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ABSTRACT

Multimodal Large Language Models (MLLMs) have achieved remarkable suc-
cess in vision-language tasks, yet they frequently exhibit suboptimal output lay-
ers, where intermediate decoder layers outperform the final ones, signaling un-
derutilized model capacity. In this work, we delve into the root causes and at-
tribute this issue to the Visual Attention Re-sinking phenomenon, precipitated
by attention gradient sparsity driven by textual supervision dominance. This
degradation causes attention heads to evolve into sink heads that prioritize low-
semantic backgrounds, thereby disrupting modality fusion, neglecting visual in-
formation, and biasing outputs toward textual priors, ultimately impairing model
performance. To mitigate this, we introduce a parameter-free Sink Attention Dy-
namic Sparsification (SADS) framework that dynamically preserves all vision
heads, ensuring focused attention on semantically salient regions, while retain-
ing only a minimal subset of sink heads, including a designated shared head to
safeguard essential global and contextual information. Integrated into diverse
MLLMs, our framework yields substantial performance gains across 20 bench-
marks spanning five task categories (visual grounding, general VQA, OCR-related
VQA, vision-centric tasks, and visual hallucination mitigation) surpassing super-
vised fine-tuning while boosting inference speed by 10.3%. This approach offers
a novel avenue for maximizing MLLMs capabilities.

1 INTRODUCTION

In recent years, Multimodal Large Language Models (MLLMs) have surged in development, deliv-
ering robust and scalable performance across diverse multimodal tasks and offering a key route to
Artificial General Intelligence (AGI) (Bai et al., 2025; Chen et al., 2024; Liu et al., 2023). Typi-
cally, MLLMs use a vision encoder to process images, project them into a modality-aligned latent
space via a connector, and concatenate with text embeddings for input to an LLM decoder that
generates responses (Bai et al., 2025; Chen et al., 2024; Liu et al., 2023). While MLLMs excel
in vision-language tasks like visual question answering, grounding, and captioning, recent findings
show mid-to-late vision encoder layers often surpass the output layer, due to CLIP training fostering
rich spatial and semantic features in intermediates (Bolya et al., 2025). Analogously, for hallucina-
tion mitigation in MLLM decoders, mid-layer visual facts are suppressed later, leading to methods
that leverage or fuse intermediates for enhanced outputs (Wang et al., 2024). However, existing
research offers limited insights into the underlying causes and primarily relies on post-hoc remedial
strategies that fail to fully activate the model’s capacity. Thus, addressing “why the output layer in
MLLMs is suboptimal” and “how to maximize MLLM capabilities by optimizing the output layer”
represents a critical and urgent challenge.

In this work, we first explore the reasons for the suboptimal output layer in MLLMs. Compared to
LLMs, MLLMs confront the additional challenge of fusing visual and linguistic modalities. Prior
studies have characterized the information flow in MLLM decoders as comprising early layers for
feature processing, mid-layers for modality alignment, and late layers for response organization
and generation (Zhang et al., 2025). As illustrated in Figure 1, we discover that supervision in
existing MLLM training paradigms is entirely textual, devoid of direct visual oversight. Conse-
quently, gradients for vision tokens rely solely on backpropagation of textual losses through the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overview of visual attention re-sinking in MLLMs caused by text-only supervision, induc-
ing gradient sparsity, head degeneration, and suboptimal late-layer accuracy. Our SADS framework
sparsifies sink heads while retaining all vision heads and a shared head, achieving progressive accu-
racy gains and eliminating re-sinking.

attention mechanism, constraining its learning capacity on vision tokens and rendering the overall
gradient distribution increasingly sparse. This sparsity prompts the model, in subsequent forward
passes, to concentrate visual attention weights on a shrinking subset of vision tokens. As training
iterations advance, these weights progressively localize to an even smaller number of tokens, engen-
dering the Visual Attention Re-sinking phenomenon, wherein visual attention in late layers reverts
to low-semantic backgrounds. This disrupts the modality fusion balance established in mid-layers,
compelling the model to increasingly rely on textual priors rather than deeply integrating visual
cues. The degradation escalates with iterations, propagating backward from late to mid-layers and
ultimately culminating in suboptimal output-layer performance.

Building upon these insights, we introduce a parameter-free Sink Attention Dynamic Sparsifica-
tion (SADS) framework. This approach dynamically retains all vision heads during inference while
preserving only a minimal subset of sink heads, thereby encouraging the model to prioritize visual
information without sacrificing critical global and contextual knowledge. Specifically, we observe
that the maximum visual attention between vision and sink heads follows a bimodal Gaussian dis-
tribution. Similarly, within the sink heads, the entropy of non-vision token cross-attention between
heads that focus on global knowledge (denoted as sinkG) and those that fully sink attention onto
specific non-fixed tokens (denoted as sinkS) also adheres to a bimodal Gaussian distribution. By
leveraging the valley of this distribution as a dynamic threshold, our framework retains all vision
heads along with the sinkG heads, while designating the first head as a shared sink to ensure the
preservation of global and contextual information. This framework is architecture-agnostic and
readily applicable to diverse MLLMs. In this study, we integrate it into Qwen2.5-VL, InternVL2,
and LLaVA-1.5 (Bai et al., 2025; Chen et al., 2024; Liu et al., 2023). Extensive experiments across
a variety of tasks demonstrate that fine-tuning with our framework achieves substantial improve-
ments over standard supervised fine-tuning (SFT) on numerous visual benchmarks. Furthermore, by
streamlining redundant attention weight computations, inference speed is boosted by 10.3%.

In summary, our contributions are as follows: 1) We conduct an in-depth investigation into the
causes of suboptimal MLLM output layers, attributing them to the text-only supervision paradigm
in MLLMs, which, as training iterates, prompts models to learn modality-irrelevant output short-
cuts, sparsifying attention gradients, inducing visual attention re-sinking, leading to suboptimal
outputs. 2) We introduce a SADS framework that addresses the visual attention re-sinking issue,
optimizes attention gradient sparsity, and achieves output-layer optimality, thereby maximally acti-
vating the model’s capacity. 3) We validate the superior effectiveness and inference efficiency of our
method through comprehensive experiments and analyses across five task categories: visual ground-
ing, general VQA, OCR-related VQA, vision-centric tasks, and visual hallucination tasks, spanning
20 benchmarks, providing a novel framework for advancing MLLMs.
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2 RELATED WORK

Best Layer in MLLM Decoders. In MLLMs, the vision encoder’s final layer typically extracts
visual features, with the decoder’s output layer generating responses. However, studies show mid-
to-late vision encoder layers often outperform the final one across tasks (Bordes et al., 2022; Chen
et al., 2020b; Ma et al., 2024; Shekhar et al., 2023; Walmer et al., 2022; Zheng et al., 2016). For ex-
ample, iGPT’s intermediate layers excelled in image classification (Chen et al., 2020a), and PE
demonstrated CLIP training fosters rich features in intermediates across encoders (Bolya et al.,
2025). Similar suppression of mid-layer visual facts occurs in MLLM decoders for hallucination
mitigation, with fusion methods improving outputs (Wang et al., 2024; Huang et al., 2024). Yet,
prior work lacks deep causal insights and relies on post-hoc fixes. In contrast, we attribute subopti-
mal outputs to visual attention re-sinking from textual supervision and gradient sparsity, proposing
SADS for optimal output layers and capacity maximization.

Visual Attention Sink in MLLMs. In LLMs, attention sink involves low-semantic tokens (e.g.,
BOS, “.”) drawing excessive weights (Xiao et al., 2023), minimally contributing to inference (Bon-
darenko et al., 2023). Recent views frame it as first-token mechanistic mixture suppression to pre-
vent collapse (Barbero et al., 2025). In MLLMs, visual attention targets image patches (Aflalo et al.),
but often misallocates to low-semantic areas, mitigated by registration tokens (Darcet et al., 2023)
or boosted image weights (Zhu et al., 2025). VAR formalized visual attention sink, linking it to sink
token activations like LLMs, and reallocating attention (Kang et al., 2025). Conversely, we pioneer
the discovery of visual attention re-sinking in MLLMs.

3 PRELIMINARIES

MLLMs typically feature an end-to-end architecture integrating a vision encoder, a projection mod-
ule, and an LLM decoder (Liu et al., 2023; Bai et al., 2025). The vision encoder extracts hierarchical
visual features from input images, which are projected into a modality-aligned latent space to bridge
visual-textual gaps. These visual embeddings are concatenated with tokenized system prompts and
instructions, forming a unified sequence fed into the LLM decoder for autoregressive response gen-
eration with causal masking. Each sequence element is a discretized token embedding.

Formally, let v ∈ RNv×d denote Nv visual tokens and t ∈ RNt×d denote Nt textual tokens (d:
embedding dimension). The concatenated input x = [v; t] ∈ R(Nv+Nt)×d is processed by the
Transformer-based decoder. Each of L blocks computes:

ĥℓ = LayerNorm(hℓ−1 + MHA(hℓ−1)), hℓ = LayerNorm(ĥℓ + FFN(ĥℓ)), (1)

where hℓ−1 ∈ RN×d (N = Nv +Nt, h0 = x), LayerNorm is layer normalization (Ba et al., 2016),
and FFN is a two-layer feed-forward network with non-linear activation. The multi-head attention
(MHA), key to modality fusion, is:

MHA(Q,K,V) = Concat(head1, . . . , headH)WO, (2)

with Q = hℓ−1WQ, K = hℓ−1WK , V = hℓ−1WV (WQ,WK ,WV ,WO ∈ Rd×d). Each head
i is:

headi = softmax

(
QWQ

i (KWK
i )⊤√

dk
+M

)
(VWV

i ), (3)

where dk = d/H , H is the number of heads, and M is the causal mask (Mi,j = 0 if j ≤ i,
else −∞) (Vaswani et al., 2017). We focus on cross-modal interactions, specifically textual queries
attending to visual keys via the visual attention matrix:

Visual Attention = softmax
(
QtK

⊤
v√

dk

)
∈ RNt×Nv , (4)

where Qt and Kv are textual queries and visual keys, analyzed for fusion patterns.
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4 WHY IS THE OUTPUT LAYER NOT OPTIMAL?

As illustrated in Figure 2, advanced open-source MLLMs consistently face the challenge of subop-
timal output layers, where intermediate decoder layers outperform the final layer. This indicates that
the extensive parameter capacity underpinning these models is not fully activated. In this section,
we investigate the underlying causes of this phenomenon.

(a) Attention Share: Image, System, & Text (green:
text, red: system, blue: image).

(b) Hidden State Comparison: Sink and Vision To-
kens Lack Major Spikes.

(c) Evolution of visual attention across layers, where the visual attention sink appears in early layers, diminishes
in middle layers, and re-emerges in later layers. Green boxes indicate semantically relevant visual regions.

Figure 3: Analysis of visual attention on the object “the number of intolerant”.

4.1 VISUAL ATTENTION RE-SINKING LEADS TO SUBOPTIMAL OUTPUT LAYERS.

Figure 2: Cross-layer accuracy of the three base
models on the OVDEval test benchmark.

In LLM decoders, intermediate and output lay-
ers perform comparably on simple tasks, while
deeper output layers excel on more complex
ones, without notable suboptimal output layer
issues (Fan et al., 2024). Therefore, we focus
our investigation on the fusion of visual and lin-
guistic modalities. Within Transformer-based
decoder architectures, models rely more heav-
ily on attention mechanisms than FFNs to in-
ject visual information into the linguistic latent
space for modality alignment (Vaswani et al.,
2017). Thus, our analysis centers on visual at-
tention. We decompose the impact of visual attention into two aspects: 1) the total attention al-
located to images and 2) the distribution of visual attention across vision tokens. As shown in
Figure 3a, we first compute the attention distribution across image, system, and text components,
observing a stable pattern across layers without fluctuations in image attention allocation in later
layers. This suggests that the total attention allocated to images is not the primary cause of subop-
timal output layers, implying that the issue likely lies in the distribution of visual attention across
different vision tokens. According to Equation 4, we compute the attention weights between output
tokens and vision tokens to derive visual attention maps. As illustrated in Figure 3c, we observe that
visual attention in early layers predominantly concentrates on low-information background regions;
transitions to semantically salient areas in mid-layers; and reverts to low-information backgrounds
in late layers. We define tokens attracting visual attention to low-information background regions as
sink tokens, those focusing on semantically relevant regions as vision tokens, and the resurgence of
visual attention toward low-information backgrounds in late layers as the visual attention re-sinking
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phenomenon. We posit that this re-sinking contributes to performance degradation. To validate this
hypothesis, we perform a training-free intervention on the VQAvg test set, reallocating attention
weights from sink tokens in the last five layers to semantically pertinent vision tokens, which yields
a 0.74% accuracy improvement. This confirms that visual attention re-sinking is the primary culprit
behind suboptimal output layers. Accordingly, our investigation focuses on late layers to address
the question: “What causes visual attention re-sinking?”

4.2 ATTENTION GRADIENT SPARSITY LEADS TO VISUAL ATTENTION RE-SINKING

(a) Visual attention of sink head and vision head. Boxes in the
images indicate semantically relevant visual regions.

(b) Distribution of maximum visual attention for vision heads
and sink heads, showing a bimodal distribution.

(c) Evolution of visual attention K-value
variance in sink heads across layers, exhibit-
ing a decline-plateau-sharp increase trend;
fluctuations caused by outlier sink tokens,
with boxplots showing more sink tokens in
early and late layers.

Figure 4: Analysis of vision and sink heads visual attention on the object “the number of intolerant”.

Table 1: Analysis of the impact of heads
on OVDEval benchmark.

Method Accuracy (%)

Qwen2.5-VL-3B 39.5
w/o sinkS head 43.8
w/ 1 sinkS head 43.0
w/o 1 sinkG head 43.2
w/o 1 vision head 42.6

Unlike the attention sink in LLMs and VAR, which stems
from massive activations in specific hidden state dimen-
sions and appears in early layers while vanishing in later
ones, as depicted in Figure 3b and Figure 3c, we observe
that visual attention sink emerges in early layers, dimin-
ishes in mid-layers, and reappears in late layers, without
massive activations in specific hidden state dimensions.
Therefore, we investigate the characteristics of these sink
tokens and the reasons for their resurgence.

Sink Tokens Concentrate in Sink Heads. For multi-head attention (MHA), we begin by examining
the visual attention representations across individual heads. As illustrated in Figure 4a, we identify
pronounced disparities among heads in terms of visual attention allocation. We classify heads that
direct visual attention toward semantically salient positions as vision heads, whereas those gravi-
tating toward low-information background regions are termed sink heads. Notably, the maximum
visual attention values in vision heads substantially exceed those in sink heads. To substantiate this
observation, we perform a statistical analysis of the maximum visual attention across 1,600 heads in
late layers, revealing a distinct bimodal distribution: sink heads cluster at significantly lower maxi-
mum visual attention levels compared to vision heads. This pattern yields two key insights: 1) sink
tokens predominantly concentrate within sink heads, and 2) although sink tokens exhibit high rela-
tive attention weights, their absolute magnitudes remain low. Consequently, our subsequent analysis
focuses on sink heads.

As depicted in Figure 5, we compute the cross-attention among all tokens within sink heads and
observe distinct patterns in the non-vision token cross-attention: some heads exhibit uniformly dis-
persed attention across tokens (preserving global and contextual information), while others sink
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attention onto individual low-semantic tokens. Specifically, we quantify this pattern via the en-
tropy of the non-vision token attention distribution, defined as follows. Let A ∈ RLq×Lk de-
note the attention matrix for a given head, where Lq and Lk are the query and key sequence
lengths, respectively. Let I be the set of indices corresponding to non-vision tokens (keys). Ex-
tract the submatrix Asub = A[:, I] ∈ RLq×|I|. Renormalize each row i of Asub such that
Asub[i, :] ← Asub[i, :]/

∑
j∈I Asub[i, j], ensuring each row sums to 1 over non-image keys. Then,

compute the average attention distribution p ∈ R|I| where pj = 1
Lq

∑Lq

i=1 Asub[i, j] for each j ∈ I.
The entropy is given by H = −

∑
j∈I pj log pj .

We define high-entropy heads, which attend to global and contextual knowledge, as sinkG heads,
and low-entropy heads, which sink attention onto individual low-semantic tokens, as sinkS heads.
This complete sinking of attention onto low-information tokens disrupts effective modality fusion,
marginalizes visual cues, and biases outputs toward textual priors, ultimately leading to degraded
model performance. To validate this, as shown in Table 1, on the OVDEval benchmark, adding an
extra sinkS head or ablating vision heads or sinkG heads leads to significant performance drops.
These findings highlight the adverse effects of attention sinking to isolated tokens while confirming
the importance of visual cues and global context. Moreover, we observe that the entropy values
across heads follow a bimodal Gaussian distribution, allowing us to leverage its valley as a dynamic
threshold for differentiating sinkS and sinkG heads.

Figure 5: Attention heatmaps of two sink heads. Top: High-entropy sinkG head (green box) with
distributed attention preserving global context. Bottom: Low-entropy sinkS head (red box) sinking
to specific low-semantic tokens.

Re-sinking Tokens Exhibit High Key Variance. On sink heads, we concentrate on the key matrix
K in multi-head attention due to its role in modality interactions. As illustrated in Figure 4b, we
discover that K value variances align with the visual attention re-sinking pattern: decreasing in
early layers, stabilizing in mid-layers, and surging in late layers. From the box plots, mid-layer
fluctuations arise from outlier tokens, which are precisely sink tokens. In early and late layers, the
increasing number of sink tokens elevates overall K variances. It is this high dimensional variance
in K that leads to higher attention weights for sink tokens compared to others.

Attention Gradient Sparsity Causes Sink Token Resurgence. Given that supervision in the final
layer of MLLMs during training is entirely textual, devoid of direct oversight for visual signals,
the gradients for visual tokens rely exclusively on backpropagation of textual losses through the
attention mechanism. This dependency constrains the learning capacity of the attention mechanism
on visual tokens, rendering the overall gradient distribution increasingly sparse. Consequently, in
subsequent forward passes, the model tends to concentrate visual attention weights on a diminishing
subset of vision tokens. As training goes on, these weights slowly focus on fewer tokens, eventually
forming the “visual attention re-sinking” phenomenon. To test this cause-and-effect link with data,
as shown in Figure 7, we track the change in attention gradient sparsity and the number of sink heads
during the training process. Notably, at about 2,000 iterations, gradients in late layers start to thin
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Figure 6: Overview of the SADS framework. Decision (Right): Triggers activation at Layer m
upon detecting gradient sparsity and key variance anomalies. Execution (Left): Filters heads using
bimodal thresholds on maximum visual attention (separating vision and sink heads) and non-vision
token entropy (distinguishing sinkG from sinkS within sinks). Merges all vision heads, retained
sinkG heads, and a shared head for computation, preserving global context.

out; by about 3,000 iterations, the number of sink heads in these layers begins to grow, confirming
that this sparsity causes the sink tokens to return.

5 SINK ATTENTION DYNAMIC SPARSIFICATION FRAMEWORK

Drawing upon the preceding analysis, we conclude that MLLMs require a sufficient number of vi-
sion heads to effectively process dense, semantically rich visual information, complemented by a
minimal subset of sink heads to handle textual and global contextual elements. To this end, we in-
troduce the Sink Attention Dynamic Sparsification (SADS) framework. As illustrated in Figure 6,
this framework first distinguishes vision heads from sink heads via the bimodal distribution of max-
imum visual attention. It then retains all vision heads while dynamically sparsifying the sink heads:
leveraging the bimodal Gaussian distribution of non-vision token cross-attention entropy, it identi-
fies and preserves the high-entropy sinkG heads (capture global and contextual knowledge) using
the distribution’s valley as a dynamic threshold, and designates the first head as a shared sink to
ensure model stability and safeguard essential global information.

5.1 SINK HEAD IDENTIFICATION

(a) (b)

Figure 7: (a) The evolution of attention gradient sparsity
across layers over training iterations during training. (b) The
evolution of sink heads numbers across layers over training
iterations during training.

Building on the observation from
Section 4.2 that the maximum vi-
sual attention in vision heads far ex-
ceeds that in sink heads, we model
each layer in SADS using a Gaus-
sian bimodal distribution, formalized
as:p(x) =

∑2
k=1 πkN (x | µk, σ

2
k),

where the valley α = argminx p(x)
serves as the maximum visual atten-
tion threshold for classifying sink and
vision heads. Subsequently, within
the identified sink heads, we fur-
ther delineate them based on the
entropy of non-vision token cross-
attention, which exhibits a similar
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bimodal Gaussian distribution. We analogously model this entropy distribution as p(e) =∑2
k=1 πkN (e | µk, σ

2
k), with the valley β = argmine p(e) acting as the threshold to distinguish

high-entropy sinkG heads (focusing on global and contextual knowledge) from low-entropy sinkS
heads (sinking attention onto isolated low-semantic tokens). This approach leverages Gaussian Mix-
ture Models (GMMs) to capture the inherent separation, ensuring robust identification. We fit the
GMM using expectation-maximization, which converges efficiently and provides probabilistic as-
signments, enhancing reliability in noisy attention distributions.

5.2 SINK ATTENTION DYNAMIC SPARSIFICATION

Leveraging the precise identification of sink heads, as illustrated in Figure 6, we introduce the
parameter-free SADS framework. This approach adaptively retains all vision heads per layer while
dynamically sparsifying the sink heads: it preserves the high-entropy sinkG heads (capturing global
and contextual knowledge) based on the valley of the bimodal entropy distribution as a threshold,
and designates the first head as a shared sink to handle essential textual and global information.
Informed by the analysis in Section 4.2 regarding visual attention re-sinking in later layers, we acti-
vate SADS from layers displaying variance fluctuations in attention keys and gradient sparsity. This
selective activation maintains early-layer modality alignment while enhancing efficiency in later
layers. During fine-tuning, SADS compels the model to prioritize visual features, thereby averting
textual shortcuts and promoting deeper vision-text fusion, as evidenced by reduced hallucinations
and improved visual grounding in downstream tasks.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

MLLMs. In this work, we employ Qwen2.5-VL-3B, Qwen2.5-VL-7B, Qwen2.5-VL-32B,
InternVL2-2B, and LLaVA-1.5-7B (Bai et al., 2025; Chen et al., 2024; Liu et al., 2023) as our base
models. Notably, as a parameter-free method, SADS can be readily applied to various MLLMs.

Tasks and Evaluation Benchmarks. We evaluate our method across a broad spectrum of tasks, cat-
egorized into: visual grounding tasks, general VQA tasks, OCR-related VQA tasks, vision-centric
tasks, and visual hallucination tasks. 1) Visual grounding tasks assess MLLMs’ visual localiza-
tion capabilities, including Referring Expression Comprehension (REC): RefCOCO/g/+, LISA, Re-
fGTA, and Object Detection (OD): COCO and OVDEval (Lin et al., 2014; Lai et al., 2024; Yao et al.,
2024). 2) General VQA tasks evaluate MLLMs’ comprehension of image-text pairs, encompassing
VQA v2, VizWiz, VQA vg, GQA, MME, MMB, MMStar, and AI2D (Jia et al., 2024; Gurari et al.,
2018; Krishna et al., 2016; Ainslie et al., 2023; Fu et al., 2024; Liu et al., 2024; Chen et al., 2024;
Kembhavi et al., 2016). 3) OCR-related VQA tasks gauge MLLMs’ proficiency in high-granularity
recognition for icon-document pairs, such as InfoVQA, TextVQA, and DocVQA (Mathew et al.,
2021b;a; Singh et al., 2019). 4) Vision-centric tasks focus on visual-spatial perception in image-text
understanding, including MMVP, CVBench, and CLEVER Tong et al. (2024a;b); Johnson et al.
(2016). 5) Visual hallucination tasks measure the authenticity and reliability of MLLM outputs,
featuring POPE and CHAIR (Sun, 2025; Li et al., 2023).

Training Datasets and Implementation Details. Across the five task categories, we aggregate a
total of 670k training samples sourced from RefCOCO, Dcube, VG, GQA, OCR-VQA, Text-VQA,
and CLEVER for model fine-tuning. Our hyperparameters remain consistent with those of SFT and
the base models across all benchmarks. For layer selection in SADS, we base our choices on the
layers exhibiting K variance fluctuations and the onset of gradient sparsity: for Qwen-2.5VL-3B,
we commence from layer 20, for InternVL2-2B, from layer 15, for LLaVA-1.5-7B, from layer 20.

6.2 QUANTITATIVE RESULTS

Tables 2 and Tables 3 sequentially present the performance of RAR across the five task categories
on 20 benchmarks using three base models. It is evident that RAR consistently outperforms both
SFT and the base models on all benchmarks, demonstrating enhanced capabilities in visual local-
ization, visual understanding, spatial perception, and hallucination mitigation. This underscores
the effectiveness, scalability, and robustness of the RAR method. Notably, on out-of-distribution
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Table 2: Benchmark performance comparison on general VQA and OCR VQA tasks.

Model General VQA Task OCR VQA Task

VQAv2 GQA VQAvg MME MMB MMStar AI2D InfoVQA TextVQA DocVQA

LLaVA-1.5-7B 78.3 61.1 54.6 1808.4 61.1 33.2 55.7 41.2 64.7 69.4
+SFT 79.1 63.1 55.7 1899.6 61.9 34.5 56.2 43.7 65.5 71.2

+ Ours 80.8 65.2 58.5 2018.8 63.2 36.3 57.1 46.3 67.5 74.4

Qwen2.5VL-3B 76.7 60.4 54.3 2184.1 75.4 53.0 77.9 75.1 78.7 93.0
+SFT 77.9 62.0 55.2 2199.9 75.9 53.7 78.4 75.9 79.0 92.9

+ Ours 79.7 64.2 58.1 2276.3 76.9 55.4 79.5 77.3 80.4 93.5

InternVL2-2B 72.9 55.6 50.1 1864.3 69.1 48.9 73.1 58.8 73.4 86.4
+SFT 74.2 56.9 52.3 1899.1 70.0 49.6 73.9 59.1 73.8 86.6

+ Ours 75.9 59.0 55.4 2006.5 71.6 50.8 75.7 60.5 75.9 88.2

Qwen2.5VL-7B 81.6 65.8 60.5 2276.3 82.2 64.2 84.1 81.7 80.2 94.8
+SFT 81.9 66.1 61.0 2230.2 82.0 64.5 84.4 82.0 80.7 94.2

+ Ours 82.6 67.9 62.1 2289.8 83.3 66.0 84.8 82.9 81.3 95.0

Qwen2.5VL-32B 82.9 68.4 63.6 2297.4 83.8 70.3 85.2 83.4 82.8 94.8
+SFT 83.0 68.6 63.9 2255.4 83.8 69.6 85.1 83.0 82.9 94.4

+ Ours 83.8 69.9 64.5 2326.6 84.5 71.3 85.7 83.8 83.9 95.1
Table 3: Benchmark performance comparison on visual perception tasks.

Model Visual Grounding Task Vision Centric Task Visual Hallucination Task

RefCOCO/+/g LISA RefGTA ODVG OVDEval MMVP CVBench CLEVER CHAIR↓ POPE↑
LLaVA-1.5-7B 76.2 44.2 64.1 19.4 22.7 3.1 57.4 43.6 44.7 85.6

+SFT 77.1 44.7 64.6 20.2 23.0 9.7 57.8 44.1 45.2 85.7
+ Ours 78.9 50.1 66.2 24.8 27.1 15.1 60.4 46.6 41.7 86.4

Qwen2.5-VL-3B 84.2 55.3 70.8 32.1 39.5 50.4 67.3 68.7 35.6 86.1
+SFT 84.6 55.3 71.0 32.5 39.9 52.1 68.1 70.0 35.4 86.4

+ Ours 86.8 58.1 72.9 36.7 43.8 54.9 70.1 72.5 32.6 87.4

InternVL2-2B 77.8 46.1 66.4 21.7 24.9 39.6 56.5 57.1 37.8 86.2
+SFT 78.1 45.6 66.9 23.2 25.3 40.4 57.2 57.9 37.9 86.0

+ Ours 80.1 48.2 68.9 26.6 29.9 42.7 59.2 59.6 34.3 87.1

Qwen2.5VL-7B 87.1 60.3 74.4 39.3 44.8 55.1 73.6 74.4 32.6 88.9
+SFT 87.3 60.1 74.8 39.7 44.4 55.8 73.8 74.8 33.1 89.2

+ Ours 88.2 63.6 76.0 42.1 47.2 57.0 75.2 75.9 29.7 89.6

Qwen2.5VL-32B 89.8 65.9 77.5 43.1 49.3 60.4 77.2 78.5 28.2 90.3
+SFT 89.7 63.3 77.8 43.3 49.3 60.8 77.1 78.7 30.1 90.1

+ Ours 90.6 67.4 79.3 44.5 51.8 62.5 79.0 80.0 21.2 90.6

benchmarks such as LISA and OVDEval, DocVQA, CVBench, and CLEVER, SFT yields marginal
improvements, whereas RAR achieves substantial gains, highlighting its superiority in bolstering
visual capabilities. Furthermore, on hallucination tasks, SFT results occasionally fall below those
of the base models, which we attribute to iterative training across diverse tasks exacerbating the
model’s bias toward linguistic priors. RAR effectively circumvents this issue, ensuring reliable
visual comprehension. Additionally, Table 4 illustrates that SADS significantly enhances inference
speed compared to the base models and SFT, attributable to the reduction in computations associated
with sink heads’ attention.

6.3 ABLATION STUDIES

Table 4: Comparative analysis of in-
ference efficiency and accuracy.

Method Latency↓ Accuracy↑

Qwen2.5-VL-3B 1.332 39.5
+ SFT 1.332 39.9
+ Ours 1.195 43.8

To directly assess whether the RAR resolves the suboptimal
output layer issue, we compare the layer-wise performance of
the base model, SFT, and RAR on the OVDEval test set, as
shown in Figure 8c. Evidently, unlike the performance degra-
dation observed in later layers for both the base model and
SFT, RAR achieves higher performance and demonstrate pro-
gressive capability improvements across all later layers. As
depicted in Figure 8a, we contrast the visual attention maps in later layers, revealing that RAR effec-
tively directs visual attention toward semantically relevant regions, in stark contrast to the persistent
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(a) Qualitative results of attention heatmaps for detect-
ing the “peach” across Layer 34 and Layer 35.

(b) Layer-wise Attention Gradient Sparsity: base
model, SFT Model and Our Method.

(c) Performance comparison across different lay-
ers on the OVDEval benchmark: Base model,
SFT, and our method.

Figure 8: Comprehensive ablation studies. (a) Qualitative attention heatmaps. (b) Attention gradient
sparsity comparison. (c) Performance comparison across different layers.

visual attention re-sinking in the base model and SFT. In Figure 8b, we illustrate the cross-layer
variations in gradient sparsity, demonstrating that RAR mitigates gradient sparsity issues in later
layers, whereas the base model and SFT suffer from severe sparsity therein. Furthermore, SFT ex-
hibits even more pronounced attention gradient sparsity compared to the base model, substantiating
that training iterations exacerbate attention gradient sparsity.

We are particularly interested in assessing the scalability of SADS with respect to training data vol-
ume. To this end, we perform a comprehensive analysis of its performance across varying dataset
sizes. As depicted in Figure 9, experiments on the OVDEval benchmark show that as training data
increases, SFT yields diminishing returns, with performance gains plateauing markedly. In con-
trast, SADS demonstrates a steeper performance ascent, underscoring the visual attention re-sinking
phenomenon severely impedes effective data scaling in existing MLLMs, while SADS effectively
mitigates this issue and unlocks superior scaling potential.

7 CONCLUSION

Figure 9: Influence of different head
selection strategies on model perfor-
mance.

In this work, we have elucidated the root causes of sub-
optimal output layers in MLLMs, ascribing them to at-
tention gradient sparsity precipitated by textual supervi-
sion dominance during training. This sparsity engenders
the Visual Attention Re-sinking phenomenon, head bi-
furcation, and a progressive disregard for visual cues,
ultimately culminating in degraded output performance.
To mitigate these issues, we introduce the parameter-free
SADS framework, which dynamically retains all vision
heads while sparsifying sink heads and ensuring model
stability through a designated shared head. Comprehen-
sive experiments spanning 20 benchmarks across five di-
verse task categories demonstrate that SADS surpasses
standard supervised fine-tuning in performance while ac-
celerating inference by 10.3%.
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ETHICS STATEMENT

Our work is in accordance with the ICLR Code of Ethics. This research did not involve hu-
man participants or animal testing. The datasets employed in this work are all publicly available
and were utilized in accordance with their original licensing and usage terms. These include the
training datasets (RefCOCO, Dcube, VG, GQA, OCR-VQA, Text-VQA, CLEVER) and the evalu-
ation benchmarks (RefCOCO/g/+, LISA, RefGTA, COCO, OVDEval, VQA v2, VizWiz, VQA vg,
GQA, MME, MMB, MMStar, AI2D, InfoVQA, TextVQA, DocVQA, MMVP, CVBench, CLEVER,
POPE, CHAIR). Our methodology was designed to mitigate potential biases and avoid discrimina-
tory results. The data used contains no personally identifiable information, and our experiments do
not pose any privacy or security risks. We uphold the principles of research integrity and trans-
parency in our work.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we will submit our complete source code and all exper-
imental configurations in the appendix. Details regarding the setup, such as model hyperparameters
and training procedures, are outlined in the main paper. A comprehensive description of our SADS
(Sink Attention Dynamic Sparsification) framework, including the specific layer selection criteria
for each base model, is also included to aid in replication. All evaluation benchmarks used across
our five task categories—visual grounding, general VQA, OCR-related VQA, vision-centric, and vi-
sual hallucination—are established public datasets, namely RefCOCO/g/+, LISA, RefGTA, COCO,
OVDEval, VQA v2, VizWiz, VQA vg, GQA, MME, MMB, MMStar, AI2D, InfoVQA, TextVQA,
DocVQA, MMVP, CVBench, CLEVER, POPE, and CHAIR, allowing for consistent re-evaluation.
To ensure full reproducibility of our findings, we commit to open-sourcing our complete source code
and all experimental configurations upon publication.
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A LLM USAGE

A Large Language Model (LLM) was employed for language refinement and editing of this
manuscript. Its role was to improve clarity, refine phrasing, and check for grammatical consis-
tency across the paper. The conceptual and experimental aspects of this research, including the
core ideas, methodology, and data analysis, were conducted exclusively by the human authors. The
LLM’s assistance was confined to improving the manuscript’s linguistic quality and was not used
for generating scientific content. The authors retain full responsibility for all content, including any
text assisted by the LLM, and have verified its scientific accuracy and originality.

B ADDITIONAL ABLATION STUDIES

(a) Effect of sink heads selection strategy. (b) Effect of SADS’ start layer.

Figure 10: Comprehensive ablation studies on OVDEval benchmark. (a) Effect of Head Selec-
tion Strategy. (b) Effect of SADS’ Start Layer.

B.1 ABLATION STUDIES ON HEAD SELECTION STRATEGY AND START LAYER.

In the preceding experiments, the activation layer for SADS is dynamically determined by the onset
of variance fluctuations in attention keys (K) and gradient sparsity, while head selection leverages
the valley of a bimodal Gaussian distribution fitted to maximum visual attention values (for distin-
guishing vision and sink heads) and non-vision token cross-attention entropy (for subdividing sink
heads into sinkG and sinkS). To evaluate the effectiveness and robustness of these adaptive mech-
anisms, we perform ablation studies employing fixed thresholds for both the number of activated
layers and sink head retention ratios.

Table 5: Comprehensive ablation studies on
head selection strategy.

Method OVDEval↑ RefCOCO↑ GQA↑

Base 39.5 84.2 60.4
+ SFT 39.9 84.6 62.0
+ 0% sink heads 41.1 85.0 62.8
+ 40% sink heads 41.1 85.8 63.5
+ 80% sink heads 40.8 85.1 62.2
+ 100% sink heads 39.9 84.6 62.0
Ours(fixed 25% sink heads) 42.8 86.1 63.5
Ours 43.8 86.8 64.2

As shown in Figure 10a, we first assess the im-
pact of varying sink head retention ratios on
performance, revealing that our dynamic selec-
tion method, based on non-vision token cross-
attention entropy, achieves markedly superior re-
sults. Among fixed-ratio strategies, retaining ap-
proximately 25% of sink heads yields optimal
outcomes, consistent with the Pareto principle,
whereas higher or lower ratios lead to perfor-
mance degradation. Additionally, omitting the
designation of a shared head (w/o shared) results

in consistent declines across benchmarks, underscoring the critical role of a fixed-position shared
head in maintaining model stability. To further validate these findings across diverse benchmarks,
Table 5 presents comprehensive ablation studies on head selection strategies, demonstrating that our
method (Ours) outperforms all fixed-ratio variants and the base model. These ablations collectively
validate the superiority of SADS’s adaptive design.
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As depicted in Figure 10b, ablating the SADS activation layer further demonstrates that starting
from a lower layer (thus activating more layers) induces substantial degradation and garbled outputs,
arising from unnecessary sparsification in well-aligned early layers. Conversely, starting from a
higher layer (activating fewer layers) causes performance drops due to unaddressed visual attention
re-sinking in later layers. These findings highlight the advantages of our dynamic layer selection in
balancing modality alignment preservation with targeted late-layer optimization, with the optimal
startup layer corresponding to the performance peak observed in the ablation curve.

Table 6: Ablation study across different iterations.

Method OVDEval↑ RefCOCO↑ GQA↑

Base 39.5 84.2 60.4

SFT (14000 iters) 39.9 84.6 62.0
Ours (14000 iters) 43.8 86.8 64.2

SFT (13000 iters) 39.9 84.5 61.5
Ours (13000 iters) 43.4 86.2 63.8

SFT (12000 iters) 39.6 84.3 61.7
Ours (12000 iters) 43.4 85.7 63.2

SFT (11000 iters) 39.6 84.5 61.0
Ours (11000 iters) 42.8 85.8 63.3

SFT (10000 iters) 39.7 84.4 60.8
Ours (10000 iters) 42.3 85.6 62.5

B.2 ABLATION STUDY ON TRAINING STEPS.

As shown in Table 6, to investigate whether earlier checkpoints during training yield superior per-
formance, we evaluate and compare model performance across varying training iterations. Key ob-
servations include: (1) Earlier checkpoints exhibit performance degradation, as prematurely halting
training mitigates gradient sparsity issues but exacerbates under-training, leading to suboptimal re-
sults; (2) Across all checkpoints, our method consistently outperforms SFT, underscoring its robust
performance and stability.

Table 7: Ablation study across different training objectives.

Method OVDEval↑ RefCOCO↑ GQA↑

Base 39.5 84.2 60.4
SFT 39.9 84.6 62.0
w/ regularization 40.8 85.3 62.7
w/ attention reweight 40.6 85.0 62.3
Ours 43.8 86.8 64.2

B.3 ABLATION STUDY ON DIFFERENT TRAINING OBJECTIVES.

As shown in Table 7, we further examine the performance under different training objec-
tives. We explore two alternative strategies: (1) regularization; regularization to elevate the
weights of vision heads, implemented via a KL divergence prior that encourages vision heads
to align with a high-weight distribution (N (1.2, 0.1)) while constraining sink heads to a low-
weight distribution (N (0.3, 0.1)), formally expressed as Lreg =

∑
h∈vision KL(αh||N (µv, σ

2
v)) +∑

h∈sink KL(αh||N (µs, σ
2
s)); (2) attention reweight; attention reweighting on sink tokens within

sink heads to prioritize semantically relevant visual information, achieved by dynamically scaling
attention weights based on visual saliency metrics, reweighting as a′i,j = ai,j · sj/

∑
k ai,k · sk,
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where sj denotes the saliency score of token j (upweighting edges toward high-semantic regions
while downweighting low-information backgrounds). The results indicate that both approaches
yield modest improvements over vanilla SFT. However, our SADS framework substantially out-
performs these variants. This superiority stems from the root cause of suboptimal output layers: the
Visual Attention Re-sinking phenomenon within sink heads, which impairs model performance by
marginalizing visual cues. While regularization and reweighting provide temporary alleviation of
sinking, the issue inevitably re-emerges with deeper training iterations. In contrast, our sparsification
approach fundamentally eradicates re-sinking, thereby maximizing the model’s potential.

B.4 STATISTICAL ANALYSIS IN SINK HEADS.

As illustrated in the Figure 11, we randomly sample 2,000 heads and compute their non-image
token cross-attention entropy, revealing a pronounced bimodal Gaussian distribution characterized
by distinct low-entropy (sinkS heads) and high-entropy (sinkG heads) peaks. Consequently, for
each layer, we model the entropy distribution across all sink heads using a GMM and employ the
valley as a dynamic threshold for differentiation.

Figure 11: Distribution of non-vision token cross-attention entropy for SinkG heads and SinkS
heads, showing a bimodal distribution.

C LIMITATIONS AND FUTURE WORK

Although our method effectively maximizes model capacity at current parameter scales, we ac-
knowledge its inherent limitations. While sparsifying redundant gradient spaces has proven effica-
cious, infilling techniques may offer a more robust alternative. In future work, we plan to integrate
the SADS framework into a unified generation-understanding paradigm, leveraging generative ca-
pabilities to populate sparse spaces and further enhance multimodal fusion.

D ADDITIONAL QUALITATIVE RESULTS

We provide additional Qualitative results of cross layer visual attention map in the Figure 12 and
low-entropy sinkS and high-entropy sinkG in Figure 13.
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Figure 12: Qualitative results of visual attention heatmaps for detecting the “cake” across Layers.
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Figure 13: Qualitative results of low-entropy sinkS and high-entropy sinkG
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