Localized Zeroth-Order Prompt Optimization

Wenyang Hu“'? Yao Shu”? Zongmin Yu'! Zhaoxuan Wu’* Xiaogiang Lin

! Zhongxiang Dai

See-Kiong Ng!? Bryan Kian Hsiang Low '

Abstract

The efficacy of large language models (LLMs)
in understanding and generating natural language
has aroused a wide interest in developing prompt-
based methods to harness the power of black-
box LLMs, especially through the lens of In-
Context Learning. Existing methods usually pri-
oritize a global optimization for finding the global
optimum of prompts, which however will per-
form poorly in certain tasks. This thus moti-
vates us to re-think the necessity of finding a
global optimum in prompt optimization. To an-
swer this, we conduct a thorough empirical study
on prompt optimization and draw two major in-
sights. Contrasting with the rarity of global op-
timum, local optima are usually prevalent and
well-performed, which can be more worthwhile
for efficient prompt optimization (Insight I). The
choice of the input domain, covering both the
generation and the representation of prompts, af-
fects the identification of well-performing local
optima (Insight II). Inspired by these insights,
we propose a novel algorithm, namely local-
ized zeroth-order prompt optimization (ZOPO),
which incorporates a Neural Tangent Kernel-
based derived Gaussian process into standard
zeroth-order optimization for an efficient search
of well-performing local optima in prompt opti-
mization. Remarkably, ZOPO outperforms exist-
ing baselines in terms of both the optimization
performance and the query efficiency, which we
demonstrate through extensive experiments.

'Department of Computer Science, National University of Sin-
gapore “Institute of Data Science, National University of Singapore
Guangdong Lab of Al and Digital Economy (SZ) “Integrative
Sciences and Engineering Programme, National University of Sin-
gapore “LIDS and EECS, Massachusetts Institute of Technology.
Correspondence to: Yao Shu <shuyao@gml.ac.cn>.

Proceedings of the 1% Workshop on In-Context Learning at the
415 International Conference on Machine Learning, Vienna, Aus-
tria. 2024. Copyright 2024 by the author(s).

1. Introduction

In-context learning (ICL) has become an effective paradigm
to help LLMs understand and generate appropriate re-
sponses when a few input-output pairs are provided to de-
scribe a specific task (Brown et al., 2020). However, the out-
puts of LLMs can be highly sensitive and biased to the given
ICL exemplars (Min et al., 2022), leading to sub-optimal
performance. On the other hand, in-context prompting also
appears as an effective paradigm to instruct LLMs to gen-
erate desired outputs, where crafted prompts are added to
the LLM’s input (Ouyang et al., 2022). Particularly, prompt-
ing can further leverage LLMs’ capability of understanding
ICL exemplars and thus improve performances. Such an
approach is of particular interest when users interact with
state-of-the-art LLMs like ChatGPT (OpenAl, 2024a) and
GPT-4 (OpenAl, 2023), which can only be accessed through
black-box APIs (i.e., the interface of black-box LLMs only
accepts discrete texts as input for querying). Therefore,
optimizing in-context prompts becomes a critical effort in
pursuing the optimal performance of black-box LLMs on
downstream tasks.

Although human knowledge may subjectively guide prompt
designs (Mishra et al., 2021; Reynolds & McDonell, 2021),
this process is commonly time-intensive and its results are
not always desirable in practice. To mitigate such human
efforts and achieve better performance in optimizing crafted
prompts, random sampling (Zhou et al., 2023), Bayesian
optimization (Chen et al., 2023; Lin et al., 2023), and evo-
lutionary algorithms (Guo et al., 2024) have been proposed
to generate and select well-performing prompts automati-
cally. However, most of these existing strategies prioritize
global optimization, dedicating substantial portions of the
query budget to explore the entire search space for the global
optima and consequently making it query-inefficient in prac-
tice. Meanwhile, these strategies typically implement their
prompt optimization across various input domains (i.e., nat-
ural texts (Guo et al., 2024; Zhou et al., 2023) or hidden
embeddings (Chen et al., 2023; Lin et al., 2023)), resulting
in diverse performance outcomes in practice. These results
consequently inspire us to re-think the questions about the
necessity of finding a global optimum and the essence of the
input domain for efficient and effective prompt optimization.

Localized Zeroth-Order Prompt Optimization

; APE
£ InstructZero
0.75 1 %1 —~©— INSTINCT
i | —=A— EvoPrompt
—~ H PB
= 0.50 1+ ; | =% oprO
5SS : i | —&— Z0PO (ours)
0.25 1
T | T

Figure 1: The performance profile for different methods on
20 tasks. A higher p(7) is better. More details in Sec. 5.

To answer these questions, we provide a thorough empirical
study on prompt optimization. Firstly, we visualize the per-
formances of some randomly sampled prompt candidates
on various tasks to show that, in contrast to the scarcity of
global optima, local optima are commonly prevalent and
perform reasonably well, making them more valuable for
query-efficient prompt optimization (Insight I in Sec. 3.1).
Secondly, we visualize the estimated accuracy distributions
for a number of prompt candidates and the corresponding
function surfaces using various embeddings as their repre-
sentation. The results demonstrate that the selection of the
input domain, including both the generation and representa-
tion of prompt candidates, will influence the identification
of high-performing prompts, especially those local optimal
ones (Insight II in Sec. 3.2). These insights consequently
highlight the importance of local optima and input domain
for efficient and effective prompt optimization.

Inspired by these insights, we novelly propose the Localized
Zeroth-Order Prompt Optimization (ZOPO) algorithm for
a considerably improved prompt optimization as evidenced
by Fig. 1. Motivated by Insight II, we first propose a general
domain transformation that utilizes LLMs for prompt gener-
ation and existing embedding models for transforming these
generated prompts into their corresponding hidden repre-
sentations, which thereby enjoys not only the remarkable
generation ability from any type of LLMs (white/black-
box) but also the impressive representation ability from
existing embedding models for our prompt optimization
(Sec. 4.1). Inspired by Insight I, we then leverage a cutting-
edge zeroth-order optimization (ZOO) method enhanced by
a derived Gaussian process for efficient gradient estimation
(Shu et al., 2023a) to underpin our localized prompt opti-
mization, which goes one step further by incorporating the
Neural Tangent Kernel (NTK) (Jacot et al., 2018) to han-
dle the complex and high-dimensional prompt optimization
tasks (Sec. 4.2). Lastly, we present an uncertainty-informed
local exploration method designed to improve the gradient
estimation in our derived NTK-GP, thereby augmenting the
practical performance of the ZOPO algorithm (Sec. 4.3).

To summarize, the contributions of our work include:

o To the best of our knowledge, we are the first to conduct a

thorough empirical study in prompt optimization to under-
score the value of local optima and the essence of input
domain for efficient and effective prompt optimization
(Sec. 3).

e Drawing on the insights gained from our empirical study,
we design the ZOPO algorithm (Sec. 4) which outper-
forms existing baselines in optimization performance and
query efficiency.

e We conduct extensive studies to confirm the efficacy of
our algorithmic framework and elucidate the underlying
principles or insights of our ZOPO algorithm (Sec. 5).

2. Problem Setup

Given an NLP task that is characterized by a data distribu-
tion D and a black-box LLM f(+), e.g., ChatGPT (OpenAl,
2024a), discrete prompt optimization aims to generate a
piece of human-readable text, namely the prompt v, which
will then be applied to the black-box LLM f(-) along with
a test input « such that the queried LLM output f([v; z]) is
able to correctly predict the ground-truth label y for each
(z,y) ~ D. This problem is then commonly framed as a
black-box maximization problem over the discrete language
input domain €2 (Chen et al., 2023; Lin et al., 2023):

max F(v) £ Euyyepy [R(f([v;2]),)] (M

where R (f([v; z]),y) is applied to measure the alignment
between the LLM output f([v; z]) and the groundtruth v,
and Dy is the validation set sampled from D. Note that the
performance of the optimal instruction found on Dy, (i.e.,
arg max,, F'(v)) will be evaluated on a held-out test set Dr.

3. Empirical Study on Prompt Optimization
3.1. Local Optima vs. Global Optimum

In prompt optimization, methods like (Chen et al., 2023;
Lin et al., 2023) are generally more effective than the others
(Zhou et al., 2023; Guo et al., 2024), which is usually con-
tributed to their usage of Bayesian optimization, a popular
global optimization strategy, that is able to find the global op-
timum in low-dimensional problems (Moriconi et al., 2020).
However, these methods sometimes perform poorly in cer-
tain prompt optimization tasks, e.g., cause_and_effect
and informal_to_formal, indicating that they will fail
to find the global optimum in these tasks given a limited
query budget. This is likely because substantial portions of
the budget are applied in these methods to explore the entire
search space for the global optimum, which hence leads to
the critical question about the necessity of finding the global
optimum in query-efficient prompt optimization.

To answer this question, we have employed a 3-dimensional
scatter plot to visualize the performance (differentiated by

Localized Zeroth-Order Prompt Optimization

taxonomy animal cause_and_effect informal to_formal 1.0
'. o 20 e
SO et
<),
LS : (DRt L0 fn&:ﬁt 0.5
o) R g
\\/ %7 \.:/

0.0
Figure 2: The validation accuracy of 300 randomly sampled
prompts with the last token representation on various tasks.

colors) for 300 randomly sampled prompt candidates on
various tasks, whose prompt embeddings (i.e., the last to-
ken embedding as in (Lin et al., 2023)) are reduced by
t-distributed stochastic neighbor embedding (t-SNE) (see
more details in our Appx. D.1.1). The results are in Fig. 2
which shows that the global optimum (i.e., the points achiev-
ing the highest accuracy) is consistently rare for a range of
prompt optimization tasks, making it extremely challeng-
ing to achieve this global optimum in practice. In contrast,
prompt optimization often features a number of local op-
tima (e.g., the points achieving accuracy higher than 80%
in taxonomy-animal of Fig. 2). Importantly, these lo-
cal optima commonly enjoy relatively good performances,
suggesting that local optima shall be more worthwhile to
obtain in prompt optimization, especially for the scenarios
of limited query budgets, as summarized below.

Contrasting with the rarity of global optimum, local op-
tima are usually prevalent and well-performed, which is
more worthwhile for query-efficient prompt optimization.

3.2. Essence of Input Domain

Besides, existing works (Chen et al., 2023; Guo et al., 2024;
Lin et al., 2023) typically implement their prompt optimiza-
tion across various input domains, leading to a wide range
of performances in practice. These results thus inspire us
to ask: How essential is the input domain for finding well-
performing prompts, particularly the local optimal ones?
Thoroughly exploring this question is fundamental for the
design of a well-performing prompt optimization algorithm.

To answer this, we first visualize the accuracy distributions
of 300 prompt candidates that are randomly generated by
Vicuna-13B and ChatGPT for various tasks to study the
essence of prompt generation in Fig. 3 (more details in Appx.
D.1.2). Fig. 3 reveals that the prompt candidates produced
by ChatGPT (a black-box model) generally exhibit better
performance than those produced by Vicuna-13B (a white-
box model), which has been widely applied in (Chen et al.,
2023; Lin et al., 2023) for prompt optimization. Importantly,
ChatGPT demonstrates a greater likelihood of generating
locally optimal prompts (e.g., the ones of accuracy higher

taxonomy_animal cause_and_effect informal_to_formal

— = Vicuna-13B

8
61 — ChaGeT
1 LA
24 /.
o=
0+ T T
2 04

i —-= Vicuna-13B

| —- Vieuna-13B | 4]
q i —— ChatGPT

1| — chaGeT

i 2V

Probability Density
S = = N

0 - g
1.0 0.0 0.5
Validation Accuracy

T
0.0 0.5 1.0 0.0 0.

Figure 3: The estimated accuracy distribution of prompts
generated by Vicuna-13B or ChatGPT on various instruction
induction tasks, where the vertical dotted line indicates the
mean performance.

taxonomy_animal cause_and_effect informal_to_formal

= - 1.0
=) .
= - 0.8
3 " 7k os
- 0.4

~
o~
& L
& A 0.2
2]

4 L 0.0

Figure 4: The function surfaces using the last token (Vicuna-
13B) or SBERT embedding.

than 0.8 in taxonomy_animal of Fig. 3). These results
indicate that the ability to generate well-performing local
optima in prompt optimization usually varies for different
models. So, the selection of the prompt generation model is
crucial for finding well-performing optima.

We then investigate the function surface (i.e., accuracy land-
scape) using two different embeddings for prompt candi-
dates in Fig. 4 (more details in Appx. D.1.2) where the em-
beddings are mapped into a 2-dimensional domain using the
t-SNE for better visualization. Interestingly, Fig. 4 unveils
that different embeddings will convey a varying number of
well-performing local optima in practice. Particularly, the
last token embedding is usually able to produce a larger
number of well-performing local optima than the SBERT
(i.e., a popular sentence embedding transformer (Reimers
& Gurevych, 2019)) embedding, making it easier to enjoy a
good prompt optimization performance on this domain, as
validated in Tab. 8. This therefore implies that the choice
of the prompt embedding model is also essential for the
finding of well-performing optima. In all, we conclude our
aforementioned insights as below.

The choice of the input domain, covering both the gener-
ation and the representation of prompt candidates, affects
the identification of well-performing local optima.

Localized Zeroth-Order Prompt Optimization

Algorithm 1 The ZOPO Algorithm

1: Input: prompt generation model g(-), NLP embedding
model A(-), size of prompt candidates m, iteration num-
berT,setV =0, set Z =10

2: repeat

3: v < g([Ddemo)

4: z <+ h(v)

5: ifv ¢ VthenV < V| J{v}, Z + ZU{#}

6: until |V| =m

7: fort =1toT do

8: if 1 4,(2:) = 1 then do local exploration in Sec. 4.3
90 zi41 = Pz(2e + nepu(ze))

10: Query 241 to yield F'(z41)

: end for
1 2" ¢ argmax,, .
: Return h=1(2*)

—
—_

F(z)

— =
W N

4. The ZOPO Algorithm

Given the insights established in our Sec. 3, we then propose
our Localized Zeroth-Order Prompt Optimization (ZOPO)
algorithm (Algo. 1) for a better-performing as well as more
query-efficient prompt optimization. Specifically, following
our Insight II, we first develop a more general transforma-
tion for the input domain of prompt optimization (Sec. 4.1),
which can enjoy both the remarkable generation ability from
any type of LLMs (white/black-box) and the impressive rep-
resentation ability from many NLP models. Subsequent to
this transformation, inspired by our Insight I, we propose to
use zeroth-order optimization (ZOO) with a derived NTK
Gaussian process inspired from (Shu et al., 2023a) to find
well-performing local optima (Sec. 4.2). Lastly, we intro-
duce an uncertainty-informed local exploration technique to
refine the gradient estimation in our derived NTK Gaussian
process, aiming to enhance the performance of our ZOPO
algorithm in practice (Sec. 4.3).

4.1. A More General Input Domain Transformation

As introduced in our Sec. 3.2, the choice of input domain
(including the generation and representation of candidates)
significantly influences the ultimate performance in prompt
optimization: Black-box LLMs (e.g., ChatGPT) typically
enjoy an advanced generation ability and different embed-
ding models (e.g., SBERT) have varying representative ca-
pacity for prompt optimization. This naturally inspires us to
develop an improved domain transformation that can utilize
not only the remarkable generation ability from white/black-
box LLMs but also the impressive representation ability
from certain NLP models for our prompt optimization. To
achieve this, we propose to make use of the prompt v €)
generated from a LLM ¢(-) and subsequently transform it
into a continuous hidden representation z € Z C R? by

other sentence embedding model A (-) for the optimization,
i.e., v = h~1(z), where (1) can then be re-framed as

max ﬁ'(z) =E@yep [R (f([h_l(z); xl), y)] - @

Of note, our input domain transformation and (2) enjoy a
number of major advantages compared with previous works:
(a) Different from the direct optimization over the discrete
and complex language space v € 2 in (Guo et al., 2024)
where optimization algorithms in the numerical domain can
hardly be applied, our transformed input domain leads to
a dense numerical space of lower dimension and therefore
allows the usage of query-efficient optimization algorithms
for (2) (e.g., our Algo. 1). (b) Different from the potential
many-to-one mapping in the previous works (Chen et al.,
2023; Lin et al., 2023), i.e., the same discrete prompt v
may be generated by various continuous soft prompts s, we
develop a one-to-one mapping where one prompt generally
has a unique hidden representation z, which thus can help
eliminate the redundant queries during optimization and
ultimately lead to more query-efficient prompt optimization.
(c) Our domain transformation with an independent gen-
eration and representation process is capable of enjoying
the remarkable generation ability from any type of LLMs
(white/black-box) and the impressive representation ability
from many NLP models whereas previous works are highly
restricted to the LLMs, thus leading to a wider application.

Practical Implementations. Before the start of the op-
timization on (2), we usually generate numerous prompt
candidates V = {v} and their corresponding representa-
tions Z = {z} (line 2-6 of Algo. 1), where Z can be
produced by an embedding model h(-). We store (z,v)
in key-value pairs for constructing the one-to-one inverse
mapping h~!(-). Two practical methods are considered
here for prompt generation: (a) Feeding randomly sampled
soft prompts s € R? and a few demonstrations Dgemo into
a white-box LLM ¢(-). (b) Sampling the output distribu-
tion of a black-box LLM g¢(+) given a generation template
filled with Dgeno. Specifically, if we consider the generation
method in (a), z can be chosen as the last token embed-
ding from g(-) (Lin et al., 2023) or the soft prompt s (Chen
et al., 2023) when generating v. Here h(-) then represents a
mapping function from v to z.

4.2. Local Optimization with Derived NTK-GP

As local optima are more prevalent than global optimum
and can exhibit compelling performance for prompt opti-
mization tasks (Sec. 3.1), we propose to apply zeroth-order
optimization (ZOO), particularly gradient descent using
estimated gradients, for a well-performing local prompt op-
timization on our transformed input domain Z in Sec. 4.1.
Unfortunately, existing ZOO algorithms are typically query-

Localized Zeroth-Order Prompt Optimization

inefficient as many additional queries are required for gra-
dient estimation in every gradient descent update (Flaxman
et al., 2005; Nesterov & Spokoiny, 2017). In light of this,
we resort to the most recent ZoRD algorithm (Shu et al.,
2023a) where a localized surrogate model will be applied
for query-efficient gradient estimations.

According to (Shu et al., 2023a), given a well-specified
kernel function k(-, -) such that the function F' is sampled
from a Gaussian process F' ~ GP(0,k(-,-)) or alterna-
tively minggp(o,k(.,.)) MaX.ez |F(z) — G(2)] = 0 and
the observed value 7 of function F' follows the Gaussian
noise AV (0, 02), then conditioned on the history of function
queries Dy £ {(z,,7,)}._, of size t, VF follows a derived
Gaussian Process GP(u(+), X(-,-)) , i.e.,

VE ~GP (u:(), Z2() 4 3)

in which the mean function y(-) and the covariance func-
tion X2(, -) are defined as

1
pi(2) & kt(z:)—r (Kt + 021) T

S2(2,2) 2K (2,2) — ki(2)T (Ko +0%1) k().

4)
Here, ki(2) " 2 [0.k(z,2,)]t_; is a d x t-dimensional
matrix, K; = [k(z,, k:(zT/)]tT’T,:1 is a t x t-dimensional
matrix, 7, 2 [r,]’_, is a t-dimensional column vector, and
k" (2,2") £ 0.0./k(z,2') is a d x d-dimensional matrix. As
aresult, ;;(2) can be applied to estimate the gradient of the
black-box function F' at input z.

Of note, the underlying black-box function F here is highly
related to deep neural networks (DNN), more specifically
transformers. It naturally inspires us to apply the Neural
Tangent Kernel (NTK) (Jacot et al., 2018) theory for a bet-
ter approach to the aforementioned assumption of a well-
specified kernel function k(-, -). This is because it has been
widely proven that NTK is capable of well characterizing
the predictions of neural networks (Arora et al., 2019; Lee
et al., 2019; Shu et al., 2022a;b) and therefore should be
a better-specified kernel in the setting of prompt optimiza-
tion than the simple kernel (i.e., Matérn kernel) applied
in ZoRD (Shu et al., 2023a). Specifically, given a neural
network ¢ (0, z) parameterized by 6 € R?, we employ the
following empirical NTK as the kernel in (3) and (4):

k(Z,Z/) = VQ(]S(H,Z)TVQd)(Q,Z) 0—0 (5)
=Yo
where 6 is the initialized parameter of neural network ¢. By
incorporating (5) into (4), we realize the derived NTK-GP
for the gradient estimation in our prompt optimization.

Based on this derived NTK-GP, we finally apply standard
first-order optimization (e.g., stochastic gradient descent)
with projected gradients for our local prompt optimization.

Specifically, in every iteration ¢ of our Algo. 1, the next
promising prompt candidate will be selected via:

Vi1 = h ™ (Pz (2 + mepe(ze))) (6)

where Pz(2) £ argmin, 5 ||z — 2’| is the projection
function that projects the updated z € R? into domain Z
and 7 is learning rate.

Practical Implementations. Following the localized mod-
eling principle, only the neighbors of z in the query history
D, are used to calculate the gradient u.(z). As we do not
know the exact DNN for the underlying black-box function
F', we propose to approximate it using a small DNN, which
can work well thanks to the theoretically guaranteed uni-
versal approximation ability of DNNs (Kratsios & Papon,
2022; Shen et al., 2022). Our experiments in Sec. 5.4 will
further validate the effectiveness of this implementation.

4.3. Uncertainty-Informed Local Exploration

Though the derived NTK-GP allows us to estimate the gra-
dient at any z € Z according to (Shu et al., 2023a), we
introduce the following Prop. 4.1 to demonstrate that the
error in gradient estimation at a specific input z € Z implies
considerable variability, which is strongly correlated with
the number of historical queries that are effectively relevant
for the gradient estimation at the specific input z € Z. This
insight, in turn, motivates the creation of our uncertainty-
informed local exploration approach, as opposed to the adop-
tion of the virtual update mechanism described in (Shu et al.,
2023a) for our prompt optimization strategy.

Proposition 4.1. Assume k(z,2") < aand ||k (z,2)|| < K
for any 2,2 € Z. Let§ € (0,1) and N, 5 £ {7 €
{2} | 10:k(2, 2)|1> = BY for given input = € Z, the
Sfollowing holds with a probability of at least 1 — ¢,

B/d
lue(z) = VEE)I? < w |[£22)]| < wr — a+j//|zvﬁ|

where w = d + 2(v/d + 1)In(1/8) and $2(z) £ X?(z, 2).

The proof is given in Appx. A. Here, N, 3 denotes a set of
historical input queries that are effectively relevant for the
gradient estimation at z where 3 can be regarded as a mea-
sure of effective relevance. Prop. 4.1 shows that the gradient
estimation error of (3) at a specific input z € Z is bounded
by the norm of covariance matrix X7 (), which is related to
the query set N, g of effective relevance. Specifically, the
gradient estimation error at different z varies if the effective
relevance (3 and the number of relevant queries | N, | varies
with z. When f3 or | N, | becomes small during ZOO, the
gradient estimation error is likely increased, which will lead
to poor performance in practice. This likely will happen in
prompt optimization especially considering the sparsity of

Localized Zeroth-Order Prompt Optimization

prompt candidates w.r.t. the continuous domain R?. That
is, both the effective relevance 3 and the number of relevant
queries | N, g| can be small due to this sparsity. As a con-
sequence, additional input queries should be conducted to
increase both 3 and |V, g| for better optimization.

To this end, we propose an uncertainty-informed local ex-
ploration method that utilizes additional input queries from
local searches to reduce predictive uncertainty and hence
the gradient estimation error in derived NTK-GP according
to Prop. 4.1. Specifically, we propose the local exploration
condition informed by the local trajectory:

1 €A
L‘t(zt):{ 0 =g Al

where A; = {z¢|o(zt—i) > A, Vi € [0,£]} is the condition
that incorporates uncertainties and A, ¢ are the thresholds.
If this condition is met (i.e., 1 4,(z¢) = 1), we will query
the neighbors of z; in the local region to update our derived
NTK-GP, thus improving its gradient estimation.

Practical Implementations. If we define the set of the n
nearest neighbors of z; as Ay C Z s.t. |Ny| = nand Va €
Z\MN;, lla— 2| > maxpen, [|[b— 2¢||, we propose to query
each z € M, in the local region, whenever 1 4, (z;) = 1.

S. Experiments

In this section, we perform prompt optimization for Chat-
GPT (i.e., f(+)) and evaluate the performance of ZOPO
against several strong baselines, including APE (Zhou et al.,
2023), InstructZero (Chen et al., 2023), INSTINCT (Lin
et al., 2023), EvoPrompt (Guo et al., 2024), PromptBreeder
(PB) (Fernando et al., 2023), and OPRO (Yang et al., 2024),
on 30 instruction induction tasks (Honovich et al., 2023), 3
arithmetic reasoning tasks (Cobbe et al., 2021; Ling et al.,
2017; Patel et al., 2021), and the GLUE benchmark (Wang
et al., 2019). The task-specific prompt is optimized for each
task independently. We use the performance profile (Dolan
& Moré, 2002), defined in Appx. C.1, as the overall eval-
uation metric that measures the frequency (i.e., p(7)) of a
method within some distance (i.e., 7) from the highest accu-
racy achieved by any method. We defer more experimental
details to Appx. C.

5.1. Instruction Induction

Instruction induction tasks are commonly used to investigate
the prompt optimization performance by assessing LLM’s
zero-shot ICL ability in previous works (Chen et al., 2023;
Lin et al., 2023; Zhou et al., 2023). Although our ZOPO is a
general prompt optimization method given any prompt gen-
eration strategy, here we follow the same setting of prompt
generation from INSTINCT and InstructZero, only for fair
comparison. We also adopt the last token embedding from

Vicuna-13B as the prompt embedding (same as INSTINCT).
Here Vicuna-13B is used to generate task-specific prompts
by feeding random soft prompts. More experimental details
are deferred to Appx. C.3.

Superior performance of ZOPO. For better distinguisha-
bility, we follow the experimental setting from Lin et al.
(2023) to display the results on 20 challenging tasks re-
ported in Tab. 1, where ZOPO significantly outperforms
all baseline methods. Particularly, our ZOPO performs the
best in 14 out of the 20 tasks presented, while achieving
the best performance profile across different 7 (see Fig. 1)
compared with all baseline methods. For more results on
all 30 tasks, refer to Tab. 3 in Appx. D.2, where the ZOPO
consistently outperforms existing methods.

ZOPO has better query efficiency. To justify that our local
optimization method is more qguery-efficient, we compare
ZOPO against baselines at different query budget scales.
The results shown in Fig. 5 and Fig. 10 in Appx. D.2 illus-
trate that ZOPO generally achieves better performance with
the same number of queries compared with other baseline
methods and yields superior performance upon convergence.
We notice that ZOPO achieves lower validation accuracy
yet higher test accuracy on the taxonomy_animal task
than INSTINCT, which suggests ZOPO likely has better
generalization ability.

taxonomy animal cause_and_effect informal to formal

A 2| 0.6 == ﬂ'%
o RS p 8 n;
0.75 {gﬁﬁo 75 *Sﬁm M ®egy
< 0.50 1 v
b7 Ko 90 o o0 oo oq
S 0.25 1 0.50 0.4 1 02 6<0-9
40 80 120160200 40 80 120160200 40 80 120160200
. < @*9'3,8:8*5' v Y29 BEHEEE
3 0.75 RER g o AEEE 0.6 oo
< 75 ,7g SEER, o5 [y mg‘ﬁﬁ
= 0.50 1 ggg:ie 0090l 0.5/
> 0.25 |+ # 0.50
40 80 120160200 40 80 120160200 40 80 120160200
queries
—o— INSTINCT —a— EvoPrompt —v—OPRO
@~ InstructZero PB —v— ZOPO

Figure 5: Comparison of the query efficiency between
ZOPO and baselines. The first and second rows show the
test and validation accuracies.

Connecting ChatGPT with ZOPO. With our proposed
domain transformation, we empirically demonstrate that
ZOPO is capable of performing numerical optimization
on ChatGPT-generated prompts. Specifically, we use the
same generation method as in APE (Zhou et al., 2023) to
generate task-specific prompts (i.e., V) from ChatGPT, and
use a popular embedding model SBERT to provide the cor-
responding sentence embeddings (i.e., Z) for V. Then we
apply ZOPO to perform optimization over the given VV and

Localized Zeroth-Order Prompt Optimization

Table 1: Average test accuracy with standard error (3 runs) for different methods on 20 instruction induction tasks. We bold
the highest accuracy when comparing ZOPO with baselines, and use green cell to highlight the highest accuracy when

comparing ZOPOgpr with baselines.

Tasks APE InstructZero INSTINCT EvoPrompt PB OPRO ‘ Z0PO ZOPOgpr
antonyms 63.7114,2 82.7:&0,7 84.710,3 84.010,0 78.0:&3,6 79.012,2 85.213_2 84.011,4
auto_categorization 25.040.9 25.741.2 25.043.3 31.0410 24.043.7 24.0436 327419 27.045.0
auto,debugging 29.213,4 37.510,0 29.213,4 33.017'2 25.0:&040 37-510.0 41-7115.6 29~2i5.9
cause_and_effect 57-3:t8.9 81-3i1.1 58.7i8,7 84.0i13,9 82.7i10,0 82.7:&10‘0 94-7i3,7 80.0:&1442
common_concept 6.942.1 8.614.0 21.340.2 11.146.9 109434 8.6457 23.5.34 2.8406
diff 67.3:‘:26‘7 69.3192.0 IOO-OiO.O 27.3:‘:42'2 71v3i27.6 100.0:‘:0'0 100-010.0 100.0+9.0
informal _to_formal 57.4;‘;0,3 53.1i0A2 55.3:‘:vo 51.6:‘:0'9 54.23:4‘5 48.0:‘:0'8 61.3:‘:2'7 61.9i2_g
letters_list 100.0.00 59.0116.7 100.0-L9.0 100.0-9. o 99.340.9 99.710.5 100.0.90 100.049.0
negation 75311‘1 77.7114 81.7i()‘3 86.0;“),0 70~7i4A0 7331(,(, 86.3;&0,5 77712(,
object,counting 36.3i1A9 36.0i9A3 34.0170 55-0;t5,3 29~3i12 36-0157 52~3;t6.6 40-3i()‘5
odd_one_out 63-311_4 61-3i8.7 70.0116 10~0i0.0 66.7i0_9 47-3i22.2 32~0i11.3 68.7i2_5
orthography _starts_with 45.71148 50.74g7 66.7 5 7 15.043.4 59.815.7 33.5114.6 56.54126 71.040.0
rhymes 15~7i6.4 100.010,0 100.010,0 594713.1 45.0;&10_7 23.0114,7 100.010_0 61.012,3
second_word_letter 74.7120,3 43311&7 10.014,1 24-710.6 88.7:&10.4 86.7118,9 25.714.7 96.712,4
sentence_similarity 0.040.0 0.040.0 14.040 5 2.041.0 0.040.0 27438 7.6493 37.340.9
sum 67-3i2647 100-0i0.0 100'0i0.0 100-010.0 98.3i1‘7 100.0:*:0,0 100-0i0.0 100.0:*:0,0
synonyms 36.047.6 277193 30.714.9 40.314.0 36.3433 40.0443 433,09 44.7 441
taxonomy_animal 34.71034 T1.71g4 85.716.0 83.0446 29.71385 30.0x410 | 90.0.7 92.340.5
WOI‘d,SOI’ting 33.0;‘:3‘7 31-0i1144 51.3:‘:0‘3 48.0:‘:21‘3 45-7j:147 50-3:&:&8 60.0j:4.2 60.3i3_1
word_unscrambling 44.04139 55.041.7 63.3.0.7 51.3445 51.0462 61.3421 59.3198 58.341.9

Z, which we name ZOPOgpr. The result of ZOPOgpt
compared against other baselines is shown in Tab. 1, with
the corresponding performance profile shown in Fig. 9 in
App. D.2. Fig. 9 demonstrates that ZOPOgpr significantly
outperforms other baselines, achieving the best performance
in 10 out of the 20 tasks as shown in Tab. 1. Specifically,
ZOPOgpr achieves significantly higher accuracy on some
challenging tasks such as second.-word_letter and
sentence_similarity, which we attribute to the high-
quality of prompt candidates generated by ChatGPT. This
is also consistent with our discussion on the input domain
in Sec. 3.2. Here we could not draw a direct comparison
between ZOPO and ZOPOgpr, as the Vicuna last token
embedding is specifically associated with the prompt gener-
ation process in ZOPO and cannot be applied to ZOPOgpr.
However, using either ZOPO or ZOPOgpr is sufficient to
outperform baseline methods, which also provides the flex-
ibility of prompt optimization in practice. Future research
may consider employing better embeddings to further im-
prove the performance of ZOPOgpr.

5.2. Improving Chain-of-Thought Prompt

The hand-crafted prompt “Let’s think step by step” (Ko-
jima et al., 2022) (denoted as hand-craft) has been shown
effective in improving LLMs’ zero-shot multi-step reason-
ing performance. We show that ZOPO can find a better
chain-of-thought prompt across different arithmetic reason-
ing tasks, as evidenced in Tab. 2 in Appx. C.4. Particularly,
ZOPO produces a better prompt “Let’s find the solution
by using the given information.” on GSM8K (Cobbe et al.,

2021) compared to other baselines, improving the perfor-
mance from 71.8 (hand-craft) to 75.4. Refer to Appx. C.4
for more experimental details.

5.3. Ablation Study

Verifying the essence of input domain. To fairly vali-
date the importance of input domain on prompt generation,
we compare the optimization performances with different
prompts generated by Vicuna-13B and ChatGPT respec-
tively, using the same embedding model SBERT (i.e., h(-)).
The result is shown in Table. 7 in Appx. D.6, with the perfor-
mance profile in Fig. 11 suggesting that applying ZOPO on
ChatGPT-generated prompts is better. We ascribe its better
performance to ChatGPT’s remarkable prompt generation
ability. This confirms the importance of the input domain
on prompt generation in our Insight II.

Besides, different embeddings (i.e., Z) of the same prompt
candidates can potentially affect the function landscape as
shown in Fig. 4. Thus, we need to study the performance of
ZOPO using different embedding representations given the
same set of prompts. We consider four different embeddings
here: the last token embedding from Vicuna-13B, the Ope-
nAl embedding provided through an API (OpenAl, 2024b),
the SBERT embedding, and a randomly projected embed-
ding baseline. We observe from Tab. 8 in Appx. D.6 that,
although last token embedding is generally better, there are
certain tasks that OpenAl and SBERT embeddings perform
equally well or better. Besides, random embedding shows
a distinct lesser performance. This again highlights the im-

Localized Zeroth-Order Prompt Optimization

portance of using more structured embeddings for prompt
optimization and indicates the optimal choice of embedding
can be task-dependent. We discuss how we might find better
embeddings and further show the generality of ZOPO by
experimenting with more embedding models in Appx. D.6.

Study of NTK-GP and uncertainty-informed local explo-
ration. We conducted additional experiments to validate
the NTK-GP (Sec. 4.2) and uncertainty-informed local ex-
ploration (Sec. 4.3) components of ZOPO. We evaluated
the impact of these components by testing two variants of
the ZOPO algorithm: (a) replacing the NTK component
with Matérn kernel (as in ZoRD), and (b) removing the
uncertainty-informed local exploration. Comparisons of
these variants against the original ZOPO on instruction
induction tasks (see Tab. 11 in Appx. D.7) highlight the
significant contributions of these components to ZOPO’s
overall effectiveness.

Additional results. The results on the GLUE benchmark in
Appx. D.3 consistently validate the superior performance of
ZOPO. We also demonstrate that ZOPO can handle prompt
optimization in the few-shot ICL setting in Appx. D.4. We
conduct further experiments to show ZOPO generalize to
different combinations of prompt generation models and
black-box LLMs in Appx. D.5. We also perform an ablation
study to examine the impact of a larger size of the generated
prompt candidates (i.e., [V|) on ZOPO and ZOPOgpr in
Appx. D.8, which suggests a relatively small set of strong
prompt candidates (e.g., |V| = 500) is sufficient (compared
with size 1000 or 2000). Additionally, we provide more
demonstrations of our empirical findings in Sec. 3 on other
tasks in Appx. D.1.

5.4. Ablation Study

Verifying the essence of input domain. To fairly vali-
date the importance of input domain on prompt generation,
we compare the optimization performances with different
prompts generated by Vicuna-13B and ChatGPT respec-
tively, using the same embedding model SBERT (i.e., h(+)).
The result is shown in Table. 7 in Appx. D.6, with the perfor-
mance profile in Fig. 11 suggesting that applying ZOPO on
ChatGPT-generated prompts is better. We ascribe its better
performance to ChatGPT’s remarkable prompt generation
ability. This confirms the importance of the input domain
on prompt generation in our Insight II.

Besides, different embeddings (i.e., Z) of the same prompt
candidates can potentially affect the function landscape as
shown in Fig. 4. Thus, we need to study the performance
of ZOPO using different embedding representations given
the same set of prompts. We consider four different embed-
dings here: the last token embedding from Vicuna-13B, the
OpenAl embedding (OpenAl, 2024b), the SBERT embed-
ding, and a randomly projected embedding baseline. We

observe from Tab. 8 in Appx. D.6 that, although last to-
ken embedding is generally better, there are certain tasks
that OpenAl and SBERT embeddings perform equally well
or better. Besides, random embedding shows a distinct
lesser performance. This again highlights the importance
of using more structured embeddings for prompt optimiza-
tion and indicates the optimal choice of embedding can be
task-dependent. We discuss how we might find the best em-
bedding model and further show the generality of ZOPO by
experimenting with more embedding models in Appx. D.6.

Study of NTK-GP and uncertainty-informed local explo-
ration. We conducted additional experiments to validate
the NTK-GP (Sec. 4.2) and uncertainty-informed local ex-
ploration (Sec. 4.3) components of ZOPO. We evaluated
the impact of these components by testing two variants of
the ZOPO algorithm: (a) replacing the NTK component
with Matérn kernel (as in ZoRD), and (b) removing the
uncertainty-informed local exploration. Comparisons of
these variants against the original ZOPO on instruction
induction tasks (see Tab. 11 in Appx. D.7) highlight the
significant contributions of these components to ZOPO’s
overall effectiveness.

Additional results. The results on the GLUE benchmark
in Appx. D.3 consistently validate the superior performance
of ZOPO. We also demonstrate that ZOPO can handle
prompt optimization in the few-shot setting in Appx. D.4.
We conduct further experiments to show ZOPO general-
ize to different combinations of prompt generation models
and black-box LLMs in Appx. D.5. We also perform an
ablation study to examine the impact of a larger size of the
generated prompt candidates (i.e., |V|) in Appx. D.8, which
suggests a relatively small set of strong prompt candidates
(e.g., |V| = 500) is sufficient (compared with size 1000 or
2000). Additionally, we provide more demonstrations of
our empirical findings in Sec. 3 on other tasks in Appx. D.1.

6. Conclusion

In this work, we first provide a thorough empirical study
to understand the characteristics of the target function, and
then propose our ZOPO algorithm for prompt optimization.
ZOPO embraces a ZOO approach in pursuit of finding lo-
cal optima efficiently. Extensive experiments on instruction
induction tasks, reasoning tasks, and GLUE benchmark
demonstrate the efficacy of ZOPO, and ablation studies
also validate the design and generality of ZOPO. Besides,
we propose a domain transformation that connects powerful
LLMs with remarkable embedding models, which provides
the flexibility of choices of input domains in prompt opti-
mization. A limitation of this paper is the lack of principle
to select LLMs and embedding models in our input domain
transformation for better-performing prompt optimization,
which we aim to explore in future work.

Localized Zeroth-Order Prompt Optimization

References

Anil, R., Dai, A. M., Firat, O., Johnson, M., Lepikhin,
D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen,
Z., et al. Palm 2 technical report. arXiv preprint
arXiv:2305.10403, 2023.

Arora, S., Du, S. S., Hu, W, Li, Z., Salakhutdinov, R., and
Wang, R. On exact computation with an infinitely wide
neural net. In NeurIPS, pp. 8139-8148, 2019.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
In Proc. NeurIPS, volume 33, pp. 1877-1901, 2020.

Chen, L., Chen, J., Goldstein, T., Huang, H., and Zhou,
T. InstructZero: Efficient instruction optimization
for black-box large language models. arXiv preprint
arXiv:2306.03082, 2023.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168,
2021.

Dolan, E. D. and Moré, J. J. Benchmarking optimization
software with performance profiles. Mathematical pro-
gramming, 91:201-213, 2002.

Fernando, C., Banarse, D., Michalewski, H., Osindero,
S., and Rocktischel, T. Promptbreeder: Self-referential
self-improvement via prompt evolution. arXiv preprint
arXiv:2309.16797, 2023.

Flaxman, A., Kalai, A. T., and McMahan, H. B. Online con-
vex optimization in the bandit setting: Gradient descent
without a gradient. In Proc. SODA, 2005.

Guo, Q., Wang, R., Guo, J., Li, B., Song, K., Tan, X., Liu,
G., Bian, J., and Yang, Y. Connecting large language mod-
els with evolutionary algorithms yields powerful prompt
optimizers. In ICLR, 2024.

Honovich, O., Shaham, U., Bowman, S. R., and Levy, O.
Instruction induction: From few examples to natural lan-
guage task descriptions. In Proc. ACL, pp. 1935-1952,
2023.

Jacot, A., Hongler, C., and Gabriel, F. Neural Tangent Ker-
nel: Convergence and generalization in neural networks.
In Proc. NeurlPS, pp. 8580-8589, 2018.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa, Y.
Large language models are zero-shot reasoners. In Proc.
NeurlPS, volume 35, pp. 22199-22213, 2022.

Kratsios, A. and Papon, L. Universal approximation the-
orems for differentiable geometric deep learning. The
Journal of Machine Learning Research, 23(1):8896-8968,
2022.

Lee, J., Xiao, L., Schoenholz, S. S., Bahri, Y., Novak, R.,
Sohl-Dickstein, J., and Pennington, J. Wide neural net-
works of any depth evolve as linear models under gradient
descent. In Proc. NeurIPS, pp. 85728583, 2019.

Lin, X., Wu, Z., Dai, Z., Hu, W., Shu, Y., Ng, S.-K_, Jaillet,
P., and Low, B. K. H. Use Your INSTINCT: INSTruction
optimization usIng Neural bandits Coupled with Trans-
formers. In NeurlPS 2023 Workshop on Instruction Tun-
ing and Instruction Following, 2023.

Ling, W., Yogatama, D., Dyer, C., and Blunsom, P. Pro-
gram induction by rationale generation: Learning to solve
and explain algebraic word problems. In Proc. Annual
Meeting of the ACL, pp. 158-167, 2017.

Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M.,
Hajishirzi, H., and Zettlemoyer, L. Rethinking the role of
demonstrations: What makes in-context learning work?
In Proc. EMNLP, pp. 11048-11064, 2022.

Mishra, S., Khashabi, D., Baral, C., Choi, Y., and Hajishirzi,
H. Reframing instructional prompts to gptk’s language.
ACL Findings, pp. 589612, 2021.

Moriconi, R., Deisenroth, M. P.,, and Sesh Kumar, K.
High-dimensional bayesian optimization using low-
dimensional feature spaces. Machine Learning, 109:
1925-1943, 2020.

Nesterov, Y. E. and Spokoiny, V. G. Random gradient-free
minimization of convex functions. Found. Comput. Math.,
17(2):527-566, 2017.

OpenAl. GPT-4 technical report.
arXiv:2303.08774, 2023.

arXiv preprint

OpenAl. ChatGPT. https://openai.com/blog/chatgpt, 2024a.

OpenAl. Documentation of OpenAl’s text embeddings.
https://platform.openai.com/docs/guides/embeddings,
2024b.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K.,
Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller,
L., Simens, M., Askell, A., Welinder, P., Christiano, P.,
Leike, J., and Lowe, R. Training language models to
follow instructions with human feedback. arXiv preprint
arXiv:2203.02155, 2022.

Patel, A., Bhattamishra, S., and Goyal, N. Are nlp models
really able to solve simple math word problems? In Proc.
NAACL, pp. 2080-2094, 2021.

Localized Zeroth-Order Prompt Optimization

Reimers, N. and Gurevych, I. Sentence-BERT: Sentence em-
beddings using siamese bert-networks. In Proc. EMNLP-
IJCNLP, pp. 3982-3992, 2019.

Reynolds, L. and McDonell, K. Prompt programming for
large language models: Beyond the few-shot paradigm.
In Extended Abstracts of the 2021 CHI Conference on
Human Factors in Computing Systems, pp. 1-7, 2021.

Shen, Z., Yang, H., and Zhang, S. Optimal approximation
rate of relu networks in terms of width and depth. Journal
de Mathématiques Pures et Appliquées, 157:101-135,
2022.

Shu, Y., Cai, S., Dai, Z., Ooi, B. C., and Low, B. K. H.
NASI: Label- and data-agnostic neural architecture search
at initialization. In Proc. ICLR, 2022a.

Shu, Y., Dai, Z., Wu, Z., and Low, B. K. H. Unifying and
boosting gradient-based training-free neural architecture
search. In Proc. NeurlPS, pp. 33001-33015, 2022b.

Shu, Y., Dai, Z., Sng, W., Verma, A., Jaillet, P., and Low, B.
K. H. Zeroth-order optimization with trajectory-informed
derivative estimation. In Proc. ICLR, 2023a.

Shu, Y., Lin, X., Dai, Z., and Low, B. K. H. Federated zeroth-
order optimization using trajectory-informed surrogate
gradients. arXiv preprint arXiv:2308.04077, 2023b.

Wang, A., Singh, A., Michael, J., Hill, F,, Levy, O., and
Bowman, S. R. GLUE: A multi-task benchmark and
analysis platform for natural language understanding. In
Proc. ICLR, 2019.

Xu, C., Sun, Q., Zheng, K., Geng, X., Zhao, P.,, Feng, J.,
Tao, C., Lin, Q., and Jiang, D. WizardLM: Empower-
ing large pre-trained language models to follow complex
instructions. In Proc. ICLR, 2024.

Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D.,
and Chen, X. Large language models as optimizers. In
Proc. ICLR, 2024.

Zhou, Y., Muresanu, A. 1., Han, Z., Paster, K., Pitis, S.,
Chan, H., and Ba, J. Large language models are human-
level prompt engineers. In Proc. ICLR, 2023.

10

Localized Zeroth-Order Prompt Optimization

A. Proofs
A.1. Proof of Prop. 4.1

We follow the ideas in (Shu et al., 2023a;b) to prove our Prop. 4.1. To begin with, we first introduce the following lemmas
adapted from (Shu et al., 2023a):

Lemma A.1 (Thm. 1 in (Shu et al., 2023a)). Let§ € (0,1) and w 2 d + 2(v/d + 1) In(1/6). Forany z € Z and any t > 1,
the following holds with probability of at least 1 — §,

[VF @)~ m)| <wlsie

Lemma A.2 (Lemma B.4 in (Shu et al., 2023a)). Forany z € Z and any t > 1, the following holds

=@ < [[F @) -

Proof of Prop. 4.1. Recall that the covariance function (refer to (4)) of our derived NTK-GP conditioned on the history of
function queries Dy = {(z,,7,)}t_, of size t will be

2 (2) = K (2,2) = k(=) (Ko +0%1) " y(2) ™

Forany c € Rand z € Z, define N, 5 = {2’ € {2, }L_, | |0.k(z, 2)||? > B} with |N. | = N, the following then holds
on the set IV, g:

VE

||k:N(z)TkN(z)|| tr (kN(z)TkN(z))

—~
S
~

tr (k:N(z)k:N(z)T)

®)

—
(g}
~

Ul Ul Q-

WE

182k (z, 2)|1?

3

3
Il
—

IVE
|z

where (a) comes from the fact the maximum eigenvalue of a matrix is always larger or equal to its averaged eigenvalues, ()
is based on tr(AB) = tr(BA), (¢) is from the definition of kx (%), and (d) results from the definition of N, gs.

Meanwhile,
(a) _
22(2) < K'(2,2) — kn(2)T (Ky +0°1) " kn(2)

(®) _
< KL= (Amax (Kn) +02) " kn(2) Tk (2)

© 1 B ()T (2) ©)
Naoa + o2

(d) NB/d

< (**‘ Na+02> I

where (a) comes from Lemma A.2, (b) is based on the assumption of ||k”(z, z)|| < & and the definition of maximum
eigenvalue. In addition, (c) comes from Amax(Kn) < Nmax. .en, , k(2,2') (i.e., the Gershgorin theorem) and the
assumption that k(z, 2’) < « for any z, 2’ € Z, and (d) is based on the results in (8).

Finally, by introducing the results above into Lemma A.1, we conclude the proof.

11

Localized Zeroth-Order Prompt Optimization

B. Broader Impacts

As LLMs have recently received great popularity in human society and their various applications have significantly affected
many aspects of society, it is important to make sure the technology related to LLMs is helpful and harmless. Our work
focuses on improving the performance of black-box LLMs by automatically optimizing the prompts, which can significantly
save human efforts in prompt engineering. However, such work can be potentially used for malicious purposes. When an
adversarial user defines a harmful objective function, our work could be exploited to output harmful prompts that lead to
negative societal impacts. Therefore, we urge the black-box LLM API providers to impose a security check for the prompt
that prevents users from querying for malicious purposes.

C. Details of Experimental Settings
C.1. Evaluation Metrics

Following previous works (Zhou et al., 2023; Lin et al., 2023), we use the F1 score for tasks including common_concept
and informal_to_formal; we use the exact set matching for orthography_starts_with and taxonomy_animal; we use the set
containing for synonyms; we use the exact matching metric for the rest of instruction induction tasks; and we use the
accuracy metric for the arithmetic reasoning datasets.

As the number of datasets is tremendous, we use the performance profile (Dolan & Moré, 2002) as the evaluation metric that
measures the frequency (i.e., p(7)) of a method within some distance (i.e., 7) from the optimality achieved by any method,

defined below)

pm(T):ﬁHWEHZT;_TW,mSTH (10)
where 11 is the set of all tasks, ., is the accuracy of method m on task 7, and r: = max{ry , : ¥m € M} is the best
performance achieved by any method in M on task 7. Specifically, p(0) represents the number of tasks where a method
achieves the best performance. Accordingly, we use both p(0) and p(5) as the evaluation indicators in our tables to report

the results.

C.2. Hyperparameters

For all experiments using ZOPO in this work, we set the learning rate to 0.01, the uncertainty thresholds A, £ to 0.1 and 5
respectively, and the number n of nearest neighbors to query in local exploration (Section 4.3) to 10. A neural network
with 2 fully connected layers of size 32 and ReLU activation functions is used in NTK-GP as the kernel. We use 20 nearest
neighbors to fit the NTK-GP.

C.3. Instruction induction

In this subsection, we describe the experimental details of the instruction induction tasks.

C.3.1. EXPERIMENTAL SPECIFICATIONS

The same data partition and evaluation process as in previous works (Zhou et al., 2023; Chen et al., 2023; Lin et al.,
2023) is adopted in this work, where, for each task, we optimize the generated prompt on a training set D, and report the
best-performing prompt’s inference accuracy on a held-out fest set Dp. Specifically, 5 examples are sampled from the
training set as the demonstrations (i.e., Dgemo) for instruction induction, and another sampled 20 examples from the training
set are used as the validation set Dy to evaluate the objective function value as in Equation (1). The total query budget for
each instruction induction task is fixed at 165 for all methods.

C.3.2. IMPLEMENTATION DETAILS

To comprehensively compare with the baseline methods, we use GPT-3.5-turbo-0301 (supported by OpenAl API) as the
black-box model for prompt evaluation and Vicuna-13B-v1.1 as the white-box LLM (i.e., g(-)) to generate the task-specific
prompts by feeding g(-) with randomly sampled soft prompts and Dgepmo, Which is the same as InstructZero and INSTINCT.
In the experiments, we only generate 500 prompt candidates for ZOPO (i.e., [V| = 500). Similarly, we also use 40 out of
the 165 queries for random initialization of our optimization method, which could serve as the only global exploration of the
function landscape at the beginning of local optimization.

12

Localized Zeroth-Order Prompt Optimization

To tackle the high dimensionality of soft prompt (i.e., 5120 for one token embedding as in Vicuna-13B) in optimization,
InstructZero and INSTINCT use random projection to project the soft prompt into a much smaller intrinsic dimension
(e.g., 100). This intrinsic dimension may empirically affect the quality of generated prompts, as shown in Lin et al. (2023).
Therefore, tuning the intrinsic dimension and the soft token length could lead to better performance. Previous methods
(i.e., InstructZero and INSTINCT) perform a grid search over the intrinsic dimension in {50, 100, 200} and the soft token
length {3, 5, 10} on the validation set and report the accuracy on a held-out test set using the best prompt found using the
validation set. We also adopt this technique in ZOPO here for fair comparison. The soft prompt will be concatenated with
the tokenized embedding of the prompt generation template to generate task-specific prompt from Vicuna-13B. The prompt
generation template and the prompt evaluation template are shown below in the bounding boxes.

Prompt Generation Template (Soft Prompt)

Input: (INPUT)
Output: (OUTPUT)
Input: (INPUT)
Output: (OUTPUT)

Evaluation Template

Input: (INPUT) prompt: (prompt (i.e.,v))
Output: (OUTPUT) Input: (TEST INPUT)
Input: (INPUT) Output:

Output: (OUTPUT)
Input: (INPUT)

Output: (OUTPUT)
The prompt was to?

We directly use the reported results of APE, IntructZero, and INSTINCT from Lin et al. (2023) for comparison, and we
report the results of EvoPrompt with our re-implementation. For a fair comparison, we also use Vicuna-13B for generating
the initial prompt population (of size 20) for EvoPrompt, and we use GPT-3.5 turbo to perform the genetic algorithm in
EvoPrompt and generate its new prompts. Using GPT-3.5 turbo to generate new prompts will help improve EvoPrompt’s
performance, as compared with using the relatively smaller model Vicuna-13B.

C.3.3. EXPERIMENTAL DETAILS ON QUERY EFFICIENCY

To facilitate a more comprehensive comparison of different prompt optimization methods at different query budget scales,
we set the maximum query budget to 200, and report the test accuracy of the best prompt found on the validation set with
each incremental query budget, as shown in Fig. 5 in the main text. We report the mean accuracy and standard error, using
3 runs with different random seeds. For InstructZero, INSTINCT, and ZOPO, we directly fix the intrinsic dimension for
generating the soft prompt as 10 and the number of soft tokens as 5, without using the validation set to perform a grid search
over the intrinsic dimension and the number of soft tokens.

13

Localized Zeroth-Order Prompt Optimization

ChatGPT Prompt Generation Template

I gave a friend an prompt. Based on the prompt they produced the
following input-output pairs:

Input: (INPUT)
Output: (OUTPUT)
Input: (INPUT)
Output: (OUTPUT)
Input: (INPUT)
Output: (OUTPUT)
Input: (INPUT)
Output: (OUTPUT)
Input: (INPUT)
Output: (OUTPUT)

The prompt was to

C.3.4. EXPERIMENTAL DETAILS ON ZOPOgpr

For our experiment on ZOPOgpr in the main text, we apply ZOPO on ChatGPT (i.e., GPT-3.5 turbo) generated prompts.
We follow the generation template from APE (Zhou et al., 2023), as shown above, to generate task-specific prompts from
ChatGPT. To generate various prompts using the APE method, we need to sample different sets of demonstrations (i.e.,
Dgemo) from the training set, and, for each Dyeno, We also need to randomly sample from the ChatGPT’s response by setting
a high temperature (e.g., 0.95). To maintain the same size of prompt candidates as in the previous experimental setting of
ZOPO, we also generate 500 prompt candidates for each instruction induction task. To harness the representation power of
existing embedding models, we adopt the sentence transformer model (Reimers & Gurevych, 2019) “all-mpnet-base-v2”
from HuggingFace to generate the high-dimensional sentence embedding for each generated prompt from ChatGPT.

C.4. Improving Chain-of-Thought Prompt

To improve the zero-shot chain-of-thought prompt performance on arithmetic reasoning tasks, we make use of the LLM’s
induction ability and enable LLMs to generate different chain-of-thought prompt candidates by providing some exam-
ple chain-of-thought prompts. We consider the evaluation of our method on three arithmetic reasoning datasets (i.e.,
GSMB8K(Cobbe et al., 2021), AQUARAT(Ling et al., 2017), SVAMP(Patel et al., 2021)). Similar as APE (Zhou et al., 2023),
we use all data from the test set for GSM8K and AQUARAT, and we sample 400 data points from AQUARAT’s test set to
evaluate the corresponding test accuracy. For all these three datasets, we sample 200 data points from their training dataset
respectively as their individual validation dataset.

We follow the experimental setting of Lin et al. (2023): use the soft prompt to generate prompts from Vicuna-13B with
a fixed intrinsic dimension of 1000 and search the soft token length {3, 5, 10} on the validation set. The corresponding
prompt generation template is given below.

14

Localized Zeroth-Order Prompt Optimization

Prompt Generation Template for Chain-of-Thought

I have some prompt examples for solving school math problems.

prompt:
Let’s figure it out!

prompt:
Let’s solve the problem.

prompt:
Let’s think step by step.

Write your new prompt that is different from the examples
to solve the school math problems.

prompt:

15

Localized Zeroth-Order Prompt Optimization

See Tab. 2 below for the performances of our ZOPO against other baselines on the three arithmetic reasoning tasks. Our
method achieves a better/comparable performance compared with other baselines.

Table 2: The performance of the best zero-shot CoT prompt found by different methods on three reasoning tasks.

Method Task Best prompt Score
hand-craft AQUA-RAT Let’s think step by step. 52.362
InstructZero AQUA-RAT Let’s break down the problem. 54.331
INSTINCT AQUA-RAT Ihave a new solution. 54.724
EvoPrompt AQUA-RAT Let’s utilize the substitution method to find a solution, then try it out together. 52.756
ZOPO AQUA-RAT Let’s find the solution by breaking down the problem. 54.724
hand-craft SVAMP Let’s think step by step. 76.25
InstructZero SVAMP Let’s use the equation. 79.5
INSTINCT SVAMP Let’s use our brains. 81.0
EvoPrompt SVAMP Let’s break down the issue at hand using promptal methods to gain a thorough 79.5
analysis.

ZOPO SVAMP Let’s use logic to solve the problem. 81.0
hand-craft GSM8K Let’s think step by step. 71.797
InstructZero GSMSK Let’s use the prompt to solve the problem. 74.299
INSTINCT GSMSK Let’s think about it. 74.526
EvoPrompt GSMSK Let’s attempt to analyze the situation and give it a shot. 74.526
ZOPO GSMEK Let’s find the solution by using the given information. 75.360

C.5. Details on Compute Resources

All experiments are conducted on a server with Intel(R) Xeon(R) CPU and NVIDIA H100 GPUs. We mainly perform the
prompt optimization for the GPT-3.5-Turbo model (for which OpenAl charges US0.5 per 1M tokens for input and US1.5
per 1M tokens for output). The time of execution of our algorithm on each prompt optimization task (e.g., any task in the 30
instruction induction tasks) normally takes less than 20 minutes, where the actual time would depend on OpenAl API’s
response speed.

16

Localized Zeroth-Order Prompt Optimization

D. Additional Results

D.1. Extended Empirical Study on Function Landscape

In Section 3, we have empirically studied the landscape of the target function and incorporated the findings into the
design of ZOPO. In the main text, we have demonstrated the results on three instruction induction datasets, including
taxonomy_animal, cause_and_effect, and informal_to_formal. Here we use more datasets to validate our findings. Due to the
large size of instruction induction tasks (i.e., 30 tasks in total) and the query budget limit (i.e., it incurs monetary costs when
we query the objective function ChatGPT to evaluate the prompt on the given task), we only experiment with few more
randomly chosen tasks here to further validate our findings.

D.1.1. LocAL OPTIMA VS. GLOBAL OPTIMUM

To validate our local optimization design, we study the local optima in the function landscape, by using a 3-dimensional
(reduced by t-SNE) scatter plot to represent the prompt embeddings (last token embeddings from Vicuna-13B). Here
we provide the empirical results on more instruction induction tasks, shown in Fig. 6. The heatmap color represents the
validation accuracy of the corresponding prompt. This allows us to interpret the local optima visually, and we conclude that
many local optima can already exhibit compelling performance.

word_sorting sentiment synonyms singular_to_plural common_concept
1.0
Sl
: Wiwis !
6 o RN G 1
5 5 -"“”:‘(' o e I 0.5
~ P~ vl &.‘ ..‘v *-® & /
. > °
~-L =, \\ &
0.0

Figure 6: The validation accuracy of 300 randomly sampled prompts with the last token representation on various tasks.

D.1.2. ESSENSE OF INPUT DOMAIN

Prompt Generation To study the prompt quality of different prompt generation methods, we compare the prompts
generated from Vicuna-13B and those generated from ChatGPT (i.e., GPT 3.5 turbo). For Vicuna-13B, we use the
randomly sampled soft prompts with a fixed intrinsic dimension of 200 and a number token length of 10. For ChatGPT, we
randomly sample prompts from the ChatGPT’s response by using the APE generation template filled with random example
demonstrations. For each generation method on each task, we generate 300 random prompts, and we query the target
function with all prompts. We show the validation accuracy distribution of prompts generated by the two methods on four
more (due to budget constraints) tasks here in Fig. 7. It demonstrates that ChatGPT has a larger probability of generating
prompts with higher accuracy, also with a larger mean. The result shows that ChatGPT-generated prompts are generally
better, further validating our finding of the importance of the input domain.

auto_categorization negation singular to plural synonyms
- - — 10 — —

2
g ¥ [HI
A : S
z N
:'z.: /-r)‘\/\
3 i\
o - LIRS
E 1 T
0.5 . 0.5
Validation Accuracy
—-= Vicuna-13B —— ChatGPT

Figure 7: The estimated accuracy distribution of prompts generated by Vicuna-13B or ChatGPT on various instruction
induction tasks, where the vertical dotted line indicates the mean performance.

17

Localized Zeroth-Order Prompt Optimization

Prompt Embedding The complexity of modeling the target function depends on its function landscape defined by the
embedding domain. To empirically analyze the black-box target function, we show the accuracy landscape of different tasks,
where we reduce the dimension of the prompt embedding (we use the last token embedding of Vicuna-13B here) to 2 by
using t-SNE. The loss landscape is visualized in the surface plot shown in Fig. 8. We observe that different optimization
methods achieve similar performances on tasks like sentiment and singular_to_plural, as they have many good local optima.
For other challenging tasks with complex function landscapes, the good local optima are less, but our methods can still
achieve superior performance. This validates our insight that there are many good local optima in the embedding space.

word_sorting sentiment synonyms singular_to_plural common_concept
1.0

0.0

@

Figure 8: The function surfaces on various tasks using the last token embedding from Vicuna-13B as the representation for
prompt candidates that are generated by Vicuna-13B, with contour plots shown below.

18

Localized Zeroth-Order Prompt Optimization

D.2. Comparison on Instruction Induction Tasks

In Section 5.1 of the main text, we compared our methods with other baselines on 20 challenging instruction induction tasks.
Here we provide the full results on 30 instruction induction tasks in Section 5.1.

Table 3: Average test accuracy with standard error (3 runs) for the best prompt found by different methods for all 30
instruction induction tasks.

Tasks APE InstructZero INSTINCT EvoPrompt PB OPRO Z0ro ZOPOgpr
active_to_passive 100.0.00 99.7103 97.042.5 100.09 o 99.040.8 100.0409 100.04.00 100.0.
antonyms 6347:&14‘2 82.710,7 84.710.3 84.0:&0'0 78.013,6 79.012'2 85.213,2 84.011.4
auto,categorization 25.040.9 25.741.0 25.043.3 31.0410 24.043.7 24.0435¢ 3274119 27.0450
auto_debugging 292434 37.5400 29.2434 33.047.2 25.040.0 375400 4L71156 292459
cause_and_effect 57~3i8,9 81.331141 58~7i8.7 84~0i13A9 82.7:“00 82~7i10A0 94-7i3A7 80.01142
common,concept 6,9i2‘1 8.6i4_0 21-3i0.2 11.1:{:6'9 10.9:‘:3‘4 8,6i5<7 23.5:‘:3‘4 2.8:‘:0‘6
diff 6731267 69.312202 1000100 2731422 71.31276 1000109 100.0.00 100.0-¢0
first_word_letter 100.0:&0,0 100.010‘0 93.015.3 100.0:&0,0 100.010‘0 100.0:&0,0 100.01040 100.0:&0.0
informal _to_formal 574103 53.1410.2 55.340.0 51.640.9 54.2 145 48.040.8 61.34207 619459
larger_animal 89.740.5 90.044.1 93.710.3 87.343.1 73.3191 90.714.1 923409 927410
letters_list 100.0.00 59.0116.7 100.0¢ o 100.0 o 99.310.9 99.7105 100.0.0 100.09
negation 753411 T7.7+1.4 81.710.3 86.040.0 70.7140 73.316.6 86.3. (5 1. T2
num_to_verbal 9947:{:0'3 100.0:‘:0‘0 100.0:{:0'0 100.0:{:0,0 98.311_7 100.0:{:0,0 100.0:‘:0‘0 100.0:{:0'0
object_counting 36.341.9 36.049.3 34.047¢ 55.0453 29.341.0 36.045.7 52.346.6 40.340.5
odd_one_out 63.3i1_4 61-3i8.7 70-0i1.6 IO.OiU_O 66.7i0_9 47~3i22.2 32-0;t11.3 68.7i2_5
orthography_starts_with 45.74148 50.74g.7 66.719.7 15.043.4 59.845.7 33.54146 56.51126 710490
periodic_elements 92. 7199 86.7+6.1 92. 7107 98.041.2 953105 933109 100090 94.7131
rhymes 157164 100.010.0 1000100 59.7431 45.0410.7 23.01147 1000100 61.0123
second_word _letter T4.T1003 43.31187 10.044.1 247106 88.7+10.4 86.T1189 25.T447 96.7 124
sentence,similarity 0.0i(),o O~0:t0.0 14.010.5 2.01140 O~O:t0.0 2-713,8 76;&95 37.31(]'9
sentiment 913414 877424 89.741.4 93.040.0 81.746.0 57.24399 935105 89.3491
singular,to,plural 100.0i()‘0 98.7:&1‘1 100.0i()‘0 100.0i()‘0 98.0:&0‘8 100.0i0‘0 100.0i()‘0 100-0i0,0
sum 67~3j:2647 100.0:‘:0‘0 100-0j:0.0 100-0j:0.0 98.3:‘:1‘7 100-0i0.0 100.0:‘:0‘0 100.Oi0,0
synonyms 36.0176 27.7103 30.714.9 40.314.0 36.3+33 40.0443 433109 44Ti4:
taxonomy,animal 34.7:&23‘4 71718.4 85.715.0 83.0:&4'6 297138.5 30.0141,0 90.017,1 92.310‘5
translation_en-de 84.040.5 82.340.1 84.040.5 85.040.0 71.34119 79.7440 85.3.05 84.7+0.6
translation_en-es 87.040.0 87.3101 88.0.¢¢ 82.347.4 81.741.7 85.342.4 85.342.1 86.34+9.5
translation_en-fr 88.710.3 87.710.0 83.042.1 80.7145 76.718.0 86.042.2 91.09 86.712.1
Word,sorting 33~0j:3.7 31.0:‘:11'4 51-3i0.3 48.0i21‘3 45.7:‘:1‘7 50-3i5.8 60.0:‘:4.2 60.3i3‘1
Word,unscrambling 44.0:‘:13‘9 59-0:}:5_3 63.3:‘:0.7 51.3j:4,5 51~0:t642 61.3:‘:2'1 59-312.8 58.3:‘:1‘9
best-performing tasks 4 4 10 7 1 6 18 15
performance profile p(5) 0.37 0.43 0.57 0.47 0.27 0.43 0.87 0.73

19

Localized Zeroth-Order Prompt Optimization

The performance profile of ZOPOgpr compared against other baseline methods is shown in Fig. 9. This corresponds to the

result shown in Tab. 1.

0.5«

0.0 1

Pptton

APE

InstructZero
INSTINCT
EvoPrompt

PB

OPRO
ZOPOgpr(ours)

Figure 9: The performance profile of ZOPOgpr compared against other baseline methods on 20 instruction induction tasks

We also provide additional results on other instruction induction tasks to compare ZOPO against baseline methods in terms

of query efficiency. The result is shown in Fig. 10.

word unscrambling

common_concept

word_sorting auto_debugging synonyms
g 0.5 1% ' E’,ﬁ&
< #-@6%‘33 0.4 v\:‘m* ! 0.50
b7 ., 609
6-0-6.6-0-0) gm e
= G‘G-e‘ 02 V—g’v 0,25 g
0.0 4+—F—7—7 . ———T— T
40 80 120160200 40 80 120160200 40 80 120 160 200 40 80 120160200 40 80 120160200
0.75 5 06
y (v — 1 ’ BRE . p¥vewwy 03 =8
5 gheesd 0.50 28 & i) 4 A
< 0.50 ﬁE-EErErE'E' 0.6 ¢+ 0.2
— 0.4 AAA a©©009
[©006060
S 025 poeceed® Fvwy| (o500 05 014 _ gmme ¥y
40 80 120160200 40 80 120160200 40 80 120160200 40 80 120160200 40 80 120160200
queries
¢— PB —v— OPRO —%— ZOPO

—0— INSTINCT —{— InstructZero

—A— EvoPrompt

Figure 10: Comparison of the query efficiency between ZOPO and other existing baselines on various instruction induction

tasks.

20

Localized Zeroth-Order Prompt Optimization

D.3. Results on the GLUE Benchmark

We here follow the same experimental setting as our previous experiments on the instruction induction tasks and apply the
prompt optimization on the GLUE benchmark, which consists of several more traditional natural language processing tasks.
The result in Tab. 4 shows that our method ZOPO is still able to achieve advanced performance when compared with other
baselines.

Table 4: Test accuracy achieved by different methods on GLUE tasks.

Tasks APE InstructZero INSTINCT EvoPrompt PromptBeeder OPRO ZOPO
CoLA 82.0 79.0 72.0 65.0 54.0 0.0 65.0
MNLI-m 720 70.0 66.0 72.0 69.0 71.0 70.0
MNLI-mm 71.0 40.0 66.0 64.0 56.0 52.0 73.0
MRPC 66.0 76.0 71.0 71.0 28.0 0.0 76.0
QNLI 80.0 83.0 78.0 77.0 83.0 84.0 83.0
QQP 78.0 79.0 83.0 43.0 72.0 75.0 83.0
RTE 83.0 86.0 74.0 76.0 20.0 79.0 83.0
SST-2 92.0 97.0 93.0 93.0 91.0 85.0 92.0
best-performing tasks 2 3 1 1 0 1 3
performance profile p(5) 0.875 0.875 0.375 0.375 0.25 0.25 0.875

D.4. Few-shot Setting

Our algorithm ZOPO is in fact able to handle the few-shot settings as evidenced by the results in Tab. 5 below. Interestingly,
the performance of our ZOPO is even better in a few-shot setting, which is reasonable since in-context exemplars will help
the black-box models better understand the context and the output format of the task, and consequently will be able to lead
to a better performance than the zero-shot setting. In this few-shot experiment, we provide exemplars for prompt evaluation
and also report the test accuracy of the best prompt with exemplars provided.

21

Localized Zeroth-Order Prompt Optimization

Table 5: Test accuracy achieved by ZOPO under zero-shot and few-shot settings on instruction induction tasks.

Tasks Zero-shot Few-shot (5)
antonyms 81.0 86.0
auto_categorization 38.0 34.0
auto_debugging 37.5 50.0
cause_and_effect 92.0 92.0
common_concept 19.6 10.2
diff 97.0 99.0
informal_to_formal 63.4 46.9
letters_list 100.0 100.0
negation 86.0 90.0
object_counting 57.0 55.0
odd_one_out 6.0 36.0
orthography _starts_with ~ 44.0 67.0
rhymes 98.0 65.0
second_word_letter 16.0 65.0
sentence_similarity 18.0 27.0
sum 100.0 100.0
synonyms 44.0 25.0
taxonomy_animal 97.0 62.0
word_sorting 57.0 62.0
word_unscrambling 61.0 62.0
best-performing tasks 10 13

D.5. Results of Different Combinations of Generation and Evaluation Models

We use further experiments to show that our method can generalize to different prompt generation models and different
black-box API LLMs for prompt evaluation (as f(-)). Specifically, we here consider two open-sourced models: Vicuna-13B
and WizardLM-13B (Xu et al., 2024) for the prompt generation and we use their corresponding last token embeddings in
our algorithm. For the black-box API LLMs, we consider GPT-3.5 (the one considered in our main text), PaALM?2 (Anil
et al., 2023), and GPT-4. In total, we have six combinations. Tab. 6 shows the results of different combinations on the
instruction induction tasks. The results show that our ZOPO performs well on all these black-box API models (with GPT-4
performing the best on most tasks), which further verifies the generality of our method when a different black-box LLM f(-)
is considered in the objective function in Eq. 1. We also notice that the Vicuna model generally performs better than the
WizardLM model, which suggests it is more suitable for prompt generation and representation when applying our method
ZOPO.

22

Localized Zeroth-Order Prompt Optimization

Table 6: Test accuracy on instruction induction tasks with different black-box LLMs f () considered in the objective function

in Eq. 1.
Prompt Generation/Embedding LLM Vicuna Vicuna Vicuna WizardLM WizardLM = WizardLM
Black-box LLM (Objective Function) GPT-3.5 PalLM2 GPT-4 GPT-3.5 PalLM2 GPT-4
antonyms 81.0 80.0 85.0 80.0 80.0 88.0
auto_categorization 38.0 24.3 37.0 19.0 1.0 3.0
auto_debugging 37.5 33.3 25.0 25.0 37.5 37.5
cause_and_effect 92.0 96.0 96.0 48.0 76.0 68.0
common_concept 19.6 7.9 19.3 14.8 18.2 13.5
diff 97.0 100.0 100.0 99.0 100.0 100.0
informal _to_formal 63.4 50.1 51.5 44.8 53.1 41.9
letters _list 100.0 94.0 100.0 100.0 95.0 100.0
negation 86.0 80.7 84.0 73.0 79.0 73.0
object_counting 57.0 57.3 57.0 49.0 48.0 59.0
odd_one_out 6.0 14.7 68.0 36.0 24.0 26.0
orthography _starts_with 44.0 60.0 72.0 34.0 30.0 13.0
rhymes 98.0 84.0 86.0 53.0 90.0 100.0
second_word_letter 16.0 22.0 99.0 1.0 18.0 93.0
sentence_similarity 18.0 0.0 5.0 11.0 0.0 0.0
sum 100.0 72.0 100.0 98.0 100.0 100.0
synonyms 44.0 35.3 41.0 36.0 16.0 39.0
taxonomy_animal 97.0 86.3 100.0 95.0 77.0 97.0
word_sorting 57.0 19.3 66.0 0.0 1.0 0.0
word_unscrambling 61.0 12.7 71.0 51.0 14.0 58.0
best-performing tasks 9 2 10 1 3 7
performance profile p(5) 0.7 0.2 0.8 0.25 0.25 0.45

23

Localized Zeroth-Order Prompt Optimization

D.6. Verifying the Essence of Input Domain

Prompt Generation To fairly compare the effect of prompts generated by Vicuna-13B and ChatGPT in terms of the
optimization performance by using ZOPO, we adopt the same embedding representations here, that is we use the SBERT
embedding model for both prompts generated by Vicuna-13B and ChatGPT. For the prompt generation process, we fix
the number of prompt candidates for both methods to 500. The result of the comparison on 20 instruction induction tasks
is shown in Table. 7, where the corresponding performance profile shown in Fig. 11 suggests that applying ZOPO on
ChatGPT-generated prompts is better than applying it on Vicuna-generated prompts. This again confirms the importance of
the choice of the input domain (i.e., the prompt generation).

> Vicuna-13B
i [—~@— ChatGPT

Figure 11: The corresponding performance profile for
results shown in Tab. 7.

Table 7: Fair comparison of the optimization performance of
ZOPO with different generated prompts but the same embedding
model (i.e., SBERT).

Tasks Vicuna-13B ChatGPT
antonyms 78.344.5 84.0 4
auto_categorization 297199 27.045.0
auto_debugging 41.7 41156 29.2459
cause_and_effect 86.7 175 80.0414.9
common_concept 24.9_ ¢ 2.8406
diff 8.04+7.1 100.0¢ ¢
informal_to_formal 62.03 3 61.919.9
letters_list 100.04¢ ¢ 100.049 ¢
negation 82.0459 7. 7+26
object_counting 4531103 40.310.5
odd_one_out 20.0433 68.745 5
orthography_starts_with 51.01¢.1 71.009
rhymes 100.00 ¢ 61.049.5
second_word_letter 24.346.0 96.7 15 4
sentence_similarity 10.3414.6 373109
sum 100.0:|:0‘0 100°0i0.0
synonyms 40.341.7 44.7 41
taxonomy_animal 91.7491 923,05
word _sorting 62. 7105 60.343.1
word_unscrambling 93.040.0 583119

24

Localized Zeroth-Order Prompt Optimization

Prompt Embedding Here we analyze how different embeddings affect the optimization of ZOPO. We first generate
a fixed set of prompts of size 500 from Vicuna-13B as those in Tab. 1. For the same set of prompts, we consider four
different embeddings here: (a) the Last Token embedding from Vicuna-13B (b) the OpenAl embedding obtained through
its embedding model “text-embedding-ada-002” API. (OpenAl, 2024b), (c) the SBERT embedding obtained through the
sentence transformer (“all-mpnet-base-v2” from HuggingFace), and (d) the Random embedding obtained by randomly
projecting the Vicuna embedding into the same dimension. The dimensions of the four embeddings (from (a) to (d)) are
1536, 756, and 5120 respectively. We compare the optimization performance of the four embeddings using ZOPO and
the results are shown in Tab. 8. We observe although last token embedding is generally better, there are certain tasks that
OpenAl and SBERT embeddings perform equally well or better, which indicates the optimal choice of embedding can be
task-dependent. Intuitively, random embedding is not representative. Its lesser performance shown in Tab. 8 again confirms
our Insight IT in Sec. 3.2, which says the choice of embedding/input domain is important in prompt optimization.

Table 8: Average test accuracy with standard error (3 runs) for the best prompt found by ZOPO with four different
embeddings on 20 instruction induction tasks.

Tasks Last Token (5120) OpenAlI (1536) SBERT (756) Random (5120)
antonyms 852,39 76.7+0.4 783145 79.3134
auto_categorization 327419 31.04929 29.7499 32.341.7
auto_debugging 41.7 11556 29.2459 41.7 41156 37.5417.7
cause_and_effect 94.7 37 82.716.8 86.7175 68.045.6
common_concept 23.54134 24444 5 2494 224445
diff 100.0i0‘0 94-713,1 8.01741 15-7i7.4
informal_to_formal 61.3427 994104 62.045 3 58.543.7
letters_list 100.0 ¢ 100.0 ¢ 100.0¢ 9 100.0¢ 9
negation 86.3. (5 82.341.9 82.0499 84.049 9
object_counting 5234656 01.716.1 45.3410.3 51.746.0
odd_one_out 3204113 24.0486 20.043.3 20.0412.3
orthography _starts_with 56.54126 56.044 3 51.046.1 46. 7447
rhymes 100.0¢ o 68.7421.5 100.0¢ o 96.342.4
second_word _letter 257147 24.345.9 24.316.0 24.314 5
sentence_similarity 7.6493 10341146 1034146 6.3+6.4
sum 100.0i0.0 100.0i0.0 100.0i0_0 100.0i0_0
synonyms 43.3.1 09 40.040.0 40.341 7 4234131
taxonomy _animal 90.047.1 91.7 1956 91.7191 89.316.2
word_sorting 60.044.2 63.01 4 62.740.5 59.7438
word_unscrambling 593155 56.341.7 53.0+0.0 473440
best-performing tasks 15 5 8 2

To demonstrate the generality of ZOPO, we provide more results below to show we are not focusing on a specific
combination of LLMs and embedding models. For the same optimization objective (i.e., we still perform prompt optimization
for ChatGPT), we further study our ZOPO with more choices of embedding models and pair it with different black-box
LLMs for prompt generation (i.e., GPT-4). We consider three more embedding models from HuggingFace and OpenAl,
including “’Instructor-Large”, "MiniLM-L6-v2”, and “text-embedding-3-small” in Tab. 9 below, as well another black-box
model (i.e., GPT-4) for prompt generation in Tab. 10 below.

Note that, in our main text, we use the Vicuna-13B model as the prompt generation model mainly for the fair comparison
against baselines (i.e., InstructZero and INSTINCT), and we can tell from Tab. 9 that the Vicuna embedding is a good
embedding to use in prompt optimization. The result from Tab. 10 suggests choosing a better embedding model (i.e.,

25

Localized Zeroth-Order Prompt Optimization

Instructor-Large) for GPT-4 generated prompts can even further improve its performance.

Can we possibly find the best embedding model? As we have shown in our previous experiments, the best choice for
the embedding model can be fask-dependent. To find the suitable paired embedding model without enumerating every
embedding model, we could possibly analyze the variance V. of the eigenvalues of the covariance matrix of the embeddings
(i.e., 2). The eigenvalues represent the variances along the principal directions (eigenvectors) of the embeddings. If the
embeddings are distributed with equal spacing in the high-dimensional space, we would expect the eigenvalues to be
approximately equal (i.e., low variance). Intuitively, if the embeddings are in such representative space with equal spacing,
it could help function modeling.

Therefore, if such variance V. is small, the optimization performance using such an embedding model is more likely to
be better. Based on the test accuracies from Tab. 9 and Tab. 10, we show that there exists a sufficiently high negative
Spearsman’s correlation (i.e., the average correlation is -0.47) between V, and the performance of ZOPO using different
embedding models on each task. Therefore, we can check every embedding prior to the experiment, and it can be done
efficiently. We acknowledge that this approach is not perfect and finding the best embedding model is not the main focus of
this work. By finding the best pair of generation and embedding models for prompt optimization, we believe our ZOPO
algorithm can be further boosted. We would like to take it as a potential future direction.

Table 9: Test accuracy achieved by ZOPO (Vicuna-13B for prompt generation) with different embeddings on GLUE tasks.

Tasks Vicuna Instructor-Large MiniLM-L6-v2 text-embedding-3-small
CoLA 65.0 70.0 58.0 60.0
MNLI-m 70.0 67.0 71.0 71.0
MNLI-mm 73.0 62.0 73.0 62.0
MRPC 76.0 73.0 73.0 73.0
QNLI 83.0 78.0 83.0 83.0
QQP 83.0 82.0 82.0 82.0
RTE 83.0 78.0 75.0 82.0
SST-2 92.0 91.0 91.0 91.0
best-performing tasks 6 1 3 2
performance profile p(5) 1.00 0.88 0.75 0.75

Table 10: Test accuracy achieved by ZOPOgpr4 (GPT-4 for prompt generation) with different embeddings on GLUE tasks

Tasks SBERT Instructor-Large MiniLM-L6-v2 text-embedding-3-small
CoLA 77.0 78.0 79.0 76.0
MNLI-m 73.0 73.0 74.0 69.0
MNLI-mm 72.0 77.0 77.0 69.0
MRPC 68.0 71.0 65.0 71.0
QNLI 83.0 83.0 84.0 83.0
QQP 81.0 76.0 74.0 75.0
RTE 84.0 86.0 81.0 82.0
SST-2 96.0 96.0 93.0 93.0
best-performing tasks 2 4 4 1
performance profile p(5) 1.0 1.0 0.75 0.75

26

Localized Zeroth-Order Prompt Optimization

D.7. Study of NTK-GP and Uncertainty-Informed Local Exploration

To validate the effectiveness of the components, namely NTK-GP (in Sec. 4.2) and uncertainty- informed local exploration
(in Sec. 4.3) of ZOPO, we perform controlled experiments to replace these components. Specifically, we (a) replace the
NTK component with Matérn kernel (as in the recent ZOO method ZoRD), and (b) remove the uncertainty-informed local
exploration feature. We evaluate the two settings on 20 instruction induction tasks. The result shown in Table 11 illustrates
these two settings are both significantly worse than the original ZOPO, which validates the effectiveness of NTK-GP and
uncertainty-informed local exploration.

Table 11: Ablation study of the design components in ZOPO showing the average test accuracy reported with standard error
(3 runs) on 20 instruction induction tasks.

Tasks Z0PO ZOPO w/o NTK ZOPO w/o Local Exploration
antonyms 85.245, 79.7+9.0 78. 7431
auto_categorization 32.T41.9 34.7 137 28.344.0
auto_debugging 4171156 29.2459 25.040.0
cause_and_effect 94.7 13 7 93.341.9 85.3+6.8
common_concept 23.5534 92441 22.045.6
diff 100'0i0.0 13.7i6.1 13~7i6.1
informal _to_formal 61.340.7 6340 634,00
letters_list 100.0:‘:0'0 100.0:‘:0.0 100.0:‘:0.0
negation 86.310 5 85.7+0.5 84.743.3
object_counting 523166 39.047.1 51.74+6.2
odd_one_out 3204113 14.7459 32.045¢
orthography _starts_with ~ 56.5112¢ 49.31g2 46.349.7
rhymes 100.009 90.7105 93.346.6
second_word_letter 25.7 147 25.7 168 19.746.8
sentence_similarity 7.6493 0.040.0 0.040.0
sum 100-0i0.0 93~7i9.0 100.01040
synonyms 43.3109 38.340.9 39.7495
taxonomy _animal 90.047.1 T4. 74151 91.3541
word_sorting 60.04 5 29.3112.7 56.3+0.9
word_unscrambling 59353 47.310.9 50.044.0
best-performing tasks 17 4 5
performance profile p(5) 1.0 0.35 0.5

27

Localized Zeroth-Order Prompt Optimization

D.8. Study of ZOPO with More Prompt Candidates

Intuitively, generating more prompt candidates offers a closer approximation to the true function landscape. As our
optimization method ZOPO is operated under a given set of prompt candidates, we here conduct an ablation study to
examine the impact of a larger size of the generated prompt candidates (i.e., |V|) on the optimization performance. For
ZOPO, we use random soft prompts to feed Vicuna-13B and generate prompts until V = 500 or V = 2000. We compare
the optimization results of ZOPO using the two different sizes of prompts, and the results are shown in Table 12. We also
follow the APE generation template to prompt ChatGPT to generate different sizes of prompt candidates and use SBERT
to produce their embeddings. For ChatGPT-generated prompts in ZOPOgpr, we also consider two settings, ¥V = 500 or
Y = 1000 (due to budget constraint). The corresponding result is shown in Table 13. We observe from the two tables that a
larger set of prompt candidates may not necessarily lead to strictly better performance, and generating a relatively small set
of strong prompt candidates (e.g., of size 500) is already good enough when we aim to find the optimal prompt.

Table 12: Ablation study of different sizes of prompt candi- Table 13: Ablation study of different sizes of prompt candi-

dates in ZOPO. dates in ZOPOgpr.
Tasks |[V| =500 |V|=2000 Tasks |[V| =500 |V| = 1000
antonyms 85.243.9 86.3 09 antonyms 84.01 4 80.341.2
auto_categorization 32.741.9 373110 auto_categorization 27.045.0 283154
auto_debugging 41.74156 33.3+11.8 auto_debugging 29.2159 37.54102
cause_and_effect 94.7 137 94.714 9 cause_and_effect 80.04140 787133
common_concept 23.5.34 17.046.1 common_concept 2.840.6 11.746 5
diff 100.00¢9 100.04¢ ¢ diff 100.0490 100.0.9¢
informal_to_formal 61.3. 57 96.644.1 informal_to_formal 619, 572489
letters_list 100.009 100.04¢ ¢ letters _list 100.0 00 993105
negation 86.3. 5 86.34¢ 5 negation 7771256 75.041.6
object_counting 52.346.6 53.0465 object_counting 40.3+0.5 413415
odd_one_out 3204113 20.7466 odd_one_out 68.74125 72.040 0
orthography_starts_with ~ 56.51126 46.016.9 orthography _starts_with 71.040.0 713109
rhymes 100.0:|:0.0 100.0i0.0 rhymes 61-Oj:2.8 100.0i0.0
second_word_letter 25. 7447 3534575 second_word_letter 96.749.4 99.7.1 05
sentence_similarity 7.6493 24.7 161 sentence_similarity 373109 0.04+0.0
sum 100°0i0.0 100.010_0 sum 100'0i0.0 100.010,0
synonyms 433109 40.043.3 synonyms 447441 4531 7
taxonomy_animal 90.047.1 913475 taxonomy_animal 923405 89.311.9
word_sorting 60.014 5 59.016.4 word_sorting 60.315 1 54.347.0
word_unscrambling 5935 54.743.3 word_unscrambling 98.341.9 60.3. 55
best-performing tasks 14 12 # best-performing tasks 10 12
performance profile p(5) 0.9 0.8 performance profile p(5) 0.85 0.9

28

Localized Zeroth-Order Prompt Optimization

D.9. Best Prompts Found

We list the best prompts discovered by our method ZOPO for every instruction induction task here in Table 14, which
corresponds to the results in Table 3.

29

Localized Zeroth-Order Prompt Optimization
Table 14: The best prompts discovered by our method ZOPO for every instruction induction task, where ‘“*” indicates the
best prompt is found by ZOPOgpr for that task.

Task Best prompt
active_to_passive The prompt was to convert the given sentence into passive voice.
antonyms The prompt was to rewrite the given words into their opposite meaning. So, “humor-

less” becomes “humorous”, “depressing” becomes “cheerful”, “unwrap” becomes

“wrap”, “consumptive” becomes “generative”, “uncoil” becomes “coil”.

auto_categorization

The prompt was to input the given names and output the corresponding apparel. For
example, the input “Nature Nanotechnology, Annual Review of Biochemistry, and
The Lancet Neurology” would output as “top journals”.

auto_debugging

The prompt was to write a program that would take the given input and output
the expected output. For example, the first input was a simple calculation, and the
expected output was “2550”. The second input was a class definition with a method,
and the expected output was “5”.

cause_and_effect

The prompt was to identify the sentence that is the cause and the sentence that is the
effect in each pair of sentences. The input sentences are given, and the output is the
cause sentence.

common._concept

The prompt was to create a series of pairs of inputs and outputs, where the outputs are
related to the inputs in some way. For example, the inputs “guitars” and “pendulums”
are related to the output of “involve oscillations.

diff

The prompt was to subtract the second number from the first number. For example,
the first input would be 41 and the second input would be 13, so the output would be
28 (41 - 13). The same process would be applied for the other inputs and outputs.

first_word_letter

The prompt was to create a program that takes a single input (a word representing
a legal concept or term) and outputs a corresponding letter of the alphabet that
represents that concept or term.

For example, if the input is “year”, the program should output “y”.

informal_to_formal*

The prompt was to rephrase each input sentence using a more formal or polite
language.

larger_animal

The prompt was to create a program that takes two input animals and outputs the
animal that is bigger. The program uses the “;="" operator to compare the size of the
first animal to the size of the second animal. If the first animal is bigger, the program
outputs the first animal.

letters_list

The prompt was to create a program that takes a single word input (e.g. “year”) and
outputs a concatenated string of letters and spaces that approximates the pronuncia-
tion of that word (e.g. “year”).

negation

The prompt was to flip the truth value of the input statements. For example, if the
input statement is “Cany Ash and Robert Sakula are both Architects,” the output
should be “Cany Ash and Robert Sakula are not Architects.

num_to_verbal

The prompt was to write a program that takes a number as input and outputs the
number in words, using the appropriate number formatting. The examples provided
in the input show the expected output for each number.

object_counting

The prompts were to provide the output of a given input, where the input is a list of
items and the output is a number representing the total count of those items. The
examples given in the prompt show how the prompts should be used to generate the
desired output.

odd_one_out*

The prompt was to identify the word that is most different from the others in the
group.

30

Localized Zeroth-Order Prompt Optimization

orthography _starts_with*

The prompt was to identify the first word that begins with a specific letter in each
sentence.

periodic_elements

The prompts were to write a program that takes an input value and outputs the
corresponding element name based on that value.
For example, if the input is 24, the program would output “chromium.

rhymes

The prompts were to create a program that takes in a word as input and outputs a
related word based on a specific set of rules. The rules are as follows: If the input
word starts with “tri”, the output should be “slip”.

second_word_letter*

The prompt was to “Identify and return the second letter of the input word”.

sentence_similarity*

The prompt was to create two different sentences that have similar meanings but are
not identical. The output of each input-output pair indicates how closely the two
sentences match in terms of meaning.

Explanation of outputs:

- 5 - perfectly: The two sentences are very similar in meaning and can be considered
as equivalent.

- 3 - probably: The two sentences have some similarities in meaning but there are
also some differences, making it less certain that they are equivalent.

- 2 - possibly: The two sentences have some similarities but also significant
differences, making it unlikely that they are equivalent.

- 1 - probably not: The two sentences have very different meanings and are unlikely
to be considered as equivalent.

- 0 - definitely not: The two sentences have no similarity in meaning and cannot be
considered as equivalent.

sentiment

The prompt was to classify the given reviews as positive or negative based on the
given input and output. The output is positive when the review is positive, and
negative when the review is negative.

singular_to_plural

The prompt was to convert the input words to their plural form by adding “s” to the
end of the word. This was done by using the “replace” function in Excel, which
allows you to replace a specific text string with another text string.

sum

The prompt was to write a program that takes two numbers as input and outputs their
sum as the result. The program uses the ‘scanf* function to read the input numbers
from the user, and the ‘printf* function to display the result.

synonyms*

The prompt was to create a list of words that are synonyms or closely related to the
given word.

taxonomy_animal*

The prompt was to select all the animals in the input and output them in the order
they appear.

translation_en-de

The prompts were to input various words and have the model generate the corre-
sponding output in German. It appears that the model was successful in generating
the desired output for each of the input words provided. If there are any additional
prompts or clarification needed, please let me know.

translation_en-es

The prompts were to translate a set of words from Spanish to English using the
provided translation table.

translation_en-fr

The prompt was to input a word and then output the corresponding word in French.
It appears that the input and output words are being matched correctly, with the
exception of the word “initiative,” which should have the output “initiative” in French,
not “enterprise.

word_sorting*

The prompt was to alphabetize the input list in ascending order and provide the
resulting output as a list.

word_unscrambling

The prompt was to create a program that takes an input word and outputs the
corresponding word with the letters rearranged in order. For example, given the input
“eccpat”, the program should output “accept”.

31

