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Abstract

This paper proposes a new parameter-efficient001
method for fine-tuning, AoT P-Tuning. This002
method adds input-dependent biases before003
evaluating the Transformer layer, reducing the004
required evaluation time when compared to P-005
Tuning. Same as P-Tuning, AoT P-Tuning al-006
lows multi-task inference with a single back-007
bone model for evaluating different tasks in a008
single batch. We experimented with the pro-009
posed method on the GLUE and SuperGLUE010
benchmarking datasets using RoBERTa-Base,011
RoBERTa-Large, and DeBERTa-XL backbone012
models. Our observations show that AoT P-013
tuning performed on par with or better than P-014
Tuning v2 while being up to 1.3× times faster015
during inference.016

1 Introduction017

P-Tuning (Liu et al., 2021b,a; Lester et al., 2021) is018

a promising way to fine-tune large Language Mod-019

els (LMs) (Devlin et al., 2019; Lan et al., 2020;020

Liu et al., 2019; Radford et al., 2019). While it021

currently underperforms compared to other meth-022

ods for parameter-efficient fine-tuning (Hu et al.,023

2022; Houlsby et al., 2019) on a wide range of024

tasks (Ding et al., 2022), it has a practical, valuable025

property that allows it to evaluate different trained026

prompts parallel in a multi-task manner (i.e., a sin-027

gle backbone LM could be used for different tasks028

during inference, which can simplify model serv-029

ing in real-world applications) (Lester et al., 2021).030

This property is why researchers aim to further031

develop P-Tuning methods.032

Although it is possible to perform multi-task033

evaluation with P-Tuning, it introduces significant034

computational overhead due to the concatenation035

of prefixes to sequences and the evaluation of the at-036

tention mechanism (Vaswani et al., 2017) on longer037

sequences.038

We propose a simple mechanism for parameter-039

efficient fine-tuning of Language Models, namely040

Figure 1: GLUE and SuperGLUE Macro scores (higher
is better) for different backbone model scales with plain
Fine-Tuning, P-Tuning v2, and proposed AoT P-Tuning
(with FC reparametrization). Based on these experi-
ments, AoT P-Tuning performed on par with or better
than P-Tuning v2. See Section 5.2 for more details.

Ahead-of-Time (AoT) P-Tuning, for which we 041

add input-dependent bias before each Transformer 042

layer. Same as P-Tuning, it is possible to use AoT 043

P-Tuning in multi-task inference setups when a 044

single backbone LM is used for several downstream 045

tasks. 046

The contributions of this paper can be summa- 047

rized as follows: 048

1. We described the intuition behind AoT P- 049

Tuning, which illustrates the connection of 050

the proposed method with P-Tuning. 051

2. We proposed two reparameterizations of AoT 052

P-Tuning weights: first based on a factorized 053
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Figure 2: Schematic comparison of P-Tuning v2 (left), and AoT P-Tuning (right). While plain P-Tuning concatenates
soft prompts to sequences and thus causes computational overhead, AoT P-Tuning directly adds input-dependent
biases to Q, K, and V matrices. See Section 4 for more details on AoT P-Tuning architecture. Since the sequence
length is not increased, AoT P-Tuning takes significantly less time to evaluate, only requiring the overhead of adding
biases to the input sequence (See Section 5.3 for experiments with inference speed).

matrix trained from scratch, and second based054

on a LM’s embeddings matrix passed through055

a trainable Fully Connected network.056

3. We experimented with the proposed method057

on GLUE and SuperGLUE Benchmarking058

Datasets (Wang et al., 2018, 2019) with the059

RoBERTa (Liu et al., 2019) and DeBERTa (He060

et al., 2020) models and observed that AoT061

P-Tuning performed on par with or better than062

P-Tuning v2 (Liu et al., 2021a) while being063

up to 1.3× times faster during evaluation.064

2 Recent Works065

Currently, a wide range of different methods could066

be referenced with P-Tuning. Liu et al. (2021b)067

proposed to add soft prompts to the embeddings of068

GPT-2’s input sequence (Radford et al., 2019) to069

train it on classification tasks. Lester et al. (2021)070

proposed a scheme similar to the one used in Liu071

et al. (2021b), but trained a T5 model (Raffel et al.,072

2020) with P-Tuning to show how the performance073

of the method changes with the increased scale of074

the backbone model.075

Recently, Qin and Eisner (2021); Li and Liang076

(2021); Liu et al. (2021a) proposed to add prefixes077

not only to input embeddings but also at each layer078

of the Transformer model. In addition, Liu et al.079

(2021a) suggested training a linear classification080

head on top of the backbone model instead of uti-081

lizing a LM head to obtain classification results.082

Due to this range of similar methods, we will fol-083

low the naming used by Liu et al. (2021a) and refer 084

to Prompt-Tuning (adding soft prompts to the input 085

embeddings) as P-Tuning v1 and to Prefix-Tuning 086

(adding soft prefixes at each layer of Transformer 087

backbone) as P-Tuning v2. 088

3 Background 089

3.1 P-Tuning v1 090

For readers conviniece, we provided background 091

of Transformer evaluation in Section A. Having 092

a pre-trained Transformer LM with parameters Θ, 093

instead of fine-tuning all parameters of this model 094

on a downstream task, it is possible to define soft 095

prompts P ∈ Rp×d(Liu et al., 2021b), where p is 096

the length of prompt. P is then concatenated to 097

input sequence embeddings as: 098

H ′0 = concat(P ,H0) ∈ R(p+n)×d. (1) 099

Then, only P and Classification Head are fine- 100

tuned on a downstream task, while Θ remains 101

frozen1. Such parametrization of fine-tuning makes 102

it possible to perform multi-task inference. 103

3.2 P-Tuning v2 104

Instead of concatenation of a single prompt P 105

to the H0, Liu et al. (2021a) proposed to con- 106

1Original implementation of P-Tuning v1 (Liu et al.,
2021b) implied utilizing the LM Head of a pre-trained model
instead of training a Classification Head. However, Liu et al.
(2021a) later showed that using a separate Classification Head
performs marginally better.
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catenate soft prefixes at each layer of the Trans-107

former model. To apply P-Tuning v2, soft pre-108

fixes PK ,PV ∈ Rp×d are defined for each layer109

and concatenated to the K and V matrices before110

evaluating the attention K ′ = concat(PK ,K),111

V ′ = concat(PV ,V ). Then, Attention is evalu-112

ated as follows:113

A′ = attention(Q,K ′,V ′), (2)114

where i-th component of A′ could be then writ-115

ten as:116

A′
i =

p∑
j=1

aj(Qi,K
′)PVj+

+
n∑

k=1

ak+p(Qi,K
′)Vk.

(3)117

Note that a ∈ Rp+n are attention weights for the118

i-th token (we omit the i-th index for simplicity)119

and thus
∑p+n

j=1 aj = 1.120

As for P-Tuning v1, only parameters of soft121

prefixes PK ,PV and Classification Head are op-122

timized on a downstream task while freezing the123

parameters of a backbone model.124

3.3 On the Overhead of P-Tuning125

While the Transformer model has O(n2) time com-126

plexity and GPU memory consumption for se-127

quence length n. For P-Tuning v1, this complexity128

transforms into O((n + p)2) since the length of129

input sequence is increased by the length of the130

prompt p, while for P-Tuning v2 the complexity is131

equal to O(n(n+ p)).132

Liu et al. (2021a) showed that for some tasks, the133

prompt length p could reach values of 100, increas-134

ing time and memory footprint during evaluation.135

4 Ahead-of-Time P-Tuning136

4.1 Proposed Mechanism137

With AoT P-Tuning, we propose to augment each138

Transformer layer with a simple procedure. We139

define trainable matrices P ∈ R|V |×d for each140

layer. Then, before the evaluation of the i-th layer,141

we modify the hidden states as follows:142

H ′i = H i + {Px1 , . . . ,Pxn} ∈ Rn×d, (4)143

where Pxj ∈ Rd is a lockup of xj-th prompt em-144

bedding from P . Such a scheme allows us to145

save a significant amount of time during evalua- 146

tion since AoT P-Tuning does not imply an in- 147

crease in sequence length. While P in naive 148

implementation will require lot of memory to 149

store parameters, in the following Section 4.3, we 150

describe reparametrizations which make training 151

more tractable. 152

Note that AoT P-Tuning, same as plain P-Tuning, 153

could be evaluated in parallel with several tasks in a 154

batch due to the fact that performing look-up from 155

P can be easily parallelized. 156

As for P-Tuning v1 and P-Tuning v2, we only 157

optimize parameters of P and Classification Head 158

during fine-tuning. 159

4.2 Intuition Behind AoT P-Tuning and 160

Connection to the P-Tuning 161

One may note that the proposed method is more 162

similar to Adapters Tuning (Houlsby et al., 2019) 163

than P-Tuning. Although, Adapters do not im- 164

ply performing multi-task inference, thus we refer 165

to the proposed method as a variant of P-Tuning, 166

rather than a special case of Adapters. Further- 167

more, considering Ding et al. (2022); He et al. 168

(2022), most methods for parameter-efficient fine- 169

tuning could be seen with a unified view, and thus 170

Adapters could be seen as a variant of P-Tuning 171

and vice versa. 172

Having H ′, after passing through WQ, WK , 173

and WV we obtain Q′, K ′, and V ′. Note that 174

V ′ = HWV + {Px1 , . . . ,Pxn}WV
def
= V + 175

PxWV . 176

The result of evaluating Attention with AoT P- 177

Tuning could be seen as: 178

A′
i =

n∑
j=1

aj(Q
′
i,K

′)PxjWV +

+
n∑

j=1

aj(Q
′
i,K

′)Vj .

(5) 179

From such a perspective, there is a clear connec- 180

tion between AoT P-Tuning (Equation 5) and P- 181

Tuning v2 (Equation 3) with the following changes: 182

1. For AoT P-Tuning, attention weights aj , j ∈ 183

1, l are used for both terms in Equation 5. 184

2. For AoT P-Tuning, attention is evaluated on 185

modified Q′. In addition, there is a difference 186

in the form of dependency of K ′ and V ′ on 187

prefix weight. For AoT P-Tuning, we add 188
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prefixes to K and V , while for P-Tuning v2,189

prefixes are concatenated to these matrices.190

3. For AoT P-Tuning, the first term of Equation 5191

implies evaluation of Attention with a prompt192

which is dependent on the input text, while193

for P-Tuning v2, the prompt PV is constant.194

Considering Equation 5, AoT can be seen as a195

form of the P-Tuning method, for which we embed196

prefixes before evaluating the attention layer2.197

4.3 On the Parameter Efficiency of AoT198

P-Tuning199

It is notable that, in most cases, it is not feasible200

to optimize the weight P ∈ R|V |×d for each layer.201

If we consider training RoBERTa-Large with such202

a scheme (which has |V | = 50265, d = 1024203

and l = 24), then storing all biases P will exceed204

1.2B parameters, while the model itself has roughly205

350M parameters.206

To overcome this limitation, we propose two207

reparametrizations of P so that it can use fewer208

parameters during training.209

The first is based on the Kronecker product210

(namely, Kronecker AoT P-Tuning). More specif-211

ically, we reparametrize P as212

P = (WL ⊗WM )WR, (6)213

where WL ∈ Ra×r, WM ∈ Rb×r, WR ∈214

Rr2×d, a and b are selected in such a way so215

a∗b = |V |, r is the factorization rank which is a hy-216

perparameter to tune, and ⊗ denotes the Kronecker217

product.218

With this reparametrization, training AoT P-219

Tuning becomes tractable. E.g., for RoBERTa-220

Large, with a = 256, b = 200, and r = 20, P221

will contain roughly 10M parameters, which is less222

than 3% of the total number of parameters in the223

model3.224

The second approach to work with P , which we225

used in our experiments, is based on passing the226

2It is possible to think of AoT P-Tuning as a method which
adds bias after the evaluation of the Transformer layer. In
this case, it could be seen as a method that directly models the
result of the evaluation of P-Tuning v2 with a slightly different
computation order. However, we believe that this way is more
difficult to consider.

3One may note that 256 ∗ 200 = 51200 ̸= 50265. How-
ever, 50265 is difficult to factorize efficiently since 50265 =
1117 ∗ 32 ∗ 5. Because of this, we chose to mostly factorize
P in such a way as to make it slightly larger than the original
vocabulary size. Doing so allows us to select more appropriate
a and b from the perspective of parameter and computational
efficiency.

embeddings matrix E through a learnable Fully 227

Connected network (namely, FC AoT P-Tuning). 228

Thus, we reparametrize P as 229

P = f(EW1 + b1)W2 + b2, (7) 230

where W1 ∈ Rd×r, b1 ∈ Rr, W2 ∈ Rr×d, 231

b2 ∈ Rd, f is a non-linearity, and r is the mapping 232

rank, which is also a hyperparameter to tune, same 233

as for Kronecker AoT P-Tuning. 234

With FC AoT P-Tuning, we utilize knowledge 235

stored in the pre-trained embeddings matrix E, 236

which should hypothetically perform better than 237

training P from scratch as Kronecker AoT P- 238

Tuning. 239

Note that for both Kronecker and FC AoT 240

P-Tuning, we can evaluate only specific rows 241

{Pxi , . . . ,Pxn} for input sequence {x1, . . . , xn}, 242

making training more efficient. 243

For both reparametrizations, P could be fused 244

once training is complete, and thus the rank of fac- 245

torization r does not affect inference speed. During 246

the evaluation, there is no need to store the full 247

P in GPU memory. Instead, it could be stored in 248

RAM, and only rows of these matrices should be 249

placed in GPU memory to be added to the hidden 250

states before each layer. 251

From a certain perspective, choosing between 252

AoT P-Tuning and P-Tuning is a trade-off be- 253

tween evaluation speed and RAM consumption 254

during inference. If RAM is limited, then usual 255

P-Tuning could be used at the cost of slower in- 256

ference. In other cases, AoT P-Tuning is viable 257

if there is enough RAM and inference speed is 258

crucial. Although, in most cases, P matrices for 259

different tasks could be easily stored in the RAM. 260

For RoBERTa-Large, a single task parameter will 261

require roughly 2.4Gb if stored in half-precision. 262

However, as we observed later in our experi- 263

ments, performing fusing is not crucial for FC AoT 264

P-Tuning, and the re-evaluation of {Pxi , . . . ,Pxn} 265

for each sequence ran at 98.5% the speed of fused 266

P (See Section 5.3 for more details). 267

5 Experiments 268

5.1 Experimental Details 269

We compared AoT P-Tuning (Kronecker and FC 270

reparametrizations of P ) with other fine-tuning 271

methods capable of performing multi-task infer- 272

ence: P-Tuning v1, P-Tuning v2 on GLUE and Su- 273

perGLUE (Wang et al., 2018, 2019) Benchmarking 274
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RoBERTa-Base

Model STS-B SST-2 RTE QQP

Fine-Tuning 90.6 ± 0.3 95.0 ± 0.2 81.2 ± 0.7 89.6 ± 0.2

P-Tuning v1 86.9 ± 0.9 94.0 ± 0.3 60.3 ± 2.4 82.2 ± 1.5
P-Tuning v2 89.2 ± 0.3 94.6 ± 0.2 80.5 ± 3.4 86.4 ± 3.3

Kron. AoT P-Tuning (ours) 89.7 ± 0.2 94.0 ± 0.2 77.6 ± 1.4 88.2 ± 0.1
FC AoT P-Tuning (ours) 90.0 ± 0.2 94.4 ± 0.3 78.0 ± 1.3 87.9 ± 0.2

QNLI MRPC MNLI CoLA Macro

Fine-Tuning 92.4 ± 0.1 90.8 ± 0.5 87.0 ± 0.3 63.8 ± 1.4 86.3

P-Tuning v1 88.3 ± 0.5 82.0 ± 1.7 80.8 ± 0.6 45.8 ± 27.1 77.5
P-Tuning v2 91.9 ± 1.6 89.1 ± 1.1 85.3 ± 0.2 60.7 ± 2.6 84.7

Kron. AoT P-Tuning (ours) 90.7 ± 0.4 89.5 ± 1.1 84.6 ± 0.1 59.3 ± 1.2 84.2
FC AoT P-Tuning (ours) 91.3 ± 0.4 90.3 ± 0.3 85.4 ± 0.1 60.3 ± 2.2 84.7

RoBERTa-Large

Model STS-B SST-2 RTE QQP

Fine-Tuning 91.9 ± 0.2 96.1 ± 0.4 88.1 ± 1.5 90.3 ± 0.2

P-Tuning v1 75.5 ± 6.3 94.4 ± 0.4 62.8 ± 2.3 76.9 ± 2.5
P-Tuning v2 91.0 ± 0.4 96.1 ± 0.3 87.4 ± 1.5 86.6 ± 0.6

Kron. AoT P-Tuning (ours) 91.1 ± 0.8 96.2 ± 0.2 84.8 ± 1.3 89.4 ± 0.1
FC AoT P-Tuning (ours) 91.7 ± 0.4 96.7 ± 0.1 88.4 ± 0.9 88.7 ± 0.2

QNLI MRPC MNLI CoLA Macro

Fine-Tuning 94.3 ± 0.2 91.6 ± 0.6 89.9 ± 0.2 68.1 ± 1.9 88.8

P-Tuning v1 79.1 ± 2.4 79.0 ± 1.1 75.9 ± 18.3 24.7 ± 17.6 71.0
P-Tuning v2 94.0 ± 1.1 91.2 ± 0.9 89.4 ± 0.7 66.9 ± 1.5 87.8

Kron. AoT P-Tuning (ours) 94.2 ± 0.1 89.7 ± 0.9 89.3 ± 0.1 65.5 ± 1.9 87.5
FC AoT P-Tuning (ours) 94.1 ± 0.2 91.6 ± 0.8 89.6 ± 0.1 69.2 ± 0.9 88.8

Table 1: Results on the GLUE Dev set. Each result is median and std across several seeds, and the Macro column is
a mean score across all tasks. Fine-tuning is omitted from comparison with other methods and was not bolded for
visibility. See Section 5.2 for details.

Datasets4. We also evaluated plain fine-tuning for275

reference even though it is impossible to perform276

multi-task inference with it. For each fine-tuning277

approach, we experimented with the RoBERTa-278

Base, RoBERTa-Large, and DeBERTa-XL back-279

bone models.280

For each task, we performed a grid hyperparam-281

eter search (see Appendix Table 4 for hyperparam-282

eter ranges). For RoBERTa models, we evaluated283

each hyperparameter set with 5 different seed val-284

4Based on this experimental design choice, we exclude
experiments with Adapters (Houlsby et al., 2019; He et al.,
2022), as well as with LoRA (Hu et al., 2022). While a wide
range of efficient fine-tuning methods could be similar to the
proposed method (Ding et al., 2022; He et al., 2022), they
do not allow to perform multi-task inference, which is the
motivation for using AoT P-Tuning.

ues and reported median and std score values for 285

each task. For DeBERTa-XL, we used to assess 286

each hyperparameter assignment with a single seed 287

due to longer training time. See Appendix Table 3 288

for a list of metrics used for each task. 289

We used the Adam (Kingma and Ba, 2015) op- 290

timizer with a constant learning rate for each task. 291

We stopped training once the validation metric 292

stopped increasing (see the "patience" parameter in 293

Appendix Table 5). 294

For Kronecker AoT P-Tuning with RoBERTa 295

models, we parametrized the matrix P = (WL ⊗ 296

WM )WR with a = 256, and b = 200, while for 297

DeBERTa, we used a = b = 360. WL and WM 298

were initialized randomly, while WR was initial- 299

ized as a zero matrix. For FC AoT P-Tuning, we 300
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RoBERTa-Large

Model RTE COPA WSC WiC

Fine-Tuning 88.1 ± 1.5 87.0 ± 10.2 80.8 ± 6.3 73.8 ± 1.6

P-Tuning v1 62.8 ± 2.3 75.0 ± 4.3 66.3 ± 1.3 64.1 ± 0.9
P-Tuning v2 87.4 ± 1.5 87.0 ± 6.3 75.0 ± 7.7 70.8 ± 1.5

Kron. AoT P-Tuning (ours) 84.8 ± 1.3 72.0 ± 9.1 67.3 ± 3.0 71.0 ± 1.0
FC AoT P-Tuning (ours) 88.4 ± 0.9 85.0 ± 10.1 79.8 ± 4.1 72.1 ± 1.5

MultiRC CB BoolQ Macro

Fine-Tuning 83.3 ± 1.1 97.3 ± 2.8 85.6 ± 0.3 85.1

P-Tuning v1 54.3 ± 2.9 81.4 ± 3.0 64.3 ± 1.2 66.9
P-Tuning v2 82.4 ± 0.6 100.0 ± 0.8 85.0 ± 0.6 83.9

Kron. AoT P-Tuning (ours) 82.8 ± 0.8 97.3 ± 2.3 84.8 ± 0.5 80.0
FC AoT P-Tuning (ours) 82.7 ± 19.3 100.0 ± 0.0 85.5 ± 10.3 84.8

DeBERTa-XL

Model RTE COPA WSC WiC

Fine-Tuning 89.9 96.0 76.9 75.9

P-Tuning v1 78.3 90.0 67.3 66.8
P-Tuning v2 90.6 97.0 89.4 76.5

Kron. AoT P-Tuning (ours) 88.8 96.0 87.5 71.8
FC AoT P-Tuning (ours) 91.0 98.0 94.2 74.1

MultiRC CB BoolQ Macro

Fine-Tuning 84.3 98.4 86.7 86.9

P-Tuning v1 82.1 93.8 79.4 79.7
P-Tuning v2 87.1 97.3 87.0 89.3

Kron. AoT P-Tuning (ours) 86.3 83.1 87.3 85.8
FC AoT P-Tuning (ours) 86.5 92.3 88.1 89.2

Table 2: Results on the SuperGLUE Dev set. For RoBERTa-Large, each result is median and std across several
seeds, and the Macro column is a mean score across all tasks. For DeBERTa-XL, we evaluated each hyperparameter
assignment with a single seed and reported its metric score. Fine-tuning is omitted from comparison with other
methods and was not bolded for visibility. See Section 5.2 for details.

initialized W1 randomly, while W2, b1, and b2301

were initialized with zeros. For Kronecker AoT302

P-Tuning, we applied dropout (Srivastava et al.,303

2014) to the Px with a fixed probability equal to304

0.1. In contrast, for FC AoT P-Tuning, we applied305

dropout to E before multiplying it with W1.306

Each experiment was run on a single NVIDIA307

A100 GPU with a total computation time of308

roughly 750 days.309

5.2 Results310

See Tables 1, 2 for the results of trained models. We311

observed that FC AoT P-Tuning performed better312

than Kronecker AoT P-Tuning, and hypothesize313

that this result is mostly caused by the fact that FC314

reparametrization utilized a pre-trained embedding 315

matrix rather than learning biases from scratch. 316

For RoBERTa-Base, FC AoT P-Tuning per- 317

formed on par with P-Tuning v2 and produced the 318

same Macro score. For RoBERTa-Large, FC AoT 319

P-Tuning outperformed P-Tuning v2 on GLUE 320

tasks and showed a Macro score equal to plain 321

Fine-Tuning. AoT P-Tuning with DeBERTa-XL 322

performed on par with P-Tuning v2 (89.2 vs 89.3 323

macro scores respectively). 324

We also observed that both AoT P-Tuning 325

reparametrizations mainly showed a lower vari- 326

ance of metrics across different seeds. Note that 327

P-Tuning v1 showed unstable performance and im- 328

proved results with RoBERTa-Base (although still 329
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(a) (b) (c) (d)

Figure 3: (a-b) GLUE macro scores for AoT P-Tuning, P-Tuning v1, and P-Tuning v2 with RoBERTa-Base and
RoBERTa-Large models. (c-d) SuperGLUE macro score for RoBERTa-Base and DeBERTa-XL models. P-Tuning
v2 performing on par with or worse than AoT P-Tuning across different prefix sizes. See Section 5.2 for details.

(a) (b) (c)

Figure 4: Comparison of AoT P-Tuning evaluation time with P-Tuning v1 and P-Tuning v2 for (a) RoBERTa-Base,
(b) RoBERTa-Large, and (c) DeBERTa-XL models. We evaluated AoT P-Tuning in two scenarios: with fused
weight P and with the re-evaluation of P during inference to reduce memory footprint (See Section 4.3 for more
details). Fused AoT P-Tuning adds negligible computational overhead compared to plain Fine-Tuning and is up to
1.3× times faster than P-Tuning v2. See Section 5.3 for more details.

underperforming by a large margin when compared330

to other methods).331

See Figure 3 for macro scores of P-Tuning v2332

and AoT P-Tuning with different prefix lengths p333

and prefix ranks r5. We observed that P-Tuning v2334

performed worse for RoBERTa-Base with shorter335

prompt lengths and was comparable to or better336

than AoT P-Tuning when p > 50. For GLUE337

tasks with RoBERTa-Large, FC AoT P-Tuning per-338

formed better for all prefixes p, while dropping339

performance for large rank r. For DeBERTa-XL,340

both P-Tuning v2 and FC AoT P-Tuning performed341

on par. We also provide per-task results with dif-342

ferent prefix scales (see Appendix Figures 5, 7).343

It is notable that in most cases, P-Tuning v2 suf-344

fers from a small prefix size p for Base and Large345

models, and achieves results comparable with AoT346

P-Tuning with a larger p (which corresponds with347

the results in Figure 3). At the same time, FC AoT348

P-Tuning mostly showed stable performance across349

5Note that the best macro result across different scales of
prefixes in these Figures differs from the macro result from
Tables 1 and 2, since the macro score from Tables 1 and 2
aggregates scores with different prefix scales.

different ranks r, only performing unstably on a 350

MultiRC task with a large rank r. We also analyzed 351

trained P matrices for FC AoT P-Tuning with the 352

DeBERTa-XL model. See Appendix Section B for 353

more details. 354

With per-task Expected Validation Performance 355

(EVP) (Dodge et al., 2019), we observed that AoT 356

P-Tuning highly depends on the number of hyper- 357

parameter assignments (see Appendix Figures 6, 358

8). Although, in most cases, using less than 100 359

hyperparameter assignments for AoT P-Tuning is 360

enough for it to outperform P-Tuning v2, which is 361

not crucial in most cases. 362

5.3 Inference Speed Overhead 363

In Figure 4, we also investigated the computational 364

overhead of AoT P-Tuning compared to other base- 365

lines. 366

To estimate inference speed overhead, we eval- 367

uated each model 100 times on a sequence with 368

length n = 128 and batch size 256. 369

We evaluated AoT P-Tuning in two setups. The 370

first setup fuses P for inference, thus saving com- 371

putational time at the cost of a higher memory foot- 372
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print. Since P is fused, it no longer depends on373

factorization rank r for both FC and Kronecker374

AoT P-Tuning.375

For the second setup, we did not fuse P , but376

rather evaluated {Pxi , . . . ,Pxn} for each sequence.377

This approach emulates a setup with limited mem-378

ory during inference, where fusing P is not feasi-379

ble.380

The growth of p P-Tuning v1 quickly reaches 2×381

speed overhead since its complexity quadratically382

depends on p. While P-Tuning v2 involves linear383

dependency on p (see Section 3.3 for details), it384

also reaches up to 1.3× inference speed overhead385

for large prefix lengths p.386

Fused AoT P-Tuning adds negligible computa-387

tional overhead (less than 1%) compared to plain388

Fine-Tuning. Compared to P-Tuning v2, Fused389

AoT P-Tuning performed up to 1.3× times faster390

depending on the prefix sizes used for P-Tuning391

v2.392

When P is not fused, FC AoT P-Tuning per-393

forms 1.13− 1.25× times faster than P-Tuning v2394

with large prefixes p. This indicates that perform-395

ing weight fusing is not crucial in most cases396

for this reparametrization, and that a significant397

increase in inference speed can be achieved with-398

out it. Although not performing fusing of P could399

reduce memory footprint during inference, it is not400

possible to perform multi-task inference in such a401

setup, which is available for both P-Tuning v1/v2402

and Fused AoT P-Tuning.403

Kronecker’s reparametrization performed worse.404

For small factorization rates (e.g., r ∈ [5, 10]), it405

showed results comparable to FC AoT P-Tuning.406

However, it performed up to 1.12× times slower407

than P-Tuning v2 for larger r values. This makes it408

is important to fuse P with such a reparametriza-409

tion when using a large rank r.410

It is important to note that the contribution411

of re-evaluation of P for both Kronecker and412

FC reparametrizations of AoT P-Tuning becomes413

lower with model growth. E.g., in the worst-414

case scenario (with r = 512), RoBERTa-Base re-415

evaluation of P with FC AoT P-Tuning adds 1.09×416

inference time overhead compared to models417

trained with plain Fine-Tuning, while DeBERTa-418

XL showed an overhead of 1.05×. The same holds419

true for small ranks (r = 64), where we observed420

1.02× inference time overhead for DeBERTa-XL421

compared to the plain model.422

6 Conclusion and Future Work 423

In this paper, we proposed AoT P-Tuning, which 424

is a new method for parameter-efficient fine-tuning 425

of pre-trained models, and two reparametrizations 426

of learnable weights for this method. 427

We observed that AoT P-Tuning performed on 428

par or better than P-Tuning v2 based on the macro 429

scores of GLUE and SuperGLUE Benchmarking 430

Datasets. 431

Moreover, AoT P-Tuning performed up to 1.3× 432

times faster than P-Tuning v2, adding a negligible 433

inference time footprint compared to plain Fine- 434

Tuning. When FC AoT P-Tuning is used, we ob- 435

served that one could not fuse weights P in order 436

to not introduce memory footprint since it performs 437

up to 1.25× times faster than P-Tuning v2. 438

We experimented with two reparametrizations 439

based on the Kronecker product and FC network. It 440

is possible to explore other possible reparametriza- 441

tions for weight P , which could further increase 442

the performance of the proposed method. In addi- 443

tion, while we proposed a simple method, there are 444

many possible architectural changes which could 445

also boost the performance of AoT P-Tuning and 446

reduce the number of necessary hyperparameter 447

assignments. 448
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A = attention(Q,K,V ) =

= softmax(
QKT

√
d

)V ∈ Rn×d.
(8)586

After A is evaluated, it is passed through the587

remaining layers6, including residual connections588

and FC layers to get H i+1. Here and later, we omit589

the layer index i for attention result A for visibility.590

B Analysis of Trained Weights591

We investigated trained P matrices for WSC,592

COPA, CB, and RTE tasks with the DeBERTa-XL593

model. Since FC AoT P-Tuning performed bet-594

ter than Kronecker factorization, we selected this595

reparametrization method to report the results.596

More specifically, we sorted rows of P matri-597

ces for each layer measured by the L2 norm and598

reported the appropriate tokens for these rows. See599

Tables 6, 7, 9, 8 for results.600

For the WSC task, there is a clear interpretation601

of trained rows for P , since rows with a large L2602

norm represent tokens responsible for pronouns603

and names, which is crucial for solving WSC. For604

the COPA task, we observed that the model tends605

to assign large norms for verb tokens. For the RTE606

and CB tasks, P also assigns large norms for name607

tokens, which often occur in the training data, while608

CB primarily modifies adverbs for later layers.609

Task Metric Task Metric

CoLA Mattews Correlation BoolQ Accuracy

MRPC Accuracy+F1
2 CB Accuracy+F1

2

RTE Accuracy RTE Accuracy

SST-2 Accuracy COPA Accuracy

MNLI Accuracy MultiRC Accuracy+F1
2

QNLI Accuracy WSC Accuracy

QQP Accuracy+F1
2 WiC Accuracy

STSB Pearson+Spearman
2

Table 3: Metrics used in our experiments for each task.
See Section 5.1 for more details.

6In fact, Transformer architecture implies evaluation of
multi-head Attention. We omit this in this paper for simplicity
since all derivations could be easily extended on the multi-
head case.
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Parameter Range

All Tasks, except RTE

P-Tuning v1/v2/AoT

batch size 16, 64

learning rate 1e−4, 5e−4, 5e−3, 1e−3

p 5, 10, 20, 50, 100

Kron. r 5, 10, 25, 30, 50

FC r 32, 64, 128, 256, 512

Fine-Tuning

learning rate
1e−5, 5e−5, 1e−4,
5e−4, 5e−3

RTE

batch size 16, 32, 64, 128

learning rate
1e−5, 5e−5, 1e−4, 5e−4,
5e−3, 1e−3, 2e−3, 1e−2

Parameter Range

P-Tuning v1/v2/AoT

batch size 16, 32, 64

learning rate
5e−5, 1e−4, 3e−4, 5e−4,
1e−3, 2e−3, 5e−3

p 5, 10, 20, 50, 100

Kron. r 5, 10, 25, 30, 50

FC r 32, 64, 128, 256, 512

Fine-Tuning

learning rate
1e−5, 5e−5, 1e−4,
5e−4, 5e−3

Table 4: Hyperparameter ranges used in experiments with GLUE and SuperGLUE benchmarking datasets for
RoBERTa (left) and DeBERTa (right) models. p is the prompt length used for P-Tuning v1/v2, and r is the rank of
weight factorization used for AoT P-Tuning (See Section 4.3). For GLUE experiments, each hyperparameter set
was evaluated with different seed values. See Section 5.1 for more details.

RTE
MNLI,
QQP QNLI

Other
Tasks WiC

CB,
COPA,
WSC MultiRC

Other
Tasks

Epochs 200 5 10 100 500 500 10 100
Patience 20 2 2 10 20 100 4 10

Table 5: The number of maximum epochs used for each GLUE and SuperGLUE Task. Once the Dev score stopped
increasing for "patience" steps, training was halted. See Section 5.1 for more details.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5: Per-task GLUE Benchmarking Dataset results for a different number of trained parameters of P-Tuning v2
and AoT P-Tuning with RoBERTa-Base (a-h) and RoBERTa-Large (i-p). We also provide results of plain fine-tuning
for reference. See Section 5.2 for more details.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 6: Expected Validation Performance (Dodge et al., 2019) of trained models with GLUE Benchmarking
Datasets for RoBERTa-Base (a-h) and RoBERTa-Large (i-p). See Section 5.2 for more details.
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n)

Figure 7: Per-task SuperGLUE Benchmarking Dataset results for a different number of trained parameters of
P-Tuning v2 and AoT P-Tuning with RoBERTa-Large (a-g) and RoBERTa-Large (h-n). We also provide results of
plain fine-tuning for reference. See Section 5.2 for more details.
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n)

Figure 8: Expected Validation Performance (Dodge et al., 2019) of trained models with SuperGLUE Benchmarking
Datasets for RoBERTa-Base (a-g) and RoBERTa-Large (h-n). See Section 5.2 for more details.
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l# Tokens x with largest norm ||Px||2

0

likes, a, is, loves, was, to, as, wants, s, ., pony,
eded, himself, Man, were, and, I, has, I, are, Frank, ., hates,
As, A, A, like, It, crop, Frank, After, „ joins, As, Eric,
Likes, It, just, would, onna, him, To, behaving, after, in, because, behaves,
Is, We, Like

5

„ ., narrower, doorway, backdoor, window, lousy, shortest, nicer, checkpoint, knob,
thinner, narrowing, oub, quieter, BAD, ;, VID, rectangle, tighter, crappy, intruder, tongues,
fing, rimination, blocker, and, raiding, detector, unmarked, sharper, knife, coolest, thicker, hoops,
DOWN, lightsaber, asshole, millisec, KEY, sharp, token, slashing, Defenders, jug, Donna, slider,
wedge, dding, kb

10

her, Her, herself, him, above, she, out, hers, him, HER, She,
she, care, HER, above, Her, bold, CARE, cared, over, harder, louder, Above,
smarter, sooner, her, cares, better, Out, vind, stronger, She, taller, tougher, Him,
ahead, so, HIM, Susan, happier, up, Harry, aloud, higher, Above, SHE, could,
apart, barking, inem

22

., there, dry, for, There, Her, her, sword, the, arse, wy,
dry, duc, The, it, took, cr, Rig, og, There, landing, the, wide,
centrally, red, grass, sw, oa, above, engine, FT, spir, cd, Coun, Ross,
there, ws, guy, starter, mans, aniel, green, freely, d, wide, stall, far,
artz, THERE, didn

32

it, me, olit, Polit, Pat, him, Private, Susan, pat, he, her,
Self, Ins, Doc, Coun, Ang, Aut, Sil, ochond, me, Nob, IT, Senator,
Professional, Dri, itized, Je, Capt, Hillary, Whe, He, Kid, Registered, itious, Michelle,
Political, It, Shut, Phot, BIT, Politics, Bit, Jacob, ruct, Young, HE, Tu,
them, Mot, itu

37

him, they, it, they, her, them, their, his, he, it, its,
hers, theirs, was, he, Susan, old, older, THEY, They, ITS, forth, Georg,
Thom, Tom, erved, Carl, Anna, nob, anos, itans, to, Eric, itcher, Harry,
Tim, Jen, them, Kid, Jeremy, JOHN, Jennifer, hands, Todd, put, Thomas, she,
Dan, Michelle, s

46

chased, erved, house, houses, life, chasing, market, self, chase, raised, chester,
hunt, castle, HOU, atics, Singer, western, ogenous, rounded, stretched, esian, essed, omorphic,
horse, SER, central, ledge, hole, asio, Self, Self, iverse, oker, Judd, DF,
aday, paced, ourced, erness, Barkley, scape, sey, ationally, owned, landers, ded, study,
directed, OWN, produced

Table 6: Tokens with the largest L2 norm of P entries for the WSC task. See Section B for more details.
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l# Tokens x with largest norm ||Px||2

0

fit, Loud, as, Air, Upon, Sets, Bound, Apart, scratched, sets, fit,
Upon, hosted, Shot, Unt, Host, fitt, Sight, atri, Ocean, ceed, ashore, set,
enture, underwent, planes, boats, Waves, Ali, shi, Active, Set, Atmosp, Airways, Host,
chat, Endless, pelled, rew, ached, unct, fitted, Proud, flu, itable, anson, Bound,
Assets, host, sets

5

set, Set, sets, Set, SET, Setting, setting, SET, set, padd, Setting,
Sets, sets, bed, Cause, setting, the, cause, tread, itch, paddle, cause, thirsty,
Khe, he, anned, this, ?, of, Cause, What, bidding, This, This, what,
What, a, his, lic, The, wish, fugitive, they, Bed, Air, wake, conscience,
., crowd, Let

10

?, ?, ?!, ??, ., ?", "?, )?, ???, ’?, set,
.?, !?, ?), !, ????, ...?, set, ?’, „ Set, Set, ed,
to, ??, ????????, as, ?????, ?)., setting, ?„ ?’", ?], sets, ...,
-, lt, —, :, lic, ???, led, ur, . . . , punching, of, t,
?"., sets, um

22

What, set, What, out, Set, sets, on, to, ’?, what, Set,
in, WHAT, Sets, Setting, WHAT, from, Setting, dropped, of, Dig, Got, ?’,
set, Exper, Gets, Ground, ...?, happened, Whatever, Your, decom, Getting, Got, overlooked,
Crack, )?, He, police, !?, happens, Suc, sets, what, Detective, GOT, Whatever,
SET, Getting, Flying

32

glued, hid, melted, ., sent, breaths, etz, breath, Breath, baptized, watch,
putting, tongues, braces, put, hid, bleach, icating, burying, aver, lifting, Illuminati, orneys,
melting, withdrawing, numb, radios, inserts, amins, avert, breathing, puts, informants, lifting, hide,
conscience, recommending, withdrawn, ransom, catch, Gael, Vern, roth, ears, Put, gins, breathed,
attorneys, loss, biblical

37

hid, dropped, raided, fought, ungle, Hide, destruct, smuggled, abandoned, looted, attacked,
barric, slid, dodged, drop, shut, drowned, hide, destruct, buggy, battled, shutdown, Hide,
Attack, hid, rawl, inaccessible, avalanche, slipped, deleted, rawling, encrypted, withdrawn, Killed, dug,
dropping, hoard, weapon, swallowed, defensive, destroy, exited, destroy, fight, Fighting, lost, deny,
suppress, encrypt, aggressively

45

hopped, chats, pumped, paints, backed, spun, tread, coached, reefs, privately, noodles,
buddies, malls, whisper, endorsements, squeezed, pals, blush, comed, edits, rallies, gigs, recol,
mocked, curs, Bare, bubbles, warmed, chat, profiles, emails, Dreams, pads, chalk, interviewed,
sneakers, rocked, Gloves, hubs, docs, shaved, Rise, primaries, listened, shy, essays, whispers,
leeve, girlfriends, socks

Table 7: Tokens with the largest L2 norm of P entries for the COPA task. See Section B for more details.
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l# Tokens x with largest norm ||Px||2

0

gression, rium, History, orer, aic, history, oration, ré, orative, amic, history,
version, ural, osa, avage, ory, lia, range, History, rica, nation, root, USE,
á, ination, ulation, mentation, issance, state, rum, adal, idden, jection, oly, ó,
esis, orean, discovery, ria, ada, uration, entry, ord, verse, inations, ugal, itus,
olics, ESSION, ativity

5

., to, in, for, and, of, „ s, the, be, ’s,
by, on, or, from, at, or, with, :, ly, a, an, ;,
on, -, ., in, under, an, as, I, and, !, about, er,
In, but, ?, A, is, ed, a, that, o, ers, S, ing,
now, ), -

10

., of, and, for, morph, votes, elector, with, uild, igraph, tatt,
Assignment, as, contribut, advant, are, hod, Voters, matically, Init, rede, olon, on,
rehabilit, neum, mog, looted, req, by, Claim, the, ynchron, dule, promot, socio,
portfolios, goto, vulner, vote, setup, nominate, anism, s, subscrib, iop, lihood, slot,
elist, ramid, ysc

22

in, In, in, be, In, .", being, Straw, -, its, a,
Majority, of, a, Latest, the, Jack, ine, latest, it, Lawyers, Watts, ".,
"-, Massachusetts, their, .’, been, ure, Till, ’.", Signs, .’", Seventh, ?",
Taxes, Atlanta, !", electric, at, IN, ide, Current, Ladies, KP, Jersey, Students,
Knights, it, Anders

32

Se, Hum, Brazil, Mur, Hur, aver, Hum, Yugoslavia, Mour, jud, a,
Hawai, Pag, Kant, ibal, Malaysia, EFF, Hur, .", adj, mur, Islam, and,
Guinea, Britain, Sadd, Def, Niger, „ Holland, amus, Hay, Ma, Appro, Mur,
Countries, Wid, Asians, Nor, else, Calendar, Hed, Ved, ldom, english, Hind, mur,
bury, Ded, hol

37

[SEP], +., Sk, Ble, Gre, cloud, Else, ., +„ ".,
uran, cs, Ever, 2048, Ble, Keefe, Hyp, athan, Lib, Fra, Exp,
bro, Edit, Ros, Bean, Bo, Beck, Shell, sit, !., Saud, Phys, -,
shell, Ol, BLIC, -, Over, ea, orthy, Shot, pn, pas, ester, Reviewed,
Spe, sell, 2024

45

Chance, Sw, chance, Nine, Shares, Chance, Scientists, Tw, Besides, Prof, chances,
Sn, sw, TW, EFF, J, IJ, Besides, chance, Between, icist, GU, SW,
pan, Ja, Psy, tw, Between, xon, Bj, Conj, Shares, Moh, UTH, Prediction,
science, intend, Science, iov, Nine, jp, dds, NJ, Jr, y, Nin, etsy,
Ibid, ymm, Reporting

Table 8: Tokens with the largest L2 norm of P entries for the RTE task. See Section B for more details.
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l# Tokens x with largest norm ||Px||2

0

.”, didn, doesn, don, ”., ,”, Didn, Doesn, didn, doesn, Don,
wouldn, Wouldn, Does, ”, couldn, DON, Did, hadn, But, Don, Isn, ).",
DON, shouldn, “, Obviously, Obviously, Isn, don, hasn, ))., Does, "?, ].",
wasn, Did, ],", ,., Naturally, ...", ),", Would, “, But, ”;, Naturally,
]., ,), DOES

5

„ ’t, !„ .„ ?„ didn, , not, to, +„ *„
)„ the, ., ]„ considered, doesn, in, , ,), a, /„ ,[,
you, don, „, ,., shouldn, ()„ hasn, ;, for, thought, weren, hadn,
thought, wasn, NOT, hair, ’, .;, aren, ‘„ Said, „ couldn,
isn, .—, idered

10

Shant, Georg, Expect, Led, Assistant, Amph, Registered, Ear, McA, THEIR, Prev,
Emb, -„ Called, Gw, Alc, Until, Rhod, Introduced, that, Lat, Unt, Ul,
Sv, Gh, to, of, Fernand, „ elta, jac, unch, Ov, Sebast, apologised,
JOHN, !"., Ll, hid, Somewhere, Been, Recently, and, Somebody, Fram, Coh, ’).,
Sty, Elsewhere, Unt

22

’s, ’re, A, ’ve, the, a, her, ’, be, A, a,
have, DOES, LIKE, ?", "?, ’d, )?, ?, s, ABOUT, ", Like,
Pant, didnt, ’m, ’?, E, The, doesnt, Was, re, :, ie,
Surely, ’ll, Corinth, At, Across, your, their, ?„ THEY, ...?, or,
Fra, HOW, )/

32

I, ’?, he, "?, ?’, )?, ’t, ”., .?, ...?, .”,
?"., ’:, He, !?, ?„ He, I, and, ?’", ?!", ?", ?).,
!’, he, .:, ?!, she, +., )!, ’., .’, !?",
,”, ’)., ???, !., ).", we, CLOSE, ‘., "!, .], .–, ????,
’/, ’re, .’"

37

., ’s, ’t, ?, ’, :, I, -, ’, „ of,
he, B, B, in, I, and, ’m, -, s, ", ’d, by,
for, ;, b, on, you, !, ", He, to, /, ’ve, y,
’re, ed, with, ., ’ll, a, back, the, b, she,
He, E, C

45

’t, not, NOT, the, not, Not, never, Not, ’s, ’re, NOT,
’ve, you, of, [SEP], t, nt, Never, The, in, NEVER, he, to,
the, [CLS], hardly, never, neither, I, „ ’m, cannot, no, The, annot,
it, Their, me, didnt, He, and, doesnt, Ear, a, ., Never, none,
if, on, nobody

Table 9: Tokens with the largest L2 norm of P entries for the CB task. See Section B for more details.
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