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Abstract

This paper proposes a new parameter-efficient
method for fine-tuning, AoT P-Tuning. This
method adds input-dependent biases before
evaluating the Transformer layer, reducing the
required evaluation time when compared to P-
Tuning. Same as P-Tuning, AoT P-Tuning al-
lows multi-task inference with a single back-
bone model for evaluating different tasks in a
single batch. We experimented with the pro-
posed method on the GLUE and SuperGLUE
benchmarking datasets using RoOBERTa-Base,
RoBERTa-Large, and DeBERTa-XL backbone
models. Our observations show that AoT P-
tuning performed on par with or better than P-
Tuning v2 while being up to 1.3 times faster
during inference.

1 Introduction

P-Tuning (Liu et al., 2021b,a; Lester et al., 2021) is
a promising way to fine-tune large Language Mod-
els (LMs) (Devlin et al., 2019; Lan et al., 2020;
Liu et al., 2019; Radford et al., 2019). While it
currently underperforms compared to other meth-
ods for parameter-efficient fine-tuning (Hu et al.,
2022; Houlsby et al., 2019) on a wide range of
tasks (Ding et al., 2022), it has a practical, valuable
property that allows it to evaluate different trained
prompts parallel in a multi-task manner (i.e., a sin-
gle backbone LM could be used for different tasks
during inference, which can simplify model serv-
ing in real-world applications) (Lester et al., 2021).
This property is why researchers aim to further
develop P-Tuning methods.

Although it is possible to perform multi-task
evaluation with P-Tuning, it introduces significant
computational overhead due to the concatenation
of prefixes to sequences and the evaluation of the at-
tention mechanism (Vaswani et al., 2017) on longer
sequences.

We propose a simple mechanism for parameter-
efficient fine-tuning of Language Models, namely
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Figure 1: GLUE and SuperGLUE Macro scores (higher
is better) for different backbone model scales with plain
Fine-Tuning, P-Tuning v2, and proposed AoT P-Tuning
(with FC reparametrization). Based on these experi-
ments, AoT P-Tuning performed on par with or better
than P-Tuning v2. See Section 5.2 for more details.

Ahead-of-Time (AoT) P-Tuning, for which we
add input-dependent bias before each Transformer
layer. Same as P-Tuning, it is possible to use AoT
P-Tuning in multi-task inference setups when a
single backbone LM is used for several downstream
tasks.

The contributions of this paper can be summa-
rized as follows:

1. We described the intuition behind AoT P-
Tuning, which illustrates the connection of
the proposed method with P-Tuning.

2. We proposed two reparameterizations of AoT
P-Tuning weights: first based on a factorized
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Figure 2: Schematic comparison of P-Tuning v2 (left), and AoT P-Tuning (right). While plain P-Tuning concatenates
soft prompts to sequences and thus causes computational overhead, AoT P-Tuning directly adds input-dependent
biases to @, K, and V' matrices. See Section 4 for more details on AoT P-Tuning architecture. Since the sequence
length is not increased, AoT P-Tuning takes significantly less time to evaluate, only requiring the overhead of adding
biases to the input sequence (See Section 5.3 for experiments with inference speed).

matrix trained from scratch, and second based
on a LM’s embeddings matrix passed through
a trainable Fully Connected network.

3. We experimented with the proposed method
on GLUE and SuperGLUE Benchmarking
Datasets (Wang et al., 2018, 2019) with the
RoBERTa (Liu et al., 2019) and DeBERTa (He
et al., 2020) models and observed that AoT
P-Tuning performed on par with or better than
P-Tuning v2 (Liu et al., 2021a) while being
up to 1.3 x times faster during evaluation.

2 Recent Works

Currently, a wide range of different methods could
be referenced with P-Tuning. Liu et al. (2021b)
proposed to add soft prompts to the embeddings of
GPT-2’s input sequence (Radford et al., 2019) to
train it on classification tasks. Lester et al. (2021)
proposed a scheme similar to the one used in Liu
et al. (2021b), but trained a TS model (Raffel et al.,
2020) with P-Tuning to show how the performance
of the method changes with the increased scale of
the backbone model.

Recently, Qin and Eisner (2021); Li and Liang
(2021); Liu et al. (2021a) proposed to add prefixes
not only to input embeddings but also at each layer
of the Transformer model. In addition, Liu et al.
(2021a) suggested training a linear classification
head on top of the backbone model instead of uti-
lizing a LM head to obtain classification results.

Due to this range of similar methods, we will fol-

low the naming used by Liu et al. (2021a) and refer
to Prompt-Tuning (adding soft prompts to the input
embeddings) as P-Tuning v1 and to Prefix-Tuning
(adding soft prefixes at each layer of Transformer
backbone) as P-Tuning v2.

3 Background
3.1 P-Tuning vl

For readers conviniece, we provided background
of Transformer evaluation in Section A. Having
a pre-trained Transformer LM with parameters O,
instead of fine-tuning all parameters of this model
on a downstream task, it is possible to define soft
prompts P € RP*?(Liu et al., 2021b), where p is
the length of prompt. P is then concatenated to
input sequence embeddings as:

H"° = concat(P, H®) ¢ RP+M>d (1)

Then, only P and Classification Head are fine-
tuned on a downstream task, while © remains
frozen!. Such parametrization of fine-tuning makes
it possible to perform multi-task inference.

3.2 P-Tuning v2

Instead of concatenation of a single prompt P
to the HC, Liu et al. (2021a) proposed to con-

'Original implementation of P-Tuning v1 (Liu et al.,
2021b) implied utilizing the LM Head of a pre-trained model
instead of training a Classification Head. However, Liu et al.
(2021a) later showed that using a separate Classification Head
performs marginally better.



catenate soft prefixes at each layer of the Trans-
former model. To apply P-Tuning v2, soft pre-
fixes Py, Py € RP*? are defined for each layer
and concatenated to the K and V' matrices before
evaluating the attention K’ = concat(Pyg, K),
V' = concat(Py, V). Then, Attention is evalu-
ated as follows:

A’ = attention(Q, K', V'), 2)

where i-th component of A’ could be then writ-
ten as:

p
A} = "a;(Qi, K')Py,+
7~ (3)
+) arp(Qi K') Vi
k=1

Note that a € RP*™ are attention weights for the

t-th token (we omit the ¢-th index for simplicity)
and thus """ a; = 1.

As for P-Tuning v1, only parameters of soft
prefixes Py, Py and Classification Head are op-
timized on a downstream task while freezing the

parameters of a backbone model.

3.3 On the Overhead of P-Tuning

While the Transformer model has Q(n?) time com-
plexity and GPU memory consumption for se-
quence length n. For P-Tuning v1, this complexity
transforms into Q((n + p)?) since the length of
input sequence is increased by the length of the
prompt p, while for P-Tuning v2 the complexity is
equal to O(n(n + p)).

Liu et al. (2021a) showed that for some tasks, the
prompt length p could reach values of 100, increas-
ing time and memory footprint during evaluation.

4 Ahead-of-Time P-Tuning

4.1 Proposed Mechanism

With AoT P-Tuning, we propose to augment each
Transformer layer with a simple procedure. We
define trainable matrices P € RIVI*¢ for each
layer. Then, before the evaluation of the ¢-th layer,
we modify the hidden states as follows:

Hli:Hi+{Pz1?--~ann}ERnXd’ )

where P, € R? is a lockup of x;-th prompt em-
bedding from P. Such a scheme allows us to

save a significant amount of time during evalua-
tion since AoT P-Tuning does not imply an in-
crease in sequence length. While P in naive
implementation will require lot of memory to
store parameters, in the following Section 4.3, we
describe reparametrizations which make training
more tractable.

Note that AoT P-Tuning, same as plain P-Tuning,
could be evaluated in parallel with several tasks in a
batch due to the fact that performing look-up from
P can be easily parallelized.

As for P-Tuning vl and P-Tuning v2, we only
optimize parameters of P and Classification Head
during fine-tuning.

4.2 Intuition Behind AoT P-Tuning and
Connection to the P-Tuning

One may note that the proposed method is more
similar to Adapters Tuning (Houlsby et al., 2019)
than P-Tuning. Although, Adapters do not im-
ply performing multi-task inference, thus we refer
to the proposed method as a variant of P-Tuning,
rather than a special case of Adapters. Further-
more, considering Ding et al. (2022); He et al.
(2022), most methods for parameter-efficient fine-
tuning could be seen with a unified view, and thus
Adapters could be seen as a variant of P-Tuning
and vice versa.

Having H’, after passing through Wy, Wi,
and Wy, we obtain Q’, K’, and V’. Note that

V' = HWy + {P,,,...,. P, YWy ¥ v +
P,Wy.

The result of evaluating Attention with AoT P-
Tuning could be seen as:

A=) "a;(Q), K"\ P, Wy+
j=1

+Y a,(Q), K')V;.

J=1

&)

From such a perspective, there is a clear connec-
tion between AoT P-Tuning (Equation 5) and P-
Tuning v2 (Equation 3) with the following changes:

1. For AoT P-Tuning, attention weights a;, j €
1,1 are used for both terms in Equation 5.

2. For AoT P-Tuning, attention is evaluated on
modified Q’. In addition, there is a difference
in the form of dependency of K’ and V' on
prefix weight. For AoT P-Tuning, we add



prefixes to K and V, while for P-Tuning v2,
prefixes are concatenated to these matrices.

3. For AoT P-Tuning, the first term of Equation 5
implies evaluation of Attention with a prompt
which is dependent on the input text, while
for P-Tuning v2, the prompt Py is constant.

Considering Equation 5, AoT can be seen as a
form of the P-Tuning method, for which we embed
prefixes before evaluating the attention layer?.

4.3 On the Parameter Efficiency of AoT
P-Tuning

It is notable that, in most cases, it is not feasible
to optimize the weight P € RIVI*4 for each layer.
If we consider training RoBERTa-Large with such
a scheme (which has |[V| = 50265, d = 1024
and [ = 24), then storing all biases P will exceed
1.2B parameters, while the model itself has roughly
350M parameters.

To overcome this limitation, we propose two
reparametrizations of P so that it can use fewer
parameters during training.

The first is based on the Kronecker product
(namely, Kronecker AoT P-Tuning). More specif-
ically, we reparametrize P as

P = (W, ® W)Wk, (6)

where W € R™" Wy € R, Wy €
R™*%d, ¢ and b are selected in such a way so
axb = |V|, r is the factorization rank which is a hy-
perparameter to tune, and ® denotes the Kronecker
product.

With this reparametrization, training AoT P-
Tuning becomes tractable. E.g., for RoOBERTa-
Large, with a = 256, b = 200, and » = 20, P
will contain roughly 10M parameters, which is less
than 3% of the total number of parameters in the
model®.

The second approach to work with P, which we
used in our experiments, is based on passing the

Mt is possible to think of AoT P-Tuning as a method which
adds bias after the evaluation of the Transformer layer. In
this case, it could be seen as a method that directly models the
result of the evaluation of P-Tuning v2 with a slightly different
computation order. However, we believe that this way is more
difficult to consider.

30One may note that 256 * 200 = 51200 # 50265. How-
ever, 50265 is difficult to factorize efficiently since 50265 =
1117 % 3% % 5. Because of this, we chose to mostly factorize
P in such a way as to make it slightly larger than the original
vocabulary size. Doing so allows us to select more appropriate
a and b from the perspective of parameter and computational
efficiency.

embeddings matrix E through a learnable Fully
Connected network (namely, FC AoT P-Tuning).
Thus, we reparametrize P as

P = f(EW; + b)W; + by, @)

where W7 € Rdxr’ bp € R", Wy ¢ Rer,
by € RY, f is a non-linearity, and r is the mapping
rank, which is also a hyperparameter to tune, same
as for Kronecker AoT P-Tuning.

With FC AoT P-Tuning, we utilize knowledge
stored in the pre-trained embeddings matrix F,
which should hypothetically perform better than
training P from scratch as Kronecker AoT P-
Tuning.

Note that for both Kronecker and FC AoT
P-Tuning, we can evaluate only specific rows
{Py,,..., Py, } for input sequence {z1,...,zp},
making training more efficient.

For both reparametrizations, P could be fused
once training is complete, and thus the rank of fac-
torization 7 does not affect inference speed. During
the evaluation, there is no need to store the full
P in GPU memory. Instead, it could be stored in
RAM, and only rows of these matrices should be
placed in GPU memory to be added to the hidden
states before each layer.

From a certain perspective, choosing between
AOT P-Tuning and P-Tuning is a trade-off be-
tween evaluation speed and RAM consumption
during inference. If RAM is limited, then usual
P-Tuning could be used at the cost of slower in-
ference. In other cases, AoT P-Tuning is viable
if there is enough RAM and inference speed is
crucial. Although, in most cases, P matrices for
different tasks could be easily stored in the RAM.
For RoBERTa-Large, a single task parameter will
require roughly 2.4Gb if stored in half-precision.

However, as we observed later in our experi-
ments, performing fusing is not crucial for FC AoT
P-Tuning, and the re-evaluation of {P,, ..., P, }
for each sequence ran at 98.5% the speed of fused
P (See Section 5.3 for more details).

S Experiments

5.1 Experimental Details

We compared AoT P-Tuning (Kronecker and FC
reparametrizations of P) with other fine-tuning
methods capable of performing multi-task infer-
ence: P-Tuning v1, P-Tuning v2 on GLUE and Su-
perGLUE (Wang et al., 2018, 2019) Benchmarking



RoBERTa-Base

Model | STS-B SST-2 RTE QQP |
Fine-Tuning | 90.6+03 95.0+02 812+0.7 89.6+02 |
P-Tuning vl | 86.9+0.9 940+03 603+24 822+15
P-Tuning v2 | 89.2+0.3 94.6+0.2 80.5+34 864+33
Kron. AoT P-Tuning (ours) | 89.7+0.2 94.0+£0.2 77.6x14 88.2%0.1
FC AoT P-Tuning (ours) | 90.0 0.2 944+03 780+13 87.9+0.2
| QNLI MRPC MNLI CoLA | Macro
Fine-Tuning | 924+0.1 908+0.5 87.0+03 638+14 | 863
P-Tuning vl | 88.3+0.5 820+1.7 808+06 458+27.1| 775
P-Tuningv2 | 91.9+1.6 89.1+1.1 853+02 60.7+2.6 | 84.7
Kron. AoT P-Tuning (ours) | 90.7+0.4 89.5+1.1 84.6+0.1 593+1.2 84.2
FC AoT P-Tuning (ours) | 91.3+£04 90.3+03 854+0.1 603+22 84.7
RoBERTa-Large
Model | STS-B SST-2 RTE QQP |
Fine-Tuning | 91.9+02 96.1+04 88.1%1.5 90302 |
P-Tuning vl | 75.5+6.3 944+04 628+23 769+25
P-Tuning v2 | 91.0+0.4 96.1+03 874+15 86606
Kron. AoT P-Tuning (ours) | 91.1+0.8 96.2+0.2 84.8+1.3 894+0.1
FC AoT P-Tuning (ours) | 91.7+04 96.7+0.1 884+0.9 88.7+0.2
| QNLI MRPC MNLI CoLA | Macro
Fine-Tuning | 943+02 91.6+0.6 89.9+02 68.1%19 | 888
P-Tuning vl | 79.1£24 79.0+1.1 759+183 247176 | 71.0
P-Tuning v2 | 94.0+1.1 912+09 894+07 669+15 | 87.8
Kron. AoT P-Tuning (ours) | 94.2+0.1 89.7+0.9 89.3+0.1 65.5+£1.9 87.5
FC AoT P-Tuning (ours) | 94.1+02 91.6+0.8 89.6+0.1 69.2+0.9 | 888

Table 1: Results on the GLUE Deyv set. Each result is median and std across several seeds, and the Macro column is
a mean score across all tasks. Fine-tuning is omitted from comparison with other methods and was not bolded for

visibility. See Section 5.2 for details.

Datasets*. We also evaluated plain fine-tuning for
reference even though it is impossible to perform
multi-task inference with it. For each fine-tuning
approach, we experimented with the RoBERTa-
Base, RoBERTa-Large, and DeBERTa-XL back-
bone models.

For each task, we performed a grid hyperparam-
eter search (see Appendix Table 4 for hyperparam-
eter ranges). For ROBERTa models, we evaluated
each hyperparameter set with 5 different seed val-

“Based on this experimental design choice, we exclude
experiments with Adapters (Houlsby et al., 2019; He et al.,
2022), as well as with LoRA (Hu et al., 2022). While a wide
range of efficient fine-tuning methods could be similar to the
proposed method (Ding et al., 2022; He et al., 2022), they
do not allow to perform multi-task inference, which is the
motivation for using AoT P-Tuning.

ues and reported median and std score values for
each task. For DeBERTa-XL, we used to assess
each hyperparameter assignment with a single seed
due to longer training time. See Appendix Table 3
for a list of metrics used for each task.

We used the Adam (Kingma and Ba, 2015) op-
timizer with a constant learning rate for each task.
We stopped training once the validation metric
stopped increasing (see the "patience” parameter in
Appendix Table 5).

For Kronecker AoT P-Tuning with RoBERTa
models, we parametrized the matrix P = (W[ ®
Wiy )Wg with a = 256, and b = 200, while for
DeBERTa, we used a = b = 360. W, and W),
were initialized randomly, while Wx was initial-
ized as a zero matrix. For FC AoT P-Tuning, we



RoBERTa-Large

Model |  RTE COPA WSC WiC
Fine-Tuning ‘ 88.1+x1.5 87.0+x102 80.8x63 73.8x1.6
P-Tuning vl | 62.8+23 750+43 663+13 64.1+£09
P-Tuningv2 | 874+15 87.0+x63 75077 708+1.5
Kron. AoT P-Tuning (ours) | 84.8+1.3 72.0+9.1 67.3+£3.0 71.0+£1.0
FC AoT P-Tuning (ours) | 884+0.9 850+10.1 79.8+4.1 721+%1.5
\ MultiRC CB BoolQ Macro
Fine-Tuning | 833+ 1.1 97.3+28 85603 85.1
P-Tuning vl | 543+29 814+3.0 643+1.2 66.9
P-Tuning v2 | 824+0.6 100.0+0.8 850+0.6 83.9
Kron. AoT P-Tuning (ours) | 82.8+0.8 973+23 84.8+0.5 80.0
FC AoT P-Tuning (ours) | 82.7+19.3 100.0+£0.0 85.5+10.3 84.8
DeBERTa-XL
Model |  RTE COPA WSC WiC
Fine-Tuning | 89.9 96.0 76.9 75.9
P-Tuning v1 78.3 90.0 67.3 66.8
P-Tuning v2 90.6 97.0 89.4 76.5
Kron. AoT P-Tuning (ours) 88.8 96.0 87.5 71.8
FC AoT P-Tuning (ours) 91.0 98.0 94.2 74.1
| MultiRC CB BoolQ Macro
Fine-Tuning | 84.3 98.4 86.7 86.9
P-Tuning v1 82.1 93.8 79.4 79.7
P-Tuning v2 87.1 97.3 87.0 89.3
Kron. AoT P-Tuning (ours) 86.3 83.1 87.3 85.8
FC AoT P-Tuning (ours) 86.5 92.3 88.1 89.2

Table 2: Results on the SuperGLUE Dev set. For RoBERTa-Large, each result is median and std across several
seeds, and the Macro column is a mean score across all tasks. For DeBERTa-XL, we evaluated each hyperparameter
assignment with a single seed and reported its metric score. Fine-tuning is omitted from comparison with other
methods and was not bolded for visibility. See Section 5.2 for details.

initialized W) randomly, while W5, by, and by
were initialized with zeros. For Kronecker AoT
P-Tuning, we applied dropout (Srivastava et al.,
2014) to the P, with a fixed probability equal to
0.1. In contrast, for FC AoT P-Tuning, we applied
dropout to E before multiplying it with W7.

Each experiment was run on a single NVIDIA
A100 GPU with a total computation time of
roughly 750 days.

5.2 Results

See Tables 1, 2 for the results of trained models. We
observed that FC AoT P-Tuning performed better
than Kronecker AoT P-Tuning, and hypothesize
that this result is mostly caused by the fact that FC

reparametrization utilized a pre-trained embedding
matrix rather than learning biases from scratch.

For RoBERTa-Base, FC AoT P-Tuning per-
formed on par with P-Tuning v2 and produced the
same Macro score. For RoBERTa-Large, FC AoT
P-Tuning outperformed P-Tuning v2 on GLUE
tasks and showed a Macro score equal to plain
Fine-Tuning. AoT P-Tuning with DeBERTa-XL
performed on par with P-Tuning v2 (89.2 vs 89.3
macro scores respectively).

We also observed that both AoT P-Tuning
reparametrizations mainly showed a lower vari-
ance of metrics across different seeds. Note that
P-Tuning v1 showed unstable performance and im-
proved results with ROBERTa-Base (although still
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Figure 3: (a-b) GLUE macro scores for AoT P-Tuning, P-Tuning v1, and P-Tuning v2 with RoBERTa-Base and
RoBERTa-Large models. (c-d) SuperGLUE macro score for RoOBERTa-Base and DeBERTa-XL models. P-Tuning
v2 performing on par with or worse than AoT P-Tuning across different prefix sizes. See Section 5.2 for details.
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Figure 4: Comparison of AoT P-Tuning evaluation time with P-Tuning v1 and P-Tuning v2 for (a) RoBERTa-Base,
(b) RoBERTa-Large, and (c) DeBERTa-XL models. We evaluated AoT P-Tuning in two scenarios: with fused
weight P and with the re-evaluation of P during inference to reduce memory footprint (See Section 4.3 for more
details). Fused AoT P-Tuning adds negligible computational overhead compared to plain Fine-Tuning and is up to
1.3x times faster than P-Tuning v2. See Section 5.3 for more details.

underperforming by a large margin when compared
to other methods).

See Figure 3 for macro scores of P-Tuning v2
and AoT P-Tuning with different prefix lengths p
and prefix ranks 7°. We observed that P-Tuning v2
performed worse for ROBERTa-Base with shorter
prompt lengths and was comparable to or better
than AoT P-Tuning when p > 50. For GLUE
tasks with RoBERTa-Large, FC AoT P-Tuning per-
formed better for all prefixes p, while dropping
performance for large rank r. For DeBERTa-XL,
both P-Tuning v2 and FC AoT P-Tuning performed
on par. We also provide per-task results with dif-
ferent prefix scales (see Appendix Figures 5, 7).
It is notable that in most cases, P-Tuning v2 suf-
fers from a small prefix size p for Base and Large
models, and achieves results comparable with AoT
P-Tuning with a larger p (which corresponds with
the results in Figure 3). At the same time, FC AoT
P-Tuning mostly showed stable performance across

>Note that the best macro result across different scales of
prefixes in these Figures differs from the macro result from
Tables 1 and 2, since the macro score from Tables 1 and 2
aggregates scores with different prefix scales.

different ranks 7, only performing unstably on a
MultiRC task with a large rank r. We also analyzed
trained P matrices for FC AoT P-Tuning with the
DeBERTa-XL model. See Appendix Section B for
more details.

With per-task Expected Validation Performance
(EVP) (Dodge et al., 2019), we observed that AoT
P-Tuning highly depends on the number of hyper-
parameter assignments (see Appendix Figures 6,
8). Although, in most cases, using less than 100
hyperparameter assignments for AoT P-Tuning is
enough for it to outperform P-Tuning v2, which is
not crucial in most cases.

5.3 Inference Speed Overhead

In Figure 4, we also investigated the computational
overhead of AoT P-Tuning compared to other base-
lines.

To estimate inference speed overhead, we eval-
uated each model 100 times on a sequence with
length n = 128 and batch size 256.

We evaluated AoT P-Tuning in two setups. The
first setup fuses P for inference, thus saving com-
putational time at the cost of a higher memory foot-



print. Since P is fused, it no longer depends on
factorization rank r for both FC and Kronecker
AO0T P-Tuning.

For the second setup, we did not fuse P, but
rather evaluated { Py, . . ., Py, } for each sequence.
This approach emulates a setup with limited mem-
ory during inference, where fusing P is not feasi-
ble.

The growth of p P-Tuning v1 quickly reaches 2x
speed overhead since its complexity quadratically
depends on p. While P-Tuning v2 involves linear
dependency on p (see Section 3.3 for details), it
also reaches up to 1.3 x inference speed overhead
for large prefix lengths p.

Fused AoT P-Tuning adds negligible computa-
tional overhead (less than 1%) compared to plain
Fine-Tuning. Compared to P-Tuning v2, Fused
AoT P-Tuning performed up to 1.3 times faster
depending on the prefix sizes used for P-Tuning
v2.

When P is not fused, FC AoT P-Tuning per-
forms 1.13 — 1.25x times faster than P-Tuning v2
with large prefixes p. This indicates that perform-
ing weight fusing is not crucial in most cases
for this reparametrization, and that a significant
increase in inference speed can be achieved with-
out it. Although not performing fusing of P could
reduce memory footprint during inference, it is not
possible to perform multi-task inference in such a
setup, which is available for both P-Tuning v1/v2
and Fused AoT P-Tuning.

Kronecker’s reparametrization performed worse.
For small factorization rates (e.g., r € [5, 10]), it
showed results comparable to FC AoT P-Tuning.
However, it performed up to 1.12x times slower
than P-Tuning v2 for larger r values. This makes it
is important to fuse P with such a reparametriza-
tion when using a large rank r.

It is important to note that the contribution
of re-evaluation of P for both Kronecker and
FC reparametrizations of AoT P-Tuning becomes
lower with model growth. E.g., in the worst-
case scenario (with r = 512), RoBERTa-Base re-
evaluation of P with FC AoT P-Tuning adds 1.09 x
inference time overhead compared to models
trained with plain Fine-Tuning, while DeBERTa-
XL showed an overhead of 1.05x. The same holds
true for small ranks (r = 64), where we observed
1.02x inference time overhead for DeBERTa-XL
compared to the plain model.

6 Conclusion and Future Work

In this paper, we proposed AoT P-Tuning, which
is a new method for parameter-efficient fine-tuning
of pre-trained models, and two reparametrizations
of learnable weights for this method.

We observed that AoT P-Tuning performed on
par or better than P-Tuning v2 based on the macro
scores of GLUE and SuperGLUE Benchmarking
Datasets.

Moreover, AoT P-Tuning performed up to 1.3 x
times faster than P-Tuning v2, adding a negligible
inference time footprint compared to plain Fine-
Tuning. When FC AoT P-Tuning is used, we ob-
served that one could not fuse weights P in order
to not introduce memory footprint since it performs
up to 1.25x times faster than P-Tuning v2.

We experimented with two reparametrizations
based on the Kronecker product and FC network. It
is possible to explore other possible reparametriza-
tions for weight P, which could further increase
the performance of the proposed method. In addi-
tion, while we proposed a simple method, there are
many possible architectural changes which could
also boost the performance of AoT P-Tuning and
reduce the number of necessary hyperparameter
assignments.
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state of the model, and E;, is an embedding of
the token x;. Hidden states H* are then passed to
the (7 4+ 1)-th layer of the Transformer to evaluate
H*! with a total I number of layers. To do so, H’
are first mapped through three matrices Wy, Wi,
Wy € R4 to0 get Q, K and V, which are then
used to evaluate the attention layer’s results as:
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A = attention(Q, K, V) =
KT 8
Vd

After A is evaluated, it is passed through the
remaining layers®, including residual connections
and FC layers to get H'*!. Here and later, we omit
the layer index 4 for attention result A for visibility.

= softmax(

B Analysis of Trained Weights

We investigated trained P matrices for WSC,
COPA, CB, and RTE tasks with the DeBERTa-XL
model. Since FC AoT P-Tuning performed bet-
ter than Kronecker factorization, we selected this
reparametrization method to report the results.

More specifically, we sorted rows of P matri-
ces for each layer measured by the Ly norm and
reported the appropriate tokens for these rows. See
Tables 6, 7, 9, 8 for results.

For the WSC task, there is a clear interpretation
of trained rows for P, since rows with a large Lo
norm represent tokens responsible for pronouns
and names, which is crucial for solving WSC. For
the COPA task, we observed that the model tends
to assign large norms for verb tokens. For the RTE
and CB tasks, P also assigns large norms for name
tokens, which often occur in the training data, while
CB primarily modifies adverbs for later layers.

Task Metric Task Metric

CoLA Mattews Correlation BoolQ  Accuracy

A +F1 A +F1
MRPC ccurany ‘ CB ccurany
RTE Accuracy ‘ RTE  Accuracy
SST-2 Accuracy ‘ COPA  Accuracy
MNLI Accuracy ‘ MultiRC w
QNLI Accuracy ‘ WSC  Accuracy
QQP w ‘ WiC  Accuracy
STSB Pearson + Spearman ‘

2

Table 3: Metrics used in our experiments for each task.
See Section 5.1 for more details.

®In fact, Transformer architecture implies evaluation of
multi-head Attention. We omit this in this paper for simplicity
since all derivations could be easily extended on the multi-
head case.
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Parameter | Range
All Tasks, except RTE

P-Tuning v1/v2/AoT

batch size | 16, 64
learning rate | le—4, 5e—4, be—3, le—3

Parameter | Range
P-Tuning v1/v2/AoT
batch size | 16, 32, 64

p | 5,10, 20, 50, 100 learning rate 5e—b, le—4, 3e—4, Se—4,
Kron. | 5,10, 25, 30, 50 le—3, 2e~3, 5e—3
ECr | 32,64, 128, 256, 512 p | 5,10,20,50, 100
Kron. r | 5, 10, 25, 30, 50
Fine-Tuning FCr | 32, 64, 128, 256, 512
. le—5, 5e—5, le—4, Fine-Tuning
learning rate Se—4. 5e—3
. le—b5, be—5, le—4,
RTE learning rate

5e—4, be—3

batch size | 16, 32, 64, 128

le—b5, be—>5, le—4, be—4,

leaming rate | . 37y 3 90 3 10 9

Table 4: Hyperparameter ranges used in experiments with GLUE and SuperGLUE benchmarking datasets for
RoBERTa (left) and DeBERTa (right) models. p is the prompt length used for P-Tuning v1/v2, and 7 is the rank of
weight factorization used for AoT P-Tuning (See Section 4.3). For GLUE experiments, each hyperparameter set
was evaluated with different seed values. See Section 5.1 for more details.

CB,
MNLI, Other COPA, Other
RTE QQP QNLI Tasks | WiC WSC MultiRC Tasks
Epochs | 200 5 10 100 500 500 10 100
Patience 20 2 2 10 20 100 4 10

Table 5: The number of maximum epochs used for each GLUE and SuperGLUE Task. Once the Dev score stopped
increasing for "patience" steps, training was halted. See Section 5.1 for more details.
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Figure 5: Per-task GLUE Benchmarking Dataset results for a different number of trained parameters of P-Tuning v2
and AoT P-Tuning with RoOBERTa-Base (a-h) and RoBERTa-Large (i-p). We also provide results of plain fine-tuning
for reference. See Section 5.2 for more details.
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Figure 7: Per-task SuperGLUE Benchmarking Dataset results for a different number of trained parameters of
P-Tuning v2 and AoT P-Tuning with RoBERTa-Large (a-g) and RoBERTa-Large (h-n). We also provide results of
plain fine-tuning for reference. See Section 5.2 for more details.
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Figure 8: Expected Validation Performance (Dodge et al., 2019) of trained models with SuperGLUE Benchmarking
Datasets for RoOBERTa-Base (a-g) and RoBERTa-Large (h-n). See Section 5.2 for more details.
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#

Tokens x with largest norm || Py||2

likes, a, is, loves, was, to, as, wants, s, ., pony,

eded, himself, Man, were, and, I, has, I, are, Frank, ., hates,

As, A, A, like, It, crop, Frank, After, ,, joins, As, Eric,

Likes, It, just, would, onna, him, To, behaving, after, in, because, behaves,
Is, We, Like

,» -, narrower, doorway, backdoor, window, lousy, shortest, nicer, checkpoint, knob,
thinner, narrowing, oub, quieter, BAD, ;, VID, rectangle, tighter, crappy, intruder, tongues,

fing, rimination, blocker, and, raiding, detector, unmarked, sharper, knife, coolest, thicker, hoops,

DOWN, lightsaber, asshole, millisec, KEY, sharp, token, slashing, Defenders, jug, Donna, slider,
wedge, dding, kb

10

her, Her, herself, him, above, she, out, hers, him, HER, She,

she, care, HER, above, Her, bold, CARE, cared, over, harder, louder, Above,
smarter, sooner, her, cares, better, Out, vind, stronger, She, taller, tougher, Him,
ahead, so, HIM, Susan, happier, up, Harry, aloud, higher, Above, SHE, could,
apart, barking, inem

22

., there, dry, for, There, Her, her, sword, the, arse, wy,

dry, duc, The, it, took, cr, Rig, og, There, landing, the, wide,
centrally, red, grass, sw, oa, above, engine, FT, spir, cd, Coun, Ross,
there, ws, guy, starter, mans, aniel, green, freely, d, wide, stall, far,
artz, THERE, didn

32

it, me, olit, Polit, Pat, him, Private, Susan, pat, he, her,

Self, Ins, Doc, Coun, Ang, Aut, Sil, ochond, me, Nob, IT, Senator,

Professional, Dri, itized, Je, Capt, Hillary, Whe, He, Kid, Registered, itious, Michelle,
Political, It, Shut, Phot, BIT, Politics, Bit, Jacob, ruct, Young, HE, Tu,

them, Mot, itu

37

him, they, it, they, her, them, their, his, he, it, its,

hers, theirs, was, he, Susan, old, older, THEY, They, ITS, forth, Georg,
Thom, Tom, erved, Carl, Anna, nob, anos, itans, to, Eric, itcher, Harry,

Tim, Jen, them, Kid, Jeremy, JOHN, Jennifer, hands, Todd, put, Thomas, she,
Dan, Michelle, s

46

chased, erved, house, houses, life, chasing, market, self, chase, raised, chester,

hunt, castle, HOU, atics, Singer, western, ogenous, rounded, stretched, esian, essed, omorphic,
horse, SER, central, ledge, hole, asio, Self, Self, iverse, oker, Judd, DF,

aday, paced, ourced, erness, Barkley, scape, sey, ationally, owned, landers, ded, study,
directed, OWN, produced

Table 6: Tokens with the largest Ly norm of P entries for the WSC task. See Section B for more details.
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#

Tokens x with largest norm || Py||2

fit, Loud, as, Air, Upon, Sets, Bound, Apart, scratched, sets, fit,

Upon, hosted, Shot, Unt, Host, fitt, Sight, atri, Ocean, ceed, ashore, set,

enture, underwent, planes, boats, Waves, Ali, shi, Active, Set, Atmosp, Airways, Host,
chat, Endless, pelled, rew, ached, unct, fitted, Proud, flu, itable, anson, Bound,

Assets, host, sets

set, Set, sets, Set, SET, Setting, setting, SET, set, padd, Setting,

Sets, sets, bed, Cause, setting, the, cause, tread, itch, paddle, cause, thirsty,
Khe, he, anned, this, ?, of, Cause, What, bidding, This, This, what,

What, a, his, lic, The, wish, fugitive, they, Bed, Air, wake, conscience,

., crowd, Let

10

2,7,07,22,.,7,"7,)2, 777,77, set,
20N, L 77, .2, set, 7, Set, Set, ed,

-, It,—, 1, lic, 777, led, ur, ..., punching, of, t,
7", sets, um

22

What, set, What, out, Set, sets, on, to, ’?, what, Set,

in, WHAT, Sets, Setting, WHAT, from, Setting, dropped, of, Dig, Got, ?’,

set, Exper, Gets, Ground, ...?, happened, Whatever, Your, decom, Getting, Got, overlooked,
Crack, )?, He, police, !?, happens, Suc, sets, what, Detective, GOT, Whatever,

SET, Getting, Flying

32

glued, hid, melted, ., sent, breaths, etz, breath, Breath, baptized, watch,

putting, tongues, braces, put, hid, bleach, icating, burying, aver, lifting, [lluminati, orneys,
melting, withdrawing, numb, radios, inserts, amins, avert, breathing, puts, informants, lifting, hide,
conscience, recommending, withdrawn, ransom, catch, Gael, Vern, roth, ears, Put, gins, breathed,
attorneys, loss, biblical

37

hid, dropped, raided, fought, ungle, Hide, destruct, smuggled, abandoned, looted, attacked,

barric, slid, dodged, drop, shut, drowned, hide, destruct, buggy, battled, shutdown, Hide,

Attack, hid, rawl, inaccessible, avalanche, slipped, deleted, rawling, encrypted, withdrawn, Killed, dug,
dropping, hoard, weapon, swallowed, defensive, destroy, exited, destroy, fight, Fighting, lost, deny,
suppress, encrypt, aggressively

45

hopped, chats, pumped, paints, backed, spun, tread, coached, reefs, privately, noodles,
buddies, malls, whisper, endorsements, squeezed, pals, blush, comed, edits, rallies, gigs, recol,
mocked, curs, Bare, bubbles, warmed, chat, profiles, emails, Dreams, pads, chalk, interviewed,
sneakers, rocked, Gloves, hubs, docs, shaved, Rise, primaries, listened, shy, essays, whispers,
leeve, girlfriends, socks

Table 7: Tokens with the largest Lo norm of P entries for the COPA task. See Section B for more details.
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#

Tokens x with largest norm || Py||2

gression, rium, History, orer, aic, history, oration, ré, orative, amic, history,
version, ural, osa, avage, ory, lia, range, History, rica, nation, root, USE,

4, ination, ulation, mentation, issance, state, rum, adal, idden, jection, oly, 6,
esis, orean, discovery, ria, ada, uration, entry, ord, verse, inations, ugal, itus,
olics, ESSION, ativity

., to, in, for, and, of, ,, s, the, be, ’s,

by, on, or, from, at, or, with, :, ly, a, an, ;,
on, -, ., in, under, an, as, I, and, !, about, er,
In, but, 2, A, is, ed, a, that, o, ers, S, ing,
now, ), -

10

., of, and, for, morph, votes, elector, with, uild, igraph, tatt,

Assignment, as, contribut, advant, are, hod, Voters, matically, Init, rede, olon, on,
rehabilit, neum, mog, looted, req, by, Claim, the, ynchron, dule, promot, socio,
portfolios, goto, vulner, vote, setup, nominate, anism, s, subscrib, iop, lihood, slot,
elist, ramid, ysc

22

in, In, in, be, In, .", being, Straw, -, its, a,

Majority, of, a, Latest, the, Jack, ine, latest, it, Lawyers, Watts, ".,

"-, Massachusetts, their, .”, been, ure, Till, ’.", Signs, .”", Seventh, ?",

Taxes, Atlanta, !", electric, at, IN, ide, Current, Ladies, KP, Jersey, Students,
Knights, it, Anders

32

Se, Hum, Brazil, Mur, Hur, aver, Hum, Yugoslavia, Mour, jud, a,

Hawai, Pag, Kant, ibal, Malaysia, EFF, Hur, .", adj, mur, Islam, and,

Guinea, Britain, Sadd, Def, Niger, ,, Holland, amus, Hay, Ma, Appro, Mur,
Countries, Wid, Asians, Nor, else, Calendar, Hed, Ved, ldom, english, Hind, mur,
bury, Ded, hol

37

[SEP], +., Sk, Ble, Gre, cloud, Else, ., +,, ".,

uran, cs, Ever, 2048, Ble, Keefe, Hyp, athan, Lib, Fra, Exp,

bro, Edit, Ros, Bean, Bo, Beck, Shell, sit, !., Saud, Phys, -,

shell, Ol, BLIC, -, Over, ea, orthy, Shot, pn, pas, ester, Reviewed,
Spe, sell, 2024

45

Chance, Sw, chance, Nine, Shares, Chance, Scientists, Tw, Besides, Prof, chances,
Sn, sw, TW, EFF, J, 1J, Besides, chance, Between, icist, GU, SW,

pan, Ja, Psy, tw, Between, xon, Bj, Conj, Shares, Moh, UTH, Prediction,

science, intend, Science, iov, Nine, jp, dds, NJ, Jr, y, Nin, etsy,

Ibid, ymm, Reporting

Table 8: Tokens with the largest Lo norm of P entries for the RTE task. See Section B for more details.
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#

Tokens x with largest norm || Py||2

., didn, doesn, don, ., ,”, Didn, Doesn, didn, doesn, Don,

wouldn, Wouldn, Does, ”’, couldn, DON, Did, hadn, But, Don, Isn, ).",
DON, shouldn, “, Obviously, Obviously, Isn, don, hasn, ))., Does, "?, ].",
wasn, Did, ],", ,., Naturally, ...", ),", Would, “, But, ”’;, Naturally,

1.,,), DOES

.t 1., 2, didn, , not, to, +,, *,,

),, the, ., 1,, considered, doesn, in, , ,), a, /,, ,[,

you, don, ,,, ,., shouldn, (),, hasn, ;, for, thought, weren, hadn,
thought, wasn, NOT, hair, ’, .;, aren, °,, Said, ,, couldn,

isn, .—, idered

10

Shant, Georg, Expect, Led, Assistant, Amph, Registered, Ear, McA, THEIR, Prev,
Emb, -,, Called, Gw, Alc, Until, Rhod, Introduced, that, Lat, Unt, Ul,

Sv, Gh, to, of, Fernand, ,, elta, jac, unch, Ov, Sebast, apologised,

JOHN, !"., LI, hid, Somewhere, Been, Recently, and, Somebody, Fram, Coh, ).,
Sty, Elsewhere, Unt

22

’s, 're, A, ’ve, the, a, her, ’, be, A, a,

have, DOES, LIKE, ?", "?,°d, )?, 7, s, ABOUT, ", Like,
Pant, didnt, 'm, ’?, E, The, doesnt, Was, re, :, ie,

Surely, 11, Corinth, At, Across, your, their, ?,, THEY, ..., or,
Fra, HOW, )/

32

L°? he, "2, 7,)7,°t,7.,.2, .2, 7,

7., He, 12,?,He, I, and, 7", 21", 7", 7).,

I, he, .;, 7, she, +.,)1, 7, 2, 17",

7,7, 277, 1,).", we, CLOSE, ., "1, ], —, 7777,
’/’ Qre’ 'QH

37

5 0s, t2,0,L 1, -,,, of,

he, B, B, in, I, and, 'm, -, s, ", ’d, by,

for, ;, b, on, you, !, ", He, to, /, ’ve, y,
re, ed, with, ., ’ll, a, back, the, b, she,
He, E, C

45

’t, not, NOT, the, not, Not, never, Not, ’s, 're, NOT,

’ve, you, of, [SEP], t, nt, Never, The, in, NEVER, he, to,

the, [CLS], hardly, never, neither, I, ,, ’'m, cannot, no, The, annot,
it, Their, me, didnt, He, and, doesnt, Ear, a, ., Never, none,

if, on, nobody

Table 9: Tokens with the largest Lo norm of P entries for the CB task. See Section B for more details.
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