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ABSTRACT

Offline Reinforcement Learning (RL) struggles with distributional shifts, leading
to the Q-value overestimation for out-of-distribution (OOD) actions. Existing
methods address this issue by imposing constraints; however, they often become
overly conservative when evaluating OOD regions, which constrains the Q-function
generalization. This over-constraint issue results in poor Q-value estimation and
hinders policy improvement. In this paper, we introduce a novel approach to achieve
better Q-value estimation by enhancing Q-function generalization in OOD regions
within Convex Hull and its Neighborhood (CHN). Under the safety generalization
guarantees of the CHN, we propose the Smooth Bellman Operator (SBO), which
updates OOD Q-values by smoothing them with neighboring in-sample Q-values.
We theoretically show that SBO approximates true Q-values for both in-sample and
OOD actions within the CHN. Our practical algorithm, Smooth Q-function OOD
Generalization (SQOG), empirically alleviates the over-constraint issue, achieving
near-accurate Q-value estimation. On the D4RL benchmarks, SQOG outperforms
existing state-of-the-art methods in both performance and computational efficiency.

1 INTRODUCTION

Reinforcement Learning (RL) offers a powerful framework for control tasks, underpinned by rigorous
mathematical principles. In online RL, an agent learns optimal strategies through direct interaction
with the environment. However, in many real-world domains (e.g., robotics, healthcare, autonomous
driving), such interactions are infeasible or impractical. Offline RL, in contrast, enables the agent to
learn optimal policies from pre-collected datasets, eliminating the need for online interaction. Com-
bining this data-driven paradigm with deep neural networks (DNNs) is anticipated to produce robust
and generalizable decision-making engines. However, the primary challenge in offline RL lies in the
distribution shift between the learned policy and the behavior policy, which leads to overestimation of
OOD actions. Incorrect evaluation of OOD actions results in extrapolation errors, which are further
exacerbated by bootstrapping, ultimately causing severe value function approximation errors and
hindering the agent from learning an optimal policy.

Recent model-free offline RL algorithms addresses this challenge through the following methods: 1)
policy constraints, where constraints are added during policy updates to ensure the learned policies
remain close to the behavior policy (Fujimoto et al., 2019; Wu et al., 2019; Kumar et al., 2019;
Fujimoto & Gu, 2021; Kostrikov et al., 2021a; Ran et al., 2023; Li et al., 2022; Huang et al., 2023). 2)
value penalization, where constraints are incorporated during value updates to enforce conservatism
in the value function (Wu et al., 2019; Kostrikov et al., 2021a; Kumar et al., 2020; Lyu et al., 2022;
Yang et al., 2022). 3) in-sample learning, where the value function is learned only within the dataset
to avoid evaluating OOD samples (Wang et al., 2018; Chen et al., 2020; Kostrikov et al., 2021b; Xu
et al., 2023; Garg et al., 2023). Dataset OOD regions are typically regarded as information-deficient
and potentially hazardous. Avoiding evaluations in these regions helps mitigate the overestimation
issue. However, many existing methods tend to be overly conservative in handling dataset OOD
regions, which limits the Q-function’s ability to generalize effectively. This phenomenon, termed the
over-constraint issue, results in poor Q-value estimation. This raises an important question: Can we
achieve better Q-value estimation by enhancing Q-function generalization in dataset OOD regions?

To address this question, we first introduce the CHN to define a boundary for safety generalization.
By providing two safety guarantees, we demonstrate that generalizing the Q-function to OOD
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regions within the CHN is safe, while doing so outside the CHN is risky. Therefore, we focus on
Q-function generalization within the CHN. To enhance this generalization, we propose the SBO,
which incorporates a smooth generalization term into the empirical Bellman operator. The key idea is
to adjust biased OOD Q-values using neighboring in-sample Q-values closely approximate the true
values. We provide a theoretical justification for the SBO, showing that the smooth generalization
term is appropriate. Additionally, we analyze its effects on both in-sample and OOD evaluations
and establish its convergence properties. Applying the SBO allows the Q-function to gradually
approximate the true OOD Q-values, while minimally affecting in-sample evaluations. In theory,
SBO yields a more accurate Q-function for policy evaluation.

Building on SBO, we develop a computationally efficient offline RL algorithm: Smooth Q-function
OOD Generalization (SQOG). Empirically, we demonstrate that compared to TD3+BC (Fujimoto &
Gu, 2021), SQOG achieves more accurate Q-value estimation, particularly in OOD regions within
the CHN, thereby alleviating the over-constraint issue of the Q-function. Finally, on the D4RL
benchmarks, SQOG shows superior performance and computational efficiency compared to existing
state-of-the-art methods.

To summarize, our contributions are as follows:

• Under the safety guarantees of the CHN, we propose the Smooth Bellman Operator (SBO), which
enhances Q-function generalization in OOD regions and approximates the true Q-values.

• Building on SBO, we design an effective algorithm, SQOG, which alleviates the over-constraint
issue and obtains SOTA results on benchmark datasets.

2 PRELIMINARIES

RL is typically modeled as a Markov Decision Process (MDP) (Sutton & Barto, 2018), defined as
M = (S,A, T, d0, r, γ). S represents the state space, A denotes the action space, and T describes
the conditional probability of state transitions T (st+1|st, at) (simply denoted as T (s′|s, a)). The
initial state distribution is defined by d0(s0), the reward function is r : S ×A→ R, and γ ∈ [0, 1)
is the discount factor. The objective of RL is to learn an optimal policy π that maximizes the
cumulative expected reward J(π) = Es0∼d,at∼π(·|st),st+1∼T [

∑∞
t=0 γ

tr (st, at)]. The state-action
value function Qπ (s, a) quantifies the discounted return of a trajectory starting from state s and
action a, following the policy π. The reward function is bounded, i.e. |r(s, a)| ≤ rmax. Given a
policy π, the Bellman operator for the Q function’s iteration is defined as: BπQ (s, a) = r (s, a) +
γEs′∼T,a′∼π(·|s′) [Q (s′, a′)].

Offline RL algorithms based on dynamic programming maintain a parametric Q-function
Qθ(s, a) and optionally a parametric policy πϕ(a|s). The dataset is typically defined as D =
{(si, ai, ri, s′i, di)}Ni=1, where di ∈ {0, 1} is the done flag. The dataset is generated according
to the behavior policy µ(·|s). Given state s′ ∈ D, the empirical behavior policy is defined as:

µ̂(a′|s′) :=
∑

(s,a)∈D 1[s=s′,a=a′]∑
s∈D 1[s=s′] . The Actor-Critic algorithm is widely used in RL, consisting of

policy evaluation in Eq. (1) and policy improvement in Eq. (2).

Lcritic(θ) = E(s,a,r,s′)∼D[(Qθ(s, a)− (r + γEa′∼πϕ(·|s′)[Q̂θ′(s′, a′)]))2] (1)

Jactor(ϕ) = −Es∼D,a∼πϕ(·|s′)[Qθ(s, a)] (2)

Since D typically does not contain all possible transitions (s, a, s′), the policy evaluation step uses an
empirical Bellman operator B̂πQθ(s, a) = r + γEs′∼D,a′∼πϕ(·|s′) [Qθ′(s′, a′)] that only backs up a
single sample. The empirical Bellman operator relies on a′ sampled from learned policy πϕ(·|s′). In
offline RL, a′ may not correspond to any action in the dataset, typically when µ̂(a′|s′) = 0. We refer
to such actions as OOD actions1, which are usually overestimated (Kumar et al., 2019). Most existing
methods introduce a new over-constraint issue when addressing the overestimation of OOD actions.
We alleviate this issue by enhancing Q-function generalization in OOD regions within the CHN.

1In practice, actions with µ̂(a′|s′) ≈ 0 are often treated as OOD actions due to their negligible frequency.
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3 Q-LEARNING WITH SMOOTH OOD GENERALIZATION IN CHN

In this section, we first formally define the CHN and outline its safety guarantees for distinguishing
the safer OOD regions (Section 3.1). Then, we construct the SBO to improve the Q generalization
within the CHN. Theoretically, we provide the justification for using SBO, as well as discuss its
effects and convergence (Section 3.2). Finally, we propose our practical algorithm SQOG with a
low-computational-cost implementation (Section 3.3).

3.1 CONVEX HULL AND ITS NEIGHBORHOOD

Definition 1 (CHN, Convex Hull and its Neighborhood). For a given dataset D, we define the
in-sample state-action set (S,A)D = {(s, a)|(s, a) ∈ D}2. CHN3 is defined as the union of
the convex hull and its neighborhood of (S,A)D: CHN(D) = Conv(D) ∪ N(Conv(D)), where
Conv(D) = {

∑n
i=1 λixi|λi ≥ 0,

∑n
i=1 λi = 1, xi ∈ (S,A)D} is convex hull, and N(Conv(D)) =

{x ∈ (S,A) | miny∈Conv(D) ∥x − y∥ ≤ r}4 is the neighborhood. The neighborhood radius r is
always chosen to be smaller than or equal to the diameter of Conv(D).

Definition 1 presents the formal mathematical definition of CHN, which possesses uniqueness,
compactness and connectivity. We then demonstrate two safety guarantees of CHN.
Proposition 1 (Safety guarantee 1: Q-value difference is controlled within CHN). Under the NTK
regime, given a dataset D, x1 ∈ Conv(D), x2 ∈ N(Conv(D)), x3 ∈ (S,A)− CHN(D). We have,

∥Qθ(x1)−Qθ(ProjD(x1))∥ ≤ C1(
√

min(∥x1∥, ∥ProjD(x1)∥)
√
d1 + 2d1) ≤M1 (3)

∥Qθ(x2)−Qθ(ProjD(x2))∥ ≤ C1(
√
min(∥x2∥, ∥ProjD(x2)∥)

√
d2 + 2d2) ≤M2 (4)

∥Qθ(x3)−Qθ(ProjD(x3))∥ ≤ C1(
√
min(∥x3∥, ∥ProjD(x3)∥)

√
d3 + 2d3) (5)

where ProjD(x): = argminxi∈D∥x− xi∥ is the projection to the dataset. d1, d2, d3 are the point-
to-dataset distances. Both d1 = ∥x1 − ProjD(x1)∥ ≤ maxx′∈D ∥x1 − x′∥ ≤ B and d2 =
∥x2−ProjD(x2)∥ ≤ r ≤ B are bounded. d3 = ∥x3−ProjD(x3)∥ > r, where r is the neighborhood
radius and B = sup {∥x− y∥ |x, y ∈ Conv (D)} is the diameter of the convex hull. let r =
maxx∈Conv(D) ∥x− ProjD(x)∥, then r ≤ B. C1,M1,M2 are constants.

We generalize Proposition 1 from the analysis of DOGE (Li et al., 2022) under the NTK regime
(see Appendix A). The neighborhood is a crucial augmentation that significantly broadens the
scope of safety generalization. For any state-action pair x1 (inside the convex hull) or x2 (in
the neighborhood), the difference between its Q-value and the in-sample Q-value Qθ(ProjD(x))
can be controlled by the point-to-dataset distance. Due to the uniqueness of CHN, this distance
di = ∥xi − ProjD(xi)∥, i = 1, 2 can be strictly controlled by the longest diameter B of the convex
hull. Assuming that deep Q-function is a continuous mapping, keeping the compactness (bounded
and closed) and connectivity of the set, then Q is bounded within CHN. Building upon Proposition 1,
we can quantify the bound: ∀xin ∈ CHN, ∥Qθ(xin)∥ ≤ supxi∈D ∥Qθ(xi)∥+max {M1,M2}.
Proposition 2 (Safety guarantee 2: Q-function is uniform continuity within CHN). Assuming that
Q-function is continuous, then Q-function defined on CHN is uniformly continuous:

∀ε > 0, ∃δ > 0, s.t. ∀xi, xj ∈ CHN(D), if ∥xi − xj∥ < δ, then ∥Qθ(xi)−Qθ(xj)∥ < ε.

Proposition 2 ensures that small input changes will not lead to drastic changes in the output Q-value,
which means that the Q-function of OOD actions within CHN is easy to learn from the neighbor
Q-function of in-sample actions which is more accurate (proved in Section 3.2). Through the safety
guarantees in Proposition 1 and 2, we can make it clear that the generalization of the Q-function in
the OOD regions within CHN is safer and more reliable, without producing excessive high estimates.
In the following sections, we only focus on the Q generalization in the OOD regions within CHN.

2Here, we use (s, a) ∈ D for simplicity to represent state-action pairs in the dataset D, where D consists of
tuples (s, a, r, s′, d).

3We use both CHN and the CHN in this paper. The italicized form emphasizes the mathematical structure
and properties, while the regular font highlights its conceptual and intuitive meaning.

4In this paper, unless otherwise specified, the || · || norm refers to the L2 norm || · ||2.
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3.2 SMOOTH BELLMAN OPERATOR WITH OOD GENERALIZATION

In this section, we propose a method to actively enhance Q generalization in OOD regions within the
CHN. First, we formally define the SBO. Then, we provide a theoretical justification for the operator
in Theorem 1 and Proposition 3, followed by a discussion of its effects in Theorem 2 and Theorem 3.
Finally, we establish its convergence in Theorem 4.
Definition 2. Given policy π, the Smooth Bellman Operator (SBO) is defined as

B̃πQ(s, a) = (G1B̂π2 )Q(s, a) (6)
where G1 is the smooth generalization operator:

G1Q(s, a) =

{
Q(s, a), µ̂(a|s) > 0
Q(s, ainneighbor), µ̂(a|s) = 0 (OOD)

(7)

and B̂2 is the base Bellman operator:

B̂π2Q(s, a) =

{
B̂πQ(s, a), µ̂(a|s) > 0
Q(s, a), µ̂(a|s) = 0 (OOD)

(8)

where ainneighbor denotes a dataset action which is in the neighborhood of the OOD action a, i.e.,
ainneighbor ∈ D and ∥ainneighbor − a∥ ≤ δ. B̂πQ(s, a) denotes the wildly used empirical Bellman
operator B̂πQ = Es,a,r,s′∼D[r + γEa′∼π(·|s′)[Q(s′, a′)]]. For simplicity, we omit the network
parameters θ, θ′ and ϕ.

In the SBO, in-sample Q-values are updated using the empirical Bellman backup in B̂π2Qθ, while
OOD Q-values are updated using the neighboring in-sample Q-values Q(s, ainneighbor) in G1Qθ.
Inspired by the MCB operator in MCQ (Lyu et al., 2022), we decompose the operator into G1Qθ and
B̂π2Qθ to address the potential OOD actions generated by π(·|s′). The smooth generalization operator
G1 conveys the key contribution of the SBO. Through the following Theorem 1 and Proposition 3, we
will provide theoretical justification for the smooth generalization operator G1.
Theorem 1 (The empirical Bellman operator B̂πQθ is close to BπQθ). Suppose there exist a policy
constraint offline RL algorithm such that the KL-divergence of learned policy π and the behavior
policy µ is optimized to guarantee max(KL(π, µ),KL(µ, π)) ≤ ϵ. Then, under the NTK regime,
for all (s, a) ∈ D, with high probability ≥ 1− δ, δ ∈ (0, 1).

∥B̂πQθ−BπQθ∥ ≤
Cr,T,δ√
|D(s, a)|︸ ︷︷ ︸

sampling error bound

+ζ·C ·max
s′

[√
min(Ea′∼π∥(s′, a′)∥,Ea′∼µ∥(s′, a′)∥)

√
d+ 2d

]
︸ ︷︷ ︸

OOD overestimation error bound

(9)
where Cr,T,δ = Cr,δ + γCT,δRmax/(1 − γ), ζ =

γCT,δ√
|D(s,a)|

and d ≤ ∥amin∥2+∥amax∥2

2

√
ϵ
2 . Here,

Cr,δ and CT,δ are constants dependent on the concentration properties of r(s, a) and T (s′|s, a),
|D(s, a)| is the dataset size, amin and amax denote the minimum and maximum actions, and C is a
constant.

Proof sketch. The proof consists of considering two main sources of error: the sampling error (arising
from r and T̂ ), and the OOD overestimation error (generated from Ea′∼π(·|s′)[Qθ′(s′, a′)]). Since
B̂µQθ has low OOD overestimation error and µ is close to π, we first analyze the sampling error
through ∥B̂µQθ − BµQθ∥, which can be bounded by Cr,T,δ√

|D(s,a)|
. The OOD overestimation error is

then examined as the difference between Ea′∼π(·|s′)[Qθ′(s′, a′)] and Ea′∼µ(·|s′)[Qθ′(s′, a′)]. Under
the NTK regime, this difference is controlled by the distance d. Given that both 1√

|D(s,a)|
and d are

small, the difference between B̂πQθ and BπQθ is expected to be small. See Appendix A.

Theorem 1 shows that under the policy constraint algorithm framework, for in-sample (s, ain), the
empirical Q̂π

θ (s, a
in) can closely approximate Qπ

θ (s, a
in)5 by applying the empirical Bellman opera-

tor B̂π. Meanwhile, Qπ
θ (s, a

in) is close to the true non-parametric Q-value Qπ(s, ain) (Ran et al.,
5Assuming that parametric in-sample Q-value Qπ

θ (s, a
in) is converged, i.e. Qπ

θ (s, a
in) ≈ BπQπ

θ (s, a
in).
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2023). Then, Q̂π
θ (s, a

in) is a near-accurate estimation for the in-sample (s, ain), i.e. Q̂π
θ (s, a

in) ≈
Qπ(s, ain). However, the OOD Q-value Q̂π

θ (s, a
ood) may suffer from underestimation due to the

constraints in policy improvement, i.e. for some OOD (s, aood), Q̂π
θ (s, a

ood) < Qπ(s, aood).

In Eq. (7), the smooth generalization operator G1 is introduced to approximate the true OOD Q-value.
Although the true OOD Qπ(s, aood) and the exact OOD reward r(s, aood) are unattainable, we
already obtain the nearly accurate in-sample Q̂π

θ (s, a
in). In Proposition 3, we show that Q̂π

θ (s, a
in)

can serve as a appropriate OOD target when combined with the neighboring condition.
Proposition 3 (Q̂π

θ (s, a
in
neighbor) is appropriate). Suppose there exist ε such that ∥Q̂π

θ (s, a) −
Qπ(s, a)∥ < ε/2, for all (s, a) ∈ D. By the uniform continuity within CHN (Proposition 2),
there exist a small δ, if ∥aood − ainneighbor∥ < δ, then ∥Qπ(s, aood)−Qπ(s, ainneighbor)∥ < ε/2, we
have,

∥Qπ(s, aood)− Q̂π
θ (s, a

in
neighbor)∥ < ε (10)

Proposition 3 can be proved directly using the triangle inequality. Subsequently, we propose Theorem
2 and 3 to illustrate the effects of the SBO.
Theorem 2 (Effects on in-sample evaluation). For the in-sample evaluation, G1 introduces negligible
changes to the empirical Bellman operator B̂πQθ. Under the NTK regime, given (s, a) ∈ D,
assuming that ∀a′ ∼ π(·|s′),∃ainneighbor, s.t.∥a′ − ainneighbor∥ < δ, we have,

∥B̃πQθ(s, a)− B̂πQθ(s, a)∥ ≤ C · γEs′

[√
min(x, y)

√
δ + 2δ

]
(11)

where x = Ea′∼π,∥a′−ain
neighbor∥<δ∥(s′, ainneighbor)∥, y = Ea′∼π∥(s′, a′)∥, C is a constant.

The proof of Theorem 2is similar to Theorem 1. See Appendix A.
Theorem 3 (Effects on OOD evaluation). For the OOD evaluation, G1 helps mitigate underestimation
and overestimation. Assuming that for all (s, a) ∈ D, Qk(s, a) ≈ Qπ(s, a). Given (s, a) /∈
D, assuming that ∥a − ainneighbor∥ ≤ δ and ∥Qπ(s, a) − Qk(s, ainneighbor)∥ < ε, if ∥Qk(s, a) −
Qk(s, ainneighbor)∥ > ε (underestimation or overestimation), by applying the SBO B̃ (Definition 2)
for gradient descent updates (with infinitesimally small learning rate), we have,

∥Qπ(s, a)−Qk+1(s, a)∥ < ∥Qπ(s, a)−Qk(s, a)∥ (12)
If ∥Qk(s, a)−Qk(s, ainneighbor)∥ ≤ ε, then ∥Qk+1(s, a)−Qπ(s, a)∥ < 2ε.

Proof sketch. If Qk(s, a) < Qk(s, ainneighbor)− ε (underestimation), then by applying the gradient
descent method, it follows that Qk(s, a) < Qk+1(s, a) ≤ Qπ(s, a). Similarly, the overestimation
case can be addressed. The final result can be established using a similar approach combined with the
triangle inequality. See Appendix A.

From Theorem 2 and 3, we observe that applying the SBO, B̃π , enables the Q-function to gradually
approximate the true OOD Q-values within the CHN, while incurring negligible side effects on the
in-sample evaluation. Finally, we present the convergence of the SBO with its proof in Appendix A.
Theorem 4 (Convergence of SBO). The SBO is a γ- contraction operator in the L∞ norm. Any
initial Q-function can converge to a unique fixed point by repeatedly applying the SBO.

3.3 PRACTICAL ALGORITHM

Based on the smooth generalization operator G1 in SBO, we design an OOD generalization loss LOG

in Eq. (13), which can be easily integrated into the objective function of critic network Eq. (1):

LOG(θ) = Es∼D,aood

[(
Qθ(s, a

ood)−Q(s, ainneighbor)
)2]

(13)

In practice, we aim to devise a low-computational-cost implementation for aood and ainneighbor.
Notably, during each training loop, we randomly sample a batch of state-action pairs from the dataset,
which naturally yields an in-sample action ain. By adding noise η to ain, we generate a neighboring
action aood = ain + η6 ensuring that ∥ain − aood∥ ≤ δ and (s, aood) ∈ CHN are satisfied by

6Note that the superscript ood is used to distinguish from the in-dataset real actions. If aood is in-sample, the
added noise will provide robustness for training the in-sample Q. Similar to (Lyu et al., 2022).
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Algorithm 1 Smooth Q-function OOD Generalization (SQOG)
1: Initialize: Actor network parameter ϕ, critic network parameters θ1 and θ2, dataset D, target

parameters ϕ′, θ′1, θ2
′, training step T , smoothing parameter τ , actor update frequency m.

2: for step t = 1 to T do
3: Sample a mini-batch of transitions {(s, a, r, s′, d)} from D.
4: Update θ1, θ2 via minimizing the critic loss Eq. (14).
5: if t mod m = 0 then
6: Update ϕ via minimizing the actor loss Eq. (15).
7: Update target network parameters by ϕ′ ← (1− τ)ϕ′ + τϕ, θ′i ← (1− τ)θ′i + τθi, i = 1, 2
8: end if
9: end for

appropriately controlling the noise scale. This approach allows us to sample pairs of ainneighbor and
aood with minimal computational cost. Consequently, by combining with Eq. (1) and (13), we
achieve a practical Q-learning objective function of critic networks with low-computational-cost:

LSQOG(θi) = E(s,a,r,s′)∼D

[(
Qθi(s, a)−

(
r + γmin

i
Q̂θ′

i
(s′, a′)

))2
]

+βE(s,a)∼D

[(
Qθi(s, a+ η)− Q̄θi(s, a)

)2] (14)

where Q̂θ′
i
(s′, a′) represents the Q target network outputs, a′ = πϕ(s), Q̄θi(s, a) is the Q network

output with the gradient detached, i ∈ {1, 2}. Similar to TD3+BC (Fujimoto & Gu, 2021), a
representative offline Actor-Critic algorithm, we set the objective function of actor network as:

J (ϕ) = −E(s,a)∼D[λQθ1(s, πϕ(s))− (πϕ(s)− a)2] (15)

where λ = αN/
∑

si,ai
Q(si, ai), α is a hyperparameter, N is the batch-size. The pseudo-code of

our algorithm SQOG is summarized in Algorithm 1.

4 EXPERIMENTS

In this section, we first empirically show that compared to TD3+BC, SQOG alleviates the over-
constraint issue, leading to more accurate Q-value estimation. Second, we highlight the advantages
of our algorithm on the D4RL benchmarks (Fu et al., 2021), where SQOG demonstrates superior
performance and computational efficiency. Finally, we present an ablation study to analyze the
contributions of the key components in our approach.

Sanity check: alleviation of the over-constraint issue. To demonstrate the alleviation of the over-
constraint issue, we construct a dataset using the Mujoco environment “Inverted Double Pendulum”,
chosen for its one-dimensional action space and appropriate task complexity. The dataset is generated
by training a policy online using Soft Actor-Critic (Haarnoja et al., 2018) and subsequently collecting
1 million samples from the trained policy. We select two key states (the most frequently occurring
ones in the dataset) to illustrate the estimation of Q-values and use TD3+BC to highlight the over-
constraint issue. For each state, we compute the Q-values for every 0.01 increment within the action
range [-1.0, 1.0], using the critic networks of TD3+BC and SQOG. The true Q-values are obtained by
a Monte Carlo method, where the discounted return is computed for the same state-action pairs under
the same policy. To facilitate comparison, we smooth the values using cubic spline interpolation.

Based on the color bars in Figure 1, we can identify the OOD regions. In Figure 1(a), the highest
true value occurs within the range [-0.50, 0.50], corresponding to OOD regions inside the convex
hull. In Figure 1(b), the highest true value is located within [0.30, 1.00], representing OOD regions
in the neighborhood of the convex hull. However, TD3+BC struggles with the over-constraint issue
in these OOD regions, failing to accurately estimate Q-values for policy evaluation. In contrast,
SQOG successfully estimates Q-values by smoothly generalizing in the OOD regions within the
CHN (inside the convex hull in 1(a) and its neighborhood in 1(b)). These results from our sanity
check demonstrate that improving Q-value generalization in the OOD regions within the CHN leads
to better policy evaluation, reinforcing our theoretical analysis.
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(a) Q-values for state s1 (b) Q-values for state s2

Figure 1: Q-values estimation for two key states. The color bars show the density of different actions.
Higher density actions correspond to darker colors. With the tight constraints of the behavior policy,
the Q-values of TD3+BC are overly constrained within [-0.50, 0.50] as shown in Figure 1(a), while
in Figure 1(b), the Q-values are overly constrained within [-0.80, -0.40] and [0.25, 1.00]. However,
SQOG consistently achieves accurate estimation of Q-values in most cases.

Table 1: Normalized average score comparison of SQOG against baseline methods on D4RL bench-
marks over the final 10 evaluations and 4 random seeds. We bold the highest scores.

Dataset BC TD3+BC CQL IQL DOGE MCQ SQOG

halfcheetah-r 2.2±0.0 11.0±1.1 17.5±1.5 13.1±1.3 17.8±1.2 23.6±0.8 25.6±0.4
hopper-r 3.7±0.6 8.5±0.6 7.9±0.4 7.9±0.2 21.1±12.6 31.0±1.7 15.6±3.3
walker2d-r 1.3±0.1 1.6±1.7 5.1±1.3 5.4±1.2 0.9±2.4 10.3±6.8 17.7±3.5
halfcheetah-m 43.2±0.6 48.3±0.3 47.0±0.5 47.4±0.2 45.3±0.6 58.3±1.3 59.2±2.4
hopper-m 54.1±3.8 59.3±4.2 53.0±28.5 66.2±5.7 98.6±2.1 73.6±10.3 100.6±0.7
walker2d-m 70.9±11.0 83.7±2.1 73.3±17.7 78.3±8.7 86.8±0.8 88.4±1.3 82.9±0.8

halfcheetah-m-r 37.6±2.1 44.6±0.5 45.5±0.7 44.2±1.2 42.8±0.6 51.5±0.2 46.4±1.2
hopper-m-r 16.6±4.8 60.9±18.8 88.7±12.9 94.7±8.6 76.2±17.7 99.5±1.7 100.9±5.1
walker2d-m-r 20.3±9.8 81.8±5.5 81.8±2.7 73.8±7.1 87.3±2.3 83.3±1.9 88.3±3.5
halfcheetah-m-e 44.0±1.6 90.7±4.3 75.6±25.7 86.7±5.3 78.7±8.4 85.4±3.4 92.6±0.4
hopper-m-e 53.9±4.7 98.0±9.4 105.6±12.9 91.5±14.3 102.7±5.2 106.1±2.3 109.2±2.8
walker2d-m-e 90.1±13.2 110.1±0.5 107.9±1.6 109.6±1.0 110.4±1.5 110.3±0.1 109.0±0.3

Mujoco Average 36.5 58.2 61.8 59.9 64.1 68.4 70.7
Maze2d Average -2.0 35.0 19.6 37.2 - 102.2 124.7
Adroit Total 93.9 0.0 93.6 110.7 - 123.3 149.6
Runtime (h) 0.3 0.4 10.8 0.4 0.9 8.0 0.4

Results on D4RL benchmarks. We evaluate our proposed approach on the D4RL benchmarks of
OpenAI gym MuJoCo locomotion tasks (Brockman et al., 2016; Todorov et al., 2012). For baselines,
we choose representative offline model-free algorithms of different categories including BC, TD3+BC
(Fujimoto & Gu, 2021), CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2021b), as well as including
DOGE(Li et al., 2022), MCQ (Lyu et al., 2022) due to their high performance. For fairness, we choose
four types of the “-v2” datasets (r:random, m:medium, m-r:medium-replay, m-e:medium-expert) for
all methods, yielding a total of 12 datasets. We conduct additional experiments on 4 Maze2d “-v1”
datasets and 8 Adroit (Rajeswaran et al., 2017) “-v1” datasets (see Appendix B). The results of BC,
TD3+BC, CQL, IQL and MCQ are obtained from MCQ paper (Lyu et al., 2022), DOGE (Li et al.,
2022) is obtained from its own paper. All methods are run for 1 M gradient steps.

In Table 1, we present the Mujoco results alongside the average scores for Maze2d and total scores for
Adroit tasks. For detailed results, please refer to Appendix B. As demonstrated, SQOG consistently
attains the highest scores on most datasets and achieves the highest average scores across the Mujoco,
Maze2d, and Adroit tasks. The second-ranking MCQ algorithm approaches ours in average score
but runs 20 times slower. Compared to the representative method TD3+BC, SQOG demonstrates
a 70% performance improvement on hopper-medium-v2 dataset and significant improvements in
average scores, with minimal increase in computational cost. Based on the benchmark results, SQOG
exhibits performance improvement, which aligns with our theoretical analysis indicating that SQOG
achieves better evaluation.
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Figure 2: Average run time on MuJoCo
locomotion tasks.

Key Features MCQ SQOG

Loss Modification Critic Critic
Generative Model CVAE None
OOD Sampling From π Add noise

Figure 3: The key features of SQOG and MCQ
(Lyu et al., 2022). The use of CVAE makes MCQ
time consuming. In contrast, SQOG avoids the use
of any generative model, achieving SOTA results
with low computational cost.

(a) Effects of β (b) Effects of β (c) Effects of β

(d) Effects of noise type (e) Effects of noise type (f) Effects of noise type

Figure 4: Hyperparameter study and noise study on hopper-medium-v2, hopper-medium-replay-v2,
walker2d-medium-replay-v2. The experiments are run for 1M gradient steps over 4 random seeds.

Computational cost. Time complexity is a significant challenge in offline RL. We evaluate run
time of training each offline RL algorithms for 1 million time steps, using the author-provided
implementations or the re-implementations of the source code using JAX. The results are reported in
Figure 2. In contrast to MCQ and CQL, our approach significantly reduces computational costs by
avoiding the use of a generative model for behavior modeling (Figure 3). Compared to TD3+BC, the
supplementary OOD generalization term is computationally-free due to the low-computational-cost
implementation of our OOD sampling methods.

Ablation study. We conduct ablation studies on hyperparameter β and the noise type. The hyper-
parameter β controls the significance of the OOD generalization term in Q-learning, specifically
balancing the learning weight between the OOD Q-values and the in-sample Q-values. We investigate
the effects of four different values of β to understand its impact. Our findings (Figure 4(a), 4(b), 4(c))
indicate that β = 0.5 generally yields optimal performance. Larger values of β make it difficult to
achieve accurate in-sample Q-values, while smaller values of β hinder the learning of OOD Q-values,
leading to reduced performance.

Additionally, we examined two commonly used noise distributions. As shown in Figures 4(d), 4(e)
and 4(f), the normal distribution proves to be a straightforward and effective choice for dataset noise.
In contrast, the uniform distribution introduces too much randomness, resulting in significant variance.
While the normal distribution has shown efficacy, we hypothesize that it may not be the optimal
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choice, suggesting that identifying a superior noise distribution remains an open problem for future
research.

5 RELATED WORK

Dataset structure. Manifold learning (Roweis & Saul, 2000; Tenenbaum et al., 2000; Coifman &
Lafon, 2006; Belkin & Niyogi, 2001; Wang et al., 2004; Barannikov et al., 2021; Hegde et al., 2007;
Brehmer & Cranmer, 2020) is a kind of dataset structure learning method aiming to uncover the
underlying structure of high-dimensional data. However, manifold learning faces challenges when
applied to offline RL datasets due to the complexity of the data and the trajectory information in the
high dimensional state-action space. Convex hull is another dataset structure used in dataset analysis
and algorithm designation in supervised learning setting such as classification and regression (Fung
et al., 2005; Khosravani et al., 2016; Xiong et al., 2014; Nemirko & Dulá, 2021; Xu et al., 2021).
Understanding the structure of RL datasets facilitates the design of superior algorithms, enhancing
their performance, stability, and generalization capability (Wang et al., 2020; Schweighofer et al.,
2022; Hong et al., 2023). DOGE (Li et al., 2022) was the first to apply the convex hull in the
design of offline RL algorithms. SEABO (Lyu et al., 2024), PRDC (Ran et al., 2023) and (Sun
et al., 2023) utilize nearest neighbor techniques to address practical challenges. Building upon these
previous works, we propose a new dataset structure called CHN and analyze its safety guarantees for
generalization.

Model-free offline RL. Offline RL algorithms address the challenge of distribution shift by employing
different strategies. Model-free offline RL can be broadly categorized into policy-based approaches
(Wang et al., 2018; Fujimoto et al., 2019; Peng et al., 2019; Ran et al., 2023; Wu et al., 2019; Fujimoto
& Gu, 2021; Kostrikov et al., 2021b;a; Kumar et al., 2019; Li et al., 2022; Mao et al., 2024) and
value-based approaches (Kumar et al., 2020; Kostrikov et al., 2021b; Lyu et al., 2022; An et al.,
2021; Ghasemipour et al., 2022; Xu et al., 2023; Zhang et al., 2023; Yang et al., 2024; Lee et al.,
2024; Geng et al., 2024). Policy-based approaches like BCQ (Fujimoto et al., 2019), BRAC (Wu
et al., 2019) and TD3+BC (Fujimoto & Gu, 2021) solely rely on the distribution of behavior policy,
leading to overly constrained learned policies. PRDC (Ran et al., 2023) relaxes policy constraints by
utilizing the entire dataset, while DOGE (Li et al., 2022) introduces a novel policy constraint that
enables exploitation in OOD areas within the dataset convex hull. Instead of directly modifying the
constraint term during policy improvement, we focus on policy evaluation. Our method, MQOG,
achieves better policy evaluation, which indirectly addresses the over-constraint issue arising from
policy improvement. Compared to value-based approaches like IQL (Kostrikov et al., 2021b) and
MCQ (Lyu et al., 2022), which approximate the optimal in-sample Q for Q-learning, MQOG aims to
approximate the true Q for policy evaluation. Both our theoretical and empirical results demonstrate
that improved evaluation leads to enhanced performance.

6 CONCLUSION

In this paper, we introduce Smooth Q-function OOD Generalization (SQOG) to achieve better
policy evaluation by improving Q generalization in OOD regions within the CHN. We provide the
safety guarantees for the CHN, indicating that our approach to OOD generalization is unlikely to
adversely affect evaluation. SQOG trains OOD Q-values by constructing appropriate OOD target
values with guidance from the Smooth Bellman Operator (SBO). Specifically, we use the neighboring
in-sample Q-values to update OOD Q-values in the SBO. Theoretically, we demonstrate that the
SBO is appropriate and enables the Q-function to approximate the true Q-values within the CHN.
Furthermore, we conduct a sanity check to show that SQOG achieve better Q estimation by improving
the generalization in OOD regions, thereby alleviating the over-constraint issue. Experiments on
the D4RL benchmarks demonstrate that SQOG outperforms baseline methods across most datasets,
highlighting the importance of accurate evaluation in OOD regions within the CHN. We anticipate
that our work will draw greater attention to Q-value estimation in OOD regions and provide new
insights for the offline RL community.

Finally, it is crucial to emphasize that precisely solving the CHN and identifying all OOD regions
within CHN for each dataset is impractical and unnecessary. However, various ingenious approaches
can be employed to improve the estimation of the OOD Q-values within the CHN.
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Hao Sun, Alihan Hüyük, Daniel Jarrett, and Mihaela van der Schaar. Accountability in offline
reinforcement learning: Explaining decisions with a corpus of examples, 2023. URL https:
//arxiv.org/abs/2310.07747.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA, 2018. ISBN 0262039249.

Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
2012. doi: 10.1109/IROS.2012.6386109.

Jing Wang, Zhenyue Zhang, and Hongyuan Zha. Adaptive manifold learning. Advances in neural
information processing systems, 17, 2004.

Kaixin Wang, Bingyi Kang, Jie Shao, and Jiashi Feng. Improving generalization in reinforcement
learning with mixture regularization. Advances in Neural Information Processing Systems, 33:
7968–7978, 2020.

Qing Wang, Jiechao Xiong, Lei Han, Han Liu, Tong Zhang, et al. Exponentially weighted imitation
learning for batched historical data. Advances in Neural Information Processing Systems, 31, 2018.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
CoRR, abs/1911.11361, 2019. URL http://arxiv.org/abs/1911.11361.

Yuanjun Xiong, Wei Liu, Deli Zhao, and Xiaoou Tang. Zeta hull pursuits: Learning nonconvex data
hulls. Advances in Neural Information Processing Systems, 27, 2014.

Hailong Xu, Longyue Li, Pengsong Guo, and Changan Shang. Uncertainty svm active learning
algorithm based on convex hull and sample distance. In 2021 33rd Chinese Control and Decision
Conference (CCDC), pp. 6815–6822. IEEE, 2021.

12

https://openreview.net/forum?id=JSS9rKHySk
https://arxiv.org/abs/1607.00215
http://arxiv.org/abs/1709.10087
http://arxiv.org/abs/1709.10087
https://arxiv.org/abs/2310.07747
https://arxiv.org/abs/2310.07747
http://arxiv.org/abs/1911.11361


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan, and
Xianyuan Zhan. Offline rl with no ood actions: In-sample learning via implicit value regularization.
arXiv preprint arXiv:2303.15810, 2023.

Rui Yang, Chenjia Bai, Xiaoteng Ma, Zhaoran Wang, Chongjie Zhang, and Lei Han. Rorl: Robust
offline reinforcement learning via conservative smoothing. Advances in neural information
processing systems, 35:23851–23866, 2022.

Rui Yang, Han Zhong, Jiawei Xu, Amy Zhang, Chongjie Zhang, Lei Han, and Tong Zhang. Towards
robust offline reinforcement learning under diverse data corruption, 2024. URL https://
arxiv.org/abs/2310.12955.

Hongchang Zhang, Yixiu Mao, Boyuan Wang, Shuncheng He, Yi Xu, and Xiangyang Ji. In-sample ac-
tor critic for offline reinforcement learning. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=dfDv0WU853R.

13

https://arxiv.org/abs/2310.12955
https://arxiv.org/abs/2310.12955
https://openreview.net/forum?id=dfDv0WU853R


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A MISSING PROOFS

Before providing the missing proofs, we briefly introduce the Neural Tangent Kernel (NTK) (Jacot
et al., 2018). NTK is widely used in the analysis of the generalization, the convergence and optimality
of deep RL. In this paper, we complete our proof of Proposition 1 and Theorem 1 and 3 under the
NTK regime.

Following DOGE (Li et al., 2022), we introduce Assumption 1 and Lemma 1 and 2.
Assumption 1. We assume the function approximators discussed in our paper are two-layer fully-
connected ReLU neural networks with infinity width and are trained with infinitesimally small
learning rate unless otherwise specified.
Lemma 1 (Smoothness of the kernel map of two-layer ReLU networks). Let ϕ be the kernel map of
the neural tangent kernel induced by a two-layer ReLU neural network, x and y be two inputs, then
ϕ satisfies the following smoothness property.

∥ϕ(x)− ϕ(y)∥ ≤
√
min(∥x∥, ∥y∥)∥x− y∥+ 2∥x− y∥ (16)

For the proof of Lemma 1, we refer the reader to (Li et al., 2022).
Lemma 2 (Smoothness for deep Q-function). Given two inputs x and x′, the distance between these
two data points is d = ∥x− x′∥, C is a finite constant. Then the difference between the output at x
and the output at x′ can be bounded by:

∥Qθ(x)−Qθ(x
′)∥ ≤ C

√
min(∥x∥, ∥x′∥)

√
d+ 2d (17)

For the proof of Lemma 2, we refer the reader to (Bietti & Mairal, 2019).

Proof of Proposition 1. We obtain this theorem by generalizing DOGE’s (Li et al., 2022) Theorem
1, which is proved under Neural Tangent Kernel (NTK) regime. We recall the main results in our
theorem: Given a point within convex hull x1 ∈ Conv(D), a point in the convex hull neighborhood
x2 ∈ N(Conv(D)), and an external point x3 ∈ (S,A)− CHN(D), we have,

∥Qθ(x1)−Qθ(ProjD(x1))∥ ≤ C1(
√

min(∥x1∥, ∥ProjD(x1)∥)
√

d1 + 2d1) ≤M1 (18)

∥Qθ(x2)−Qθ(ProjD(x2))∥ ≤ C1(
√

min(∥x2∥, ∥ProjD(x2)∥)
√

d2 + 2d2) ≤M2 (19)

∥Qθ(x3)−Qθ(ProjD(x3))∥ ≤ C1(
√
min(∥x3∥, ∥ProjD(x3)∥)

√
d3 + 2d3) (20)

where ProjD(x): = argminxi∈D∥x − xi∥ is the projection to the dataset. d1, d2, d3 are the point-
to-dataset distances. Both d1 = ∥x1 − ProjD(x1)∥ ≤ maxx′∈D ∥x1 − x′∥ ≤ B and d2 = ∥x2 −
ProjD(x2)∥ ≤ r ≤ B are bounded. d3 = ∥x3 − ProjD(x3)∥ > r, where r is the neighborhood
radius and B = sup {∥x− y∥ |x, y ∈ Conv (D)} is the diameter of the convex hull. let r =
maxx∈Conv(D) ∥x− ProjD(x)∥, then r ≤ B. C1,M1,M2 are constants.

DOGE classify data points into xin (the interpolate data in convex hull) and xout (the extrapolate
data outside convex hull). However, xout can be further divided into x2 (the data in the neighborhood
of convex hull) and x3 (the data outside CHN).

With Lemma 2, we can derive the following bound:

∥Qθ(x1)−Qθ(ProjD(x1))∥ ≤ C1(
√

min(∥x1∥, ∥ProjD(x1)∥)
√

d1 + 2d1)

≤ C1(
√

min(∥x1∥, ∥ProjD(x1)∥)
√
B + 2B) ≤M1

Similarly, we have:

∥Qθ(x2)−Qθ(ProjD(x2))∥ ≤ C1(
√

min(∥x2∥, ∥ProjD(x2)∥)
√

d2 + 2d2)

≤ C1(
√

min(∥x2∥, ∥ProjD(x2)∥)
√
r + 2r) ≤M2

Since d3 = ∥x3 − ProjD(x3)∥ > r, Eq. (20) is no longer bounded, indicating that the error
grows uncontrollably for data points far outside the neighborhood of the convex hull. However,
we demonstrate that the approximation error within the convex hull’s neighborhood can still be
effectively controlled. To sum up, we expand the safe generalization boundary of Q-function.
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Proof of Proposition 2. The Q-function defined on CHN is uniformly continuous:
∀ε > 0, ∃δ > 0, s.t. ∀xi, xj ∈ CHN(D), if ∥xi − xj∥ < δ, then ∥Q(xi)−Q(xj)∥ < ε.

Proof. To simplify the notation, let X = CHN, which is compact. For any arbitrary ε > 0, for
every x ∈ X , we can find δx > 0 such that for all x′ ∈ B(x, δx), ∥Q(x) − Q(x′)∥ < ε/2
(since Q is continuous). The collection B = {B(x, δx) | x ∈ X} is an open cover of X . Define
B1 = {B(x, δx/2) | x ∈ X}; this is also an open cover of X . Since X is compact, there exists a
finite subcover of B1, denoted by B′1 = {B(xk, δxk

/2)}nk=1.

Let δ = min {δx1
, δx2

, . . . , δxn
}/2. For any y, z ∈ X , if ∥y − z∥ < δ, without loss of generality,

assume ∥y−xk∥ < δxk
/2 for some k. By the triangle inequality, ∥z−xk∥ ≤ ∥z− y∥+∥y−xk∥ <

δ+δxk
/2 ≤ δxk

. Therefore, y, z ∈ B(xk, δxk
), and by the properties of Q and the triangle inequality,

∥Q(y)−Q(z)∥ < ε.

Thus, for any ε > 0, there exists δ > 0 such that for all y, z ∈ CHN(D), if ∥y − z∥ < δ, then
∥Q(y)−Q(z)∥ < ε.

Proof of Theorem 1. Assuming that max(KL(π, µ),KL(µ, π)) ≤ ϵ. Then, under the NTK
regime, for all (s, a) ∈ D, with high probability ≥ 1− δ, δ ∈ (0, 1).

∥B̂πQθ−BπQθ∥ ≤
Cr,T,δ√
|D(s, a)|︸ ︷︷ ︸

sampling error bound

+ζ·C ·max
s′

[√
min(Ea′∼π∥(s′, a′)∥,Ea′∼µ∥(s′, a′)∥)

√
d+ 2d

]
︸ ︷︷ ︸

OOD overestimation error bound

(21)
where Cr,T,δ = Cr,δ + γCT,δRmax/(1 − γ), ζ =

γCT,δ√
|D(s,a)|

and d ≤ ∥amin∥2+∥amax∥2

2

√
ϵ
2 . Cr,δ

and CT,δ is constants dependent on the concentration properties of r(s, a) and T (s′|s, a), |D(s, a)| is
the dataset size, amin and amax denote the minimum and maximum actions. C is a constant. Similar
to (Kumar et al., 2020; Auer et al., 2008; Osband & Roy, 2017), we assume concentration properties
of the reward function and the transition dynamics.
Assumption 2. ∀(s, a) ∈ D, with high probability ≥ 1− δ, we have,

∥r − r(s, a)∥ ≤ Cr,δ√
|D(s, a)|

, ∥T̂ (s′|s, a)− T (s′|s, a)∥1 ≤
CT,δ√
|D(s, a)|

(22)

where Cr,δ and CT,δ is constants dependent on the concentration properties of r(s, a) and T (s′|s, a),
|D(s, a)| is the dataset size.

Proof. From Assumption 2, we have,

∥B̂πQθ − BπQθ∥ = ∥(r − r(s, a)) + γ
∑
s′

(T̂ (s′|s, a)− T (s′|s, a))EπQθ′(s′, a′)∥

≤ ∥r − r(s, a)∥+ γ∥T̂ (s′|s, a)− T (s′|s, a)∥1 ·max
s′
∥EπQθ′(s′, a′)∥

≤ Cr,δ√
|D(s, a)|

+ γ
CT,δ√
|D(s, a)|

max
s′
∥EπQθ′(s′, a′)∥

where maxs′ ∥EπQθ′(s′, a′)∥ ≤ maxs′ ∥EπQθ′(s′, a′)−EµQθ′(s′, a′)∥+maxs′,a′∼µ ∥Qθ′(s′, a′)∥.
For simplicity, we denote Ea′∼πQθ′(s′, a′) as EπQθ′(s′, a′). From Lemma 2, we have,

∥EπQθ′(s′, a′)− EµQθ′(s′, a′)∥ ≤ C ·
[√

min(Ea′∼π∥(s′, a′)∥,Ea′∼µ∥(s′, a′)∥)
√
d+ 2d

]
For distance d, by applying the Pinsker’s Inequality, we have,

d = ∥Ea′∼π[a
′]− Ea′∼µ[a

′]∥ = ∥
∫
A

a′(π(a′|s′)− µ(a′|s′)) da′∥

≤
∫
A

∥a′∥ da′ · sup
a′∈A

∥π(a′|s′)− µ(a′|s′)∥︸ ︷︷ ︸
Total variation distance

≤ ∥amin∥2 + ∥amax∥2

2

√
ϵ

2
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Where amin and amax denotes the min and max action, C is a constant. The reward function is
bounded, then maxs′,a′∼µ ∥Qθ′(s′, a′)∥ ≤ Rmax/(1− γ). Therefore, we have,

∥B̂πQθ − BπQθ∥ ≤
Cr,δ + γCT,δRmax/(1− γ)√

|D(s, a)|︸ ︷︷ ︸
sampling error bound

+
γCT,δ√
|D(s, a)|

· C ·max
s′

[√
min(Ea′∼π∥(s′, a′)∥,Ea′∼µ∥(s′, a′)∥)

√
d+ 2d

]
︸ ︷︷ ︸

OOD overestimation error bound

Remark. One might ask why we can’t directly set maxs′ ∥EπQθ′(s′, a′)∥ ≤ Rmax
1−γ . The reason is

that π may generate OOD actions for Qθ′(s′, a′), and the neural network could overestimate the
Q-values for these OOD actions, making it impossible to simply bound them. However, since µ does
not produce OOD actions, we can bound maxs′,a′∼µ ∥Qθ′(s′, a′)∥ by Rmax

1−γ . Therefore, if π is not

sufficiently close to µ, we cannot bound ∥B̂πQθ − BπQθ∥.

Proof of Theorem 2. For the in-sample evaluation, G1 introduces negligible changes to the
empirical Bellman operator B̂πQθ. Under the NTK regime, given (s, a) ∈ D, assuming that
∀a′ ∼ π(·|s′),∃ainneighbor, s.t.∥a′ − ainneighbor∥ < δ, we have,

∥B̃πQθ(s, a)− B̂πQθ(s, a)∥ ≤ C · γEs′

[√
min(x, y)

√
δ + 2δ

]
(23)

where x = Ea′∼π,∥a′−ain
neighbor∥<δ∥(s′, ainneighbor)∥, y = Ea′∼π∥(s′, a′)∥, C is a constant.

Proof. Similar to the proof of Theorem 1, we can derive the inequality from Lemma 2. The distance
in this case is bounded by δ from the assumption.

Proof of Theorem 3. Assuming that for all (s, a) ∈ D, Qk(s, a) ≈ Qπ(s, a). Given (s, a) /∈
D, assuming that ∥a − ainneighbor∥ ≤ δ and ∥Qπ(s, a) − Qk(s, ainneighbor)∥ < ε, if ∥Qk(s, a) −
Qk(s, ainneighbor)∥ > ε, by applying the SBO B̃ for gradient descent updates (with infinitesimally
small learning rate), we have,

∥Qπ(s, a)−Qk+1(s, a)∥ < ∥Qπ(s, a)−Qk(s, a)∥ (24)
If ∥Qk(s, a)−Qk(s, ainneighbor)∥ ≤ ε, then ∥Qk+1(s, a)−Qπ(s, a)∥ < 2ε.

Proof. Given (s, a) /∈ D, if Qk(s, a) < Qk(s, ainneighbor)− ε, then Qk(s, a) < Qπ(s, a). From the
SBO, we define the MSE loss as:

L = [Qk(s, a)−Qk(s, ainneighbor)]
2

for gradient descent updates. Then,

Qk+1(s, a) = Qk(s, a) + 2α[Qk(s, ainneighbor)−Qk(s, a)]

where the learning rate is infinitesimally small. Consequently, Qk(s, a) < Qk+1(s, a) ≤ Qπ(s, a),
and we have,

∥Qπ(s, a)−Qk+1(s, a)∥ < ∥Qπ(s, a)−Qk(s, a)∥
The proof for the case Qk(s, a) > Qk(s, ainneighbor) + ε follows a similar approach.

For ∥Qk(s, a) − Qk(s, ainneighbor)∥ ≤ ε, if Qk(s, ainneighbor) − ε ≤ Qk(s, a) ≤ Qk(s, ainneighbor),
then by applying the gradient descent method, we have, Qk(s, a) ≤ Qk+1(s, a) ≤ Qk(s, ainneighbor).
Similarly, if Qk(s, ainneighbor) ≤ Qk(s, a) ≤ Qk(s, ainneighbor) + ε, then Qk(s, ainneighbor) ≤
Qk+1(s, a) ≤ Qk(s, a). Therefore, ∥Qk+1(s, a) − Qk(s, ainneighbor)∥ ≤ ε always holds. By the
triangle inequality, we have ∥Qk+1

θ (s, a)−Qπ(s, a)∥ < 2ε.
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Proof of Theorem 4. The SBO is a γ- contraction operator in the L∞. Any initial Q-function can
converge to a unique fixed point by repeated application of the SBO.

We first recall the definition of smooth Bellman operator,

B̃πQ(s, a) = (G1B̂π2 )Q(s, a) (25)

where

G1Q(s, a) =

{
Q(s, a), µ̂(a|s) > 0
Q(s, ainneighbor), µ̂(a|s) = 0 (OOD)

(26)

B̂π2Q(s, a) =

{
Es,a,r,s′∼D[r + γEa′∼π(·|s′)[Q(s′, a′)]], µ̂(a|s) > 0
Q(s, a), µ̂(a|s) = 0 (OOD)

(27)

Proof. Given policy π, let Q1 and Q2 be two arbitrary Q-functions. Since a ∈ support(µ̂(·|s)), we
have,

||B̃πQ1 − B̃πQ2||∞ = ||G1B̂π2Q1 − G1B̂π2Q2||∞
= max

s,a
G1||r + γEs′,a′∼πQ1(s

′, a′)− r − γEs′,a′∼πQ2(s
′, a′)||

= max
s,a

γG1Es′,a′∼π||Q1(s
′, a′)−Q2(s

′, a′)|| (28)

= max
s,a

γEs′∼T,a′∼π||G1Q1(s
′, a′)− G1Q2(s

′, a′)||.

If µ̂(a′|s′) > 0, then ||G1Q1(s
′, a′)− G1Q2(s

′, a′)|| = ||Q1(s
′, a′)−Q2(s

′, a′)||, we have,

||B̃πQ1 − B̃πQ2||∞ = max
s,a

γEs′∼T,a′∼π||Q1(s
′, a′)−Q2(s

′, a′)||

≤ γmax
s,a
||Q1 −Q2||∞ (29)

= γ||Q1 −Q2||∞

So we can find that ||B̃πQ1 − B̃πQ2||∞ ≤ γ||Q1 −Q2||∞.

If µ̂(a′|s′) = 0, then ||G1Q1(s
′, a′)−G1Q2(s

′, a′)|| = ||Q1(s
′, ainneighbor)−Q2(s

′, ainneighbor)||, we
have,

||B̃πQ1 − B̃πQ2||∞ = max
s,a

γEs′∼T,a′∼π||Q1(s
′, ainneighbor)−Q2(s

′, ainneighbor)||∞

≤ γmax
s,a
||Q1 −Q2||∞ (30)

= γ||Q1 −Q2||∞
Combining the results together, we conclude that the smooth Bellman operator is a γ- contraction
operator in the L∞.

B ADDITIONAL EXPERIMENTS AND EXPERIMENTAL DETAILS

B.1 RESULTS ON ADDITIONAL DATASETS

To further illustrate the effectiveness of the SQOG algorithm, we conduct more experiments on 4
Maze2d “-v1” datasets and 8 Adroit “-v1” datasets from D4RL benchmarks. The Maze2d tasks
involve navigating a 2D maze environment from an initial point to a designated goal, presenting
intricate pathfinding challenges due to the maze’s structural complexity and the presence of obstacles.
Conversely, the Adroit environment engages agents in object manipulation within a physics-based
simulation, demanding adept control and adaptability across diverse scenarios. The Maze2d datasets
feature non-Markovian policies, yielding undirected and multitask data, while Adroit datasets exhibit
heightened realism characterized by non-representable policies, narrow data distributions, and sparse
rewards.

We compare MCQ against BC, CQL (Kumar et al., 2020), BCQ (Fujimoto et al., 2019), TD3+BC
(Fujimoto & Gu, 2021), IQL (Kostrikov et al., 2021b) and MCQ (Lyu et al., 2022). We take the results
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Table 2: Normalized average score comparison of SQOG against baseline methods on Maze2d “-v1”
and Adroit “-v1” datasets over the final 10 evaluations and 4 random seeds. We bold the highest
scores.

Dataset BC CQL BCQ TD3+BC IQL MCQ SQOG

maze2d-umaze -3.2 18.9 49.1 25.7±6.1 65.3±13.4 81.5±23.7 126.4±10.4
maze2d-umaze-dense -6.9 14.4 48.4 39.7±3.8 57.8±12.5 107.8±3.2 100.4±1.9
maze2d-medium -0.5 14.6 17.1 19.5±4.2 23.5±11.1 106.8±38.4 149.4±2.9
maze2d-medium-dense 2.7 30.5 41.1 54.9±6.4 28.1±16.8 112.7±5.5 122.7±0.8
Maze2d Average -2.0 19.6 38.9 35.0 37.2 102.2 124.7
pen-human 34.4 37.5 68.9 0.0±0.0 68.7±8.6 68.5±6.5 80.0±4.7
door-human 0.5 9.9 0.0 0.0±0.0 3.3±1.3 2.3±2.2 1.0±1.1
relocate-human 0.0 0.2 -0.1 0.0±0.0 0.0±0.0 0.1±0.1 0.1±0.0
hammer-human 1.5 4.4 0.5 0.0±0.0 1.4±0.6 0.3±0.1 1.4±0.7
pen-cloned 56.9 39.2 44.0 0.0±0.0 35.3±7.3 49.4±4.3 66.7±3.4
door-cloned -0.1 0.4 0.0 0.0±0.0 0.5±0.6 1.3±0.4 -0.1±0.0
relocate-cloned -0.1 -0.1 -0.3 0.0±0.0 -0.2±0.0 0.0±0.0 -0.1±0.0
hammer-cloned 0.8 2.1 0.4 0.0±0.0 1.7±1.0 1.4±0.5 0.6±0.3

Adroit total 93.9 93.6 113.4 0.0 110.7 123.3 149.6

on these datasets from (Lyu et al., 2022) directly. From Table 2, we observe that SQOG consistently
outperforms existing algorithms on the Maze2d datasets, while demonstrating competitiveness with
prior methods on Adroit tasks. Remarkably, SQOG achieves the highest average score across all
Maze2d and Adroit datasets, underscoring its superior performance. Additional results further
corroborate SQOG’s efficacy across diverse dataset types, thus attesting to its robust generalization
capabilities across varied environments.

B.2 ADDITIONAL EXPERIMENTS ON NOISE SCALE AND CLIP

To further study the effects of the noise scale and clipping range, we conduct additional experiments
by systematically varying the scale and clipping parameters to observe their influence on performance
across multiple datasets. Below, we present the results.

Table 3: Normalized average score of SQOG over different choices of Gaussian noise scale and clip
on MuJoCo ”-v2” and Adroit ”v1” datasets. The results are averaged over 4 different random seeds.
We bold the highest scores.

Dataset scale=0, scale=0.2, scale=0.6, scale=1.0, scale=2.0,
clip=0 clip=0.3 clip=0.5 clip=0.7 clip=1.0

halfcheetah-medium 51.2±3.9 60.6±0.5 59.2±2.4 53.1±1.9 51.7±1.5
hopper-medium 1.5±0.3 67.2±1.6 100.6±0.7 94.5±3.6 79.5±10.3
walker2d-medium 48.3±1.2 58.9±2.3 82.9±0.8 86.0±1.0 82.5±1.1
halfcheetah-medium-replay 49.2±0.3 47.8±2.2 46.4±1.2 36.6±1.1 35.8±0.8
hopper-medium-replay 22.3±6.6 19.4±6.8 100.9±5.1 24.3±2.7 27.1±6.7
walker2d-medium-replay 12.2±5.5 56.8±2.0 88.3±3.5 90.1±3.6 60.6±6.9

Mujoco Average 30.8 51.8 79.7 64.1 56.2

pen-human 23.3±6.7 46.7±4.8 80.0±4.7 64.9±5.5 55.8±5.9
pen-cloned 9.5±1.9 41.2±7.6 66.7±3.4 43.2±5.1 42.3±7.0

Adroit Average 16.4 44.0 73.4 54.1 49.1

From these results, we observe the following:

1. Moderate Noise Balances Exploration and Stability: Across most datasets, a scale of 0.6
and clip of 0.5 consistently achieves strong performance, suggesting that moderate noise levels
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effectively balance exploration and stability. While noise promotes generalization, excessive noise
can lead to sampling outside the CHN boundary, resulting in OOD Q-values that violate safety
guarantees and degrade performance. Properly scaled noise ensures effective learning while
respecting safety constraints.

2. Dataset-Specific Effects of Noise: The sensitivity to the noise distribution parameters (scale and
clip) varies across datasets.

• In halfcheetah-medium-replay, the baseline configuration (scale=0, clip=0) yields the best
performance, indicating that the effect of noise on in-sample Q-value estimation cannot be
ignored. The dataset may already provide sufficient diversity, and adding noise introduces
harmful uncertainty, leading to performance degradation. For such datasets, it is crucial to keep
noise parameters conservative to avoid disrupting in-sample Q-learning and maintain stable
performance.

• In contrast, for halfcheetah-medium, the optimal configuration is (scale=0.2, clip=0.3), and for
walker2d-medium and walker2d-medium-replay, (scale=1.0, clip=0.7) achieves the best results.
These differences highlight that there is room for improvement in fine-tuning noise parameters
across various datasets.

3. Effectiveness of Noise Injection: The baseline configuration (scale=0, clip=0) significantly un-
derperforms in most datasets, underscoring the necessity of noise injection to enhance exploration
and overall performance. Noise injection is essential for improving the Q-function’s ability to
generalize to previously unexplored regions and optimize learning.

B.3 COMPUTE INFRASTRUCTURE

In Table 4, we list the compute infrastructure that we use to run all of the baseline algorithms and
SQOG experiments.

Table 4: Compute infrastructure
CPU GPU Memory

Intel(R) Xeon(R) CPU E5-2698 Tesla V100-DGXS-32GB × 8 251G

Intel(R) Xeon(R) Silver 4216 GPU GeForce RTX 3090 62G

B.4 EXPERIMENTAL DETAILS

The true Q-values7 in sanity check. In sanity check, we calculate the true Q-values using a Monte
Carlo estimation method to ensure accuracy. Specifically, we reset the environment to a given state
s and execute the action a. Starting from (s, a), we simulate full trajectories and calculate the
discounted return for each trajectory. To approximate the expected return, we repeat this process for
1000 sampled trajectories and take the average. We compute the Q-values for every 0.01 increment
within the action range [-1.0, 1.0] and smooth the values using cubic spline interpolation. Finally, we
normalize the values to keep them between 0 and 1 by multiplying by an appropriate constant. Given
the computational intensity and rigorous sampling, this process provides a robust approximation of
the true Q-values.

The true Q-function in the MuJoCo environment could be irregular or even stepwise. However, we
note that the smooth appearance of the Q-values in Figure 1 arises from the use of cubic spline
interpolation applied to densely sampled data points. The interpolation is used solely for visual clarity
and does not affect the underlying accuracy of the Q-value computation. Without this interpolation,
the individual sampled points would still demonstrate the high accuracy of our SQOG method in
estimating Q-values while effectively alleviating the issue of over-constraint.

D4RL benchmarks. In the main paper, we evaluate SQOG on the D4RL Gym-Mujoco task (Fu
et al., 2021), which contains three environments (halfcheetah, hopper, walker2d), and five types of

7In this context, the term “true Q-value” refers to the ground truth Q-values computed through Monte Carlo
estimation. These values serve as a reference standard for evaluating the accuracy of the predicted Q-values
generated by the critic networks.
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datasets (random, medium, medium-replay, medium-expert, expert). Random datasets are gathered
by a random policy. Medium is generated by first training a policy online using Soft Actor-Critic
(Haarnoja et al., 2018), early-stopping the training, and collecting 1M samples from this partially-
trained policy. Medium-replay datasets are collected during the training process of the “medium”
SAC policy. Medium-expert datasets are formed by combining the suboptimal samples and the expert
samples. Expert datasets are made up of expert trajectories.

D4RL offers a metric called normalized score to evaluate the performance of the offline RL algorithm,
which is calculated by:

normalized score = 100 ∗ score− random score
expert score− random score

(31)

If the normalized score equals to 0, that indicates that the learned policy has a similar performance as
the random policy, while 100 corresponds to an expert policy.

Hyperparameters. All experimental hyperparameters of SQOG are documented in Table B.4. The
hyperparameter α of TD3+BC governs the efficacy of the behavior cloning constraint, while in our
algorithm, we introduce β to regulate the strength of OOD generalization. Notably, a trade-off exists
between α and β, where a larger β corresponds to stronger generalization, while a smaller α implies
more stringent constraints. Through empirical exploration, we identify two sets of hyperparameters
that yield favorable performance: (150, 0.5) for Mujoco (excluding halfcheetah-medium-replay)
and Maze2d tasks, and (25, 2.5) for Adroit tasks and halfcheetah-medium-replay in Mujoco. The
Gaussian distribution is a good choice for dataset noise in OOD sampling, but there could be better
alternatives such as pink noise (Eberhard et al., 2023), which is left for future work. We did not finely
tune the noise scale and noise clip parameters, leaving room for improvement in their optimization.

Hyperparameter Value

Optimizer Adam (Kingma & Ba, 2015)
Actor network learning rate 3× 10−4

Critic network learning rate 3× 10−4

Discount factor γ 0.99
Total training step T 1× 106

Policy noise clipping parameter 0.5
Mini-batch size 256
Target network smoothing parameter τ 0.005
Actor network update frequency m 2
α (TD3+BC (Fujimoto & Gu, 2021) Hyperparameter) 150 (25 for Adroit tasks)

β 0.5 (2.5 for Adroit tasks)
Noise type Gaussian distribution
Noise scale 0.6
Noise clip 0.5
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