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Abstract

Solving unpaired inverse problems is critical in many applications where paired
noisy measurements and clean targets are unavailable. We propose a novel approach
for unpaired image inverse problems based on Unbalanced Optimal Transport
(UOT). Our method formulates reconstruction as learning a transport map from
noisy measurements to clean images, leveraging a likelihood-based cost function.
By relaxing the strict marginal-matching constraint via UOT, our model enhances
its robustness to multi-level observation noise. Moreover, under a quadratic cost
function, our model effectively addresses linear inverse problems with unknown
corruption operators. Our experiments demonstrate that our model achieves state-
of-the-art performance on both linear (Gaussian deblurring and super-resolution)
and nonlinear (high dynamic range reconstruction and nonlinear deblurring) image
inverse problems.

1 Introduction

The inverse problem is defined as the task of reconstructing an unknown signal = from a possibly
noisy measurement y [7 26]. Many scientific and engineering tasks are formulated as inverse
problems, including seismic imaging [20, 134], audio signal processing [22}24], and medical imaging
[6L 29]]. In the computer vision domain, they are particularly relevant to various image reconstruction
tasks, including image denoising [37]], super-resolution [8, [30], and high dynamic range(HDR)
reconstruction [36]. Formally, for a forward operator .4 and a noisy measurement y € R, the
inverse problem can be formulated to find x € R™ from the following observation model:

y =A(x) +n 1)
with measurement noise n, which is typically assumed to be Gaussian N (0, O'iIm).

One of the main challenges in dealing with inverse problems is that the corresponding equations
(Eq.[T) are often ill-posed and do not have a unique solution [9]. To address this issue, the Bayesian
approach performs maximum a posteriori (MAP) estimation as follows:

Xymap(y) = argmaxp(x | y) = arg min [—log p(y | x) —log p(x)] . )
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Intuitively, the MAP estimate addresses the ill-posedness of inverse problems by integrating prior
knowledge of x through p(x) with the likelihood of the measurement. In this context, selecting a
suitable prior p(x) is essential to ensure accurate reconstruction. Recently, generative models such as
GANS [2, 35]], VAEs [14]], Optimal Transport Map [[19,130], and Diffusion models [} 29} 36] have
demonstrated strong capabilities in modeling complex prior distributions.

We propose a novel approach, ISUM, which models an Inverse problem Solver using Unbalanced
Optimal Transport (UOT) Map. We formulate the unpaired inverse problems as learning the transport
map from the noisy measurement distribution to the target signal distribution using a cost function
motivated by the MAP estimation principle. Furthermore, by leveraging the UOT framework, our
model achieves robustness to multi-level observation noise through relaxation of the strict marginal
constraint. The key contributions of our approach are as follows:

* We introduce the first model for unpaired inverse problems based on Unbalanced Optimal
Transport, incorporating a likelihood-based cost function.

* Our model achieves state-of-the-art performance on various unpaired inverse problem
benchmarks.

* By leveraging the UOT formulation, our model achieves robustness to multi-level observa-
tion noise, ensuring effectiveness in real-world settings.

* By adopting a quadratic cost, our model can address inverse problems with unknown
corruption operators while retaining competitive performance.

2 Background

Notations and Assumptions Let X', ) be compact complete metric spaces with probability mea-
sures p and v, respectively, both absolutely continuous with respect to the Lebesgue measure. In the
context of inverse problems, 1 and v denote the distributions of noisy measurements and clean
target signals. For a measurable map T', Tl 1 denotes the pushforward of y, and II(y, v) the set of
couplings on X' x ) with marginals x and v. For a function f : R — [—o0, 00], we write its convex

conjugate as f*(y) = sup,cp{(z,y) — f(2)}.
2.1 Unbalanced Optimal Transport

Optimal Transport The optimal transport (OT) problem finds a mapping that transports a source
distribution y to a target distribution v while minimizing a given cost function c(-, -). Monge [25]]
first formulated this problem as finding a deterministic transport map 7" satisfying T 1 = v.

C(p,v):= inf [/ e(x, T(X))d,u(x)} . 3)
Ty p=v X

However, Monge’s OT problem (Eq. [3) is non-convex, and the existence of a solution 7" depends on

the distributions p and v [33]]. To overcome these limitations, Kantorovich proposes a formulation that

relaxes the deterministic constraint on the transport map 7" [[16]]. Precisely, Kantorovich’s formulation

finds a transport plan 7 for the OT problem as follows:

Catpor)i= N[ ctxytatey] @
m€l(p,v) [Jaxy

where II(u, v) denotes the set of joint distributions with marginals x and v. Unlike Monge’s OT

problem, the Kantorovich formulation (Eq. ) guarantees the existence of an optimal transport plan

under mild assumptions. Moreover, when y and v are absolutely continuous with respect to the

Lebesgue measure (our assumption), the solution of Monge’s problem 7 exists and the optimal

transport plan 7 is charactierized by this optimal transport map, i.e., 7* = (Id x T*)xp [33].

Unbalanced Optimal Transport Note that in the standard OT problem (Eq.[4), the transport plan
7 is constrained to have marginal distributions p and v. The Unbalanced Optimal Transport (UOT)
problem [3| 23] is a generalized formulation that relaxes this marginal constraint:

Cuot (M7 V) = wEMiJrn(f;)iXX) |:/)}><X c(Yv X)d’ﬂ'(}’, X) + D\IJ1 (71—0|:u’) + D\I’Q (71—1 |V) (5)
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Figure 1: Visualization of the inverse problem (Eq.. Our model learns the reconstruction mapping
from noisy observations to target images (Output Image).

where M (Y x X') denotes the set of positive Radon measures on ) x X. The terms Dy, and Dy,
are penalty terms on the marginal distributions defined as an f-divergences as follows:

Dt = [ wi (52 ) anto ©

with convex functions ;. By introducing these penalty terms, the two marginal distributions of the
optimal UOT plan 7* are softly matched to p and v, i.e., 7§ ~ u, 7} ~ v. This relaxation enables
UOT to achieve robustness against outliers [} and effectively address class imbalance between
marginal distributions [10} 21]].

3 Method

In this section, we present our UOT-based model for inverse problems, called ISUM. Our model is
based on formulating the inverse problem solver as an Unbalanced Optimal Transport Map from the
noisy measurements y to the target signal x (Eq.[I). In Sec[3.1] we introduce our optimal transport
formulation of inverse problems. In Sec[3.2] we describe the learning objective, which is derived as a
generalization of the UOTM framework [4] under the generalized cost function.

3.1 Optimal Transport Formulation of Unpaired Inverse Problems

Task Formulation Our main task is the unpaired image inverse problems with a known corrup-
tion operator .4 and unknown noise level o, > 0 (Eq. E[) (The case of an unknown corruption
operator will be discussed in Sec[d.3]) Formally, let

Y={y;,:y.€V,i=1---,M} and X={x;:x;€X,j=1,---,N} @)

denote the sets of noisy measurements and target signals (clean image), respectively (Fig. [T). We
assume the unpaired setting, i.e., Y and X are independently sampled from the source distribution
and the target distribution v. Then our goal is to learn an inverse problem solver 7"

T:Y— X, y—T(y) 8)
from these unpaired training data. Following the MAP approach (Eq.[2), T' should satisfy the following

conditions:

(i) The estimate T'(y) follows the target signal distribution, i.e., Typ=wv.
(ii) For each given yq, T'(yo) maximizes the log-posterior log p(-|yo)-

Our main observation is that these two conditions can be naturally interpreted through the (Unbal-
anced) Optimal Transport (Eq.[3]and [5). Formally, in the standard OT problem, the Optimal Transport
Map (OT Map) T is defined as the transport cost minimizer over valid transport maps:

(a) Valid transport maps satisfying T; uw=v.
(b) Each y is mapped to minimize the transport cost [y, c(y, T*(y))du(y).
Therefore, the OT Map 7™ naturally satisfies the first condition (i) of the inverse problem solver. Our

approach is to design an appropriate cost function c(-, -) so that the second condition (ii) is also
satisfied.



Likelihood Cost and MAP Estimate Our goal is to solve inverse problems using the optimal
transport (OT) framework. From a MAP estimation perspective, one can consider finding the transport
plan that minimizes the negative log-posterior — log p(x | y). This can be expressed as follows in the
standard OT framework:

Calir) = ot [ —logntx | y)inty )| o)
s WV L X i
= inf / —logp(yX)—logp(X)Jrlogp(Y)dW(y,X)}- (10)
mell(p,v) [Jyxx
= inf / —logp(y | x)dn(y,x)]| . (11)
mel(p,v) [Jyxx .

Note that the equality holds because of the marginal constraints on the transport plan 7 € II(u, v/).
Therefore, under the assumption of Gaussian noise, the problem can be formulated as follows:

Calior) = _int [y = A Bty (12)
m€l(pn,v) [Jyxx
and based on this formulation, we introduce a likelihood-based cost function ¢;(y,x) = ||y —A(x)||3.

Furthermore, we incorporate the standard quadratic cost function, and consequently propose the
following overall cost:

ey, x) =7 (aly,x) +cg(y,x))  where ¢;(y,x) = [|A(x)—y|3 and ¢,(y,x) = [y—x][3 (13)
Under a weak assumption, this additional quadratic term can allow us to guarantee the existence of

the OT Map T™* (For more details, see Appendix [B). Furthermore, when the corruption operator is
unknown, our model can be extended by relying solely on the quadratic cost (Section[4.3).

3.2 Proposed Model

The Unbalanced Optimal Transport (Eq. [3)) is a generalization of the standard Optimal Transport
by relaxing the marginal distribution constraints. Such flexibility is particularly advantageous in
our unpaired inverse problem setting, where exact marginal matching constraint T = v as in
(a) can be too restrictive: UOT mitigates this issue by allowing marginal discrepancies that lead to
greater adaptability in matching target distributions (Eq. [5)). Moreover, the flexibility provides the
capability to address class imbalance between the source and target distributions [[10} 21]], which
is beneficial in cases involving multiple measurement noise levels (Sec[d.2). In such cases, several
noisy measurements y may correspond to the same target signal x. In this regard, this scenario can
be interpreted as one instance of class imbalance. Leveraging these benefits, we design our model
based on the UOT Map.

We estimate the UOT Map T via the UOTM framework [4]], which utilizes the semi-dual formulation
of Unbalanced Optimal Transport [32]] (Eq. [T4).

Cuntir) =sup | [ 03 (o) auty) + [ ~w3-oGpaveal. a9
veC LJx Y
where v is the potential function and v°(y) = ing( (c(y,x) — v(x)) with the cost function defined
PSS

in Eq.[T3] Then, following the approach in [11] and [18]], we approximate the UOT Map T;; with a
parametrized Tj as follows:

Ty(y) € a)réi;;f [c(y,x) —v(x)] & v(y)=c(y,To(y)) —v(To(y))- (15)

Consequently, replacing v¢ in Eq. [I4] with Eq. [I5]and parametrizing the potential function as a neural
network v, we define the learning objective as follows:

Lo =it [ 05 (<ol o) = v () ) sty + | 95 (vt dut). 16

where U7 and 3 are monotone increasing convex functions determined by the marginal distribution
penalties in the UOT problem (Eq. [5). Note that when ¥y and ¥, are the convex indicator function
of the set {1}, it follows that W% (-) = W%(-) = Identity(-), which indicates that the UOT map can
be regarded as a generalization of the OT map.



Table 1: Quantitative results on various inverse problems. We conduct experiments on the following
four inverse problems: Gaussian deblurring, super-resolution, high dynamic range reconstruction,
and nonlinear deblurring. The boldface and underlined values indicate the best and second-best
performance. Our model outperforms existing approaches, with minor exceptions on AFHQ super-
resolution (second-best PSNR) and HDR reconstruction (second-best FID).

(a) Gaussian deblurring

Method FFHQ AFHQ

PSNR (1) SSIM (1) LPIPS(}) FID({) PSNR(f) SSIM (1) LPIPS(}) FID()
NOT [19] 20.11 0.6035 0.209 52.901 19.99 0.5472 0.273 58.927
OTUR [35] 23.82 0.7106 0.136 24.337 23.91 0.6777 0.165 30.773
RCOT [30] 22.07 0.5492 0.279 123.692 22.34 0.5365 0.268 132.465
Ours 24.06 0.7139 0.124 21.210 24.22 0.6804 0.139 12.566

(b) Super-resolution 4 x

Method FFHQ AFHQ

PSNR (1) SSIM (1) LPIPS() FID({) PSNR(t) SSIM(t) LPIPS() FID({)
NOT [19] 20.13 0.6257 0.209 50.066 20.14 0.5833 0.261 44.252

OTUR [35] 24.09 0.7243 0.129 22.751 24.71 0.7079 0.148 19.575
RCOT [30] 24.05 0.6820 0.260 118.776 25.04 0.7137 0.208 69.072

Ours 24.35 0.7371 0.118 19.475 24.97 0.7142 0.133 15.939

(c) High Dynamic Range reconstruction

Method FFHQ AFHQ

PSNR (1) SSIM (1) LPIPS({) FID({) PSNR(1) SSIM(1) LPIPS({) FID()
NOT [19] 21.24 0.7978 0.138 25.842 23.36 0.8179 0.127 10.528
OTUR [35] 25.32 0.8545 0.076 16.458 26.25 0.8542 0.091 7.227
RCOT [30] 19.26 0.6755 0.133 33.422 18.99 0.7060 0.166 27.767
Ours 26.02 0.8642 0.064 20.840 26.40 0.8653 0.074 7.897

(d) Nonlinear Deblurring

Method FFHQ AFHQ

PSNR (1) SSIM (1) LPIPS({) FID({) PSNR(1) SSIM(f) LPIPS({) FID()
NOT [19] 21.37 0.7373 0.157 43.661 23.03 0.7271 0.158 17.377

OTUR [35] 26.94 0.8594 0.068 12.538 26.09 0.8253 0.092 7.651
RCOT [30] 25.14 0.7221 0.151 52.268 24.48 0.7172 0.153 29.902

Ours 28.52 0.8841 0.051 11.370 27.74 0.8589 0.069 5.113

4 Experiments

Datasets and Metrics For our experiments, we use the AFHQ and FFHQ datasets as target
distributions. We generate the source distributions by applying a corruption operator to each image
dataset. For the unpaired setting, we randomly shuffle target x and source y to remove pairing
information. For quantitative evaluation, we measure image restoration quality in terms of both
pixel-level fidelity and perceptual image quality, using metrics such as Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index (SSIM), Perceptual Image Patch Similarity (LPIPS) [38]] and
Fréchet Inception Distance (FID) [[15]. Note that we compute FID using both the training and test sets.
We adopt the experimental setting of [17, 28] for super-resolution, while for the other tasks we use
the setting from [36]. For super-resolution, due to the dimensional mismatch between y and x, we
apply bicubic interpolation @ to y and define the modified quadratic cost as ¢, (y, x) = [|Q(y) — x||3.
In all experiments, we assume additive white Gaussian noise with oy, = 0.05 as the measurement
noise. Further implementation details are provided in Appendix [A]
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Figure 2: Comparison of inverse problem solvers on FFHQ for four tasks: Gaussian deblurring
(GB), Super-resolution (SR), High dynamic range reconstruction (HDR), and Nonlinear deblurring
(NB). Our model produces higher fidelity images with well-preserved textures.
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Figure 3: Comparison of inverse problem solvers on AFHQ for four tasks: Gaussian deblurring
(GB), Super-resolution (SR), High dynamic range reconstruction (HDR), and Nonlinear deblurring
(NB). Our model produces higher fidelity images with well-preserved textures.

4.1 Solving inverse problem

We evaluate our model on four inverse problem tasks: Gaussian deblurring, super-resolution, high
dynamic range reconstruction, and nonlinear deblurring. We benchmark our model against prior
approaches for unpaired inverse problems, based on GANs (OTUR [133)]) and OT Maps (NOT [[19]
and RCOT [30]]). Table[T] presents the results for each task. Overall, our model consistently surpasses
existing methods, with the only exceptions being a comparable second-best PSNR score on AFHQ in
the super-resolution task and the second-best FID score in HDR reconstruction. These results suggest
that our method attains higher fidelity in recovering target signals relative to other approaches.

Figures 2] and [3] qualitatively illustrate the superior image fidelity of our model. NOT does not
tend to overemphasize features such as contours and textures, while RCOT often fails to reliably
remove degradations. Although RCOT achieves a higher PSNR on AFHQ, its reconstructions appear
noticeably inferior under qualitative inspection. OTUR mitigates degradations effectively but often
leads to distortion or excessive smoothing of fine details. Also, in HDR restoration task, OTUR



Table 2: Quantitative results under multi-level observation noise for four inverse problems on
FFHQ. Our model exhibits superior robustness across noise levels.

(a) Linear inverse problems: Gaussian deblurring and Super-resolution (4 x).

Method Gaussian Deblurring Super Resolution 4 x

PSNR (1) SSIM (1) LPIPS(l) FID() PSNR (1) SSIM (1) LPIPS(}) FID()
NOT [19] 19.07 0.5491 0.250 98.558 18.91 0.5653 0.264 99.053
OTUR [35] 22.55 0.6417 0.174 67.323 23.20 0.6681 0.178 70.223
Ours (OT-based) 22.87 0.6562 0.160 91.309 23.21 0.6732 0.170 85.674
Ours 23.04 0.6649 0.154 65.664 23.30 0.6864 0.157 58.406

(b) Nonlinear inverse problems: High Dynamic Range and Nonlinear Deblurring.

Method High Dynamic Range Nonlinear Deblurring

PSNR (1) SSIM (1) LPIPS(}) FID() PSNR(f) SSIM (1) LPIPS(}) FID ()
NOT [19] 21.01 0.7728 0.153 62.641 21.50 0.7201 0.177 76.795
OTUR [35] 24.29 0.8098 0.103 52.149 25.23 0.7763 0.114 61.244
Ours (OT-based) 25.92 0.8488 0.086 49.750 26.90 0.8307 0.087 51.805
Ours 25.44 0.8330 0.084 51.300 27.25 0.8427 0.077 43.450

produces artifacts around the dog’s head boundary and insufficient recovery of hair texture. In
contrast, our model generates clean and sharp reconstructions with textures preserved in high fidelity.
Additional qualitative results for each task are provided in Appendix

4.2 Multi noise level observation

Our method employs the UOT Map, which, unlike the standard OT Map, provides additional flexibility
for each sample T'(y) (Sec. . While this flexibility is often associated with handling class
imbalance [[10, 13} 21]], in our formulation, it also enables robustness to multi-level observation
noise. Most unpaired inverse problem solvers [30} 35] assume a single fixed noise level; however,
in practice, the noise level can vary significantly across images. To assess robustness under such
multi-level noise conditions, we designed an experiment where noise is drawn from a mixture of four
levels: for each level, we construct the source distribution by randomly and independently sampling
degraded images in a 4:3:2:1 ratio. For the evaluation phase, we apply all four types of noise to 500
images, generating 2,000 degraded samples in total. We compare our method against NOT, OTUR,
and the OT-variant of ours (Ours-OT), in which the two convex conjugate functions in our framework
are replaced with the identity function. These constitute the OT Map-based baselines, whereas ours
relies on the UOT Map.

As shown in Table[2] our model outperforms the other OT-based methods on both linear and nonlinear
inverse problems. The Figure []illustrates the impact of increasing noise levels. For clarity, note that
each column presents reconstructed samples from a single model for each method, evaluated across
multiple input measurements y with varying noise levels oy,. In the multi-noise setting, NOT fails
to reliably restore images, and OTUR struggles to reconstruct under high noise. Similarly, Ours-OT
also shows image quality degradation as noise intensity increases. In contrast, our model successfully
restores images and maintains relatively low variance even under strong noise.

4.3 Likelihood cost ablation

We conduct an ablation study on our proposed cost function, which consists of two terms: the
problem-agnostic quadratic cost ¢, and the problem-adaptive likelihood-based cost ¢;. To assess the
contribution of each term, we analyze the performance when either component is removed. The
results are summarized in Fig. [5] (See Appendix for metric table). We conduct experiments
on two inverse problems, Gaussian deblurring and super-resolution. In most cases, the full cost
(with both terms) achieves the best performance. Notably, when relying solely on ¢,, our method
still outperforms state-of-the-art baselines such as OTUR. This clearly demonstrates that our model
remains effective for inverse problems even under unknown corruption operators.
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Figure 4: Comparison of inverse problem solvers under multi-level observation noise on FFHQ
for the nonlinear deblurring (see Appendix [C.2]for additional tasks). Our method demonstrates stable
reconstruction quality with substantially smaller variations across noise levels.
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Figure 5: Ablation study on the cost function c(y, x). The combination of the likelihood cost ¢; and
the quadratic cost ¢, yields the best overall performance. Notably, even the blind-corruption version
of our method (using only c,) surpasses the previous state-of-the-art OTUR model.

5 Conclusion

We propose ISUM, a UOT-based method for solving inverse problems. Our approach formulates
inverse problems within the (Unbalanced) Optimal Transport framework and introduces a cost
function with two terms: a quadratic cost and a likelihood-based cost. Experiments show that ISUM
achieves outperforming performance compared to existing methods. Also, our model demonstrate
both the superior robustness to multi-level observation noise and the effectiveness of the proposed
likelihood-based cost function. Moreover, even with unknown corruption operators, our framework
achieves competitive performance using only quadratic cost, demonstrating its broad applicability to
inverse problems with unknown corruption operators. A limitation of our work is that the method
requires training from scratch. Expanding our approach to training-free or fine-tuning settings will be
investigated in our future work.
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A Implementation details

All models introduced in this paper are trained for 60,000 iterations, and we report the best results
with respect to LPIPS and FID, even if they occur at intermediate iterations.

Ours In our model, unless otherwise specified, the settings follow those of UOTM [4] on CelebA-
256. Our framework jointly learns the potential v4 and the Optimal Transport Map Tj. For the
potential vy, we adopt the potential architecture from UOTM [4]], while for OT Map Ty, we employ
the generator architecture from OTUR [35]]. The learning rate for the potential is [r,, = 5.0 x 1075,
and the learning rate for the OT Map is Ir7, = 1.0 x 10~%. The cost intensity hyperparameter 7 is
fixed to 0.001. The batch size during training is fixed at 32. The convex conjugate ¥ is derived from
zlogr —xz+1, ifz>0

00, ifz <0’
the associated f-divergence and yields the explicit form W (¢) = e’ — 1. In the case of Ours-OT, we
instead set U¥(-) = Identity(-), while keeping all other configurations identical to those of Ours.

the generator function of the KL divergence, ¥(z) = { which defines

Baselines For NOT [19], we employ the generator and discriminator of UOTM and adopt its
hyperparameter settings. For OTUR [35]] and RCOT [30]], we strictly follow all configurations as
proposed in their original models.

Corruption operators For super-resolution, we adopt the setting of [[17, [28] for super-resolution.
For other tasks, we use the setting from [36]. Precisely,

¢ Gaussian deblurring (kernel size 61 x 61 and kernel standard deviation 3.0):
y:k*x—i—n,nNJ\/(O,JiIm) a7

where k is the Gaussian kernel and * denotes the convolution operator.
* Super-resolution (4 x 4 patch downsampling):
Yy =X )4 +n, n ~ N(0, O';Im) (18)
 High Dynamic Range (HDR) reconstruction (scale factor 2.0, clipping to [—1, 1]):
y = clip(2x,-1,1) + n, n ~ N(0,0.1,,) (19)
* Nonlinear deblurring (A: neural operator from [31]]):

y = A(x) +n, n~N(0,01,,) for pretrained operator A (20)

B Twist condition

In this section, we discuss conditions ensuring the existence of the OT map. First, we introduce the
condition referred to as the twist condition.

Definition B.1 (Left twist condition). Let M and N be a n-dimensional manifold and N be a Polish
space. Let c : M x N — R be a cost function and p and v be two probability measures on M and
N, respectively. For a given cost function c(y, X), we define the skew left Legendre transform as the
partial map

A M x N —-T*M
Al(y,x) = (y,g;(y,X))
whose domain of definition is
1 Oc .
D(A,) =1 (y,x) € M x N : 8f(y,x) exists b .
Yy

We say that c satisfies the left twist condition if A, is injective on D(AL).
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Now, we state a theorem that guarantees the existence and uniqueness of the optimal transport map.

Theorem B.1 ( [12]). Let M be a smooth (second countable) manifold, and N be a Polish space,
and consider | and v (Borel) probability measures on M and N respectively. Assume that the cost
c: M x N — R is lower semicontinuous and bounded from below. Moreover, assume that the
following conditions hold:

1. the family of maps y — c(y,x) = cx(y) is locally semi-concave in'y locally uniformly in
X,

2. the cost c satisfies the left twist condition,

3. the measure i gives zero mass to countably (n — 1)-Lipschitz sets,

4. the infimum in the Kantorovitch problem C(p,v) = argmin,cp{ [ ¢(y,x)dv} is finite.

Then there exists a borel map T' : M — N, which is an optimal transport map from i to v for the
cost ¢. Moreover, the map T is unique u-a.e., and any plan . € [[(1, v) optimal for the cost c is
concentrated on the graph of T

Proof. See [12]. L]

Remark. Denote c(y,x; \) = ¢;(y,x) + Acq(y, x) for X > 0. Note that under our mild assumption
in Section[2} all conditions of the above theorem except condition 2 (left twist condition) are satisfied
with cost function c(y, x; \). To check the left twist condition, it is enough to show the injectivity of

%c(y, x; A) with respect to x. However, for A = 0 (i.e., when only the likelihood-based cost term is
used), the map x %c(y, x;0) = 2(y — A(x)) is not injective due to the ill-posedness of A.

To handle this issue, we incorporate the standard quadratic cost c,. Note that in many tasks such
as Gaussian deblurring or HDR reconstruction, one can readily verify that %c(y, x;A) =2(y —
A(x)) + 2X\(y — x) is injective with respect to x with X\ = 1. In general, when A is Lipschitz
continuous, we can choose \ such that the function x — %c(y, x; \) is injective.

Claim 1. Assume that A is Lipschitz continuous. Then for some ¢ > 0, the function x —» %c(y7 x; )
is injective for all A > c.

Proof. Let c be the Lipschitz constant of the operator .A. Then the following equation holds:

%c(y, x;A) =2(y — A(x)) + 2A(y — x) = (24 2))y — 2(Ax + A(x)) 21

Thus it is enough to show that Ax + A(x) is injective. Also, for any x1,%x3 € X,, \x; + A(x1) =

Axy + A(xo) implies that A||x; — x2|| = || A(x1) — A(x2)]|< ¢||x1 — x2]|. Thus letting A > ¢, the
above result implies that x; = x2 and A\x + A(x) is injective. O
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C Addition results

C.1 Additional Quantitative Results

Table 3: Ablation study on the cost function ¢(y, x), investigated on the FFHQ dataset

cost term Gaussian Deblurring Super Resolution 4 x
Quadterm IPterm PSNR (1) SSIM (1) LPIPS(]) FID(l) PSNR (1) SSIM (1) LPIPS(]l) FID()
v 24.01 0.7130 0.124 21.516 24.29 0.7332 0.119 20.131
Ours v 23.98 0.7140 0.1270 25.608 2422 0.7354 0.117 19.085
v v 24.06 0.7139 0.124 21.210 24.35 0.7371 0.118 19.475
OTUR [33] 23.82 0.7106 0.136 24.337 2391 0.6777 0.165 30.773

C.2 Additional Qualitative Results

Figure 6: Additional qualitative results of our model for the Gaussian deblurring task on FFHQ
(degraded (Left) — clean (Right)).

b

[ . o o

Figure 7: Additional qualitative results of our model for the Gaussian deblurring task on AFHQ
(degraded (Left) — clean (Right)).

14



Figure 8: Additional qualitative results of our model for the super-resolution task on FFHQ (degraded
(Left) — clean (Right)).

Figure 9: Additional qualitative results of our model for the super-resolution task on AFHQ (degraded
(Left) — clean (Right)).

Figure 11: Additional qualitative results of our model for the HDR reconstruction task on AFHQ
(degraded (Left) — clean (Right)).

Figure 12: Additional qualitative results of our model for the nonlinear deblurring task on FFHQ
(degraded (Left) — clean (Right)).
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Figure 13: Additional qualitative results of our model for the nonlinear deblurring task on AFHQ
(degraded (Left) — clean (Right)).

source NOT OTUR Ours-0OT Ours

0,=0.025

for the Gaussian deblurring).

source
[
=

0, =0.025 ae

og,=0.05

Figure 15: Comparison of inverse problem solvers under multi-level observation noise on FFHQ
for the super-resolution).
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Figure 16: Comparison of inverse problem solvers under multi-level observation noise on FFHQ
for the HDR reconstruction).

source

Figure 17: Comparison of inverse problem solvers under multi-level observation noise on FFHQ
for the nonlinear-deblurring).
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