

RAR: REVERSING VISUAL ATTENTION RE-SINKING FOR UNLOCKING POTENTIAL IN MULTIMODAL LARGE LANGUAGE MODELS

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

Multimodal Large Language Models (MLLMs) have achieved remarkable success in vision-language tasks, yet they frequently exhibit suboptimal output layers, where intermediate decoder layers outperform the final ones, signaling underutilized model capacity. In this work, we delve into the root causes and attribute this issue to the *Visual Attention Re-sinking* phenomenon, precipitated by attention gradient sparsity driven by textual supervision dominance. This degradation causes attention heads to evolve into sink heads that prioritize low-semantic backgrounds, thereby disrupting modality fusion, neglecting visual information, and biasing outputs toward textual priors, ultimately impairing model performance. To mitigate this, we introduce a parameter-free *Sink Attention Dynamic Sparsification (SADS)* framework that dynamically preserves all vision heads, ensuring focused attention on semantically salient regions, while retaining only a minimal subset of sink heads, including a designated shared head to safeguard essential global and contextual information. Integrated into diverse MLLMs, our framework yields substantial performance gains across 20 benchmarks spanning five task categories (visual grounding, general VQA, OCR-related VQA, vision-centric tasks, and visual hallucination mitigation) surpassing supervised fine-tuning while boosting inference speed by 10.3%. This approach offers a novel avenue for maximizing MLLMs capabilities.

1 INTRODUCTION

In recent years, Multimodal Large Language Models (MLLMs) have surged in development, delivering robust and scalable performance across diverse multimodal tasks and offering a key route to Artificial General Intelligence (AGI) (Bai et al., 2025; Chen et al., 2024; Liu et al., 2023). Typically, MLLMs use a vision encoder to process images, project them into a modality-aligned latent space via a connector, and concatenate with text embeddings for input to an LLM decoder that generates responses (Bai et al., 2025; Chen et al., 2024; Liu et al., 2023). While MLLMs excel in vision-language tasks like visual question answering, grounding, and captioning, recent findings show mid-to-late vision encoder layers often surpass the output layer, due to CLIP training fostering rich spatial and semantic features in intermediates (Bolya et al., 2025). Analogously, for hallucination mitigation in MLLM decoders, mid-layer visual facts are suppressed later, leading to methods that leverage or fuse intermediates for enhanced outputs (Wang et al., 2024). However, existing research offers limited insights into the underlying causes and primarily relies on post-hoc remedial strategies that fail to fully activate the model’s capacity. Thus, addressing “*why the output layer in MLLMs is suboptimal*” and “*how to maximize MLLM capabilities by optimizing the output layer*” represents a critical and urgent challenge.

In this work, we first explore the reasons for the suboptimal output layer in MLLMs. Compared to LLMs, MLLMs confront the additional challenge of fusing visual and linguistic modalities. Prior studies have characterized the information flow in MLLM decoders as comprising early layers for feature processing, mid-layers for modality alignment, and late layers for response organization and generation (Zhang et al., 2025). As illustrated in Figure 1, we discover that supervision in existing MLLM training paradigms is entirely textual, devoid of direct visual oversight. Consequently, gradients for vision tokens rely solely on backpropagation of textual losses through the

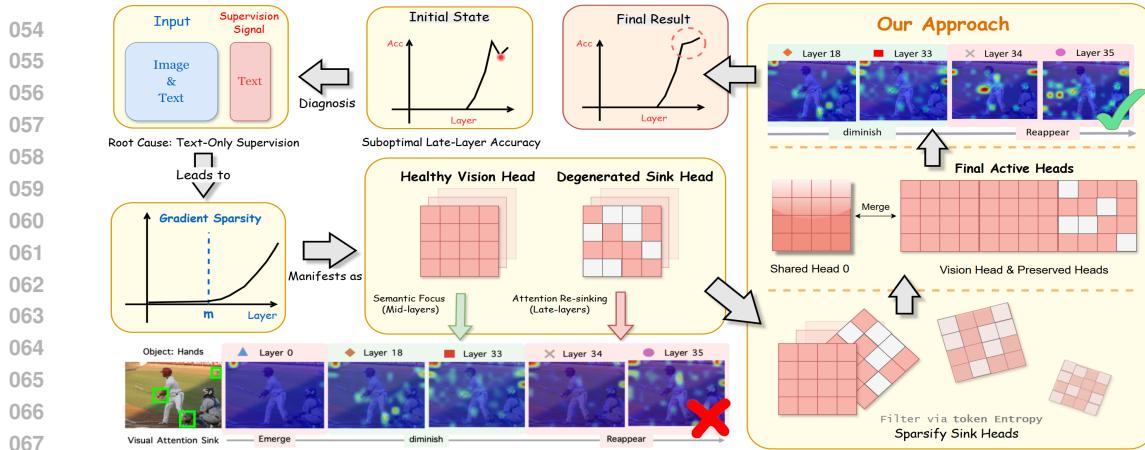


Figure 1: Overview of visual attention re-sinking in MLLMs caused by text-only supervision, inducing gradient sparsity, head degeneration, and suboptimal late-layer accuracy. Our SADS framework sparsifies sink heads while retaining all vision heads and a shared head, achieving progressive accuracy gains and eliminating re-sinking.

attention mechanism, constraining its learning capacity on vision tokens and rendering the overall gradient distribution increasingly sparse. This sparsity prompts the model, in subsequent forward passes, to concentrate visual attention weights on a shrinking subset of vision tokens. As training iterations advance, these weights progressively localize to an even smaller number of tokens, engendering the **Visual Attention Re-sinking** phenomenon, wherein visual attention in late layers reverts to low-semantic backgrounds. This disrupts the modality fusion balance established in mid-layers, compelling the model to increasingly rely on textual priors rather than deeply integrating visual cues. The degradation escalates with iterations, propagating backward from late to mid-layers and ultimately culminating in suboptimal output-layer performance.

Building upon these insights, we introduce a parameter-free **Sink Attention Dynamic Sparsification (SADS)** framework. This approach dynamically retains all vision heads during inference while preserving only a minimal subset of sink heads, thereby encouraging the model to prioritize visual information without sacrificing critical global and contextual knowledge. Specifically, we observe that the maximum visual attention between vision and sink heads follows a bimodal Gaussian distribution. Similarly, within the sink heads, the entropy of non-vision token cross-attention between heads that focus on global knowledge (denoted as $sink_G$) and those that fully sink attention onto specific non-fixed tokens (denoted as $sink_S$) also adheres to a bimodal Gaussian distribution. By leveraging the valley of this distribution as a dynamic threshold, our framework retains all vision heads along with the $sink_G$ heads, while designating the first head as a shared sink to ensure the preservation of global and contextual information. This framework is architecture-agnostic and readily applicable to diverse MLLMs. In this study, we integrate it into Qwen2.5-VL, InternVL2, and LLaVA-1.5 (Bai et al., 2025; Chen et al., 2024; Liu et al., 2023). Extensive experiments across a variety of tasks demonstrate that fine-tuning with our framework achieves substantial improvements over standard supervised fine-tuning (SFT) on numerous visual benchmarks. Furthermore, by streamlining redundant attention weight computations, inference speed is boosted by 10.3%.

In summary, our contributions are as follows: 1) We conduct an in-depth investigation into the causes of suboptimal MLLM output layers, attributing them to the text-only supervision paradigm in MLLMs, which, as training iterates, prompts models to learn modality-irrelevant output shortcuts, sparsifying attention gradients, inducing visual attention re-sinking, leading to suboptimal outputs. 2) We introduce a SADS framework that addresses the visual attention re-sinking issue, optimizes attention gradient sparsity, and achieves output-layer optimality, thereby maximally activating the model’s capacity. 3) We validate the superior effectiveness and inference efficiency of our method through comprehensive experiments and analyses across five task categories: visual grounding, general VQA, OCR-related VQA, vision-centric tasks, and visual hallucination tasks, spanning 20 benchmarks, providing a novel framework for advancing MLLMs.

108 **2 RELATED WORK**

110 **Best Layer in MLLMs.** In MLLMs, the vision encoder’s final layer typically extracts
 111 visual features, with the decoder’s output layer generating responses. However, studies show mid-
 112 to-late vision encoder layers often outperform the final one across tasks (Bordes et al., 2022; Chen
 113 et al., 2020b; Ma et al., 2024; Shekhar et al., 2023; Walmer et al., 2022; Zheng et al., 2016). For ex-
 114 ample, iGPT’s intermediate layers excelled in image classification (Chen et al., 2020a), and PE
 115 demonstrated CLIP training fosters rich features in intermediates across encoders (Bolya et al.,
 116 2025). Similar suppression of mid-layer visual facts occurs in MLLM decoders for hallucination
 117 mitigation, with fusion methods improving outputs (Wang et al., 2024; Huang et al., 2024). Yet,
 118 prior work lacks deep causal insights and relies on post-hoc fixes. In contrast, we attribute subopti-
 119 mal outputs to visual attention re-sinking from textual supervision and gradient sparsity, proposing
 120 SADS for optimal output layers and capacity maximization.

121 **Visual Attention Sink in MLLMs.** In LLMs, attention sink involves low-semantic tokens (e.g.,
 122 BOS, “.”) drawing excessive weights (Xiao et al., 2023), minimally contributing to inference (Bon-
 123 darenko et al., 2023). Recent views frame it as first-token mechanistic mixture suppression to pre-
 124 vent collapse (Barbero et al., 2025). In MLLMs, visual attention targets image patches (Aflalo et al.),
 125 but often misallocates to low-semantic areas, mitigated by registration tokens (Darcet et al., 2023)
 126 or boosted image weights (Zhu et al., 2025). VAR formalized visual attention sink, linking it to sink
 127 token activations like LLMs, and reallocating attention (Kang et al., 2025). Conversely, we pioneer
 128 the discovery of visual attention re-sinking in MLLMs.

129 **3 PRELIMINARIES**

131 MLLMs typically feature an end-to-end architecture integrating a vision encoder, a projection mod-
 132 ule, and an LLM decoder (Liu et al., 2023; Bai et al., 2025). The vision encoder extracts hierarchical
 133 visual features from input images, which are projected into a modality-aligned latent space to bridge
 134 visual-textual gaps. These visual embeddings are concatenated with tokenized system prompts and
 135 instructions, forming a unified sequence fed into the LLM decoder for autoregressive response gen-
 136 eration with causal masking. Each sequence element is a discretized token embedding.

137 Formally, let $\mathbf{v} \in \mathbb{R}^{N_v \times d}$ denote N_v visual tokens and $\mathbf{t} \in \mathbb{R}^{N_t \times d}$ denote N_t textual tokens (d :
 138 embedding dimension). The concatenated input $\mathbf{x} = [\mathbf{v}; \mathbf{t}] \in \mathbb{R}^{(N_v+N_t) \times d}$ is processed by the
 139 Transformer-based decoder. Each of L blocks computes:

141
$$\hat{\mathbf{h}}^\ell = \text{LayerNorm}(\mathbf{h}^{\ell-1} + \text{MHA}(\mathbf{h}^{\ell-1})), \quad \mathbf{h}^\ell = \text{LayerNorm}(\hat{\mathbf{h}}^\ell + \text{FFN}(\hat{\mathbf{h}}^\ell)), \quad (1)$$

144 where $\mathbf{h}^{\ell-1} \in \mathbb{R}^{N \times d}$ ($N = N_v + N_t$, $\mathbf{h}^0 = \mathbf{x}$), LayerNorm is layer normalization (Ba et al., 2016),
 145 and FFN is a two-layer feed-forward network with non-linear activation. The multi-head attention
 146 (MHA), key to modality fusion, is:

147
$$\text{MHA}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{Concat}(\text{head}_1, \dots, \text{head}_H) \mathbf{W}^O, \quad (2)$$

149 with $\mathbf{Q} = \mathbf{h}^{\ell-1} \mathbf{W}^Q$, $\mathbf{K} = \mathbf{h}^{\ell-1} \mathbf{W}^K$, $\mathbf{V} = \mathbf{h}^{\ell-1} \mathbf{W}^V$ ($\mathbf{W}^Q, \mathbf{W}^K, \mathbf{W}^V, \mathbf{W}^O \in \mathbb{R}^{d \times d}$). Each head
 150 i is:

152
$$\text{head}_i = \text{softmax} \left(\frac{\mathbf{Q} \mathbf{W}_i^Q (\mathbf{K} \mathbf{W}_i^K)^\top}{\sqrt{d_k}} + \mathbf{M} \right) (\mathbf{V} \mathbf{W}_i^V), \quad (3)$$

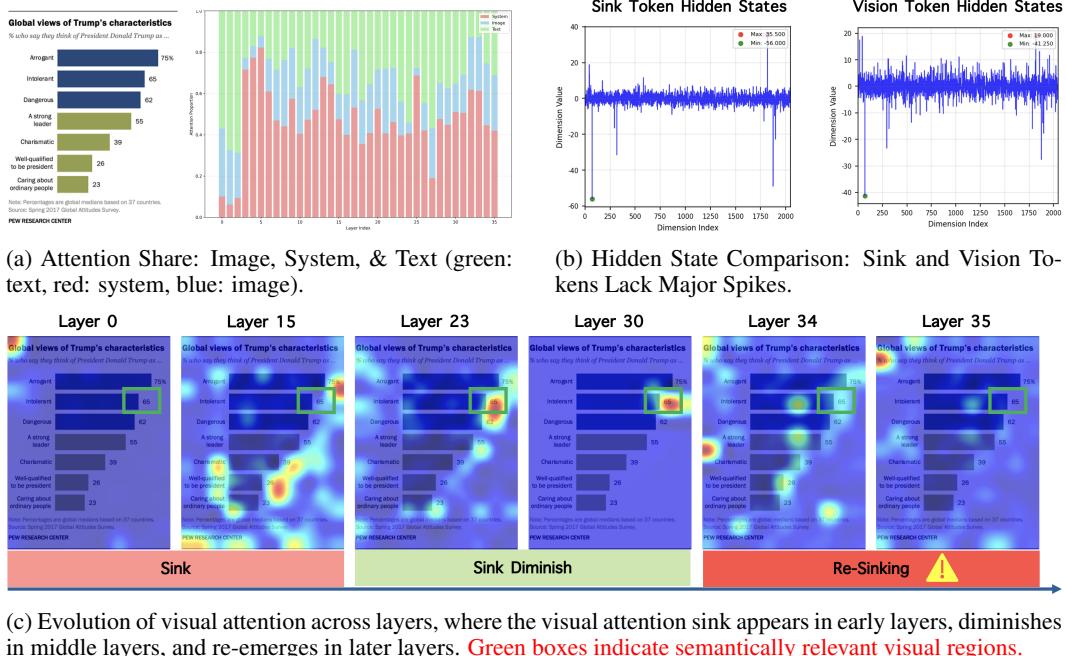
155 where $d_k = d/H$, H is the number of heads, and \mathbf{M} is the causal mask ($\mathbf{M}_{i,j} = 0$ if $j \leq i$,
 156 else $-\infty$) (Vaswani et al., 2017). We focus on cross-modal interactions, specifically textual queries
 157 attending to visual keys via the visual attention matrix:

159
$$\text{Visual Attention} = \text{softmax} \left(\frac{\mathbf{Q}_t \mathbf{K}_v^\top}{\sqrt{d_k}} \right) \in \mathbb{R}^{N_t \times N_v}, \quad (4)$$

161 where \mathbf{Q}_t and \mathbf{K}_v are textual queries and visual keys, analyzed for fusion patterns.

162 4 WHY IS THE OUTPUT LAYER NOT OPTIMAL?

164 As illustrated in Figure 2, advanced open-source MLLMs consistently face the challenge of suboptimal output layers, where intermediate decoder layers outperform the final layer. This indicates that
165 the extensive parameter capacity underpinning these models is not fully activated. In this section,
166 we investigate the underlying causes of this phenomenon.
167



188 Figure 3: Analysis of visual attention on the object “the number of intolerant”.
189

190 4.1 VISUAL ATTENTION RE-SINKING LEADS TO SUBOPTIMAL OUTPUT LAYERS.

194 In LLM decoders, intermediate and output layers perform comparably on simple tasks, while
195 deeper output layers excel on more complex
196 ones, without notable suboptimal output layer
197 issues (Fan et al., 2024). Therefore, we focus
198 our investigation on the fusion of visual and
199 linguistic modalities. Within Transformer-based
200 decoder architectures, models rely more heavily
201 on attention mechanisms than FFNs to inject
202 visual information into the linguistic latent
203 space for modality alignment (Vaswani et al.,
204 2017). Thus, our analysis centers on visual at-
205 tention. We decompose the impact of visual at-
206 tention into two aspects: 1) the total attention al-
207 located to images and 2) the distribution of visual at-
208 tention across vision tokens. As shown in
209 Figure 3a, we first compute the attention distri-
210 bution across image, system, and text compo-
211 nents, observing a stable pattern across layers
212 without fluctuations in image attention allo-
213 cation in later layers. This suggests that the total
214 attention allocated to images is not the primary cause of sub-
215 optimal output layers, implying that the issue likely lies in the distribution of visual attention across
216 different vision tokens. According to Equation 4, we compute the attention weights between output
217 tokens and vision tokens to derive visual attention maps. As illustrated in Figure 3c, we observe that
218 visual attention in early layers predominantly concentrates on low-information background regions;
219 transitions to semantically salient areas in mid-layers; and reverts to low-information backgrounds
220 in late layers. We define tokens attracting visual attention to low-information background regions as
221 *sink tokens*, those focusing on semantically relevant regions as *vision tokens*, and the resurgence of
222 visual attention toward low-information backgrounds in late layers as the *visual attention re-sinking*

phenomenon. We posit that this re-sinking contributes to performance degradation. To validate this hypothesis, we perform a training-free intervention on the VQA^{vg} test set, reallocating attention weights from sink tokens in the last five layers to semantically pertinent vision tokens, which yields a 0.74% accuracy improvement. This confirms that visual attention re-sinking is the primary culprit behind suboptimal output layers. Accordingly, our investigation focuses on late layers to address the question: **“What causes visual attention re-sinking?”**

4.2 ATTENTION GRADIENT SPARSITY LEADS TO VISUAL ATTENTION RE-SINKING

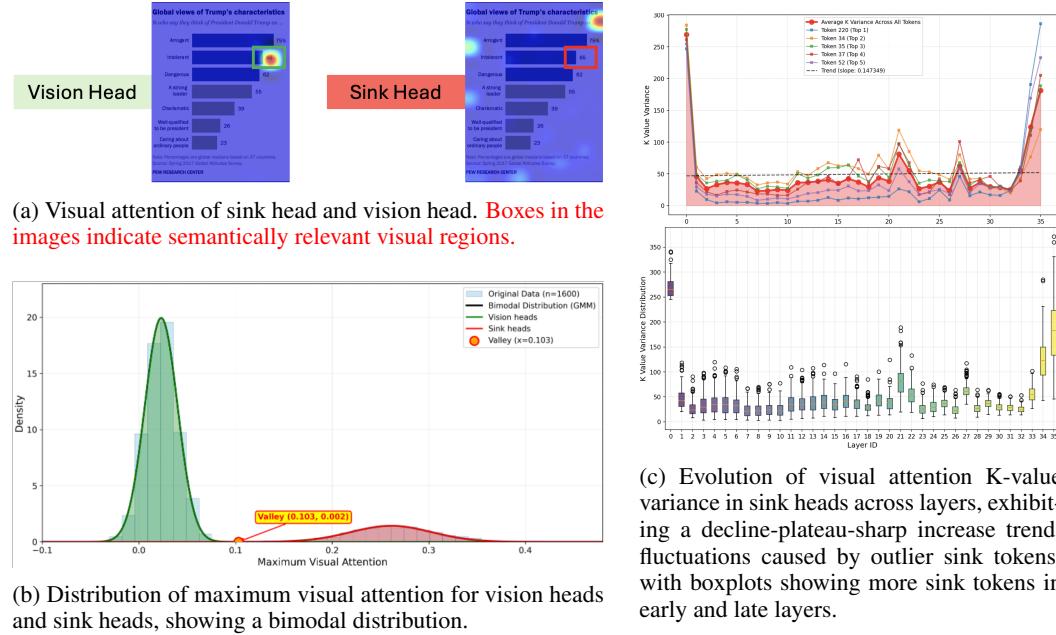


Figure 4: Analysis of vision and sink heads visual attention on the object “the number of intolerant”.

Unlike the attention sink in LLMs and VAR, which stems from massive activations in specific hidden state dimensions and appears in early layers while vanishing in later ones, as depicted in Figure 3b and Figure 3c, we observe that visual attention sink emerges in early layers, diminishes in mid-layers, and reappears in late layers, without massive activations in specific hidden state dimensions. Therefore, we investigate the characteristics of these sink tokens and the reasons for their resurgence.

Sink Tokens Concentrate in Sink Heads. For multi-head attention (MHA), we begin by examining the visual attention representations across individual heads. As illustrated in Figure 4a, we identify pronounced disparities among heads in terms of visual attention allocation. We classify heads that direct visual attention toward semantically salient positions as *vision heads*, whereas those gravitating toward low-information background regions are termed *sink heads*. Notably, the maximum visual attention values in vision heads substantially exceed those in sink heads. To substantiate this observation, we perform a statistical analysis of the maximum visual attention across 1,600 heads in late layers, revealing a distinct bimodal distribution: sink heads cluster at significantly lower maximum visual attention levels compared to vision heads. This pattern yields two key insights: 1) *sink tokens predominantly concentrate within sink heads*, and 2) *although sink tokens exhibit high relative attention weights, their absolute magnitudes remain low*. Consequently, our subsequent analysis focuses on sink heads.

As depicted in Figure 5, we compute the cross-attention among all tokens within sink heads and observe distinct patterns in the non-vision token cross-attention: some heads exhibit uniformly dispersed attention across tokens (preserving global and contextual information), while others sink

Table 1: Analysis of the impact of heads on OVDEval benchmark.

Method	Accuracy (%)
Qwen2.5-VL-3B	39.5
w/o $sink_S$ head	43.8
w/ 1 $sink_S$ head	43.0
w/o 1 $sink_G$ head	43.2
w/o 1 vision head	42.6

attention onto individual low-semantic tokens. Specifically, we quantify this pattern via the entropy of the non-vision token attention distribution, defined as follows. Let $\mathbf{A} \in \mathbb{R}^{L_q \times L_k}$ denote the attention matrix for a given head, where L_q and L_k are the query and key sequence lengths, respectively. Let \mathcal{I} be the set of indices corresponding to non-vision tokens (keys). Extract the submatrix $\mathbf{A}_{\text{sub}} = \mathbf{A}[:, \mathcal{I}] \in \mathbb{R}^{L_q \times |\mathcal{I}|}$. Renormalize each row i of \mathbf{A}_{sub} such that $\mathbf{A}_{\text{sub}}[i, :] \leftarrow \mathbf{A}_{\text{sub}}[i, :] / \sum_{j \in \mathcal{I}} \mathbf{A}_{\text{sub}}[i, j]$, ensuring each row sums to 1 over non-image keys. Then, compute the average attention distribution $\mathbf{p} \in \mathbb{R}^{|\mathcal{I}|}$ where $p_j = \frac{1}{L_q} \sum_{i=1}^{L_q} \mathbf{A}_{\text{sub}}[i, j]$ for each $j \in \mathcal{I}$. The entropy is given by $H = - \sum_{j \in \mathcal{I}} p_j \log p_j$.

We define high-entropy heads, which attend to global and contextual knowledge, as sink_G heads, and low-entropy heads, which sink attention onto individual low-semantic tokens, as sink_S heads. This complete sinking of attention onto low-information tokens disrupts effective modality fusion, marginalizes visual cues, and biases outputs toward textual priors, ultimately leading to degraded model performance. To validate this, as shown in Table 1, on the OVDEval benchmark, adding an extra sink_S head or ablating vision heads or sink_G heads leads to significant performance drops. These findings highlight the adverse effects of attention sinking to isolated tokens while confirming the importance of visual cues and global context. Moreover, we observe that the entropy values across heads follow a bimodal Gaussian distribution, allowing us to leverage its valley as a dynamic threshold for differentiating sink_S and sink_G heads.

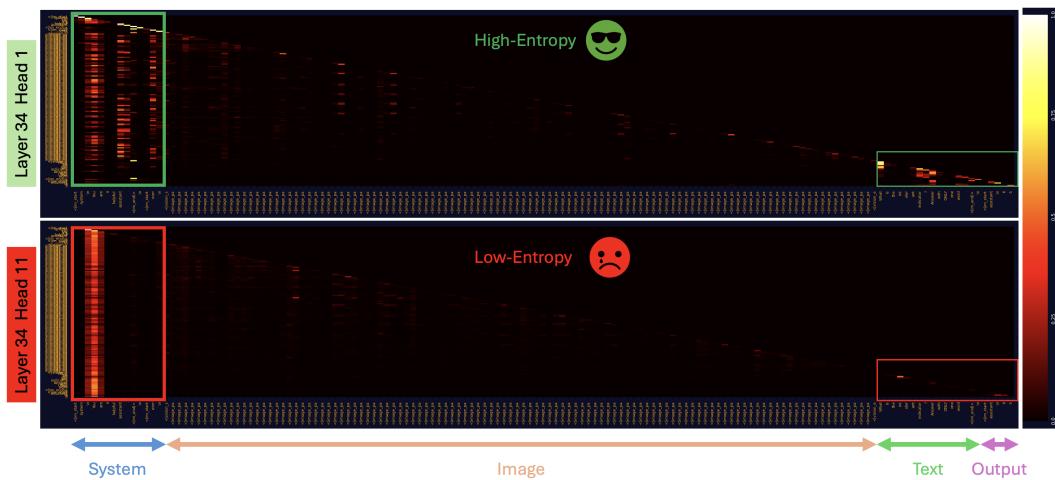


Figure 5: **Attention heatmaps of two sink heads.** Top: High-entropy sink_G head (green box) with distributed attention preserving global context. Bottom: Low-entropy sink_S head (red box) sinking to specific low-semantic tokens.

Re-sinking Tokens Exhibit High Key Variance. On sink heads, we concentrate on the key matrix \mathbf{K} in multi-head attention due to its role in modality interactions. As illustrated in Figure 4b, we discover that \mathbf{K} value variances align with the visual attention re-sinking pattern: decreasing in early layers, stabilizing in mid-layers, and surging in late layers. From the box plots, mid-layer fluctuations arise from outlier tokens, which are precisely sink tokens. In early and late layers, the increasing number of sink tokens elevates overall \mathbf{K} variances. It is this high dimensional variance in \mathbf{K} that leads to higher attention weights for sink tokens compared to others.

Attention Gradient Sparsity Causes Sink Token Resurgence. Given that supervision in the final layer of MLLMs during training is entirely textual, devoid of direct oversight for visual signals, the gradients for visual tokens rely exclusively on backpropagation of textual losses through the attention mechanism. This dependency constrains the learning capacity of the attention mechanism on visual tokens, rendering the overall gradient distribution increasingly sparse. Consequently, in subsequent forward passes, the model tends to concentrate visual attention weights on a diminishing subset of vision tokens. As training goes on, these weights slowly focus on fewer tokens, eventually forming the “visual attention re-sinking” phenomenon. To test this cause-and-effect link with data, as shown in Figure 7, we track the change in attention gradient sparsity and the number of sink heads during the training process. Notably, at about 2,000 iterations, gradients in late layers start to thin

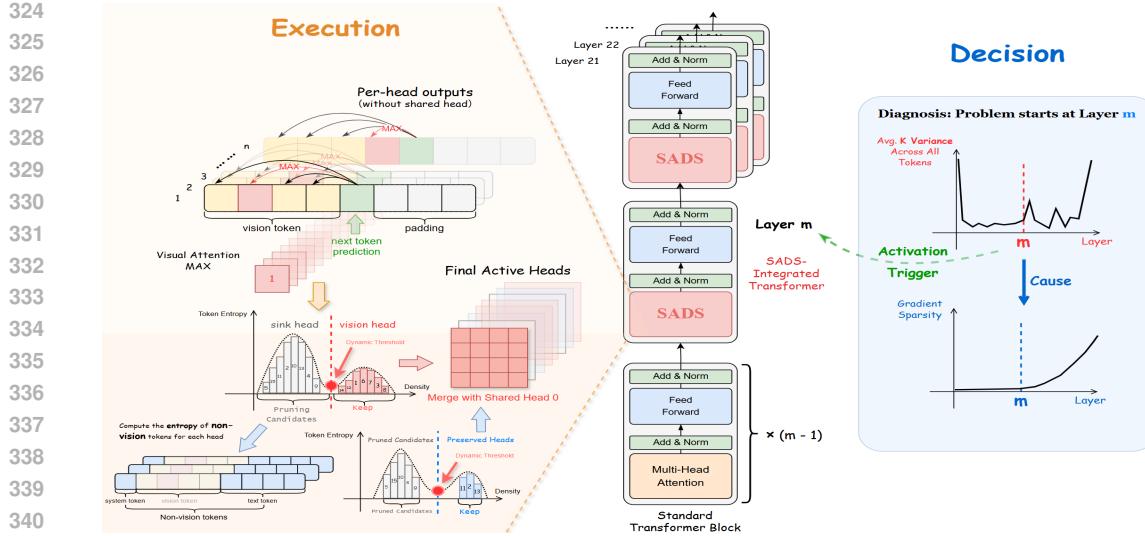


Figure 6: **Overview of the SADS framework. Decision (Right):** Triggers activation at Layer m upon detecting gradient sparsity and key variance anomalies. **Execution (Left):** Filters heads using bimodal thresholds on maximum visual attention (separating vision and sink heads) and non-vision token entropy (distinguishing sink_G from sink_S within sinks). Merges all vision heads, retained sink_G heads, and a shared head for computation, preserving global context.

out; by about 3,000 iterations, the number of sink heads in these layers begins to grow, confirming that this sparsity causes the sink tokens to return.

5 SINK ATTENTION DYNAMIC SPARSIFICATION FRAMEWORK

Drawing upon the preceding analysis, we conclude that MLLMs require a sufficient number of vision heads to effectively process dense, semantically rich visual information, complemented by a minimal subset of sink heads to handle textual and global contextual elements. To this end, we introduce the Sink Attention Dynamic Sparsification (SADS) framework. As illustrated in Figure 6, this framework first distinguishes vision heads from sink heads via the bimodal distribution of maximum visual attention. It then retains all vision heads while dynamically sparsifying the sink heads: leveraging the bimodal Gaussian distribution of non-vision token cross-attention entropy, it identifies and preserves the high-entropy sink_G heads (capture global and contextual knowledge) using the distribution’s valley as a dynamic threshold, and designates the first head as a shared sink to ensure model stability and safeguard essential global information.

5.1 SINK HEAD IDENTIFICATION

Building on the observation from Section 4.2 that the maximum visual attention in vision heads far exceeds that in sink heads, we model each layer in SADS using a Gaussian bimodal distribution, formalized as: $p(x) = \sum_{k=1}^2 \pi_k \mathcal{N}(x | \mu_k, \sigma_k^2)$, where the valley $\alpha = \arg \min_x p(x)$ serves as the maximum visual attention threshold for classifying sink and vision heads. Subsequently, within the identified sink heads, we further delineate them based on the entropy of non-vision token cross-attention, which exhibits a similar

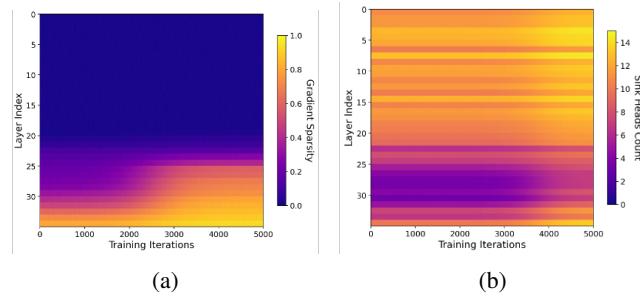


Figure 7: (a) The evolution of attention gradient sparsity across layers over training iterations during training. (b) The evolution of sink heads numbers across layers over training iterations during training.

378 bimodal Gaussian distribution. We analogously model this entropy distribution as $p(e) =$
 379 $\sum_{k=1}^2 \pi_k \mathcal{N}(e | \mu_k, \sigma_k^2)$, with the valley $\beta = \arg \min_e p(e)$ acting as the threshold to distinguish
 380 high-entropy sink_G heads (focusing on global and contextual knowledge) from low-entropy sink_S
 381 heads (sinking attention onto isolated low-semantic tokens). This approach leverages Gaussian Mix-
 382 ture Models (GMMs) to capture the inherent separation, ensuring robust identification. We fit the
 383 GMM using expectation-maximization, which converges efficiently and provides probabilistic as-
 384 signments, enhancing reliability in noisy attention distributions.

386 5.2 SINK ATTENTION DYNAMIC SPARSIFICATION

388 Leveraging the precise identification of sink heads, as illustrated in Figure 6, we introduce the
 389 parameter-free SADS framework. This approach adaptively retains all vision heads per layer while
 390 **dynamically sparsifying the sink heads: it preserves the high-entropy sink_G heads (capturing global**
 391 **and contextual knowledge) based on the valley of the bimodal entropy distribution as a threshold,**
 392 **and designates the first head as a shared sink to handle essential textual and global information.**
 393 Informed by the analysis in Section 4.2 regarding visual attention re-sinking in later layers, we acti-
 394 vate SADS from layers displaying variance fluctuations in attention keys and gradient sparsity. This
 395 selective activation maintains early-layer modality alignment while enhancing efficiency in later
 396 layers. During fine-tuning, SADS compels the model to prioritize visual features, thereby averting
 397 textual shortcuts and promoting deeper vision-text fusion, as evidenced by reduced hallucinations
 398 and improved visual grounding in downstream tasks.

399 6 EXPERIMENTS

400 6.1 EXPERIMENTAL SETUP

403 **MLLMs.** In this work, we employ Qwen2.5-VL-3B, Qwen2.5-VL-7B, Qwen2.5-VL-32B,
 404 InternVL2-2B, and LLaVA-1.5-7B (Bai et al., 2025; Chen et al., 2024; Liu et al., 2023) as our base
 405 models. Notably, as a parameter-free method, SADS can be readily applied to various MLLMs.

406 **Tasks and Evaluation Benchmarks.** We evaluate our method across a broad spectrum of tasks, cat-
 407 egorized into: visual grounding tasks, general VQA tasks, OCR-related VQA tasks, vision-centric
 408 tasks, and visual hallucination tasks. 1) Visual grounding tasks assess MLLMs’ visual localiza-
 409 tion capabilities, including Referring Expression Comprehension (REC): RefCOCO/g+, LISA, Re-
 410 fGTA, and Object Detection (OD): COCO and OVDEval (Lin et al., 2014; Lai et al., 2024; Yao et al.,
 411 2024). 2) General VQA tasks evaluate MLLMs’ comprehension of image-text pairs, encompassing
 412 VQA_v2, VizWiz, VQA_vg, GQA, MME, MMB, MMStar, and AI2D (Jia et al., 2024; Gurari et al.,
 413 2018; Krishna et al., 2016; Ainslie et al., 2023; Fu et al., 2024; Liu et al., 2024; Chen et al., 2024;
 414 Kembhavi et al., 2016). 3) OCR-related VQA tasks gauge MLLMs’ proficiency in high-granularity
 415 recognition for icon-document pairs, such as InfoVQA, TextVQA, and DocVQA (Mathew et al.,
 416 2021b;a; Singh et al., 2019). 4) Vision-centric tasks focus on visual-spatial perception in image-text
 417 understanding, including MMVP, CVBench, and CLEVER Tong et al. (2024a;b); Johnson et al.
 418 (2016). 5) Visual hallucination tasks measure the authenticity and reliability of MLLM outputs,
 419 featuring POPE and CHAIR (Sun, 2025; Li et al., 2023).

420 **Training Datasets and Implementation Details.** Across the five task categories, we aggregate a
 421 total of 670k training samples sourced from RefCOCO, Dcube, VG, GQA, OCR-VQA, Text-VQA,
 422 and CLEVER for model fine-tuning. Our hyperparameters remain consistent with those of SFT and
 423 the base models across all benchmarks. For layer selection in SADS, we base our choices on the
 424 layers exhibiting K variance fluctuations and the onset of gradient sparsity: for Qwen-2.5VL-3B,
 425 we commence from layer 20, for InternVL2-2B, from layer 15, for LLaVA-1.5-7B, from layer 20.

426 6.2 QUANTITATIVE RESULTS

428 Tables 2 and Tables 3 sequentially present the performance of RAR across the five task categories
 429 on 20 benchmarks using three base models. It is evident that RAR consistently outperforms both
 430 SFT and the base models on all benchmarks, demonstrating enhanced capabilities in visual local-
 431 ization, visual understanding, spatial perception, and hallucination mitigation. This underscores
 the effectiveness, scalability, and robustness of the RAR method. Notably, on out-of-distribution

432 Table 2: Benchmark performance comparison on general VQA and OCR VQA tasks.
433

434 Model	435 General VQA Task							436 OCR VQA Task		
	VQA ^{v2}	GQA	VQA ^{vg}	MME	MMB	MMStar	AI2D	InfoVQA	TextVQA	DocVQA
LLaVA-1.5-7B	78.3	61.1	54.6	1808.4	61.1	33.2	55.7	41.2	64.7	69.4
+SFT	79.1	63.1	55.7	1899.6	61.9	34.5	56.2	43.7	65.5	71.2
+ Ours	80.8	65.2	58.5	2018.8	63.2	36.3	57.1	46.3	67.5	74.4
Qwen2.5VL-3B	76.7	60.4	54.3	2184.1	75.4	53.0	77.9	75.1	78.7	93.0
+SFT	77.9	62.0	55.2	2199.9	75.9	53.7	78.4	75.9	79.0	92.9
+ Ours	79.7	64.2	58.1	2276.3	76.9	55.4	79.5	77.3	80.4	93.5
InternVL2-2B	72.9	55.6	50.1	1864.3	69.1	48.9	73.1	58.8	73.4	86.4
+SFT	74.2	56.9	52.3	1899.1	70.0	49.6	73.9	59.1	73.8	86.6
+ Ours	75.9	59.0	55.4	2006.5	71.6	50.8	75.7	60.5	75.9	88.2
Qwen2.5VL-7B	81.6	65.8	60.5	2276.3	82.2	64.2	84.1	81.7	80.2	94.8
+SFT	81.9	66.1	61.0	2230.2	82.0	64.5	84.4	82.0	80.7	94.2
+ Ours	82.6	67.9	62.1	2289.8	83.3	66.0	84.8	82.9	81.3	95.0
Qwen2.5VL-32B	82.9	68.4	63.6	2297.4	83.8	70.3	85.2	83.4	82.8	94.8
+SFT	83.0	68.6	63.9	2255.4	83.8	69.6	85.1	83.0	82.9	94.4
+ Ours	83.8	69.9	64.5	2326.6	84.5	71.3	85.7	83.8	83.9	95.1

451 Table 3: Benchmark performance comparison on visual perception tasks.
452

453 Model	454 Visual Grounding Task					455 Vision Centric Task			456 Visual Hallucination Task	
	RefCOCO/+g	LISA	RefGTA	OD ^{VG}	OVDEval	MMVP	CVBench	CLEVER	CHAIR↓	POPE↑
LLaVA-1.5-7B	76.2	44.2	64.1	19.4	22.7	3.1	57.4	43.6	44.7	85.6
+SFT	77.1	44.7	64.6	20.2	23.0	9.7	57.8	44.1	45.2	85.7
+ Ours	78.9	50.1	66.2	24.8	27.1	15.1	60.4	46.6	41.7	86.4
Qwen2.5-VL-3B	84.2	55.3	70.8	32.1	39.5	50.4	67.3	68.7	35.6	86.1
+SFT	84.6	55.3	71.0	32.5	39.9	52.1	68.1	70.0	35.4	86.4
+ Ours	86.8	58.1	72.9	36.7	43.8	54.9	70.1	72.5	32.6	87.4
InternVL2-2B	77.8	46.1	66.4	21.7	24.9	39.6	56.5	57.1	37.8	86.2
+SFT	78.1	45.6	66.9	23.2	25.3	40.4	57.2	57.9	37.9	86.0
+ Ours	80.1	48.2	68.9	26.6	29.9	42.7	59.2	59.6	34.3	87.1
Qwen2.5VL-7B	87.1	60.3	74.4	39.3	44.8	55.1	73.6	74.4	32.6	88.9
+SFT	87.3	60.1	74.8	39.7	44.4	55.8	73.8	74.8	33.1	89.2
+ Ours	88.2	63.6	76.0	42.1	47.2	57.0	75.2	75.9	29.7	89.6
Qwen2.5VL-32B	89.8	65.9	77.5	43.1	49.3	60.4	77.2	78.5	28.2	90.3
+SFT	89.7	63.3	77.8	43.3	49.3	60.8	77.1	78.7	30.1	90.1
+ Ours	90.6	67.4	79.3	44.5	51.8	62.5	79.0	80.0	21.2	90.6

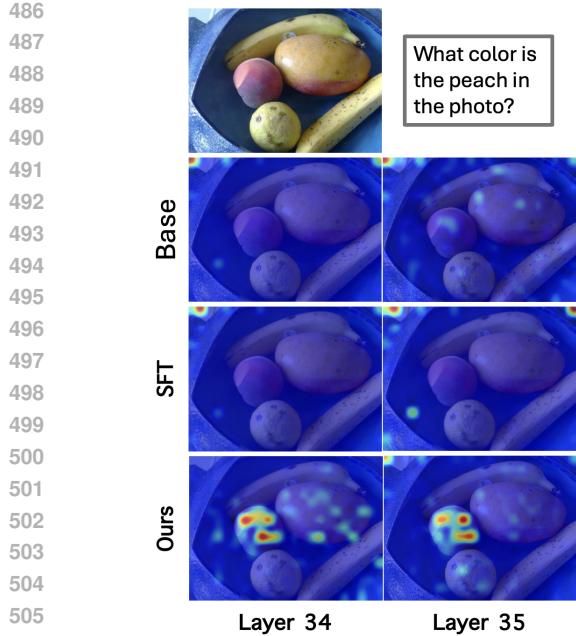
468 benchmarks such as LISA and OVDEval, DocVQA, CVBench, and CLEVER, SFT yields marginal
469 improvements, whereas RAR achieves substantial gains, highlighting its superiority in bolstering
470 visual capabilities. Furthermore, on hallucination tasks, SFT results occasionally fall below those
471 of the base models, which we attribute to iterative training across diverse tasks exacerbating the
472 model’s bias toward linguistic priors. RAR effectively circumvents this issue, ensuring reliable
473 visual comprehension. Additionally, Table 4 illustrates that SADS significantly enhances inference
474 speed compared to the base models and SFT, attributable to the reduction in computations associated
475 with sink heads’ attention.

476 6.3 ABLATION STUDIES
477

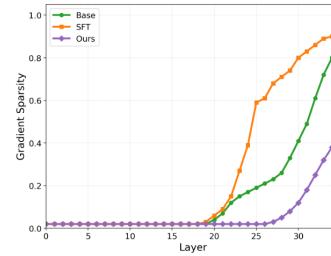
478 To directly assess whether the RAR resolves the suboptimal
479 output layer issue, we compare the layer-wise performance of
480 the base model, SFT, and RAR on the OVDEval test set, as
481 shown in Figure 8c. Evidently, unlike the performance degra-
482 dation observed in later layers for both the base model and
483 SFT, RAR achieves higher performance and demonstrate pro-
484 gressive capability improvements across all later layers. As
485 depicted in Figure 8a, we contrast the visual attention maps in later layers, revealing that RAR effec-
486 tively directs visual attention toward semantically relevant regions, in stark contrast to the persistent

478 Table 4: Comparative analysis of in-
479 ference efficiency and accuracy.

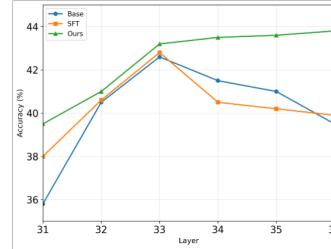
480 Method	481 Latency↓	482 Accuracy↑
Qwen2.5-VL-3B	1.332	39.5
+ SFT	1.332	39.9
+ Ours	1.195	43.8



(a) Qualitative results of attention heatmaps for detecting the “peach” across Layer 34 and Layer 35.



(b) Layer-wise Attention Gradient Sparsity: base model, SFT Model and Our Method.



(c) Performance comparison across different layers on the OVDEval benchmark: Base model, SFT, and our method.

Figure 8: Comprehensive ablation studies. (a) Qualitative attention heatmaps. (b) Attention gradient sparsity comparison. (c) Performance comparison across different layers.

visual attention re-sinking in the base model and SFT. In Figure 8b, we illustrate the cross-layer variations in gradient sparsity, demonstrating that RAR mitigates gradient sparsity issues in later layers, whereas the base model and SFT suffer from severe sparsity therein. Furthermore, SFT exhibits even more pronounced attention gradient sparsity compared to the base model, substantiating that training iterations exacerbate attention gradient sparsity.

We are particularly interested in assessing the scalability of SADS with respect to training data volume. To this end, we perform a comprehensive analysis of its performance across varying dataset sizes. As depicted in Figure 9, experiments on the OVDEval benchmark show that as training data increases, SFT yields diminishing returns, with performance gains plateauing markedly. In contrast, SADS demonstrates a steeper performance ascent, underscoring the visual attention re-sinking phenomenon severely impedes effective data scaling in existing MLLMs, while SADS effectively mitigates this issue and unlocks superior scaling potential.

7 CONCLUSION

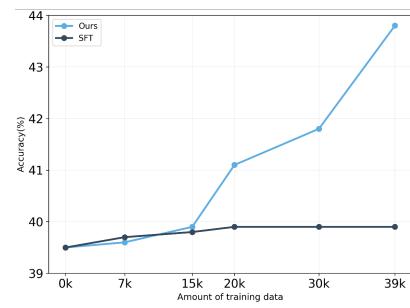


Figure 9: Influence of different head selection strategies on model performance.

In this work, we have elucidated the root causes of sub-optimal output layers in MLLMs, ascribing them to attention gradient sparsity precipitated by textual supervision dominance during training. This sparsity engenders the **Visual Attention Re-sinking** phenomenon, head bifurcation, and a progressive disregard for visual cues, ultimately culminating in degraded output performance. To mitigate these issues, we introduce the parameter-free SADS framework, which dynamically retains all vision heads while sparsifying sink heads and ensuring model stability through a designated shared head. Comprehensive experiments spanning 20 benchmarks across five diverse task categories demonstrate that SADS surpasses standard supervised fine-tuning in performance while accelerating inference by 10.3%.

540 ETHICS STATEMENT
541

542 Our work is in accordance with the ICLR Code of Ethics. This research did not involve hu-
543 man participants or animal testing. The datasets employed in this work are all publicly available
544 and were utilized in accordance with their original licensing and usage terms. These include the
545 training datasets (RefCOCO, Dcube, VG, GQA, OCR-VQA, Text-VQA, CLEVER) and the eval-
546 uation benchmarks (RefCOCO/g+, LISA, RefGTA, COCO, OVDEval, VQA_v2, VizWiz, VQA_vg,
547 GQA, MME, MMB, MMStar, AI2D, InfoVQA, TextVQA, DocVQA, MMVP, CVBench, CLEVER,
548 POPE, CHAIR). Our methodology was designed to mitigate potential biases and avoid discrimina-
549 tory results. The data used contains no personally identifiable information, and our experiments do
550 not pose any privacy or security risks. We uphold the principles of research integrity and trans-
551 parency in our work.

552 REPRODUCIBILITY STATEMENT
553

554 To ensure the reproducibility of our findings, we will submit our complete source code and all exper-
555 imental configurations in the appendix. Details regarding the setup, such as model hyperparameters
556 and training procedures, are outlined in the main paper. A comprehensive description of our SADS
557 (Sink Attention Dynamic Sparsification) framework, including the specific layer selection criteria
558 for each base model, is also included to aid in replication. All evaluation benchmarks used across
559 our five task categories—visual grounding, general VQA, OCR-related VQA, vision-centric, and vi-
560 sual hallucination—are established public datasets, namely RefCOCO/g+, LISA, RefGTA, COCO,
561 OVDEval, VQA_v2, VizWiz, VQA_vg, GQA, MME, MMB, MMStar, AI2D, InfoVQA, TextVQA,
562 DocVQA, MMVP, CVBench, CLEVER, POPE, and CHAIR, allowing for consistent re-evaluation.
563 To ensure full reproducibility of our findings, we commit to open-sourcing our complete source code
564 and all experimental configurations upon publication.

565 REFERENCES
566

567 Estelle Aflalo, Meng Du, Shao-Yen Tseng, Yongfei Liu, Chenfei Wu, Nan Duan, and Vasudev Lal.
568 *Vl-interpret: An interactive visualization tool for interpreting vision-language transformers*.

569 Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
570 Sanghali. *Gqa: Training generalized multi-query transformer models from multi-head check-*
571 *points*, 2023. URL <https://arxiv.org/abs/2305.13245>.

572 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv preprint*
573 *arXiv:1607.06450*, 2016.

574 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
575 Shijie Wang, Jun Tang, et al. *Qwen2. 5-vl technical report*. *arXiv preprint arXiv:2502.13923*,
2025.

576 Federico Barbero, Alvaro Arroyo, Xiangming Gu, Christos Perivolaropoulos, Michael Bronstein,
577 Petar Veličković, and Razvan Pascanu. Why do llms attend to the first token? *arXiv preprint*
578 *arXiv:2504.02732*, 2025.

579 Daniel Bolya, Po-Yao Huang, Peize Sun, Jang Hyun Cho, Andrea Madotto, Chen Wei, Tengyu Ma,
580 Jiale Zhi, Jathushan Rajasegaran, Hanoona Rasheed, et al. Perception encoder: The best visual
581 embeddings are not at the output of the network. *arXiv preprint arXiv:2504.13181*, 2025.

582 Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Quantizable transformers: Removing
583 outliers by helping attention heads do nothing. Jun 2023.

584 Florian Bordes, Randall Balestrieri, Quentin Garrido, Adrien Bardes, and Pascal Vincent. Guillotine
585 regularization: Why removing layers is needed to improve generalization in self-supervised
586 learning. Jun 2022.

587 Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
588 Generative pretraining from pixels. *International Conference on Machine Learning, International*
589 *Conference on Machine Learning*, Jul 2020a.

594 Ting Chen, Simon Kornblith, Mohammad Norouzi, and GeoffreyE. Hinton. A simple framework
 595 for contrastive learning of visual representations. *Cornell University - arXiv, Cornell University -*
 596 *arXiv*, Feb 2020b.

597

598 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
 599 glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
 600 multimodal models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*,
 601 2024.

602 Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
 603 registers. *arXiv preprint arXiv:2309.16588*, 2023.

604

605 Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng Han, Shuo Shang, Aixin Sun, Yequan Wang,
 606 and Zhongyuan Wang. Not all layers of llms are necessary during inference. *arXiv preprint*
 607 *arXiv:2403.02181*, 2024.

608

609 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiaowu
 610 Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive evaluation
 611 benchmark for multimodal large language models, 2024. URL <https://arxiv.org/abs/2306.13394>.

612

613 Danna Gurari, Qing Li, Abigale J. Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
 614 Jeffrey P. Bigham. Vizwiz grand challenge: Answering visual questions from blind people, 2018.
 615 URL <https://arxiv.org/abs/1802.08218>.

616

617 Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang, Conghui He, Jiaqi Wang, Dahua Lin, Weiming
 618 Zhang, and Nenghai Yu. Opera: Alleviating hallucination in multi-modal large language models
 619 via over-trust penalty and retrospection-allocation. In *Proceedings of the IEEE/CVF Conference*
 620 *on Computer Vision and Pattern Recognition*, pp. 13418–13427, 2024.

621

622 Ziheng Jia, Zicheng Zhang, Jiaying Qian, Haoning Wu, Wei Sun, Chunyi Li, Xiaohong Liu, Weisi
 623 Lin, Guangtao Zhai, and Xiongkuo Min. Vqa²: Visual question answering for video quality
 624 assessment, 2024. URL <https://arxiv.org/abs/2411.03795>.

625

626 Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence Zitnick, and
 627 Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
 628 reasoning, 2016. URL <https://arxiv.org/abs/1612.06890>.

629

630 Seil Kang, Jinyeong Kim, Junhyeok Kim, and Seong Jae Hwang. See what you are told: Visual
 631 attention sink in large multimodal models. *arXiv preprint arXiv:2503.03321*, 2025.

632

633 Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali
 634 Farhadi. A diagram is worth a dozen images, 2016. URL <https://arxiv.org/abs/1603.07396>.

635

636 Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
 637 Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and Fei-Fei Li.
 638 Visual genome: Connecting language and vision using crowdsourced dense image annotations,
 639 2016. URL <https://arxiv.org/abs/1602.07332>.

640

641 Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, and Jiaya Jia. Lisa: Rea-
 642 soning segmentation via large language model. In *Proceedings of the IEEE/CVF Conference on*
 643 *Computer Vision and Pattern Recognition*, pp. 9579–9589, 2024.

644

645 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating ob-
 646 ject hallucination in large vision-language models, 2023. URL <https://arxiv.org/abs/2305.10355>.

647

648 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 649 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European*
 650 *conference on computer vision*, pp. 740–755. Springer, 2014.

651

652 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 653 *in neural information processing systems*, 36:34892–34916, 2023.

648 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 649 Jiaqi Wang, Conghui He, Ziwei Liu, Kai Chen, and Dahua Lin. Mmbench: Is your multi-modal
 650 model an all-around player?, 2024. URL <https://arxiv.org/abs/2307.06281>.

651

652 Nanye Ma, Mark Goldstein, MichaelS. Albergo, NicholasM. Boffi, Eric Vanden-Eijnden, and Sain-
 653 ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
 654 transformers. Jan 2024.

655 Minesh Mathew, Viraj Bagal, Rubèn Pérez Tito, Dimosthenis Karatzas, Ernest Valveny, and C. V
 656 Jawahar. Infographiccvqa, 2021a. URL <https://arxiv.org/abs/2104.12756>.

657

658 Minesh Mathew, Dimosthenis Karatzas, and C. V. Jawahar. Docvqa: A dataset for vqa on document
 659 images, 2021b. URL <https://arxiv.org/abs/2007.00398>.

660 Shashank Shekhar, Florian Bordes, Pascal Vincent, and Ari Morcos. Objectives matter: Understand-
 661 ing the impact of self-supervised objectives on vision transformer representations. Apr 2023.

662

663 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
 664 and Marcus Rohrbach. Towards vqa models that can read, 2019. URL <https://arxiv.org/abs/1904.08920>.

665

666 Ao Sun. Chair – classifier of hallucination as improver, 2025. URL <https://arxiv.org/abs/2501.02518>.

667

668 Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha
 669 Akula, Jihan Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, Ziteng Wang, Rob Fergus, Yann
 670 LeCun, and Saining Xie. Cambrian-1: A fully open, vision-centric exploration of multimodal
 671 llms, 2024a. URL <https://arxiv.org/abs/2406.16860>.

672

673 Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide
 674 shut? exploring the visual shortcomings of multimodal llms, 2024b. URL <https://arxiv.org/abs/2401.06209>.

675

676 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, AidanN. Gomez,
 677 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Neural Information Processing
 678 Systems, Neural Information Processing Systems*, Jun 2017.

679

680 Matthew Walmer, Saksham Suri, Kamal Gupta, and Abhinav Shrivastava. Teaching matters: Inves-
 681 tigating the role of supervision in vision transformers. Dec 2022.

682

683 Chenxi Wang, Xiang Chen, Ningyu Zhang, Bozhong Tian, Haoming Xu, Shumin Deng, and Huajun
 684 Chen. Milm can see? dynamic correction decoding for hallucination mitigation. *arXiv preprint
 arXiv:2410.11779*, 2024.

685

686 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 687 language models with attention sinks. Sep 2023.

688

689 Yiyang Yao, Peng Liu, Tiancheng Zhao, Qianqian Zhang, Jiajia Liao, Chunxin Fang, Kyusong Lee,
 690 and Qing Wang. How to evaluate the generalization of detection? a benchmark for comprehensive
 691 open-vocabulary detection. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 692 volume 38, pp. 6630–6638, 2024.

693

694 Zhi Zhang, Srishti Yadav, Fengze Han, and Ekaterina Shutova. Cross-modal information flow in
 695 multimodal large language models, 2025. URL <https://arxiv.org/abs/2411.18620>.

696

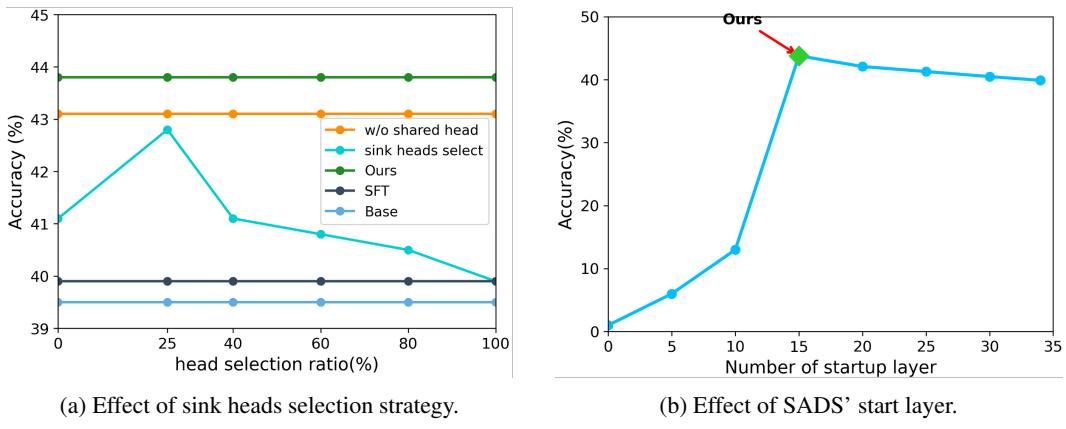
697 Liang Zheng, Yuchao Zhao, Shengjin Wang, Jingdong Wang, and Qi Tian. Good practice in cnn
 698 feature transfer. *Cornell University - arXiv, Cornell University - arXiv*, Apr 2016.

699

700 Lanyun Zhu, Deyi Ji, Tianrun Chen, Peng Xu, Jieping Ye, and Jun Liu. Ibd: Alleviating hallucina-
 701 tions in large vision-language models via image-biased decoding. In *Proceedings of the Computer
 Vision and Pattern Recognition Conference*, pp. 1624–1633, 2025.

702 **A LLM USAGE**
703

704 A Large Language Model (LLM) was employed for language refinement and editing of this
 705 manuscript. Its role was to improve clarity, refine phrasing, and check for grammatical consistency
 706 across the paper. The conceptual and experimental aspects of this research, including the
 707 core ideas, methodology, and data analysis, were conducted exclusively by the human authors. The
 708 LLM’s assistance was confined to improving the manuscript’s linguistic quality and was not used
 709 for generating scientific content. The authors retain full responsibility for all content, including any
 710 text assisted by the LLM, and have verified its scientific accuracy and originality.

712 **B ADDITIONAL ABLATION STUDIES**
713

729 **Figure 10: Comprehensive ablation studies on OVDEval benchmark.** (a) Effect of Head Selection
 730 Strategy. (b) Effect of SADS’ Start Layer.

733 **B.1 ABLATION STUDIES ON HEAD SELECTION STRATEGY AND START LAYER.**
734

735 In the preceding experiments, the activation layer for SADS is dynamically determined by the onset
 736 of variance fluctuations in attention keys (\mathbf{K}) and gradient sparsity, while head selection leverages
 737 the valley of a bimodal Gaussian distribution fitted to maximum visual attention values (for distin-
 738 guishing vision and sink heads) and non-vision token cross-attention entropy (for subdividing sink
 739 heads into $sink_G$ and $sink_S$). To evaluate the effectiveness and robustness of these adaptive mech-
 740 anisms, we perform ablation studies employing fixed thresholds for both the number of activated
 741 layers and sink head retention ratios.

742 **Table 5: Comprehensive ablation studies on**
 743 **head selection strategy.**

Method	OVDEval \uparrow	RefCOCO \uparrow	GQA \uparrow
Base	39.5	84.2	60.4
+ SFT	39.9	84.6	62.0
+ 0% sink heads	41.1	85.0	62.8
+ 40% sink heads	41.1	85.8	63.5
+ 80% sink heads	40.8	85.1	62.2
+ 100% sink heads	39.9	84.6	62.0
Ours(fixed 25% sink heads)	42.8	86.1	63.5
Ours	43.8	86.8	64.2

751 in consistent declines across benchmarks, underscoring the critical role of a fixed-position shared
 752 head in maintaining model stability. To further validate these findings across diverse benchmarks,
 753 Table 5 presents comprehensive ablation studies on head selection strategies, demonstrating that our
 754 method (Ours) outperforms all fixed-ratio variants and the base model. These ablations collectively
 755 validate the superiority of SADS’s adaptive design.

756 As depicted in Figure 10b, ablating the SADS activation layer further demonstrates that starting
 757 from a lower layer (thus activating more layers) induces substantial degradation and garbled outputs,
 758 arising from unnecessary sparsification in well-aligned early layers. Conversely, starting from a
 759 higher layer (activating fewer layers) causes performance drops due to unaddressed visual attention
 760 re-sinking in later layers. These findings highlight the advantages of our dynamic layer selection in
 761 balancing modality alignment preservation with targeted late-layer optimization, with the optimal
 762 startup layer corresponding to the performance peak observed in the ablation curve.

763
764 Table 6: **Ablation study across different iterations.**
765

Method	OVDEval↑	RefCOCO↑	GQA↑
Base	39.5	84.2	60.4
SFT (14000 iters)	39.9	84.6	62.0
Ours (14000 iters)	43.8	86.8	64.2
SFT (13000 iters)	39.9	84.5	61.5
Ours (13000 iters)	43.4	86.2	63.8
SFT (12000 iters)	39.6	84.3	61.7
Ours (12000 iters)	43.4	85.7	63.2
SFT (11000 iters)	39.6	84.5	61.0
Ours (11000 iters)	42.8	85.8	63.3
SFT (10000 iters)	39.7	84.4	60.8
Ours (10000 iters)	42.3	85.6	62.5

779
780
781
782 B.2 ABLATION STUDY ON TRAINING STEPS.
783

784 As shown in Table 6, to investigate whether earlier checkpoints during training yield superior per-
 785 formance, we evaluate and compare model performance across varying training iterations. Key ob-
 786 servations include: (1) Earlier checkpoints exhibit performance degradation, as prematurely halting
 787 training mitigates gradient sparsity issues but exacerbates under-training, leading to suboptimal re-
 788 sults; (2) Across all checkpoints, our method consistently outperforms SFT, underscoring its robust
 789 performance and stability.

790
791 Table 7: **Ablation study across different training objectives.**
792

Method	OVDEval↑	RefCOCO↑	GQA↑
Base	39.5	84.2	60.4
SFT	39.9	84.6	62.0
w/ regularization	40.8	85.3	62.7
w/ attention reweight	40.6	85.0	62.3
Ours	43.8	86.8	64.2

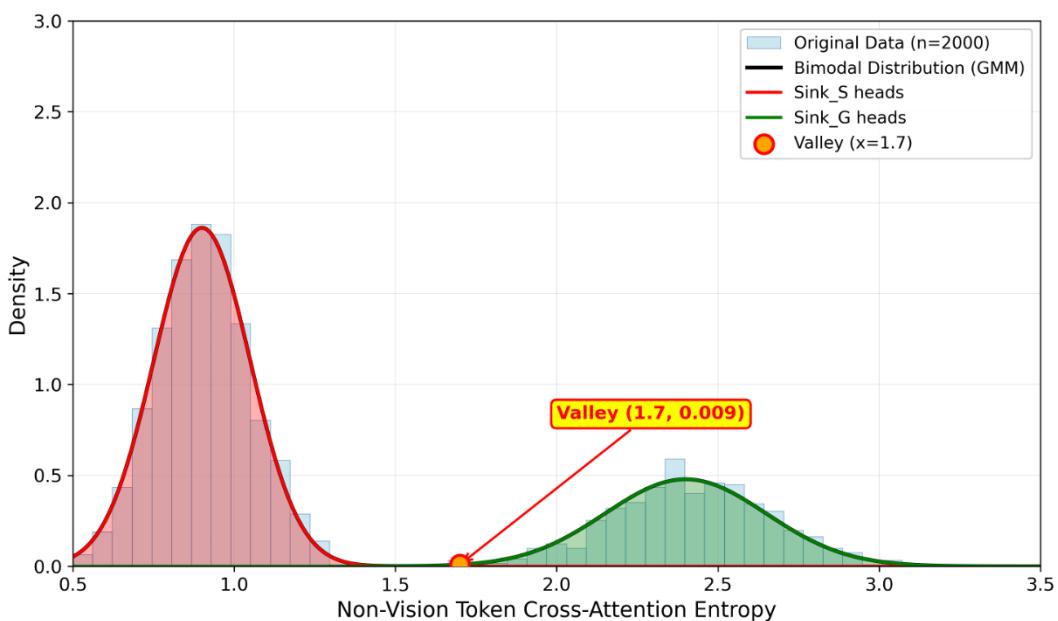
798
799
800
801 B.3 ABLATION STUDY ON DIFFERENT TRAINING OBJECTIVES.
802

803 As shown in Table 7, we further examine the performance under different training objec-
 804 tives. We explore two alternative strategies: (1) **regularization**; regularization to elevate the
 805 weights of vision heads, implemented via a KL divergence prior that encourages vision heads
 806 to align with a high-weight distribution ($\mathcal{N}(1.2, 0.1)$) while constraining sink heads to a low-
 807 weight distribution ($\mathcal{N}(0.3, 0.1)$), formally expressed as $\mathcal{L}_{reg} = \sum_{h \in \text{vision}} \text{KL}(\alpha_h || \mathcal{N}(\mu_v, \sigma_v^2)) +$
 808 $\sum_{h \in \text{sink}} \text{KL}(\alpha_h || \mathcal{N}(\mu_s, \sigma_s^2))$; (2) **attention reweight**; attention reweighting on sink tokens within
 809 sink heads to prioritize semantically relevant visual information, achieved by dynamically scaling
 attention weights based on visual saliency metrics, reweighting as $a'_{i,j} = a_{i,j} \cdot s_j / \sum_k a_{i,k} \cdot s_k$,

810 where s_j denotes the saliency score of token j (upweighting edges toward high-semantic regions
 811 while downweighting low-information backgrounds). The results indicate that both approaches
 812 yield modest improvements over vanilla SFT. However, our SADS framework substantially out-
 813 performs these variants. This superiority stems from the root cause of suboptimal output layers: the
 814 Visual Attention Re-sinking phenomenon within sink heads, which impairs model performance by
 815 marginalizing visual cues. While regularization and reweighting provide temporary alleviation of
 816 sinking, the issue inevitably re-emerges with deeper training iterations. In contrast, our sparsification
 817 approach fundamentally eradicates re-sinking, thereby maximizing the model’s potential.

820 B.4 STATISTICAL ANALYSIS IN SINK HEADS.

822 As illustrated in the Figure 11, we randomly sample 2,000 heads and compute their non-image
 823 token cross-attention entropy, revealing a pronounced bimodal Gaussian distribution characterized
 824 by distinct low-entropy ($sink_S$ heads) and high-entropy ($sink_G$ heads) peaks. Consequently, for
 825 each layer, we model the entropy distribution across all sink heads using a GMM and employ the
 826 valley as a dynamic threshold for differentiation.



847 Figure 11: Distribution of non-vision token cross-attention entropy for $Sink_G$ heads and $Sink_S$
 848 heads, showing a bimodal distribution.

851 C LIMITATIONS AND FUTURE WORK

853 Although our method effectively maximizes model capacity at current parameter scales, we ac-
 854 knowledge its inherent limitations. While sparsifying redundant gradient spaces has proven effica-
 855 cious, infilling techniques may offer a more robust alternative. In future work, we plan to integrate
 856 the SADS framework into a unified generation-understanding paradigm, leveraging generative ca-
 857 pabilities to populate sparse spaces and further enhance multimodal fusion.

861 D ADDITIONAL QUALITATIVE RESULTS

862 We provide additional Qualitative results of cross layer visual attention map in the Figure 12 and
 863 low-entropy $sink_S$ and high-entropy $sink_G$ in Figure 13.

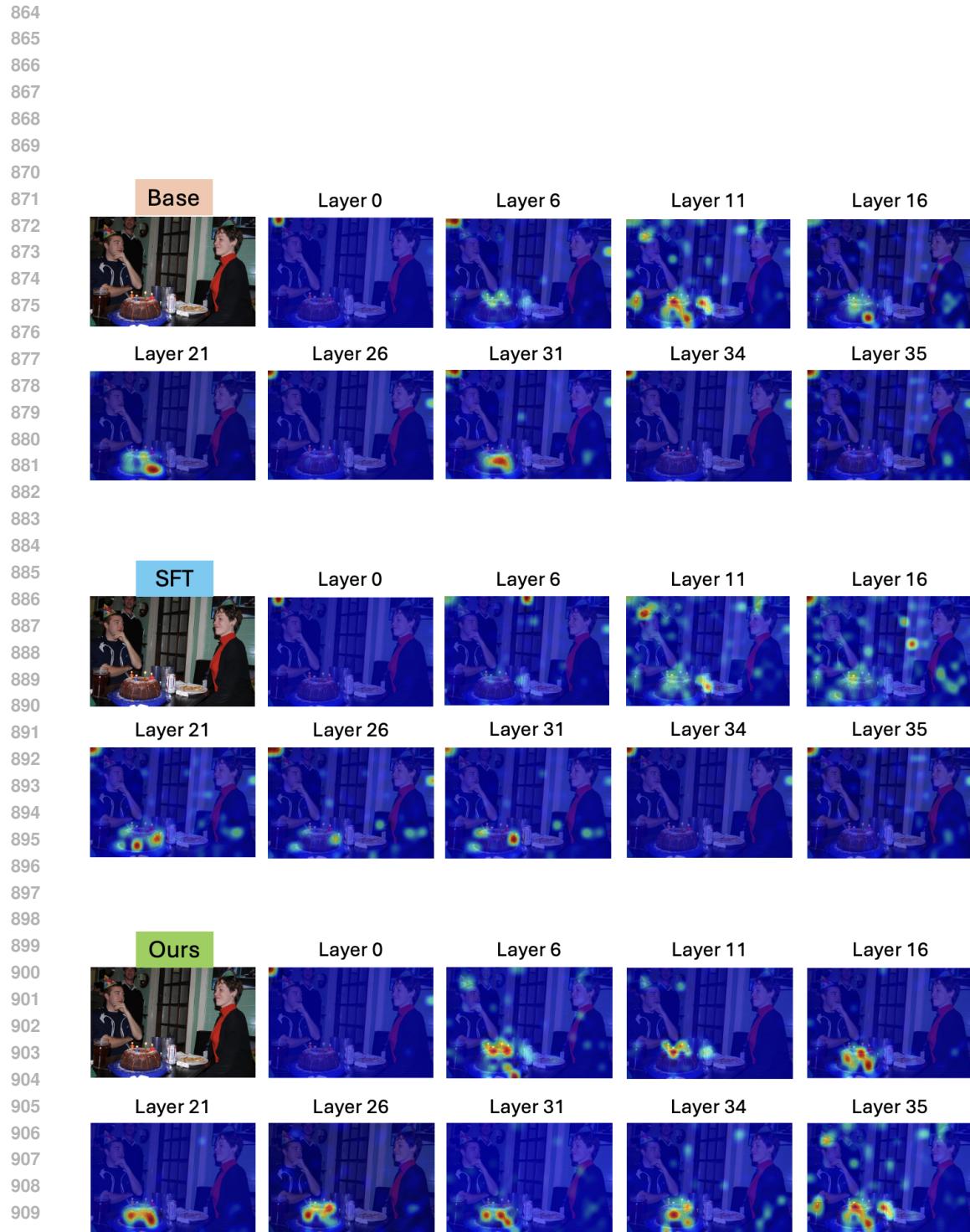
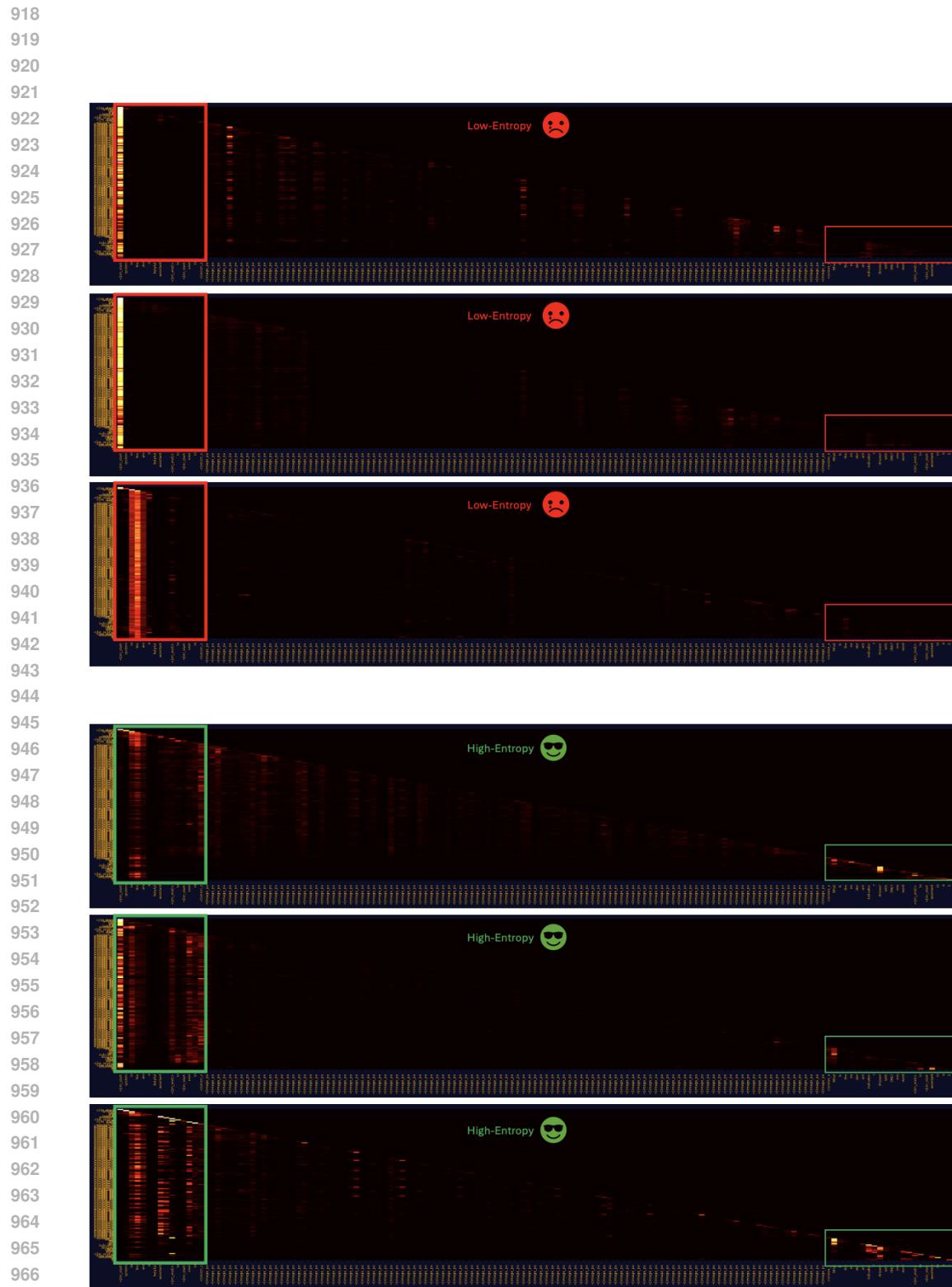


Figure 12: Qualitative results of visual attention heatmaps for detecting the “cake” across Layers.

Figure 13: Qualitative results of low-entropy $sink_S$ and high-entropy $sink_G$