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Abstract

Large language models (LLMs) are prone to
distraction by contextual information during
reasoning. Previous work primarily focuses
on improving the generation of the next token
while overlooking the potential bias introduced
by existing premises. In this paper, we pro-
pose a novel decoding method to mitigate this
issue. We establish a framework that uses pre-
dicted logits to assess the model’s confidence.
By decomposing the full context into multiple
premises, we gain a clearer understanding of
the relevance of each premise to the question.
When predicting the next token, we adjust the
original model output by contrasting the most
confident logits with the least confident ones.
Our method effectively reveals how the model
dynamically activates and adjusts its considera-
tion of each premise as reasoning progresses.

1 Introduction

Large language models (LLMs) have demonstrated
significant effectiveness across various reasoning
tasks (Ahn et al., 2024; Zhang et al., 2024b). With
the continuous advancement of LLMs’ capabilities,
generating step-by-step intermediate rationale can
effectively guide the model toward reliable answers
(Wei et al., 2022).

A multitude of research endeavors has been dedi-
cated to optimizing the intermediate reasoning pro-
cess of LLMs during inference time (Snell et al.,
2024). These efforts can be categorized into two
paradigms: /) Fusion-based approaches, which
leverage additional information from the model it-
self or external sources to bolster the robustness
of reasoning (Li et al., 2023; O’Brien and Lewis,
2023; Shi et al., 2024b). 2) Reasoning space search-
based approaches, which search for the optimal
solution across various possible reasoning paths
to derive the answer (Wang and Zhou, 2024; Xie
et al., 2023, 2024; Mo and Xin, 2024).

However, previous research primarily focuses
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Figure 1: An illustration of a reasoning task. The lan-
guage model becomes distracted by semantic coherence,
thereby leading to error accumulation.

on how to enable LLMs to generate better next
tokens or rationales, while overlooking the influ-
ence of the premise and context in the question on
the subsequent generation (Liu et al., 2024; Chen
et al., 2024). Since LLMs are autoregressive ar-
chitectures, the existing context is typically closely
tied to the generation of new tokens, encompassing
aspects such as grammatical correctness, instruc-
tion adherence, and semantic coherence. Yet, when
tackling reasoning tasks, due to the intricate logical
relationships involved, the models often struggle to
capture the appropriate contextual cues, resulting in
an unrealistic token probability distribution. This
distribution can lead to biased reasoning sequences,
and errors are amplified as they accumulate.

We argue that the challenge of LLMs being
prone to distraction still poses a threat to reasoning
tasks (Shi et al., 2023). Due to the implicit atten-
tion mechanisms employed by LLMs, it is difficult
to discern the relationship between the generated
tokens and the premises in the question (Malkin
et al., 2022). For instance, models tend to prioritize



maintaining both syntactic and semantic coherence
while neglecting the correctness of reasoning, as il-
lustrated in Figure 1. The way the model conditions
various contexts does not align with expectations,
and this issue is difficult to correct externally.

To address these challenges, we propose
a Confidence-guided Cross-premise Contrastive
Decoding (C3D) method to enhance the trans-
parency of premises during LL.Ms’ reasoning.
Through empirical experiments, we observe that
LLMs tend to perform better when faced with
simple and explicit instructions (Prystawski et al.,
2023; Lightman et al., 2023), as such instructions
have lower uncertainty and are easier to execute.
Therefore, we first decompose the reasoning prob-
lem into multiple premises. When generating the
next token, we simultaneously decode the current
position using both the multiple premises and the
question. Since one premise will closely enlighten
the token at the current position, LLMs will assign
higher confidence to the token generation under
that premise. We then use the premise with the
highest confidence and the premise with the lowest
confidence for contrastive enhancement to adjust
the probability distribution of the next token. This
effectively reduces the reasoning bias caused by
ambiguous contextual evidence in the model.

We validate our method on multiple arithmetic
and symbolic reasoning tasks. The experiments
show that our approach significantly improves per-
formance without training, external verifier, or ex-
tensive path search. Additionally, our method pro-
vides greater transparency and interpretability, help-
ing us better understand the reasoning process of
LLMs. In summary, our contributions are three-
fold:

* We propose a reasoning enhancement method
based on cross-premise awareness and con-
trastive decoding, in which we design token-
level confidence evaluation to support the reli-
ability of the model’s reasoning chain.

* Our method effectively reveals how language
models dynamically awaken their consider-
ation of different premises as the reasoning
process flows. We also visualize the influence
of each premise on the generation of down-
stream tokens.

* Our method can achieve stable improvements
in reasoning performance without the need for

training, external verifiers, or path search. Ex-
tensive experiments validate the effectiveness
of our approach.

2 Related Works

2.1 Large Language Models Reasoning

When confronting reasoning tasks, LLMs typically
require CoT (Chain-of-Thought) (Wei et al., 2022)
capabilities to perform step-by-step intermediate
reasoning. Many studies focus on constructing
more data to strengthen the underlying CoT abili-
ties of LLMs, including methods based on Super-
vised Fine-Tuning (SFT) (Hao et al., 2024; Luo
et al., 2023; Ranaldi and Freitas, 2024), Reinforce-
ment Learning (RL) (Lightman et al., 2023; Zhang
et al., 2024a), and Prompting techniques (Kojima
et al., 2022; Zhang et al., 2022). These approaches
alter the model’s output logic and often demand
high-quality data or evaluation models, as well as
significant human effort and training costs.

2.2 Inference Time Scaling

In addition to training with more data, another tech-
nical approach explores improving LLMs during
inference time (Snell et al., 2024). These methods
aim to enhance the overall reasoning quality by
designing effective supervision strategies for each
step of the model’s output, and it does not alter the
model’s inherent capabilities. Some studies em-
ploy internal or external auxiliary mechanisms to
improve the robustness of LLMs (Li et al., 2023;
Chang et al., 2023), while others opt for more direct
approaches to search for optimal solutions within
diverse reasoning spaces (Wang and Zhou, 2024;
Xie et al., 2023, 2024; Mo and Xin, 2024). Our
method falls into the category of internal model
enhancement, which is low-dependency and low-
overhead.

2.3 Contrastive Decoding

By contrasting a credible state with a non-credible
state, contrastive decoding injects logits into the to-
ken generation process, thereby enhancing the faith-
fulness of the model’s output from within (Shi et al.,
2024a). For example, Contrastive Decoding (CD)
(O’Brien and Lewis, 2023) uses an expert LM and
an amateur LM to contrast and improve the profes-
sionalism of the generated tokens. Context-Aware
Decoding (CAD) (Shi et al., 2024b), on the other
hand, contrasts problems with and without context
within a single LM to reduce the irrelevance of



tokens to the context. Decoding by Contrasting
Layers (DoLa) (Chuang et al., 2023) stimulates the
intrinsic knowledge of LMs by contrasting differ-
ent layers. COIECD (Yuan et al., 2024) utilizes
information entropy to address the issue of knowl-
edge conflicts in models. Similarly, our method
contrasts generations under different premises and
further filters them based on confidence levels.

3 Method

We now introduce our proposed Confidence-
guided Cross-premise Contrastive Decoding (C3D)
method, which is a token-level, fine-grained
premise-aware contrastive approach.

For a reasoning task, given an input question x
and a context c that contains the necessary premises
for reasoning, the generation process of a standard
large language model M can be defined as:

Y ~ pm(yele, T, y<)

. )
X exp (logltM (yt |C, xz, ?/<t))

where y; is the new token generated at time step
t based on the context ¢, the question x, and the
previously generated sequence y;. It is sampled
proportionally to the logit scores processed by M
(Shi et al., 2024b).

However, the default sampling method is influ-
enced by various factors. For instance, when the in-
formation in the context is complex and unclear, the
predictions of language models tend to exhibit un-
certainty (Zheng et al., 2023; Chen et al., 2024; Qiu
and Miikkulainen, 2024), manifested as a smooth
distribution over the logits (Ulmer et al., 2023).
This smooth distribution further leads to an aver-
aging of sampling probabilities. Once the model
selects an incorrect token, subsequent generations
are affected as well. Even when the temperature
is set to O, it is difficult to guarantee that the top-
ranked token is always correct. Moreover, to main-
tain linguistic coherence, the model will amplify
these cumulative errors, ultimately compromising
the correctness of the reasoning.

3.1 Confidence Estimation with Logits

To further explore the internal prediction mecha-
nisms of the model, some methods utilize the logit
lens (Belrose et al., 2023) for interpretability analy-
sis. By observing the logits or probability distribu-
tion at the final layer, we can understand how the
model assigns weights to each word in the vocabu-
lary (Qiu et al., 2024; Yuan et al., 2024).

Logits Probabilities
Threshold ip=1

Logits Probabilities
Threshold 2p=

Figure 2: An example where entropy-based probability
is insufficient to measure the model’s confidence.

Generally, when a word is assigned a weight sig-
nificantly higher than others, it indicates that the
model has high confidence in this word, and it is
highly likely to be reasonable and reliable (Zhang
et al., 2023; Duan et al., 2024). This situation typi-
cally occurs in cases such as common collocations
or when the intent is clear. Therefore, we can use
the entropy of the predicted probabilities to mea-
sure the model’s confidence « in the next token:

H == pm(r)log(pm(r)) 2

TEY
1
exp(Hy,)

where H is the entropy at the current position over
the vocabulary V. We further take the negative
exponential of the entropy as an estimate of confi-
dence. When the entropy is higher, the probability
distribution over the vocabulary is more uniform,
and the confidence is lower; when the entropy is
lower, the distribution over the vocabulary becomes
"sharper”, and the confidence is higher (with a max-
imum value of 1).

Considering that entropy does not always repre-
sent the model’s uncertainty, as some information is
lost during the softmax process (Gupta et al., 2024;
Ma et al., 2025). For example, the model might
consider multiple words to be reasonable, each as-
signed a high logit value, but after softmax, their
probabilities become averaged. Alternatively, the
model might be uncertain about the response, but
when all logits are low, softmax can still increase
the probability of a particular word, as illustrated in
Figure 2. Given this, we incorporate consideration

a(y) = (3)
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Figure 3: An illustration of our proposed C3D method. The full context is decomposed into multiple premises,
which then simultaneously obtain logits for the current position of the original question. By contrasting the most
confident and least confident logits, the standard decoding process can be enhanced. This approach effectively
mitigates the model’s distraction issue. The illustration of entropy is copied from (Ulmer et al., 2023).

of the extreme values of logits:

K
1 .

L(y) = e ; topk (logit ¢ (y¢)) 4
where topk(+) extracts the largest k values from the
logits. The idea behind this is that the magnitude of
L also serves as an indicator of confidence (Ulmer
etal., 2023).

3.2 Multi-Premises Decomposition

Inspired by empirical experiments, we observe that
models often perform better when given simple
and focused instructions (Prystawski et al., 2023;
Lightman et al., 2023). This is because simple in-
structions typically have lower uncertainty, making
it easier for the model to capture the key informa-
tion. Therefore, we decompose the original context
c into multiple simpler premises:

,Cn} (5)
where each premise c,, is a sentence from the con-
text. This can be easily achieved through sentence
segmentation.

Then, we can obtain the confidence level of each
premise for the current position:

c={c1,ca,...

Qp = Oé(yt|Cn, z, y<t) (6)
En = ﬁ(yt’0n7x7y<t) (7)

The hypothesis here is that when a premise is
informative for the current decoding position, it

will be assigned higher confidence. We aim to
identify such premises and enable the model to
distinguish the key information in the context from
redundant details.

3.3 Dynamic Contrastive Decoding

To overcome reasoning errors caused by contextual
distractions, we recompute the predicted logits dur-
ing the decoding phase. Specifically, we select the
premise logit with the highest confidence as the pos-
itive example and the premise logit with the lowest
confidence as the negative example. We use their
contrastive difference to adjust the original logits.
Note that when the £ values of all premises fall
below a certain threshold, they are all considered
untrustworthy, and in such cases, we rely solely
on « as the confidence measure. Otherwise, we
simply use L as our basis.

®)

. _ Jargmax., {Lo, L1,..., Lo} if 3L > T
e argmax., {ag, a1, ..., } If VL < T

logit'y((yt|c, 2, y<¢) = logit v (yele, T, y<t)
+ amaxlogit/\/t (yt ’Cmaz; Z, y<t) (9)
- amaxlogit/\/l (yt |Cmin, x, y<t)
where T' is an empirically determined threshold,
and £ and « denote the confidence of the full
context. This decoding process is performed se-
quentially, and it dynamically selects a pair of con-
trastive examples for each generated token. Mean-
while, the confidence level « scales the magnitude



of this adjustment. As a result, this method can
mitigate the model’s distraction by contextual infor-
mation. Figure 3 presents the overall framework.

Algorithm 1 Confidence-guided Cross-premise
Contrastive Decoding

Require: A reasoning task x with context ¢, and a
language model M
Ensure: Response sequence y = {y1, 42, ..., Yt }
1: Decompose c into premises {cy, 2, ..., }
2: Add the full context and an empty set to the
premise set C = {c, ¢y, ca, ..., Cn, T}
while ¢ < max_length do
Logit list + @
for c; € C do
Add Logita(y¢|ci, ¢, y<¢) to the Logit
list
end for
if 3£ > T for £ in Logit list then
Select ¢ppqz With the highest £ and ¢
with the lowest £
10:  else
11: Select ¢q, With the highest o and ¢yn4n,
with the lowest «
12:  end if
13:  Contrast with ¢;;,4, and ¢pin
14:  Sample y; from the adjusted logits
15:  if y; is eos_token then
16: Break
17:  end if
18: end while

AN A
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4 Experiments

We evaluate our method on multiple tasks that re-
quire models to reason based on context. We pri-
marily focus on the following research questions:

* RQ1: Can our method consistently improve
reasoning performance?

* RQ2: How do multiple contextual premises
influence the reasoning process?

* RQ3: What is the relationship between the
model’s confidence and the downstream re-
sponses?

4.1 Experimental Setup
4.1.1 Datasets

We validate our approach on commonly used
benchmark datasets for reasoning, including three

arithmetic reasoning tasks: GSM8K (Cobbe et al.,
2021), AQUA (Ling et al., 2017), and SVAMP
(Patel et al., 2021), as well as three symbolic rea-
soning tasks: Coin Flip (Wei et al., 2022), BIG-
bench Date Understanding, and BIG-bench Object
Tracking (Srivastava et al., 2023). These datasets
encompass a wide range of reasoning tasks, from
simple to complex, and require leveraging contex-
tual information rather than relying on the model’s
memorized knowledge. Notably, the information
provided in the questions is not always helpful, and
some problems even contain completely irrelevant
distractors. The model must carefully discern the
given premises while avoiding reasoning pitfalls.

To validate the anti-distraction effect of our
method, we also conduct tests on GSM-IC (Shi
et al., 2023). This dataset is based on GSMS8K but
introduces irrelevant premises to the original ques-
tions, thereby distracting the language model. For
experimental efficiency, we randomly sample 100
questions from GSM-IC as the test subset.

Since our primary focus is on how to make bet-
ter use of the problem premises, we do not choose
tasks like commonsense reasoning or mathemati-
cal computation. These tasks mainly rely on the
model activating its stored knowledge for reason-
ing, where context information is usually minimal
or absent.

4.1.2 Baselines

We consider single-pass decoding methods as our
baselines. Specifically, we compare with regular de-
coding, self-consistency (SC) (Wang et al., 2023),
context-aware decoding (CAD) (Shi et al., 2024b),
and Decoding by Contrasting Layers (DoLA)
(Chuang et al., 2023). Among these, CAD and
DoLA are both contrastive decoding-based meth-
ods. The former primarily contrasts scenarios with
and without context, while the latter focuses on
contrasting different layers of the model.

4.1.3 Language Models

To obtain the internal logits of the model, we apply
our method to open-source large language models.
We select Llama-2-7B-chat and Llama-2-13B-chat
as the base models. Recently, strong reasoning
models, particularly those from the DeepSeek se-
ries (Guo et al., 2025), have demonstrated excep-
tional performance. Therefore, we also aim to vali-
date our method on such strong reasoning models.
To maintain consistency with the aforementioned
models, we choose DeepSeek-R1-Distill-Llama-



Arithmetic

Symbolic

Models Decoding  oMSK AQUA SVAMP Coin  Date Object V&

Regular  21.68 2401 4190 47.00 3929 30.80 34.11

sC 2614 2165 4719 5280 4037 3253 3678

Llama-2-7Bchat ~ CAD 2175  23.62 4990 4840 3496 31.80 35.07

DoLA 2214 2244 4380 5120 4008 30.53 35.02

Ours 2547 2992  47.59 5480 4499 32.66 39.24

Regular 3449 1574 4940 4740 4607 2733 36.84

Llama2-13B-chat ~ CAD 3169 1260 5210 50.80 37.69 3333 3637

Ours 3798 2637 5510 63.00 5149 3580 44.96

. Regular 6277 6339 8080 70.60 6640 5387 6631
DeepSeek-R1-Distill

P ass | CAD 6580 5079 7780 6620 6829 7667 67.59

Ours 7701 6535 8530 82.00 7453 9025 79.07

Table 1: Performance (%) comparison across different decoding methods. Our proposed C3D consistently improves
performance across various arithmetic and symbolic reasoning tasks. Moreover, the enhancement effect of our
method is more pronounced on stronger base models, such as DeepSeek-R1-Distill-Llama-8B.

8B! as the representative model for our experi-
ments. It is distilled from Llama-3.1-8B.

4.1.4 Implementation Details

Our method introduces two hyperparameters: k to
control the top k logit values for confidence £, and
threshold 7" to adjust the reference between £ and
a. Specifically, we search for k£ within the range [1,
5, 10, 15, 20, 25] and T" within the range [14, 16,
18, 20]. Since our method requires simultaneous de-
coding of multiple segments, we employ KV cache
to enhance efficiency. For more details, please refer
to Appendix A. We perform all experiments on a
single 80GB A800 GPU.

4.2 Overall Performance (RQ1)

Table 1 presents the performance of different mod-
els across various reasoning tasks. We further cate-
gorize the observations into Llama-2 Model Obser-
vations and DeepSeek-Distill Model Observations
based on the reasoning capabilities of the models.

4.2.1 Llama-2 Model Observations

On the Llama-2 series, our method consistently
and significantly improves regular decoding per-
formance. Particularly on the AQuA and Coin
Flip datasets, the 7B and 13B models show the
most substantial improvements. AQuA contains
non-intuitive and complex mathematical problems,
while Coin Flip requires multi-step state tracking.

"https://huggingface.co/deepseek-ai/DeepSeek-R 1 -
Distill-Llama-8B

Both tasks demand the model to thoroughly under-
stand the problem’s meaning. Given that the com-
prehensive understanding capability of the Llama-2
series is not particularly strong, the original decod-
ing is easily influenced by the context. Our strategy,
however, better assists the model in grasping finer-
grained information.

For similar contrastive decoding methods, such
as CAD and DoLLA, their performance across dif-
ferent datasets is inconsistent. This suggests that
relying solely on full-context contrast or layer-wise
contrast is insufficient to obtain evidence for token
generation.

4.2.2 DeepSeek-Distill Model Observations

We further explore the performance of our method
on stronger models. We observe that although
DeepSeek-R1-Distill-Llama-8b already performs
excellently on multiple tasks, our method can fur-
ther enhance its reasoning performance. Specifi-
cally, we note improvements of 11.2% on GSMS8K,
11.4% on Coin Flip, and 13.58% on Object Track-
ing. Such significant improvements indicate that
strong reasoning models can better benefit from
premises. We speculate that the reason is that
weaker models can sometimes be overly confident
even when incorrect (Fu et al., 2025), whereas
strong reasoning models exhibit this behavior less
frequently. Therefore, the latter can benefit more
from the most confident premises.



Most Confident Premise

Rebecca has 9 eggs.

If she wants to split them into groups of 3,
she will have:

9 eggs / 3 eggs per group = 3 groups

So, there will be 3 groups of eggs. </s>

Rebecca has 9 eggs.

If she wants to split them into groups of 3,
she will have:

9 eggs / 3 eggs per group = 3 groups

So, there will be 3 groups of eggs. </s>

Figure 4: A visualized case study. Best viewed in color. The problem above is divided into three premises: we
mark premise 1 in blue, premise 2 in pink, and premise 3 in orange, while the full context is marked in gray. The
bottom left shows which premise supports each generated token (most confident), and the bottom right shows which
premise distracts each generated token (least confident). The corresponding colors can help us better understand the

reasoning process.

Decoding 7B 13B DS
Regular w/o
Irrelevant Context 49.0 68.0 94.0
Regular w/ IC 340 55.0 80.0
CAD w/ IC 36.0 54.0 75.0
Ours w/ IC 41.0 620 85.0

Table 2: The performance (%) on the GSM-IC sub-
set. With the insertion of irrelevant context into the
questions, the baseline methods show significant per-
formance degradation. Our method, however, remains
robust against such corruption.

4.3 Performance on Data with Irrelevant
Context (RQ1)

Table 2 presents the performance comparison on
the GSM-IC subset. Since GSM-IC inserts an irrel-
evant premise into each question, this distracts the
language model. We observe that the performance
of baseline models significantly drops compared
to scenarios without irrelevant context. In contrast,
our method maintains comparable reasoning ac-
curacy. This phenomenon demonstrates that our
approach can effectively mitigate the negative im-
pact of irrelevant context on the decoding process.

4.4 Case Study (RQ2)

To gain a deeper understanding of how LLMs uti-
lize known premises during the reasoning process,
we further perform a case study for illustration. Fig-
ure 4 shows the relationship between each premise
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Figure 5: Visualization of how reasoning flows.

in the problem and the downstream responses. We
mark each premise with a distinct color and anno-
tate the most confident and least confident premises
for each generated token.

We observe that the beginning of each response
tends to use the full context, while for specific infor-
mation, the model favors those premises that most
strongly support the reasoning, such as premise
1. Premise 3, which contains the least informa-
tion, initially has the highest uncertainty. Similarly,
the information in premise 2 distracts the model,
resulting in a lower confidence.

4.5 How Reasoning Flows (RQ2)

Figure 5 further visualizes how the confidence «
values of each premise change during token gener-
ation. This provides us with a clearer perspective
on how the model drives the flow of reasoning.
Specifically, premise 1 dominates the early stages
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Table 3: Ablation studies on £ and c.
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Figure 6: The trend of accuracy impact under different
top-k values.

of generation. As reasoning information accumu-
lates, premises with initially less information, such
as premises 2 and 3, also gain insight and become
part of the reasoning process. Eventually, by the
end, each premise have gathered enough informa-
tion and become confident.

4.6 Impact of Confidence £ and o (RQ3)

We validate the contributions of the defined con-
fidence measures £ and « to reasoning. Table 3
presents the ablation studies on the GSM8K and
AQUuA datasets. The results show that both £ and
a have a positive effect on reasoning accuracy.
Specifically, £ has a slightly stronger impact on
the model compared to c. As discussed in Section
3.1, the entropy-based « alone is insufficient to
fully represent the model’s confidence. When the
accumulated logits fail to meet a certain threshold,
the reliability of « also decreases. The introduction
of L effectively compensates for this limitation.

4.7 Impact of Hyperparameter k£ and 7' (RQ3)

To further explore the impact of hyperparameter
settings, we conduct additional experiments on the
top-k logits and threshold 7.

Figure 6 illustrates the trend of performance
changes on AQUA and Date Understanding un-
der different top-k logit values. As k increases
from 1 to 25, AQUA shows an initial fluctuation

Impact of threshold T values
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Figure 7: The performance of different 7' values on
GSMBSK across various models.

followed by an upward trend, while Date Under-
standing exhibits a gradual decline. This indicates
that different datasets have varying preferences for
top-k, which we speculate is related to the inherent
properties of the datasets. Date Understanding pri-
marily focuses on tokens related to dates, whereas
AQUA requires a broader vocabulary space. How-
ever, overall, we can choose k=15 as a balanced
compromise.

Since few studies discuss the impact of logit
extremal values on responses, it is challenging to
define a reasonable threshold. Ranging from 10 to
30, logit extremal values exhibit no clear pattern
and are difficult to normalize. Therefore, we em-
pirically select [14,16,18,20] as the experimental
range. Figure 7 illustrates the effects of different
thresholds 7" on GSMS8K across two models. We
observe that, despite changes in model size, the
range of logits remains consistent. Additionally,
their impact is relatively similar across models of
different sizes. This phenomenon suggests that
we can manually select a suitable threshold as a
reference for the overall dataset.

5 Conclusion

We propose a confidence-guided cross-premise con-
trastive decoding method, which effectively miti-
gates reasoning errors in LLLMs caused by con-
textual distractions. We validate the effectiveness
of our method on both weak reasoning models
and strong reasoning models (DeepSeek-R1-Distill-
Llama-8B). Experiments show that our method
achieves more significant improvements on strong
reasoning models. Additionally, we visualize the
role of each premise during the reasoning process,
which can provide better guidance for future rea-
soning research.



Limitations

Considering both computational efficiency during
decoding and potential biases introduced by addi-
tional information, we adopt only the most basic
approach for premise decomposition in our cur-
rent work. However, future research could explore
more sophisticated methods for leveraging seman-
tic information to obtain better contextual segments.
Additionally, since LLMs inherently exhibit certain
biases during inference due to their training, our
work focuses on mitigating these biases through
contrastive decoding. Future studies may further
investigate how to obtain less biased output distri-
butions from LLMs.
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A Decoding Efficiency

Since our method requires decoding multiple seg-
ments simultaneously, computational overhead is a
potential concern. However, as our primary focus is
enhancing the model’s reasoning capability rather
than computational efficiency, and given the abun-
dance of existing research on accelerating LL.Ms,
we adopt simple inference acceleration strategies
to improve decoding efficiency. Specifically, we
design a batch-based multi-segment decoding ap-
proach leveraging KV cache to store precomputed
attention values. This design significantly reduces
computational costs during decoding while allow-
ing future integration of more advanced KV cache
algorithms.

Additionally, inspired by Ji et al. (2025), we ob-
serve that the first few tokens during inference have
greater impact on results compared to subsequent
tokens — a phenomenon consistent with our find-
ings in Section 4.5. Accordingly, we implement
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Method/Tokens/s‘ 7B ‘ 13B ‘ DS

Regular Decoding | 38.35 | 33.70 | 29.43
C3D + KV Cache | 35.76 | 31.70 | 25.99
C3D + Truncation | 31.70 | 25.43 | 25.34
C3D + No Strategy | 21.12 | 20.13 | 18.61

Table 4: The token throughput per second of different
decoding strategies.

Decoding | AIME2024 | AIME2025
46.67 26.67

C3D

Regular
53.33 33.33

Table 5: DeepSeek-R1-Distill-Llama-8B performance
comparison on AIME 2024 and AIME 2025 datasets.

a simple truncation strategy: contrastive decoding
is applied to the first few generated tokens, while
original decoding is used for the remaining tokens.

Table 4 demonstrates the decoding efficiency of
different strategies. Using KV cache significantly
improves decoding speed compared to not using it,
achieving performance close to the original decod-
ing efficiency while maintaining strong resistance
to contextual distractions.

B Experiments on AIME

To evaluate our method’s performance on more
complex tasks, we conduct additional experiments
using the AIME dataset. AIME (American Invita-
tional Mathematics Examination) consists of a se-
ries of challenging mathematical problems widely
used to assess the reasoning capabilities of LL.Ms.
Table 5 presents our method’s performance on
AIME 2024% and AIME2025°.

C Case Study on GSM-IC

To further analyze how distraction affects the
model’s reasoning process, we compare the perfor-
mance of different decoding methods on the GSM-
IC dataset, as shown in Table 6. We observe that
regular decoding is more susceptible to irrelevant
information in the questions, leading to incorrect
responses. In contrast, our method empowered by
cross-premise contrastive decoding can selectively
ignore such distracting information.

“https://huggingface.co/datasets/Maxwell-
Jia/AIME_2024
3https://huggingface.co/datasets/opencompass/AIME2025
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Regular

C3D

Question: Gretchen draws caricatures in the
park on the weekends. She charges $20.00
per drawing. Ideally, Emma would love to sell
10000 drawings per weekend. If Gretchen sold
24 on Saturday and 16 on Sunday, how much
money did she make?

Question: Gretchen draws caricatures in the
park on the weekends. She charges $20.00
per drawing. Ideally, Emma would love to sell
10000 drawings per weekend. If Gretchen sold
24 on Saturday and 16 on Sunday, how much
money did she make?

Answer: Gretchen sells 24 drawings on Satur-
day and 16 drawings on Sunday. So, in total,
she sells 24 + 16 = 40 drawings. Since each
drawing costs $20.00, Gretchen makes $20.00
x 40 = $800.00 per weekend.

To find out how much money Emma would love
to sell, we need to multiply the number of draw-
ings Gretchen sold by the price per drawing:
$800.00 x 10000 = $8,00,000.00. (Wrong)

Answer: Gretchen charges $20.00 per drawing,
so if she sells 24 drawings on Saturday, she
will make $20 x 24 = $480.00. If she sells 16
drawings on Sunday, she will make $20 x 16 =
$320.00.

So, in total, Gretchen made $480.00 + $320.00
= $800.00. (Correct)

Table 6: A comparative case study of different decoding methods on the GSM-IC dataset. Red text highlights
distracting irrelevant information that negatively influences the model. The left panel demonstrates how standard
decoding fails when exposed to such distractions, while the right panel shows our method’s robust performance
under the same conditions.
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