, the goal is to learn a generalizing, predictive function f € F from the |E| training domains to obtain a
minimum prediction error on an unseen test domain egest With distribution petest (x, y), i.e.

rpin E(w,y)/\/petest [E(f(m)7y):| ) (20)
feF
where
Reet(f) 1= E(gy)mperest [E(f(w)yy)] = / U(f(@),y) dp*== (z,y) @D

is the expected loss for f, called the test risk. However, we cannot compute R¢*==* ( f) because the distribution pt=s* (z, y) is
unknown. Hence, we estimate the expectation by the sample mean across all the training domains, called empirical risk,
defined as

Ne

Rinp(f) = ﬁ S St ). (22)

ecE ¢ i=1

Based on this, the OODG error is defined as the gap between the test risk and the empirical risk,

[Re () = RE ()] (23)
C.2. Statistical Error
To compute Eq. (8), we use a common Monte-Carlo approximation of the expectation
1 L
SWi (g rs po'h) = I > Wilgen b s gewlbug), (24)
=1
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where projection vectors £ ~ U (S—1) are drawn uniformly across the unit hypersphere embedded in R™. The Wasserstein-
1 distance is computed across trajectories (empirical distributions) of the ground-truth flow ® and the reconstructed flow ® .
Trajectories are drawn by evolving the respective system for 7' time units from initial conditions € R™. Between two
one-dimensional distributions, the Wasserstein-1 distance can then efficiently be computed as

1
Wi (p,v) = jﬁ |F M (q) — F, ' (q)| dg, (25)

where F;! denotes the quantile function (inverse CDF). In practice, we approximate the integral in Eq. (25) by evaluating
the quantile functions at a resolution of Ag = 10~3. We use L = 1000 samples in Eq. (24). For the final error £5,,, Eq.
(9), we sample K initial conditions from a uniformly spaced grid Gr(U) = {z™),... &)} over U ¢ M C R". The
integral in Eq. (9) is then approximated by

1
Eiar(PR) = 22 D SWilugrpg ). (26)
z€eGr(U)

C.3. Topological Error

For the topological error, the Lyapunov spectra of orbits in limit sets w(x, ®) and w(x, P ) need to be computed. To compute
the Lyapunov spectrum of continuous-time systems, i.e. ground-truth systems and Neural ODEs, we use the Julia library
TaylorIntegration. jl (Pérez-Herndndez & Benet, 2019). For RNNs and RCs we use our own implementation of an
algorithm described in (Geist et al., 1990; Vogt et al., 2022), which computes the Lyapunov spectrum by evaluating the
Jacobian product along orbits of length 7'

T-1
.1
&zg&Tmm<HJpJ, @7)

t=0

where o; is the i-th singular value. For numerical stability, the product of Jacobians is repeatedly re-orthogonalized using
a QR decomposition. To ensure convergence to the limit set spectrum, transients are discarded from the computation of
Eq. (27). For the Duffing system (Appx. D.1), we discard the first T}, = 3000 time steps and compute the Lyapunov
spectrum across an additional 7' = 3000 time steps, while re-orthogonalizing every 50 time steps. For the multistable
Lorenz-like system (Eq. (30)), we use T},.qns = 5000 and 7" = 10, 000. For the tolerance of the relative error between
the maxmimum Lyapunov exponents \,, and A’ of the ground-truth and reconstructed system, respectively, we choose
€x, = 0.25. For evaluating the agreement of limit sets, dy (w(x, Pr), w(x, P)) < £4,,, we used the same setup as for
computation of the Lyapunov spectra, but only use the 7" = 500 and 7" = 5000 last time steps. We set £4,, = V/L, where
V is the volume of U, and L the number of initial conditions contained in the grid Gr(U), which is the same as used for
computation of £ (<I> R). For the Duffing system, this comes down to £4,, = 40.0/100 = 0.4. The integral in Eq. (10) is

stat
approximated and computed across the very same grid of initial conditions G7(U) as used for the statistical error €Y, :

1
Ep(@r) =1 =22 D Tag(x) (28)
xzeGr(U)

See Fig. A4 for a visualization of the grid of initial conditions used for the Duffing system.
D. Further Details on Section 4

D.1. Ground-truth Models
Duffing system The unforced Duffing system (Duffing, 1918) is given by a set of coupled ODEs:

i=y (29)
y:ay—x(b+cx2)

where [a,b, c] = [~3,—1, {;] places the system into a multistable regime with two coexisting equilibrium points. To

generate datasets, we numerically integrate Eq. (29) for ¢;,,; = 40.0 time units with a read-out interval of At = 0.01 using

the adaptive step size integrator Tsit5 provided within the Julia library DifferentialEquations. j1 (Rackauckas

& Nie, 2017). Using K initial conditions, this results in an array of shape 4000 x 2 x K. To facilitate training, we standardize
our datasets by the overall mean and standard deviation across all trajectories.
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Figure A4. Grid Gr(U) used to compute £ U .+ as well as 5{{,1, for the Duffing system.

Multistable Lorenz-like system As an example system of multistable chaotic attractors, we use the multistable Lorenz-like
system introduced in Lii et al. (2004):

T = —aa—fbx —yz+c
y=ay+zxz 30)
z=bz+uxy,

where we chose parameters [a, b, ¢] = [—10, —4, 18.1] such that the system exhibits two chaotic 1-scroll attractors in state

space. We numerically integrate Eq. (30) for ¢;,,; = 80.0 time units with a read-out interval of At = 0.005 using the Tsit5
integrator. Using K initial conditions, this results in an array of shape 16000 x 3 x K. As for the Duffing datasets, we
standardize using the overall mean and standard deviation.

D.2. DSR Models and Training Routines

SINDy Sparse Identification of Nonlinear Dynamics (SINDy) (Brunton et al., 2016) aims to identify a sparse representation
of the governing dynamical equations from data. Given a set of measurements of the state x(¢) € R"™, where n is the number
of system variables and ¢t = {¢; ... t,,} represents observation times, application of SINDy first requires approximating the
flow ¢ = x numerically, e.g. by finite difference methods. Following the notation in Brunton et al. (2016), the derivatives

dt
are arranged into matrix form:

XT(tl) xl(tl) $2(t1) l‘n(tl)

. %" (t2) E1(ta)  Eo(te) - dp(te)

X = . . : . . : GD
%" (‘tm) il(tm) fz(tm) T I.n(tm)

SINDy optimization then tries to determine a sparse matrix of regression coefficients = such that:
X = O(x)E, (32)
Here, ©(x) is a library of candidate functions on the state variables x that is defined beforehand, e.g.:

[ R |
OX)=|1 X X2 X3 X% cos(X) ...|, (33)
[ |

The regression coefficients are found by applying a sparsity-promoting optimization technique, such as the least absolute
shrinkage and selection operator (LASSO regression) or the Sequentially Thresholded Least Squares (STLSQ) algorithm, to
solve for E.
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The VF used for Figure 2 is defined as:

&=z +a(® +y° - 1)(4e® —day +4y°) + (2% + y°) (=22 + 2y + 2% + 2y?), (34)
g=y+ya®+y* - 1)(4a® — day +49°) + (2% + y?)(~22 — 2y + y° + 2%y).

For the inner cycle, a trajectory was drawn from a randomly chosen initial condition (z, yo) = (0.6,0.4). A long trajectory
was then sampled with 7" = 100 and At = 0.01. To infer the VF with SINDy, we used the Python implementation
(PySINDy, de Silva et al. (2020)) with STLSQ optimizer and threshold 0.01, and a PolynomialLibrary up to degree
6. As the outer cycle is an unstable solution, small perturbations lead the system to diverge away from it, and so for the
reconstructions in Fig. 2 (center) we made sure to initialize exactly on that cycle. For the results in Figure A8, we provided a
polynomial library of second order for the multistable Lorenz-like system and a library of third order for the Duffing system,
with other settings the same as used for Fig. 2.

RNNs We trained clipped shallow piecewise-linear RNNs (shPLRNNs; Hess et al. (2023)) using Backpropagation through
time (BPTT) with sparse teacher forcing (STF, Mikhaeil et al. (2022); Brenner et al. (2022)) and identity teacher forcing
(id-STF; Brenner et al. (2022)). The clipped shPLRNN has a simple 1-hidden-layer architecture

z = Az + Wi [p(Wazi_1 + hy) — ¢ (Wazi1) | + ha, (35)

with latent state z, € RM, diagonal matrix A € RM*M | rectangular connectivity matrices W; € RM*H and W, ¢
RHE*M "and thresholds hy € R and by € RM. The nonlinear activation function ¢ is given by the ReLU(e) = max(e,0).
The idea behind id-STF is to replace latent states with states inferred from the observations at optimally chosen intervals 7,
such as to pull model-generated trajectories back on track and to avoid strong gradient divergence for chaotic dynamics
(Mikhaeil et al., 2022). Teacher forcing also has the effect of smoothening the loss landscape (Hess et al., 2023). As in
Brenner et al. (2022), we take an “identity-mapping” for the observation model, ; = Zz;, with Z € RVN*M and 7y, = 1
taken to be the identity for the k read-out neurons, k¥ < N, and zeros for all other elements. STF is only used in training the
model, but not when deploying and testing it. The loss function to be minimized is the MSE:

T,
N 1 A
(se(X,X) = WZH@ — a3, (36)
S t=1

where X are model predictions and X is the a training sequence of length T’s. For performing SGD updates, we employ the
RAdam (Liu et al., 2020) optimizer paired with an exponential decay learning rate schedule. The sShPLRNN and training
routine are implemented using the F1ux . j1 DL stack (Innes et al., 2018). Detailed hyperparameter settings are collected
in Table A2.

Hyperparameter Duffing Lorenz-like
M 5 30
H 100 500
T 15 15
T 100 50
batch size 32 32
Tstart 1073 1073
Tlend 10_6 10_5
# trainable parameters 1,116 30,641
# SGD steps 250,000 250,000

Table A2. Hyperparameter settings of siPLRNNs trained on the Duffing and Lorenz-like systems.

Reservoir Computing (RC) We used a formulation of the RC architecture often employed in work on DSR (Patel & Ott,
2022):
ry = Qri_1 + (1 — Oé) tanh (W’I"t_l + Wi,us + b) 37
T = Wourt, (38)
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where r, € RM is the reservoir state, & € R the leakage parameter, W & RM*M the reservoir connectivity matrix,
Wi, € RMXN the input-to-reservoir matrix weighing inputs u; € RY, b € RM abias vector, and W,,; € RV*M the
matrix mapping reservoir states to the observed data. In RCs, the dynamical reservoir parameters 6, = {«, W, W;,,, b}
are fixed after initialization. Here we initialized W to be fully connected with entries sampled from a standard normal
distribution, and then scaled to have a predefined spectral radius specified by a hyperparameter p. Input-to-reservoir
matrix Wj,, and bias b are also drawn from Gaussian distributions with variances o2 and /32, respectively. In RCs,
only the reservoir-to-output matrix Wo,,; is learned. The RC is trained by first driving the reservoir using ground-
truth data X = [x1,..., 7] € RY*T supplied through u; = x;. This results in a trajectory of reservoir states
R =[ry,..., r7] € RM*T The only trainable parameters W,,; are then determined by minimizing the least-squares
error || X — W+ R||3, a straightforward linear regression problem with closed form solution

W,.. = XR" (RR")™". (39)

After training, the reservoir state is initialized with zeros and the RC is only provided a short sequence of ground-truth data
{x1,..., 7, } to "'warm-up* the dynamics of the reservoir state r;, where Ty denotes the warm-up time. Afterwards,
the RC runs closed-loop (autonomously) by feeding predictions &; back to the reservoir through the input-to-reservoir
connection. To keep the comparison between DSR models fair in Fig. 3, we only provide a single initial condition, i.e.
Tw = 1. For visual clarity, however, we still drop the first few time steps of RC-generated trajectories (e.g. in Fig. 3),
which the zero-initialized reservoir state needs to converge to the correct dynamics. Detailed hyperparameter settings are in
Table A3.

Hyperparameter Duffing Lorenz-like
M 500 2000
P 1.0 0.75
@ 0.7 0.4
o 0.2 0.3
I} 0.5 0.7
# trainable parameters 1,000 6,000

Table A3. Hyperparameter settings of RCs trained on the Duffing and Lorenz-like systems.

N-ODE We train N-ODEs (Chen et al., 2018) using the Julia library Di ffEgqF lux. j1 (Rackauckas et al., 2020). We
use a simple multi-layer perceptron (MLP) architecture where parameters are optimized using the adjoint method. The loss
function is the MSE, Eq. (36). As for RNNs we perform SGD updates using RAdam paired with an exponential decay

learning rate schedule. Detailed hyperparameter settings are in Table A4.

Hyperparameter Duffing Lorenz-like
# hidden layer 2 3
hidden layer sizes [40,40]  [100, 100, 100]
activation tanh ReLLU
T 30 30
batch size 32 32
ODE solver Tsit5 Tsit5
Tstart 10-? 1073
Tend 10~ g 10~ °
# trainable parameters 1,842 20,903
# SGD steps 100, 000 100, 000
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ground-truth RC N-ODE shPLRNN
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Figure AS. Reconstructions of the Duffing system as in Fig. 3, but with models trained on ground-truth data (blue trajectories) from
both basins. The models are capable of learning the multistable dynamics (red trajectories) of the system when supplied with data from
both basins. This is also reflected in the drastically smaller statistical error £s¢q¢+ When applied to the same test data as used for Fig. 3:
RC ~ 2.7-107° N-ODE ~ 2.1 - 10" and ShPLRNN ~ 1.4 - 10°.

ground-truth RC

w — RC
8 0.5 4 = shPLRNN
o = N-ODE

N-ODE shPLRNN

Figure A6. Learnability evaluated on the multistable Lorenz-like system. Left: Example reconstructions of DSR models trained on 4
ground-truth trajectories (blue) from one basin. Red trajectories are freely generated using initial conditions of the training data and the
respective DSR model. Grey trajectories are example ground-truth test trajectories and model-generated trajectories, respectively, from
both the training basin and the OOD basin. Again, all models fail to properly generalize to the unobserved attractor/basin. Right: eCDF of
Estar With a sample size of NV = 50 independent trainings of each DSR model evaluated over a grid of 125 initial conditions covering
both basins. Note that the dynamics of the N-ODE models consistently diverged for many initial conditions from the grid. For N-ODE
Estat values, this means that most mass is concentrated at much higher error values, which were cut off in the eCDF plot.
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ground-truth RC

N-ODE shPLRNN

Figure A7. Reconstructions of the multistable Lorenz-like system using the same DSR models as in Fig. A6, but trained on ground-truth
training data (blue) from both basins. As for the Duffing system, the models are capable of learning the multistable dynamics (red
trajectories) of the Lorenz-like system when supplied with data from both basins. This is also reflected in lower statistical errors Estat
when compared to the monostable training data, evaluating to ~ 0.131 for RC, ~ 0.133 for N-ODE and ~ 0.064 for the siPLRNN.

—— Training Trajectory

Figure A8. Reconstruction of the multistable Lorenz-like system from a trajectory from just one basin, using PySINDy (de Silva et al.,
2020). Since in this case, the correct polynomial function library was provided, both basins are correctly identified (see also Fig. 2b).

D.3. Specifications on Theorem 4.1

There are also examples of VFs with a dense set of trajectories which solve an algebraic equation. Any VF with a rational
first integral (e.g. algebraic Hamiltonian) is not learnable (since then every solution solves an algebraic equation in terms of
the basis functions). A simple example would be the standard harmonic oscillator in the regime where it has a center, i.e. a
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Figure A9. Generalization errors EM . (left) and Sg‘fp (right) for shPLRNNs (M = 5, H = 100) as a function of sample size (amount of
training data), drawn from one basin (blue) or both basins (orange) of the Duffing system (center). Each data point is median + median
absolute deviation (ribbon) across 10 models. Increasing training data from one basin makes no difference for the generalization to the
second basin (blue), i.e. both errors plateau at high values.

dense set of closed orbits (each of them solving an algebraic equation). More generally, systems with a center manifold (as
in many Hamiltonian systems and biological systems like the FitzHugh-Nagumo equation) may have this property, with all
trajectories lying on the center manifold solving an algebraic equation.

Ground Truth Polynomial Library
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Figure A10. Example reconstructions using SINDy (details in Appx. D.2). a) The ground truth (GT) VF has two cycle solutions. One
solves an algebraic equation (red), while the other does not (black). b) Providing SINDy with the black trajectory and the correct library
(including both trigonometric and polynomial functions) leads to a correctly inferred VF. c¢) Providing as data the curve solving an
algebraic trajectory leads to an incorrectly inferred VF, as stated in theorem 4.1, despite the correct library. d) Providing SINDy with a
non-algebraic trajectory but a library that lacks the trigonometric terms also fails to reproduce the GT VFE.

The VF used for Figure A10 is defined as:
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% = 2y cos(x), (40)

2

y = 2% sin(x) — 22 cos(z) + y? sin(z) — sin(z).
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D.4. Specifications on Theorem 4.1 - Evaluating Identifiability Conditions
Assume we are given a dataset (trajectory)

D ={x(ty), z(t1), ..., x(tn)}, 41

for which we would like to check whether it satisfies an algebraic equation in the basis functions, i.e.,
76 € R™\{0} : A(z Zam =0 Vtell. (42)
Multiplying Eq. (42) by ¢;(x(t)) yields
—Vj=0,...m: ;(xt)) i&iwi(m(t)) =0. (43)

As this equation is always zero, it is also zero when evaluated at the data points

N m

Vji=0,gm: > (a(ty) Y i(@(ty)) = 0, (44)

k=0

Equation (44) consists of m + 1 linear equations which can be written in matrix form:

wo(w< )) Yo(e(te))  Po(@(te)) - Yr(®(tr) - do((tr)) - Pm(x(tr)) | | 0o
(x(t %(-’B(k)) Pr(@(te)) - r(2(tr)) r(@(tr)) - Ym(@(tr)) | | 00

N
Z : . : .| =0 (45)
= () - vo@(t)) vm(@(t)) - (@) .. () - vmat))] L

v

Hence, if ker(¥) is non-trivial (contains not only the zero-vector), then the data points solve an algebraic equation in the
basis functions. For instance, let us revisit the scenario described in the main text, where our training dataset comprises
points on the circle 'y, = {(cos(t),sin(t)) | ¢ € [0,2m)}. With this information, we are able to determine the null space
of ¥ by solving Eq. (45) using a library that includes polynomials up to third order. The null space is three-dimensional
and consists of the three algebraic curves shown in Fig. A11. (Note that, by definition, also all linear combinations of
these invariant algebraic curves are in the nullspace.) In contrast, the nullspace of W for a trajectory that does not solve an
algebraic equation in the basis functions contains only the zero-vector.

Thus, checking whether the null space of ¥ contains only the zero-vector is a quick and efficient method for verifying
whether any trajectory satisfies an algebraic equation in the basis functions. If the nullspace contains only the zero-vector
and we have provided a proper (correct) library, SINDy (or related library methods) will generalize across the state space
M. Conversely, if the null space is non-trivial, either a different trajectory must be selected or the hypothesis class must be
limited, as outlined in Corollary E.7, to enable proper generalization.
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Figure A11. Illustration of how to check whether training data solve, or do not solve, an algebraic equation in a practical setting, for the
harmonic oscillator (left) and van-der-Pol oscillator (right). The limit cycle of the van-der-Pol oscillator is non-algebraic (Odani, 1995).

D.5. Why OODG Fails
The probability of a model trained with SGD having error e, is defined by

pscp(esin | D) = [ 1UEY, (@o,) = Eyenlpons (61 | 6, D) i (60 dB,6;. (46)
e
This coincides with the learnability distribution
o) = iy [ LEM (B0) = 2pla® @)
Pl T Nol(@y) Jo, e T e

under two conditions, the failure of either one introduces an implicit bias. First, it might be that the optimizer does not
converge to a model with zero reconstruction error on M but a slightly larger error. The more significant implicit bias arises

from the combination of p;,; and pgat. Assuming the optimizer always converges to a model with zero generalization error,
we have

1

pscn(eienlD) = sopigry [ LEN (B) = 2y i (010,
0

(48)
i.e., psgp aligns with the learnability distribution only when an implicit bias term pyi.s iS accounted for. In general, it is
likely that a specific combination of pin; and pstat preferentially converges to certain parameters 6, as observed for SGD.

This preference is termed the implicit bias of the learning algorithm, and skews the learnability distribution toward the
domain implicitly preferred by the learning algorithm.
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D.6. Simplicity Bias
We adopt the following definition for the parameter-function map from (Valle-Pérez et al., 2019):

Definition D.1. The parameter-function map M associates a given parameter set with the flow, expressed as:
M:0 = Hy, 60— Dy (49)

Depending on the choice of model, multiple parameter vectors can map onto the same flow. For instance, for the shPLRNN
(Sect. D.2), scaling W7 by a positive scalar factor ¢ € R and adjusting the weights in W5 by % results in the same
dynamical model. The initial parameter distribution p;,; can lead to flows with different characteristics not directly apparent
from the initial distribution. In the context of the simplicity bias, we are interested in the distribution over the complexity
of the flows K (®,, ) induced by a choice of distribution over initial parameters. To assess this complexity, we select the
Shannon entropy over the limit sets of the resulting flows (Eckmann & Ruelle, 1985). We evaluate this by drawing long
trajectories from a grid of initial conditions and compute the entropy over the histogram of final states, using the Rényi
algorithm from ComplexityMeasures. j1. This entropy has a natural interpretation for flows with different topologies,
where e.g. global equilibrium points have low entropy and chaotic attractors have high entropy (see Fig. 4b).

Glorot uniform
6 | |— Glorot normal _

1 1
0 2 4 6
gain

Figure A12. Simplicity bias for shPLRNNs for M = 10 and H = 250.

Table A5. Number of positive, zero and negative eigendirections for the Hessian of the loss function evaluated on trajectories from just
one ({p(4,)) or both (£1s) basins w.r.t. @gen. (For this analysis only 5 of the 20 generalizing models plotted in Fig. 5 where used.)

| | bu | acan) |
| #Xp | 171.93 +£0.62 | 103.08 £2.10 |
| #Xo | 182.38£0.75 | 310.54 4 3.76 |
| #A_ | 149.69 +0.24 | 90.38 +1.66 |
| Amac | 241.09 £ 1.25 | 364.09 & 3.29 |
| Amin | —0.00126 £ 0.00004 | —0.00186 = 0.00001 |

D.7. Assessing Sharpness of Minima

In order to assess the volume of minima, we employ a sampling-based approach. Following Huang et al. (2020), we
randomly select a vector ' from the parameter space © with dimensionality d within the hyper-sphere S~ with radius 7.
Subsequently, we evaluate the loss of models with parameters along a straight line in parameter space given by

Bmin + G(H/ - Hmin)- (50)
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Here, a takes values in the interval [0,1]. We define the threshold value a = a4, as the one at which the loss of the
corresponding model exceeds the predefined threshold ¢ > ¢(1 + pp ). We tested a threshold of p;;, = 1% and py, = 5%
for our experiments. However, as the results in Fig. 6 and A15 indicate, the results obtained are not overly sensitive to this
hyperparameter. The resulting threshold value ay, yields an estimate of the minimum radius in the direction of €', given by

= _Eg [7%(8)], given by:

7 - azp. This radius serves as a lower bound for the minimum volume V' = T(Fn/2)

d d
logV = 5 logm — logF(§ +1) +log B [r(6)]

\%

d d
3 log 7 — log F(§ + 1) + Egis[dlogr(0)]

Q

d d d &
§1ogﬂ' - logf(i +1)+ N ;logr(Oi),

where we used Jensen’s inequality to pull the logarithm into the expectation, and F(% + 1) is Euler’s gamma function.

Radius estimates for saddle points It is widely acknowledged that many critical points to which stochastic gradient
descent (SGD) converges in high-dimensional spaces are saddle points (Chaudhari et al., 2019). Mathematically, saddle
points lack a well-defined radius since there exist directions in which the loss decreases. Despite this, estimation techniques
for the radius, such as the one proposed here, are commonly applied (Huang et al., 2020). Our convergence analysis supports
the viability of our method, as demonstrated in Fig. A16a, where the estimation of the radius converges after approximately
3000 randomly drawn samples. A possible explanation for this convergence could be the prevalence of positive directions.
As illustrated in Table AS, the Hessian has more positive eigendirections than zero or negative ones. This could lead to
a much larger volume of parameters around the minima having an ascending loss. Further support for this hypothesis is
provided in Fig. A16b, where random sampling of parameter vectors around minima, as described earlier, results more
frequently in ascending than flat curves.

Generalizing model

a) b)
20 o 20 o
15 Low statistical error 15+ Low statistical error
on first basin on second basin

10 10 B

5 5t

0 : 0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 6 0.8 1.0

B(A)) B(A,)
5.\[;1! ((I)(l.‘ ) gﬁlil( (q)fl_,m)

en

Generalizing model retrained on first basin

c) - d) 4
25|

L 3 . L

20 Low statistical error High statistical error
15 on first basin 2 on second bhasin
10 1

5

0 ) 0

0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4 5

B(A,) B(A,)
é‘s'ml (‘I)I):.‘ ) 6>m| ((I)(I . )

Figure A13. Similar to Fig. 5a, this figure illustrates the statistical error of generalizing and retrained models for the multistable Lorenz-like
system described by Eq. (30). The upper two density plots depict the statistical error of generalizing models on B(A;) and B(A3).
Meanwhile, the lower row illustrates the same for retrained models. A surge in error is observed for B(A2) in the retrained models,
suggesting an unlearning of the second attractor. This finding confirms that the results presented in the main text can be reproduced for a
ground-truth system with completely different dynamics.
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__oB(A1) B(Az2)\
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Figure A14. Statistical error distribution on basins B(A1) and B(A2) for 10 generalizing models (green) and 10 x 5 models retrained
(purple) using only B(A;) data, similar to Fig. 5a in the main text, but based on a 6d Lorenz-96 system (Pelzer & Sterk, 2020) of the
forma; = x;_1-(x; —xj—1) —x; + F, j = 1...6, where periodic boundary conditions are applied. Using F' = 0.654502, the system
has two coexisting chaotic attractors (see sect. 4.3 in (Pelzer & Sterk, 2020) for more details on the system). After retraining on data from
B(A,), the models effectively unlearn the dynamics on B(As).
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Figure A15. a) Similar results as in Fig. 6 for the Duffing system, but for a lower threshold p:, = 1%, as described in Appx. D.7. b)
Similar graphs as in Fig. 6 for the multistable Lorenz system (Eq. (30)) for p;p, = 1%. ¢) Same as b) but for py, = 5%.
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Figure A16. a) Average radius as a function of the number of samples drawn from the loss landscape, indicating convergence to a constant
radius at around 3000 samples. b) Loss as a function of the radius for a siPLRNN (N = 2, M = 100) trained on the Duffing system (Eq.

(29)) and 5000 sampled points. Curves are with kernel density smoothing.
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E. Proofs
E.1. Proof of Theorem 3.3

We first clarify the mathematical interpretation of not reconstructed’. We consider two different scenarios, assuming the
ground truth model ® to be given (fixed):

(i) Alltrajectories starting in B(Ay,) converge to another reconstructed attractor A;, j # k. This is often the case for trained

models, as illustrated in Fig. 3 and Fig. A6, and corresponds to a missing basin. In this case Egii*t (P ) o vol(B(Ay)).

(i) There is an open set B(A,41) C M corresponding to a new basin of a new attractor A,, 1 of ® g, where we further
assume A; N B(A,+1) =0, Vi < n. This is the case when some additional dynamics is learned which is not present
in the ground-truth system. In this case EMtest (® ) o vol(B(An11))-

gen

Proof of (i) We assume the decomposition as in Eq. (7) for the ground-truth system ®:
M =0 B.UM suchthat u(M)=0 (51)

We will first prove the theorem for the statistical error. First, we want to show that the error between the occupation
measure of the ground-truth system and the reconstructed system on B(Ay) is non-zero:

SWi (g rgh) #0 Vo € B(Ay). (52)

To do so, we take some « € B(Ay). By assumption 3j # k : w(z, Pr) C A,;. We take some open subset U D A; of
B(A;), which has to exist as B(A;) is open. But for ® it still holds that w(x, ®) C Ay. It follows that

pe i (U) # pe p(U), (53)

as, by definition of an attractor, there is some time 7" such that ® z(T", x) enters U, while ®(¢, x) never does for any ¢.
Also note that ,ui’RT(U) # (0 as ¢y enters U, making the occupation measure of U non-zero. Consequently, we found a

Borel set on which the two occupation measures disagree, hence ufc)l}' #* uf’T. This construction can be repeated for any
T c B(Ak)
Since SW; is a metric on the space of measures (Kolouri et al., 2016), this implies

Vo € B(Ar), SWilug . pgh) #0. (54)

Since B(Ay,) is connected, also B(Ay) is connected. As B(Ay) is closed and M compact, also B(A}) is compact. By the
mean-value theorem for integrals, there exists some @’ € B(Ay) such that

EL (@R) = SW1 (12 1, p2ir) - vol(B(Ay)). (55)

SW, (Nf/,% ,ui,’fT) is a constant, consequently Ssig? . vol(B(Ay)) which proves the theorem.

We go on to prove the statement for the topological error. Denote by D}’ (y) a unit ball of radius r in R™ centered on y.
Again, we take some & € B(Aj) and by assumption 3j # k : w(x, Pr) C A;, while for ® it holds that w(x, ®) C Aj.
As M is equipped with the Euclidean distance, the Hausdorff distance between two sets measures the farthest possible
Euclidean distance between a point in one set to the closest point in the other set. Denote by .S the set of points in A; being
€4, -close to Ay,

S={y e Ajlda({y}, Ax) < cay} (56)

For reasonable choices of our hyperparameter €4,, this set will be empty. Only if both attractors A;, Ay, lie very close to the
boundary separating their basins of attraction, it could be non-zero. In this case we have

dH(w(:cv (I)R)7 w(mv (I))) < Edy, VL E U’yESngH (y) (57)
and

du(w(x, ®r), w(x, ®)) > ca,, Ve € B(Ar)\ Uyes D?dH (y). (58)
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Hence, the indicator function in Eq. (10) 14 () is 0 on the set B(Ay)\ Uyes Dz, (y), as the condition for the closeness
of limit sets in the Hausdorff metric is violated.

Consequently,
1 vol(B(Ag)) — vol(UyesDZ, (y)) 1(B(A
Eip(Pr) =1 —— / an(@) dz = v oy BT o YDA (59)
P vol(M) vol(M) vol(M)
This result proves the theorem when choosing Mt = M, given a choice of ¢4, that ensures that

vol(B(Ax)) > vol(UyesDZ, (y)). This should be generally fulfilled by a reasonably small choice of £4,, -

Proof of (ii) The proof is analogous to the one of (i) if we replace Ay with A,, 1, but the main steps will be stated again
for completeness. For the statistical error we want to prove a result similar to Eq. (52):

SWi (g 1y pig’) # 0 Vo € B(Apia). (60)

Assume some x € B(A,,41). We know that 7j < n : w(x, &g) C A;, since by assumption A; N B(A,41) =0 Vi <n.
That is, while w(x, ®r) C Apt1, for & we have 35 < n : w(x, ®) C A;. In accordance with the proof of (i), we can
construct a set U O A,+1 and conclude with a similar line of arguments as above that

SWiug r pigh) #0 Va € B(Ans). (61)
Using the mean-value theorem for integrals we can conclude
Exini " (@R) o vOl(B(An11)) (62)

proving the statement if we set Miest = B(Ap11).

For the topological error we take an x € B(A,+1). We know that w(x, ®r) € A,41 and 3j < n : w(x, @) C A;. In the
construction of the set .S, we need to be cautious as B(A,,+1) could have many neighbouring basins. Accordingly, we have
to construct a seperate set .S; for each attractor. We denote by S; the set of points in A;, £4,,-close to A, 11,

Si={yc Aildu({y}, Ant+1) <eay}, i<n (63)

Again, each S; will be empty for reasonable choices of €4,, and only non-empty for systems where A; lies very close to
Ap+1. Now, by an argument analogous to (i), we can conclude that

, vol(B(An41)) — vol(UiLy Uyes, DZ, (¥))  vol(B(Ant1))
M _ dpy n+1
gtOP((I)R) o vol(M) x vol(M) (64)

proving the result when choosing M;.s; = M, given a reasonable choice of £4,, (as discussed in (i)).

E.2. Proof of Theorem 4.1
For the proof of Theorem 4.1, we need the following definitions:

Definition E.1. Given a trajectory I'5,, we define the graph of this trajectory by
Qo = I, x Tqy. (65)

Definition E.2. We define the following map, mapping the hypothesis class #, a set of initial conditions and a set of times
to the graph of the solution:

o HXR"xR—=Rx M, (fxo,I) > Oy (66)

The proof of theorem 4.1 is based on the following lemmata:

(1) Using Lemma E.3, we will first show that the set of solutions to the parameter estimation in SINDy (or any library-based
algorithm) which is based on a minimization problem, can be rewritten as the pre-image 71 (0~ 1(€,)). 71 denotes
the projection on the first argument of the pre-image.
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(ii)) Lemma E.4 then establishes how the pre-image and the associated minimization problem can be rewritten as a linear
(matrix) equation.

(iii) Lemma E.5 shows under which conditions this equation will have a unique solution.
(iv) Finally, Lemma E.6 is used to characterize the set H for H = B, which will be used to prove the theorem.

Lemma E.3. Let Ty, = {w(t)|t € I] } be the solution (with graph Q) of some ground-truth VF fer € By, with
parameters Ocr, for = f(x;0cr). For linearly parameterized function spaces (see Eq. (14)) like By, we can write the
(first projection of the) pre-image of a single trajectory as

71'1(0'_1((2:,:0)) = {f € BL|A]' = /tl (il?] / f] S) dt = 0, j S {1, ,n}} (67)

ty
:gMﬂxen[|@@—f@wm;m} (68)

Note that the second equation exactly corresponds to the minimization problem stated by SINDy (without regularization).

Proof. By the definition of Eq. (66), it holds that

(07 (Qay)) = {f(2;0) € By | &(t) = f(x(t);0), Vte I & x(0)==m0}. (69)
The following equivalence holds for all j € {1,...,n}:
i (t) = fi(2(t); 2;(0) = @0, (70)
< zi(t) —x;(0 / fi(z (71)
2
o /t <xj(t) o (0) = /O fj(:c(s);e)ds) dt =0 (72)

where we used in the last step that for a continuous function f with f(z) > 0,Vz € I C Rwehave [ f(z)dz =0 =
f(x) = 0. This establishes Eq. (67).
For Eq. (68), let us assume f € 71 (0~ !(Q,)). By the definition of o, we note that f satisfies for any j < n

5 (t) = fi(x(t);0),  ;(0) = @0, (73)
= .’E](t) — f](w(t), 9) =0, (,EJ(O) = To,;- (74)
By the same argument we used to get from Eq. (71) to Eq. (72), it holds that f fulfills

ty

[t = s(@s6) e =0, s)
to

As the L?-norm (its square) || - [|2 L2 is a positive function, the minimum value it can attain is 0. Conse-

quently, f € ming{f(x;0)| f ll&(t) — f(x;0)||2.dt}. For the other direction of the set-inclusion, assume f €

ming{ f(x;0)| f |&(t) — f(z;0)|3.dt}. In general, f could be different from fer as there could exist many dif-

ferent f solvmg the minimization problem. However, for for we know that the following holds:
ty
/ HiL’(t) - fGT(iL'§0GT)H%2dt=0. (76)
to

It follows that Vf € ming{ f(x; 0) \f l&(t) — f(x;0)|3dt} we must have
t1
| 160 s 0)ffaat =0, an
to

as the minimum value for |, ttol |&(t) — f(x;0)|2.dt is zero when choosing @ = 6. This establishes that any f €

ming{ f(x; 0)| ti,l |&(t) — f(x;0)||2.dt} has x(t) as a solution. By definition of o, we conclude that f € m1 (0™ (Qg,))-
O
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Based on Lemma E.3, studying the solution of the (unregularized) SINDy minimization problem, Eq. (68), comes down to
studying the pre-image 71 (0~ 1({z,)). Further, note that there is a bijection between parameters 8 € R™*" and functions
f(x; 0) for a linearly parameterized function space such as B,. In the following, we will identify 8 with f(x; ), allowing
us to write proofs for f in terms of proofs for 6.

In Kunze (1999), the solutions to Eq. (68) were studied for a one-dimensional setting. For higher dimensional settings, this
takes the following form:

Lemma E4. f(x;0) is an element of w1 (071 (Qy,)) if and only if 0 solves the following matrix equation

(U -Wo) (To-W1) -+ (U -Upn)]| [br (z;¥o)
(V- W) (‘I’l Uy) (W1-UN) | | b2 (2 V1) .
. : . : : = : Vi=1,...,n (78)
—_—— e —
T 0; X
with ; = x;(t) — x(0) and
Ty = / e (79)

(W - W>=/to OB / /wk ))ds - /wz ))dsdt. (30)

Proof. Consider the stationarity conditions

0A; 0A;

=0 & =0 Vk=1,....m Vj=1,...n
d(@o); P ’
The second condition leads to
A h o [t
D0y /t <2 (w] (0 / it S) B Sy (w@;a)ds)) “ o

/:2 ((mj / V(@ (s))ds — <§:9J /Otw,;(a;(s))d5> ./Otu;k(m(s))ds) dt=0. (82

Using the linearity of the integral this can be rewritten as

iem / (/Otw(m(s))d& /Otwa:(s))ds)dt / (@0 2,00 [ wntotonas) e o

leading to Eq. (78). O

Lemma E.5. Ler Q, be the graph of a trajectory from a VF | € By, with &(t) = f(x(t)). It holds
1 . . m . _ - — f
m1 (07 (Q,)) is unique <= $0 € R™ : A(m(t)) = Y O:ii(x(t) =0 VteIf . (84)

That is, the given trajectory does not solve an algebraic equation in the basis functions. By ‘unique’ we mean that
71 (071 (Qy, ) contains only one element.

Proof. We directly prove the equivalence stated in Eq. (84). Assuming 71(0 (4, )) is not unique, by lemma E.4 this is
equivalent to matrix W being singular. This implies ker(¥) # {0}, which in turn is equivalent to

30 e R™\{0}: ¥-6=0
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Hence, each row of the vector ¥ - @ needs to be zero, implying that ©

Vk<m / [ / i (a(s))ds / tim(:zc(s))ds] dt =0 5)

t

We need to show that the integral in Eq. (85) can only become zero iff Y ;" | 6;1;(x(t)) =0 Vi € [to,t1]. By linearity of
the integral over ¢, we can choose an arbitrary vector n € R and sum its components such that Eq. (85) is equal to the
following:

t m

| [an unla(s)ds - [ Zoiwi<m<s>>ds] dt =0 (36)
to |11 0 0

i=1

We are free to choose 1 = 0, leading to
t1 t m 2
/ ”/E:@m@@»u dt =0 (87)
to [J0 =1

By the same argument as above, as the integral of a continuous, non-negative function can only be zero if the function itself
is zero, we have

/Ot i 0;0;(x(s))ds =0 Vs € [to,t1]. (88)
Since this has to be true V¢ € [to, t1], we ﬁn;1:1}1/ conclude
S Oui(a(t) =0 Vi € ffo, 1] (59)
i=1
O

Lemma E.6. Consider two trajectories, T'y, = {y(t)|t € T, y(0) = yo} and T'y, = {x(t)|t € T, x(0) = x¢}, with initial
conditions xy and Yo such that xo = yo. We further assume these trajectories arise from two evolution operators associated
to the VFs f,g, ®/ ®9 : R x M — M with x(t) = ®/ (t,x0) and y(t) = ®I(t, yo). If, for all times T € R and Borel sets
B C M, the occupation measures associated with these trajectories satisfy

,Ufmo,T(B) = ,uyoyT(B) VB,VT € R, (90)

then the underlying trajectories are identical:
Iz, =Ty,. 9n

Proof. The proof of this Lemma E.6 was adapted from Dawkins (2024). As M is compact and Hausdorff and the Lebesgue
measure is regular, Eq. (90) is equal to a different condition. Let ¢ be a bounded continuous function ¢ : M — R, where
we denote the set of all bounded continuous functions by Co(M). Then, fig, 7 = iy, 7 implies

T T
/ o(a(s)) ds = / Sy(s)ds,  ¥T >0, ¥ € Co(M) ©2)
0 0

where x(t) and y(t) are the trajectories corresponding to ®/ and ®9. Differentiating with respect to T yields:
p@(T)) = ¢(y(T), VT'=0. (93)

Bounded continuous functions separate points, which means that Va; # x2 € M and Jp € Co(M) : p(x1) # p(a2). It
follows that

z(T)=y(T), VT >0. (94)
O

SNote that in this proof we deviate from our standard notation in that 6 does not refer to the full matrix & € R™*™ as in Eq. (14), but
just to a vector in R™.
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Proof of Theorem 4.1 Based on these four lemmas, we can now prove Theorem 4.1.

Proof. For the sake of simplicity, we focus on a bistable system where My,ain = B(A1) and Miest = B(A2), but the
generalization to n basins immediately follows. Let us denote the ground truth VE by for € Br, and write for(x; 0gr) to
make the parameter dependence explicit.

Now, consider an arbitrary element g in By o = {g € Bp|EMu=in(®,) = 0}, where ®, denotes the evolution operator

gen
associated with g. g € By, o implies 55;:11)(@)9) = 0. It holds that

B(A1 €3] <]
gsta(t )((I)g) =0 < Mm({,T = Ma:é’.,T? (95)

based on SW; being a metric on the space of measures (Kolouri et al., 2016). This equality holds for all T € I, , and for all
o € B(A;1). According to Lemma E.6, this implies that all trajectories in B(A1) of fgr and g coincide. Further, applying
Lemma E.5 and considering the assumption that at least one trajectory does not satisfy an algebraic equation, which we will
denote by F;Z) (with graph Q/a;[g)’ we can uniquely determine the parameters 6 of g(x; ) € By, via 7y (0! (Q;%)) Since g
and fo7 share the same non-algebraic trajectory, f and g must be identical as 71 (0 ~!(Q4,)) only contains one element
(Lemma E.5). Consequently,

Bro = {far}- (96)

Thus, By, o solely consists of fgr. Since for has zero generalization error on M, it follows that any model in By, ¢ exhibits
zero generalization error on M. Therefore, (B, D) is strictly learnable. O

Corollary E.7. When the observed trajectory Iy, C D solves an algebraic equation, we can nevertheless restrict By, to
B C By in a way that (B}, D) is strictly learnable.

Proof. If Ty, solves an algebraic equation, this means that ker(¥) # {0} (see Lemma E.5). Hence, Eq. (78)
U0, = X, 97)

does not have a unique solution for 8; # 0. However, for linear function spaces, we can use the fundamental theorem of
homomorphisms to make W\ ker(W¥) — im ¥ an isomorphism. Then, the system

-0 =X (98)

has a unique solution, where W’ corresponds to a matrix where some basis functions 1); ; are removed. In the corresponding
coefficient vector 02- e R™ the coefficients for the basis 1; ; are removed as well, hence m’ < m. By this process of
removing basis functions 1); ; from U, thus restricting By, to B, we can make the solution unique again. O

E.3. Proof of Theorem 4.2

Proof. Without loss of generality, we assume we have a bistable system, with f the ground truth VF, Mi,.;, = B(A;) and
Miess = B(A3). We aim to construct an infinite family of functions G = {g, |« € I} with zero reconstruction error on
B(A;) but non-zero error on B(Az). We denote by @, the evolution operator associated with g,. Let V' = B(A3)\ As.
Due to the assumption that f is not topologically transitive on B(A5), we can choose some non-empty, open subset V- C V.
As M is locally Hausdorff, we can define a compact subset K C V such that K itself contains an open set. As V' is open,
we define a bump function A € C*°(M) (Lee, 2012) that is zero outside of V" and equals 1 on K.

The i-th component of a VF in G is then defined as

Jai(®) = fi(z) + Az) - (—fi(x) + s0(x)), i=1,..,n, (99)

where ¢, € K. As K contains an open set, there are infinitely many different x,. By construction, é'giE]Al) (®4.) =0,
since A is zero outside of V, thus zero on B(A;). On B(A;), g, has the form g, ;(x) = f;(x) (f has zero generalization
error as it is the ground-truth VF). In contrast, on K, the VFs in G reduce to

Jo(x) = sa(x), (100)

where we assume s, to be a differentiable VF with an attracting equilibrium point at «,,. This construction is feasible on
any compact set K in any dimension. Given that A is smooth and s,, is differentiable, g, remains a member of X!
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Thus, G forms an infinite family of VFs, each possessing an attracting equilibrium point at distinct positions in K. We will
denote by B(Ag_) C V the basin of attraction of the equilibrium point z,,. All functions g, have an attractor on B(A3)
different from the one of the ground truth VF f. Additionally, B(A,_) N Ay = () by construction of V' for any a.. Thus, we
constructed the same setting encountered in the proof of Theorem 3.3, case (ii). Using the proof and setting B(A,,+1) (in
the notation of Theorem 3.3, case (ii)) to B(A,_, ), we can conclude that

Eaos =) (@) > ¢ (101)
with ¢ > 0. Since V' C B(Ay), it follows that £25**)(®,_) # 0 for all a € I. Consequently, (X, D) is not strictly
learnable, since we can construct infinitely many functions in X! with non-zero generalization error ’. O

"For the proof that (X', D) is not strictly learnable, a single VF as constructed above would have sufficed.
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DSR

standard ML

data generating process

Q:TxM-—>M

® is the flow on some manifold. Note that no
stochasticity is assumed as the OODG problem in DSR
persists without noise in the data.

p(z,y)

p(x,y) is the true distribution on an input X’ and
output space V.

training data

an€xoq> ([07 T]7 XO) , Xo C Miain

The training data takes the form of trajectories where
the initial conditions come from the training domain.

train (

{(@i, ) YLy ~ P (2, y)

N data points are drawn from a training distribution.

test distribution

DT X Myesy = Miest

The equivalent object to the test distribution is the
flow on a subset of the state space which was not seen
in training Miest C M. If @ is multistable,

Miesy harbors basins different from M ain. Hence, the
data (trajectories) in Mcst can follow a different
dynamical law than on Miyain .

test train
P FED

In OODG, the test distributions are different from the
training distribution.

distribution shift

A distribution shift occurs when the dynamics of ® on
Myest differ from the dynamics on Miyain. This is
particularly the case if ® is multistable. Then, M;,ain
and M. contain different basins. We thoroughly
discuss this in Sect. 3.1 of the paper.

Can take the form of:
covariate shift  p't(y|z) = p™™(ylz), p't(x) # 0 (2)

label shift Pt (aly) = P aly), i (y) # P (y)

There are also other forms like concept drift or even
more general versions of a distribution shift.

bounds on the
generalization gap

P(egen|D) = m f@o ]I[gé‘é{'f“(@g) = EgendO

In DSR, the role of the generalization gap is taken on
by the learnability distribution. In Sect. 3.3 we discuss
why such a reformulation is necessary. Essentially,
bounds in terms of the distance of two distributions are
meaningless as we do not (necessarily) have any noise
in our data. Instead, these bounds are based on
topological and ergodic properties of the flows.

|Rtest(f) _ Rtrain(f)l < d(ptest7ptrain)

Taking f as a trained neural network, one generally
tries to bound the test vs. the training error by the

distance between the test and training distributions
given some formal distance measured .

Figure A17. Comparison of OODG in DSR and standard ML.
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