

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EvoCurr: SELF-EVOLVING CURRICULUM WITH BEHAVIOR CODE GENERATION FOR COMPLEX DECISION-MAKING

006 **Anonymous authors**

007 Paper under double-blind review

010 ABSTRACT

013 While large language models (LLMs) demonstrate remarkable capabilities across
014 diverse domains, they fail catastrophically on high-complexity tasks requiring
015 long-horizon reasoning and multi-step coordination. To address this problem,
016 we present EvoCurr, a self-evolving curriculum learning framework that enables
017 LLMs to solve complex decision-making problems through cooperative multi-
018 agent learning. The core of EvoCurr is a multi-agent cooperative system where
019 a Designer agent generates adaptive task sequences and a Solver agent produces
020 executable solutions through coordinated interaction. Both agents share identi-
021 cal rewards based on task performance and proximity to the target task, creating
022 a fully cooperative framework that naturally aligns their objectives for progres-
023 sive skill acquisition. A critical innovation is the accepted-floor constraint that
024 prevents difficulty regression below previously solved levels, ensuring monotonic
025 skill advancement while preventing catastrophic forgetting. The framework en-
026 forces feasibility through a validation gate and supports both open-loop code gen-
027 eration and closed-loop policy learning paradigms. We evaluate EvoCurr on two
028 complementary domains: StarCraft II micro-management and Overcooked coor-
029 dination tasks. On StarCraft II micro-management, where the Solver generates
030 Python behavior-tree scripts for complex tactical scenarios, EvoCurr achieves av-
031 erage combat winning rates above 90% while state-of-the-art models achieve less
032 than 50% when directly attempting these scenarios. On Overcooked coordination
033 tasks, where the Solver uses multi-agent reinforcement learning to train cooper-
034 ative policies, EvoCurr achieves 20% higher task completion rates (measured by
035 dish orders delivered) compared to direct training. Our results demonstrate that
036 EvoCurr provides a principled, domain-agnostic approach for extending LLM ca-
037 pabilities to complex decision-making tasks previously beyond their reach.

038 1 INTRODUCTION

039 Large language models (LLMs) have revolutionized automated problem-solving, from synthesiz-
040 ing formal proofs to generating executable Python programs Brown et al. (2020); OpenAI (2023);
041 Bubeck et al. (2023); Chen et al. (2021); Li et al. (2022). Yet when faced with truly complex
042 decision-making tasks—those requiring long-horizon planning, multi-step coordination, and adap-
043 tive strategies—even the most advanced models struggle dramatically. Consider StarCraft II micro-
044 management: controlling dozens of military units with diverse abilities against sophisticated oppo-
045 nents. When asked to generate control code for such scenarios directly, GPT-5, Claude-4, DeepSeek-
046 3.1, and Gemini-2.5 achieve less than 50% win rates, despite these tasks being well within human
047 capability Zelikman et al. (2022). This performance gap reveals a fundamental challenge: while
048 LLMs possess vast knowledge, they cannot effectively marshal this knowledge for complex, multi-
049 step decision problems.

050 The core issue is complexity scaling. Simple tasks succeed reliably, but compound tasks—such
051 as coordinating 20 Marines, 8 Ghosts with cloaking, and 4 Medivacs for healing while engaging
052 enemy Protoss forces—overwhelm even the most capable models. The failure is not due to lack
053 of knowledge; these models understand unit capabilities, tactical concepts, and programming in-
terfaces. Rather, they cannot synthesize this knowledge into working solutions when the problem

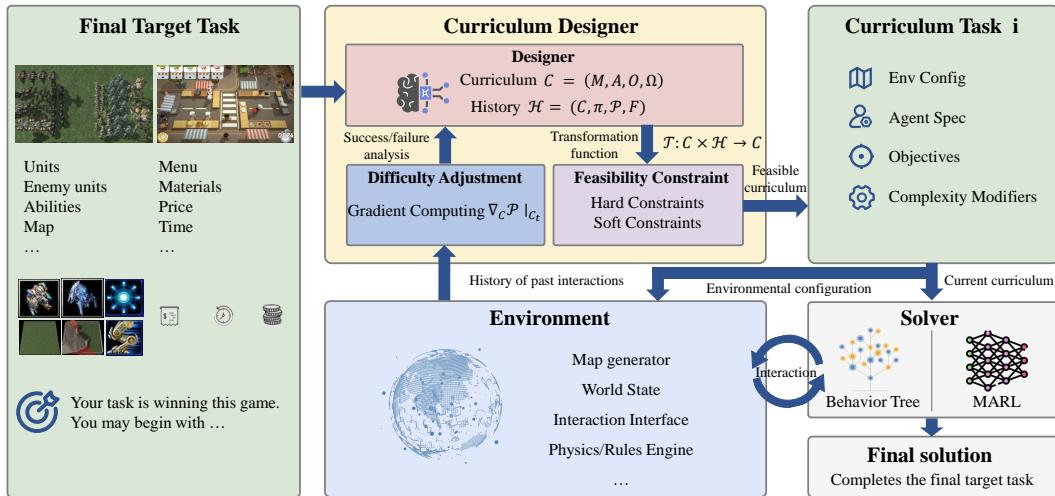


Figure 1: Brief introduction for *EvoCurr*. Showing the framework of *EvoCurr* that the designer gains advantage by generating feasible yet demanding tasks that progress toward the objective, whereas the Solver profits from mastering increasingly difficult challenges and ultimately achieving the target goal.

space becomes too large. Two control paradigms illustrate this challenge concretely. In *open-loop* control, one compiles an interpretable program (e.g., a behavior tree) and runs it without adapting to new observations; this eases debugging but is sensitive to missing cases. In *closed-loop* control, one learns a reactive policy mapping observations to actions (typically via reinforcement learning); this improves robustness but sacrifices transparency. A mechanism that can *at inference time* progress from easy to hard tasks in both paradigms—without retraining the base model—would substantially increase the practical utility of LLM-based decision making.

Humans don't learn complex skills by jumping directly to the hardest version. A chess player starts with basic piece movements before attempting complex strategies. This observation suggests a natural solution: can we enable LLMs to solve complex problems by automatically discovering and following a learning curriculum? Curriculum learning has proven effective for graduated complexity Bengio et al. (2009); Graves et al. (2017); Narvekar et al. (2020); Narvekar & Stone (2018), but three obstacles limit its use for LLM inference. First, curricula typically require domain expertise and manual task design, which is expensive and brittle. Second, most approaches optimize training-time schedules and offer little guidance for inference-time problem solving with pretrained models. Third, existing practices lack a simple, verifiable rule for when and how to escalate difficulty while avoiding catastrophic forgetting once a skill threshold has been reached.

We propose *EvoCurr*, a self-evolving curriculum framework that enables LLMs to solve complex decision-making problems they cannot handle directly. The key insight is that LLMs themselves can design appropriate curricula—they understand what makes tasks easier or harder and can propose suitable stepping stones toward a final goal. *EvoCurr* instantiates this as a cooperative two-agent system. A *Designer* analyzes current capabilities and proposes the next task by adjusting controllable factors (e.g., in StarCraft II: unit composition, abilities, and map; in Overcooked: layout, recipes, and timing). A *Solver* produces an executable solution, evaluates it on the proposed task, and returns the outcome.

Two simple rules make this loop progress reliably without manual intervention. First, the *accepted-floor* rule remembers the most recently mastered task and forbids future proposals from going easier than that point—once a skill is demonstrated, the system maintains this skill floor, preventing catastrophic forgetting. Second, a *feasibility gate* discards ill-formed proposals early by checking basic validity: the task compiles (syntax), its logic allows the goal to be attempted (e.g., reachable waypoints), and it can be run to produce a measurable outcome (runtime). With just a single acceptance threshold defining “mastery” (e.g., winning rate above 90%), these rules let *EvoCurr* autonomously navigate the frontier of learned capabilities without hand-crafted schedules or domain-specific dif-

108 ficulty metrics. Crucially, the same framework applies to both control paradigms: the Solver either
 109 generates executable behavior-tree code (*open-loop code-as-policy*) or trains a reactive policy for a
 110 fixed budget (*closed-loop*).
 111

112 We validate EvoCurr on two challenging domains that have resisted direct LLM approaches. In
 113 StarCraft II micro-management across twelve complex combat scenarios, EvoCurr progressively
 114 achieves winning rates exceeding 90% by generating sophisticated behavior-tree scripts, while di-
 115 rect one-shot generation with the same models achieves less than 50%. The evolution typically
 116 requires 4-6 intermediate tasks, automatically discovered by the system, to bridge from simple unit
 117 control to complex multi-unit coordination with advanced abilities. In Overcooked, a challenging
 118 multi-agent coordination benchmark, EvoCurr achieves 20% higher task completion rates (measured
 119 by successfully delivered orders) compared with direct training under matched total budgets. The
 120 framework discovers curricula that first master basic movement and item handling, then progress
 121 to timing-critical coordination in confined spaces. These results demonstrate that an inference-
 122 time curriculum—implemented by simple “do not go backwards” and “only propose valid tasks”
 123 rules—can reliably unlock LLM capabilities for complex decision-making previously beyond their
 124 reach.
 125

126 Summarizing, our contributions are:
 127

- 128 1. **Inference-time curriculum mechanism.** A self-evolving framework that advances task
 129 difficulty using only an acceptance threshold, an *accepted-floor* rule preventing skill re-
 130 gression, and a *feasibility gate* filtering invalid proposals—eliminating manual curriculum
 131 design and domain-specific difficulty metrics.
 132
- 133 2. **Practical Designer-Solver procedure.** The Designer diagnoses capability bottlenecks
 134 from historical outcomes and proposes targeted task adjustments; the Solver produces
 135 executable artifacts and measured performance, forming an autonomous improvement
 136 loop that works across both open-loop code generation and closed-loop policy learning
 137 paradigms.
 138
- 139 3. **Empirical evidence across domains.** On StarCraft II micro-management, EvoCurr pro-
 140 gressively attains winning rates $\geq 90\%$ where direct generation fails; on Overcooked,
 141 with matched budgets, EvoCurr achieves 20% higher completion rates, demonstrating that
 142 inference-time curriculum evolution can extend LLM capabilities to complex tasks previ-
 143 ously beyond their reach.
 144

145 2 RELATED WORK

146 **Curriculum Learning.** Bengio et al. (Bengio et al., 2009) formalized curriculum learning, demon-
 147 strating that training on examples organized from easy to hard improves generalization and conver-
 148 gence compared to random data shuffling. This paradigm has achieved success across computer
 149 vision, NLP, and reinforcement learning (Soviany et al., 2022; Wang et al., 2021b). Kumar et
 150 al. (Kumar et al., 2010) introduced self-paced learning (SPL) where models automatically deter-
 151 mine learning pace based on sample difficulty, eliminating predefined curricula. Jiang et al. (Jiang
 152 et al., 2015) extended SPL with diversity constraints to prevent premature convergence. In rein-
 153 forcement learning, Narvekar et al. (Narvekar et al., 2020) provided a comprehensive curriculum
 154 framework, while Klink et al. (Klink et al., 2020) interpreted curriculum generation as an inference
 155 problem. Recent advances include Teacher-Student Curriculum Learning (Matiisen et al., 2019)
 156 with teacher networks generating student tasks, and Prioritized Level Replay (Jiang et al., 2021)
 157 sampling training levels based on learning potential. However, these approaches primarily focus on
 158 training phase optimization and require either manual curriculum design or domain-specific diffi-
 159 culty metrics, leaving a gap for inference-time adaptive curriculum generation.
 160

161 **Environment Generation.** Procedural content generation has evolved from rule-based methods to
 162 learning-based approaches (Liu et al., 2021a). POET (Wang et al., 2019) co-evolves agents and en-
 163 vironments through population-based training, while PAIRED (Dennis et al., 2020) uses adversarial
 164 training to generate challenging yet solvable environments. EnvGen (Zhai et al., 2024) leverages
 165 LLMs to adaptively create training environments for RL agents, using world knowledge to generate
 166 environment configurations based on task descriptions. Samvelyan et al. (Samvelyan et al., 2023)
 167 introduced Rainbow Teaming for diverse adversarial scenarios. Recent work explores evolution
 168

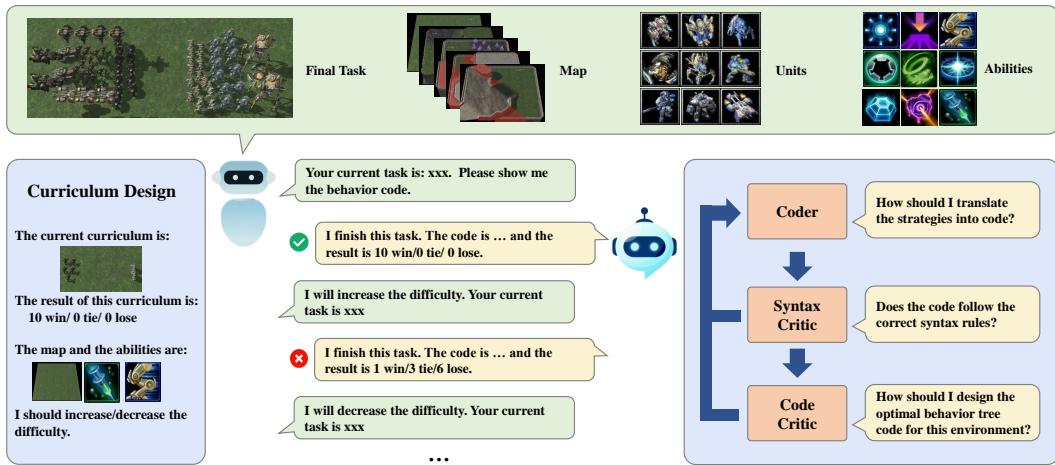


Figure 2: EvoCurr overview. A curriculum designer proposes the next curriculum C_{t+1} ; a solver produces an executable policy π_{t+1} and evaluates it; the outcome feeds back to the designer. The loop starts from a simplified version of the final target T_f and proceeds until T_f is solved.

strategies for environment generation (Liu et al., 2024) and evolved curricula that transfer across different learners (Parker-Holder et al., 2022). These methods generate static training data or environments before agent training, rather than dynamically adapting during inference based on solver capabilities.

Code Generation in StarCraft II. StarCraft II has become a standard benchmark for complex decision-making research following DeepMind’s PySC2 (Vinyals et al., 2017). AlphaStar (Vinyals et al., 2019) achieved Grandmaster level through large-scale reinforcement learning, with subsequent work exploring efficient strategies (Liu et al., 2021c;b), offline learning (Mathieu et al., 2021), and federated frameworks (Han et al., 2020; Wang et al., 2021a). Recent integration of language models includes TextStarCraft II (Ma et al., 2024; 2025a;b; Li et al., 2025) and behavior tree approaches (Deng et al., 2025; 2024). Beyond StarCraft II, collaborative environments like Overcooked have emerged as benchmarks for multi-agent coordination (Carroll et al., 2020), with recent work providing comprehensive evaluation toolkits for zero-shot coordination (Wang et al., 2024). For code generation, Liang et al. (Liang et al., 2023) proposed Code as Policies for robot control, while behavior tree synthesis work (Colledanchise & Ögren, 2018; Lykov & Tsetserukou, 2023) demonstrated that LLMs can produce structurally correct trees. These methods successfully generate executable policies but operate on fixed tasks without adaptive difficulty progression. Building upon these foundations, we propose EvoCurr, a framework that enables autonomous curriculum evolution for complex decision-making scenarios through self-adaptive task generation and progressive skill acquisition.

3 METHOD

This section presents *EvoCurr*, a framework that enables LLMs to solve complex decision-making tasks through self-evolving curricula. We employ a two-agent cooperative framework (Section 3.1), design a curriculum generation mechanism with feasibility constraints (Section 3.2), and describe the code-as-policy realization for behavior tree synthesis (Section 3.3).

3.1 TWO-AGENT COOPERATIVE FRAMEWORK

EvoCurr employs two cooperating agents: a *Designer* that generates curricula and a *Solver* that produces policies. These agents share identical rewards, creating a fully cooperative system where success requires coordinated action across different decision spaces.

Let \mathcal{C} denote the task space containing target $T_f \in \mathcal{C}$, and Π the policy space. Each task $C \in \mathcal{C}$ has difficulty $d(C) \in \mathbb{R}_+$ measuring complexity through unit count and ability diversity. The distance

$\Delta(C, T_f)$ quantifies the configuration gap to the final target. The performance function $\mathcal{P} : \Pi \times \mathcal{C} \rightarrow [0, 1]$ evaluates policy $\pi \in \Pi$ on task C , typically as win rate over multiple rollouts. The history $\mathcal{H}_t = \{(C_i, \pi_i, \mathcal{P}_i, \text{Accept}_i)\}_{i=1}^t$ records past curricula, policies, performances $\mathcal{P}_i = \mathcal{P}(\pi_i | C_i)$, and acceptance status $\text{Accept}_i = \mathbb{1}[\mathcal{P}_i \geq \tau]$ where $\tau \in (0, 1)$ is the acceptance threshold.

At round t , the Designer generates a new curriculum through LLM-based transformation:

$$C_{t+1} = \mathcal{T}(C_t, \mathcal{H}_t, T_f, \text{Accept}_t) \quad (1)$$

Curriculum generation follows the **accepted-floor constraint**. Let C_{t^*} denote the most recently accepted task. Then:

$$\begin{cases} d(C_{t+1}) > d(C_t) \text{ and } \Delta(C_{t+1}, T_f) < \Delta(C_t, T_f) & \text{if } \text{Accept}_t = 1 \\ d(C_{t^*}) < d(C_{t+1}) < d(C_t) & \text{if } \text{Accept}_t = 0 \end{cases} \quad (2)$$

This ensures monotonic skill acquisition—the system never regresses below previously mastered difficulty levels.

The Solver generates policies via LLM-based code synthesis or neural network training:

$$\pi_{t+1} = \text{Solver}(C_{t+1}, \mathcal{H}_t) \quad (3)$$

$$\text{Accept}_{t+1} = \mathbb{1}[\mathcal{P}(\pi_{t+1} | C_{t+1}) \geq \tau] \quad (4)$$

Both agents optimize toward high performance on progressively harder tasks approaching T_f , with shared incentives ensuring the Designer proposes solvable challenges while the Solver develops increasingly sophisticated policies.

3.2 CURRICULUM GENERATION AND FEASIBILITY CONSTRAINTS

A task $C = (M, A, G)$ consists of map configuration M , agent specifications $A = \{a_i\}_{i=1}^n$ where $a_i = (\text{type}_i, \text{count}_i, \text{abilities}_i)$, and goal G . The Designer uses history \mathcal{H}_t to identify capability bottlenecks: coordination failures lead to reduced agent count while maintaining tactical structure; timing issues trigger ability simplification before count adjustment.

For example: Task 2 succeeds with Marinex10, Medivacx2 (90% win rate); Task 3 fails with Marinex15, Ghostx4, Tankx3 (40%); Task 4 adjusts to Marinex12, Ghostx2 (90%), ensuring $d(\text{Task 2}) < d(\text{Task 4}) < d(\text{Task 3})$ per the accepted-floor constraint.

A feasibility gate g_{feas} validates curricula through syntax checking (code compilation), logic verification (path reachability), and runtime validation (execution success).

3.3 CODE-AS-POLICY: BEHAVIOR TREE SYNTHESIS

The Solver adapts its policy generation based on the control paradigm required by the task domain.

For open-loop control requiring interpretable policies, the Solver generates executable behavior tree code through three stages: (1) strategic planning extracts high-level objectives S from C_{t+1} ; (2) code synthesis translates S into structured behavior trees; (3) compilation produces the final policy π_{t+1} . On failure ($\mathcal{P} < \tau$), the system adjusts decision thresholds and action priorities based on performance feedback.

For closed-loop control requiring continuous adaptation, the Solver trains neural policies via RL algorithms, with π_{t+1} representing network parameters optimized in environment C_{t+1} . Training continues for a fixed timestep budget before evaluation. Both paradigms share the same cooperative dynamics, accepted-floor constraints, and performance evaluation, enabling EvoCurr to handle diverse decision-making challenges within a unified framework.

4 EXPERIMENTS

We evaluate EvoCurr in two complementary domains that demonstrate its versatility across different control paradigms. In StarCraft II micro-management, we transform the traditionally closed-loop problem into open-loop control: the Solver generates complete behavior tree scripts upfront

270 that execute without real-time adaptation, departing from typical RL approaches (Samvelyan et al.,
 271 2019; Vinyals et al., 2017) that react at each timestep. This code-as-policy approach tests whether
 272 LLMs can tackle reactive domains through strategic pre-planning while producing interpretable so-
 273 lutions. Conversely, in Overcooked (Carroll et al., 2020), the Solver trains MARL policies that
 274 continuously adapt to observations, maintaining the conventional closed-loop paradigm. Despite
 275 these fundamentally different policy realizations—pre-compiled behavior trees versus learned neu-
 276 ral networks—both operate under the same EvoCurr framework with the feasibility gate g_{feas} and
 277 accepted-floor constraint ensuring monotonic progression. Implementation details are in Appen-
 278 dices C and A.1.

AGENTS (Terran):			ENEMIES (Protoss):		
Unit Type	Quantity	Technology	Unit Type	Quantity	Technology
Marine	20	Stimpack	Zealot	15	Charge
Marauder	12	Stimpack	Stalker	14	BlinkTech
Medivac	4	Heal	Sentry	10	ForceField
Ghost	8	PersonalCloaking	HighTemplar	8	PsiStormTech
SiegeTank	6	SiegeTech	Colossus	4	ExtendedThermalLance
VikingFighter	8	AssaultMode	Tempest	5	GroundAttack
Cyclone	7	LockOn	Disruptor	4	PurificationNova
WidowMine	7	Burrow	Carrier	4	InterceptorLaunch
Raven	3	HunterSeeker			
Liberator	2	DefenderMode			

291 Table 1: Final Terran vs Protoss Task Specification
 292
 293
 294

AGENTS (Terran):			ENEMIES (Zerg):		
Unit Type	Quantity	Technology	Unit Type	Quantity	Technology
Marine	20	Stimpack	Zergling	60	ZerglingMovementSpeed
Marauder	12	Stimpack	Baneling	24	CentrificalHooks
Medivac	4	Heal	Roach	15	GlialReconstitution
Ghost	8	PersonalCloaking	Hydralisk	10	HydraliskSpeed
SiegeTank	6	SiegeTech	Lurker	6	Burrow
VikingFighter	8	AssaultMode	Corruptor	10	FlyerWeaponsLevel1
Cyclone	7	LockOn	Infestor	3	EnergyUpgrade
WidowMine	7	Burrow	Viper	4	FlyerArmorsLevel1
Raven	3	HunterSeeker	Overseer	3	FlyerArmorsLevel1
Liberator	2	DefenderMode	Queen	4	MissileWeaponsLevel1
			Broodlord	4	FlyerWeaponsLevel1

307 Table 2: Final Terran vs Zerg Task Specification
 308
 309310 4.1 STARCRAFT II MICRO-MANAGEMENT
 311

312 **Experiment Setup** The Solver generates `python-sc2` behavior trees that act at the unit-action
 313 level and is evaluated in an open-loop manner. We test on five newly designed micro maps against
 314 two opponent races (Terran vs Protoss and Terran vs Zerg). Each curriculum specifies unit sets,
 315 technologies, and spawn regions on a selected map; *compile-and-run* serves as a hard feasibility
 316 gate in line with g_{feas} . The final target T_f for the canonical Terran–Protoss and Terran–Zerg settings
 317 is given in Table 1 and Table 2. For acceptance, we require $\mathcal{P}(\pi|C) \geq \tau = 0.9$, evaluated as win
 318 rate over 10 rollouts. The primary baseline, *Direct Code*, attempts to solve T_f in one shot under
 319 the same rollout and validation budgets as EvoCurr. Per-curriculum compositions and complete
 320 evolution traces are summarized in the appendix.

321 Because direct long-horizon code generation can be brittle (syntax/API errors) and win rate alone
 322 may not capture partial successes, we additionally report a damage-cost-aware combat score S_{combat}
 323 for more nuanced evaluation. This metric evaluates the comparative performance of EvoCurr against
 closed-source large language model performances (DeepSeek3.1, GPT-5, Claude4, Gemini2.5) on

324 direct target task implementation., given by:
 325

$$326 \quad S_{\text{combat}} = 0.5 \cdot \frac{R_{\text{agent_final}}}{R_{\text{agent_init}}} + 0.5 \cdot \left(1 - \frac{R_{\text{enemy_final}}}{R_{\text{enemy_init}}}\right), \quad (5)$$

328 where the total combat power for one side is
 329

$$330 \quad R_{\text{side}} = \sum_i (\text{minerals}_i + \alpha \cdot \text{vespene}_i + \beta \cdot \text{build_time}_i) \cdot \frac{\text{hp}_i + \text{shields}_i}{\text{hp_max}_i + \text{shields_max}_i}. \quad (6)$$

333 This metric aggregates resource cost and remaining health/shields; scores range from 0 to 1. A
 334 combat score $S_{\text{combat}} > 0.5$ indicates successful annihilation of the majority of enemy forces while
 335 preserving our own, providing a finer-grained assessment than binary win/loss especially for failed
 336 code executions where the first term becomes 0.

338 Task	339 Win Rate EvoCurr (%)	340 Win Rate DeepSeek (%)	341 Score EvoCurr	342 Score DeepSeek	343 Task nums
Bush (TvP)	100	0	0.67	0.33	6
Bush (TvZ)	100	100	0.73	0.61	4
Corridor (TvP)	100	80	0.71	0.66	5
Corridor (TvZ)	100	90	0.69	0.58	5
Main (TvP)	100	100	0.72	0.69	4
Main (TvZ)	100	100	0.70	0.68	5
Ramp (TvP)	100	10	0.72	0.45	4
Ramp (TvZ)	100	50	0.74	0.45	5
Corner (TvP)	90	90	0.55	0.56	5
Corner (TvZ)	100	30	0.84	0.41	5
Flat (TvP)	100	0	0.69	0.41	5
Flat (TvZ)	100	0	0.62	0.36	5

348 Table 3: Combat score S_{combat} among *correct* scripts on StarCraft II micro tasks. T denotes *Terran*,
 349 P *Protoss*, Z *Zerg*. Each entry is the maximum over 10 evaluations. Task nums denotes the nums of
 350 tasks to complete the target task.

353 **Experimental Results** We evaluate 12 complex micro-management tasks (2 matchups \times 6 maps)
 354 in Table 3. EvoCurr achieves most of the highest combat scores (often exceeding 0.7), demon-
 355 strating consistent performance regardless of task difficulty. When one-shot code generation proved
 356 challenging for all models (scores ≤ 0.5), EvoCurr reliably achieved scores near 0.7. Conversely,
 357 on simpler tasks where most one-shot methods scored above 0.5, EvoCurr still delivered robust,
 358 high-performing results, though not necessarily the peak score, aligning with its goal of final task
 359 accomplishment through progressive curriculum advancement.

360 4.2 OVERCOOKED

362 Map	363 Task	364 Orders	365 Agent0 Delivery	366 Agent1 Delivery	367 Total Delivery	368 Sparse Reward
Map 1	EvoCurr	5	14.74	14.36	29.10	290.9
Map 1	Direct Training	5	11.93	12.18	24.11	240.5
Map 2	EvoCurr	5	7.82	10.82	18.64	186.2
Map 2	Direct Training	5	7.40	8.96	16.36	163.4

368 Table 4: Curriculum progression and performance metrics for overcook maps
 369

371 **Experiment Setup** We instantiate EvoCurr in a closed-loop regime on Overcooked while keeping
 372 the game dynamics consistent with Section 3. The Designer proposes curricula parameterized by
 373 layouts, ingredient placements, order timing constraints, and stochasticity. Unlike the StarCraft II
 374 setting, the Solver here is a MARL trainer that optimizes decentralized policies under a fixed per-
 375 curriculum budget $B = 10^7$ timesteps. The acceptance criterion $\mathcal{P}(\pi|C) \geq \tau$ is defined as com-
 376 pleting all required orders, where $\mathcal{P}(\pi|C) = 1$ if all orders are fulfilled and 0 otherwise. The
 377 framework also allows completing bonus orders after required ones, contributing to the total deliv-
 378 ery count shown in Table 4. Orders define the prescribed objectives for agent operations, where

reward structures are calibrated to provide greater compensation for deliveries that exceed the established order quantities. This isolates the effect of inference-time curriculum evolution from policy realizations. Detailed curriculum specifications and complete performance metrics for both map configurations are provided in Appendix D.

Experimental Results As shown in Table 4, EvoCurr outperforms directly applying ET3 under matched total budgets (After testing the budgets that need to be used with EvoCurr, then directly conduct testing using the same budget). On the first task, EvoCurr achieves 29.1 effective deliveries on average vs 24.11 for the baseline; on the second, EvoCurr reaches 18.64 vs 16.36. The Map1 is Coord. Ring with Multi-recip and the Map 2 is Counter Circuit with Multi-reci (Wang et al., 2024). The higher delivery counts for EvoCurr include both required and bonus orders, demonstrating that the progressive curriculum not only ensures completion of primary objectives but also enables more efficient exploration of bonus rewards. Performance drops at curriculum transitions reflect distribution shift: policies specialized to one curriculum must re-explore when difficulty increases, yet prior experience accelerates re-convergence—consistent with the progressive, monotone advancement prescribed by the framework.

5 ANALYSIS

Curriculum Design We show the effectiveness of the curriculum designing module by providing the sub-tasks generated for solving the final task in Table 5. The sub-tasks are designed based on the accomplishment of the previous curriculum. For StarCraft II tasks, we set the acceptance threshold $\tau = 0.9$, which indicates that the difficulty should increase when the winning rate is above 90% during the evaluation process and in contrast decrease otherwise. In the 12 new tasks, according to the table, the Terran vs Protoss setting on the map of Bush takes the longest curriculum trajectory. The enemies are invisible in the bush, which brings challenges to the agents, so the designer has to decrease the difficulty twice before the solver finally finish the task.

Final Task	Task 1	Task 2	Task 3	Task 4	Task 5	Task 6	Task 7
Flat (TvP)	100%	100%	70%	90%	100%	-	-
Flat (TvZ)	100%	100%	100%	100%	100%	-	-
Bush (TvP)	100%	100%	40%	90%	50%	100%	100%
Bush (TvZ)	100%	90%	60%	100%	100%	-	-
Corridor (TvP)	100%	90%	100%	100%	90%	-	-
Corridor (TvZ)	100%	90%	90%	100%	100%	-	-
Corner (TvP)	90%	90%	90%	100%	-	-	-
Corner (TvZ)	100%	100%	90%	90%	100%	-	-
Main (TvP)	100%	100%	100%	100%	-	-	-
Main (TvZ)	100%	100%	100%	100%	-	-	-
Ramp (TvP)	100%	100%	90%	100%	100%	-	-
Ramp (TvZ)	100%	100%	100%	90%	100%	-	-

Table 5: The winning rates of each curricula designed for the 12 complex decision-making scenarios.

Figure 3 also demonstrates curriculum paths on StarCraft II micromanagement tasks solved by open-loop behavior trees and Overcook scenarios solved by MARL algorithms. Given a final task, the designer determines the first class with limited difficulty. The solver starts to finish the task and respond the rollout results to the designer. Then the designer generates new curriculum based on the rollout results. In the Figure, the solver achieves more than 90% winning rates in the curricula which are shown in cyan color. When the solver cannot finish the task, red points, the designer then selects the latest finished task as the basement and generates new curriculum with different map settings. When the solver solves the final task, the tree-based evolution process is terminated and the final behavior tree/black-box policy model are returned as the final solution to the task.

Behavior Coder Generation When facing new curriculum with larger unit amount and new unit type, the behavior coder generates new scripts based on the previous script that finish the previous curriculum. The new scripts are refined in two phases. The first phase is the addition of new control

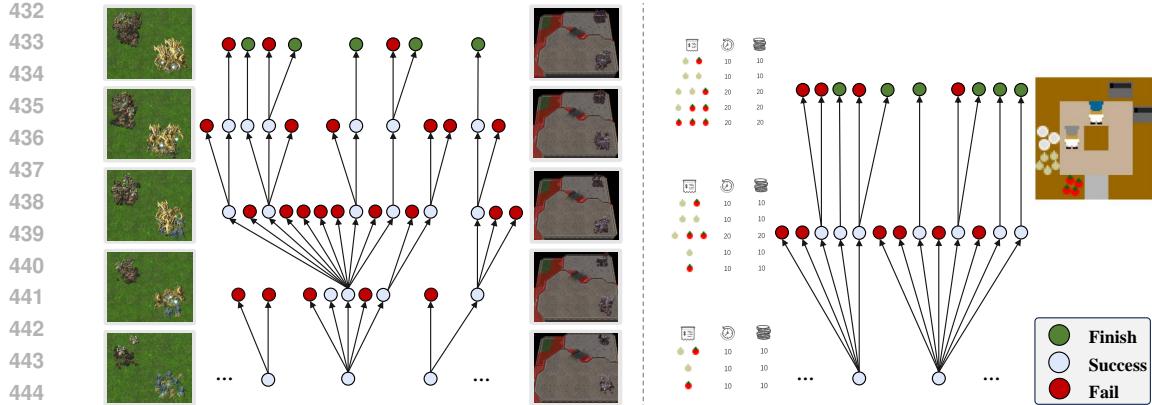


Figure 3: A demonstration of the evolution traces from the initial task to the final tasks in StarCraft II setting and the overcook settings. In the StarCraft II, the curriculum is designed based on the maps, units, and abilities. In the overcook scenarios, the curricula are designed on the recipes, times, and orders.

functions. As shown in Code A.3.2 and Code A.4 in the Appendix, the advanced solution contains more control functions for each unit type, such as `control_vikings`, `control_ghosts`, etc. The second phase is the refinement of each existing control function which promotes the coordination among units. For instance, in the early coding stage, the Marine units are responsible for focusing fire on the enemy and rapidly decrease the enemy units. In the latter curriculum where the enemy has the area of effect (aoe) attacking ability, the Marines should firstly split to avoid aoe attacks and then focus fire on the enemy. In such case, the split skill is learned during the evolution and the fire focus skill is reserved and promoted.

Layered Critic Refinement Despite that the LLMs have learnt extensive coding script resources during the pre-training process. The ability of generating scripts following `python_sc2` package depends on the amount of handcrafted `python_sc2` scripts from the community, which results in the different code generating ability of different LLMs. Therefore, in the behavior tree generation, we leverage a two-layered critic to improve the quality of behavior tree. The first layer is the sanity check module that is responsible for correcting the potential mistakes such as grammar bugs, API misuse, and exceptions. The second layer of the critic refines the strategy which provides suggestion on the implementation logic of the behavior tree scripts. The two-layer critic module serves as a critical support to the solver for higher success behavior tree generating rates.

6 DISCUSSION, FUTURE WORK, AND CONCLUSION

EvoCurr demonstrates that self-evolving curricula enable LLMs to solve complex decision-making tasks at inference time without manual curriculum design. The cooperative Designer-Solver framework, constrained by the accepted-floor rule and feasibility gating, achieves systematic progression toward target tasks across both open-loop behavior tree generation and closed-loop MARL training—reaching 90% win rates in StarCraft II where direct approaches achieve only 50%, and 20% higher task completion in Overcooked. Key limitations include sensitivity to difficulty scaling leading to rejection cycles, LLM context constraints limiting behavior tree complexity, and computational overhead from maintaining historical information \mathcal{H}_t . Future directions include hierarchical multi-agent architectures for the Solver to handle complex task decomposition, adaptive difficulty scaling based on acceptance patterns, and hybrid approaches combining behavior tree interpretability with neural policy robustness through distillation. EvoCurr provides a principled, domain-agnostic mechanism for extending LLM capabilities to complex sequential decision-making, offering a practical path toward deployable systems that maintain interpretability while handling tasks previously beyond their reach.

486 REFERENCES
487

488 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
489 *International Conference on Machine Learning (ICML)*, pp. 41–48, 2009.

490 Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
491 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
492 few-shot learners. *Advances in Neural Information Processing Systems (NeurIPS)*, 33:1877–1901,
493 2020.

494 Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
495 mar, Peter Lee, Yin Tat Li, Scott Lundberg, Harsha Nori, et al. Sparks of artificial general intelli-
496 gence: Early experiments with gpt-4. *arXiv preprint arXiv:2303.12712*, 2023.

497 Micah Carroll, Rohin Shah, Mark K. Ho, Thomas L. Griffiths, Sanjit A. Seshia, Pieter Abbeel, and
498 Anca Dragan. On the utility of learning about humans for human-ai coordination, 2020. URL
499 <https://arxiv.org/abs/1910.05789>.

500 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
501 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
502 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

503 Michele Colledanchise and Petter Ögren. *Behavior trees in robotics and AI: An introduction*. CRC
504 Press, 2018.

505 Yue Deng, Yan Yu, Weiyu Ma, Zirui Wang, Wenhui Zhu, Jian Zhao, and Yin Zhang. Smac-hard:
506 Enabling mixed opponent strategy script and self-play on smac, 2024. URL <https://arxiv.org/abs/2412.17707>.

507 Yue Deng, Weiyu Ma, Yuxin Fan, Ruyi Song, Yin Zhang, Haifeng Zhang, and Jian Zhao. Smac-r1:
508 The emergence of intelligence in decision-making tasks, 2025. URL <https://arxiv.org/abs/2410.16024>.

509 Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
510 and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
511 design. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 33, pp. 13049–
512 13061, 2020.

513 Alex Graves, Marc G Bellemare, Jacob Menick, Rémi Munos, and Koray Kavukcuoglu. Auto-
514 mated curriculum learning for neural networks. In *International Conference on Machine Learning
515 (ICML)*, pp. 1311–1320. PMLR, 2017.

516 Lei Han, Jiechao Xiong, Peng Sun, Xinghai Sun, Meng Fang, Qingwei Guo, Qiaobo Chen, Tengfei
517 Shi, Hongsheng Yu, Xipeng Wu, et al. Tstarbot-x: An open-sourced and comprehensive study for
518 efficient league training in starcraft ii full game. *arXiv preprint arXiv:2011.13729*, 2020.

519 Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander G Hauptmann. Self-paced cur-
520 riculum learning. In *AAAI conference on artificial intelligence (AAAI)*, volume 29, 2015.

521 Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. In *International
522 Conference on Machine Learning (ICML)*, pp. 4940–4950, 2021.

523 Pascal Klink, Carlo D’Eramo, Jan Peters, and Joni Pajarinen. Self-paced deep reinforcement learn-
524 ing. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 33, pp. 16185–
525 16195, 2020.

526 M Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable
527 models. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 1189–1197, 2010.

528 Yujia Li, Maxwell Nye, Jacob Andreas, Jasmijn Bastings, Shruti Bhosale, James Bradbury, Jacob
529 Austin, Greg Brockman, Trevor Cai, Ciprian Chelba, et al. Competition-level code generation
530 with alphacode. *Science*, 378(6624):1092–1097, 2022.

540 Zongyuan Li, Yanan Ni, Runnan Qi, Lumin Jiang, Chang Lu, Xiaojie Xu, Xiangbei Liu, Pengfei
 541 Li, Yunzheng Guo, Zhe Ma, Huanyu Li, Hui Wu, Xian Guo, Kuihua Huang, and Xuebo Zhang.
 542 Llm-pysc2: Starcraft ii learning environment for large language models, 2025. URL <https://arxiv.org/abs/2411.05348>.

543

544 Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence,
 545 and Andy Zeng. Code as policies: Language model programs for embodied control. In *IEEE
 546 International Conference on Robotics and Automation (ICRA)*, pp. 9493–9500, 2023.

547

548 Jialin Liu, Sam Snodgrass, Ahmed Khalifa, Sebastian Risi, Georgios N Yannakakis, and Julian
 549 Togelius. Deep learning for procedural content generation. *Neural Computing and Applications*,
 550 33:19–37, 2021a.

551 Ruo-Ze Liu, Haifeng Guo, Xiaozhong Ji, Yang Yu, Zhen-Jia Pang, Zitai Xiao, Yuzhou Wu, and
 552 Tong Lu. Efficient reinforcement learning for starcraft by abstract forward models and transfer
 553 learning. *IEEE Transactions on Games*, 14(2):294–307, 2021b.

554

555 Ruo-Ze Liu, Wenhui Wang, Yanjie Shen, Zhiqi Li, Yang Yu, and Tong Lu. An introduction of
 556 mini-alphastar. *arXiv preprint arXiv:2104.06890*, 2021c.

557

558 Yuxing Liu, Jack Parker-Holder, and Philip J Ball. Evolution strategies for environment design.
 559 *arXiv preprint arXiv:2402.18530*, 2024.

560

561 Artem Lykov and Dzmitry Tsetserukou. Llm-brain: Ai-driven fast generation of robot behaviour
 562 tree based on large language model. *arXiv preprint arXiv:2305.19352*, 2023.

563

564 Weiyu Ma, Qirui Mi, Yongcheng Zeng, Xue Yan, Yuqiao Wu, Runji Lin, Haifeng Zhang, and Jun
 565 Wang. Large language models play starcraft ii: Benchmarks and a chain of summarization ap-
 566 proach, 2024. URL <https://arxiv.org/abs/2312.11865>.

567

568 Weiyu Ma, Yuqian Fu, Zecheng Zhang, Bernard Ghanem, and Guohao Li. Ava: Attentive vlm agent
 569 for mastering starcraft ii, 2025a. URL <https://arxiv.org/abs/2503.05383>.

570

571 Weiyu Ma, Jiwen Jiang, Haobo Fu, and Haifeng Zhang. Tacticcraft: Natural language-driven tactical
 572 adaptation for starcraft ii, 2025b. URL <https://arxiv.org/abs/2507.15618>.

573

574 Michael Mathieu, Sherjil Ozair, Srivatsan Srinivasan, Caglar Gulcehre, Shangtong Zhang, Ray
 575 Jiang, Tom Le Paine, Konrad Zolna, Richard Powell, Julian Schrittwieser, et al. Starcraft ii
 576 unplugged: Large scale offline reinforcement learning. In *Deep RL Workshop NeurIPS 2021*,
 577 2021.

578

579 Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher-student curriculum learn-
 580 ing. In *IEEE Transactions on Neural Networks and Learning Systems (TNNLS)*, volume 31, pp.
 581 3732–3740, 2019.

582

583 Sanmit Narvekar and Peter Stone. Learning curriculum policies for reinforcement learning. *arXiv
 584 preprint arXiv:1812.00285*, 2018.

585

586 Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter Stone.
 587 Curriculum learning for reinforcement learning domains: A framework and survey. *Journal of
 588 Machine Learning Research (JMLR)*, 21(1):7382–7431, 2020.

589

590 OpenAI. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.

591

592 Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward
 593 Grefenstette, and Tim Rocktäschel. Evolving curricula with regret-based environment design. In
 594 *International Conference on Machine Learning (ICML)*, pp. 17473–17498, 2022.

595

596 Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas
 597 Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson.
 598 The starcraft multi-agent challenge. *arXiv preprint arXiv:1902.04043*, 2019.

599

600 Mikayel Samvelyan, Sharath Chandra Raparthy, Andrej Bhatt, and Aditya Shyam. Rainbow team-
 601 ing: Open-ended generation of diverse adversarial prompts. In *arXiv preprint arXiv:2402.16822*,
 602 2023.

594 Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey.
 595 *International Journal of Computer Vision (IJCV)*, 130(6):1526–1565, 2022.
 596

597 Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets,
 598 Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, et al.
 599 Starcraft ii: A new challenge for reinforcement learning. *arXiv preprint arXiv:1708.04782*, 2017.

600 Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
 601 oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
 602 level in starcraft ii using multi-agent reinforcement learning. *Nature*, 575(7782):350–354, 2019.
 603

604 Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Paired open-ended trailblazer (poet):
 605 Endlessly generating increasingly complex and diverse learning environments and their solutions.
 606 In *arXiv preprint arXiv:1901.01753*, 2019.

607 Xiangjun Wang, Junxiao Song, Penghui Qi, Peng Peng, Zhenkun Tang, Wei Zhang, Weimin Li,
 608 Xiongjun Pi, Jujie He, Chao Gao, et al. Scc: An efficient deep reinforcement learning agent
 609 mastering the game of starcraft ii. In *International Conference on Machine Learning (ICML)*, pp.
 610 10905–10915. PMLR, 2021a.

611 Xihuai Wang, Shao Zhang, Wenhao Zhang, Wentao Dong, Jingxiao Chen, Ying Wen, and Weinan
 612 Zhang. Zsc-eval: An evaluation toolkit and benchmark for multi-agent zero-shot coordination,
 613 2024. URL <https://arxiv.org/abs/2310.05208>.

614

615 Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning. *IEEE Transactions
 616 on Pattern Analysis and Machine Intelligence (TPAMI)*, 44(9):4555–4576, 2021b.

617 Xue Yan, Jiaxian Guo, Xingzhou Lou, Jun Wang, Haifeng Zhang, and Yali Du. An efficient end-
 618 to-end training approach for zero-shot human-ai coordination. *Advances in neural information
 619 processing systems*, 36:2636–2658, 2023.

620

621 Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D Goodman. Star: Bootstrapping reasoning with
 622 reasoning. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 35, pp.
 623 15398–15411, 2022.

624 Xiangyu Zhai, Chenghao Lyu, Shengyu Zhang, Tengyu Xu, and Yi Wu. Envgen: Generating and
 625 adapting environments via llms for training embodied agents. *arXiv preprint arXiv:2403.12014*,
 626 2024.

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648
649

A STARCRAFT II MICRO MANAGEMENT

650
651

A.1 INTRODUCTION TO STARCRAFT II

652
653
654
655
656
657
658
659
660
661
662
663

StarCraft II is a real-time strategy game developed by Blizzard Entertainment that has become one of the most challenging and strategically complex video games ever created. Released in 2010, the game features three asymmetric factions—Terrans, Protoss, and Zerg—each with distinct units, technologies, and strategic approaches. Players must simultaneously manage multiple interconnected systems: resource collection and allocation, base construction and expansion, technological research and upgrades, unit production and army composition, and real-time tactical combat control. The game demands rapid decision-making under time pressure, long-term strategic planning, adaptation to opponent strategies, and precise micro-management of individual units during combat. Professional matches can involve hundreds of units across multiple battlefronts, requiring players to process vast amounts of information while executing complex multi-layered strategies. The skill ceiling is extraordinarily high, with professional players dedicating years to master the intricate mechanics, build orders, timing attacks, and unit interactions that define high-level play.

664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679

The significance of StarCraft II for artificial intelligence research extends far beyond its entertainment value. The game presents a comprehensive testbed for studying complex decision-making under uncertainty, partial information, and real-time constraints challenges that mirror many real-world applications of AI. Unlike traditional board games such as chess or Go, which have perfect information and turn-based mechanics, StarCraft II requires agents to operate in a partially observable environment with continuous action spaces and exponentially large state representations. The game’s multi-scale nature demands both macro-level strategic planning spanning tens of minutes and micro-level tactical execution occurring within milliseconds. This dual requirement has driven significant advances in hierarchical reinforcement learning, multi-agent coordination, and long-horizon planning algorithms. Notable breakthroughs include DeepMind’s AlphaStar, which achieved Grandmaster level performance and demonstrated that AI systems could master complex strategic reasoning, and subsequent research that has explored everything from curriculum learning and imitation learning to neural architecture search and federated training. The availability of extensive replay datasets, standardized evaluation protocols through environments like PySC2, and the game’s inherent interpretability through observable unit actions have made StarCraft II an invaluable platform for developing and benchmarking AI systems capable of human-level strategic reasoning in complex, dynamic environments.

680

A.2 STARCRAFT II API AND PYTHON INTERFACES

681
682
683
684
685
686
687
688
689
690
691
692

The technical foundation enabling AI research in StarCraft II rests on Blizzard Entertainment’s official StarCraft II Machine Learning API, which provides programmatic access to the game’s complete state information and action execution capabilities. This API exposes the game engine through a protocol buffer-based interface that delivers real-time observations including unit positions, resource states, map geometry, and tactical information while accepting high-level commands for unit control, building construction, and technology research. The official `s2client-proto` defines the core communication protocol between external programs and the StarCraft II executable, establishing standardized data structures for observations, actions, and game configuration. This low-level interface handles the complex details of game state serialization, network communication, and command validation, but requires substantial boilerplate code and deep understanding of the underlying protocol specifications to implement effective AI agents.

693
694
695
696
697
698
699

Building upon this foundation, the research community has developed higher-level abstractions that significantly simplify AI development while preserving the full functionality of the underlying API. **PySC2**, developed by DeepMind, transforms the raw API into a structured reinforcement learning environment that follows standard RL conventions with observation spaces, action spaces, and reward functions. This environment emphasizes feature-layer representations and provides built-in mini-games for curriculum learning, making it particularly suitable for deep reinforcement learning approaches.

700
701

Complementing PySC2, the `python-sc2` library offers a more direct and intuitive interface focused on scripted bot development, where complex strategic behaviors can be implemented using straightforward Python code with minimal boilerplate. The `python-sc2` library abstracts away protocol

702 buffer complexities while exposing high-level game objects such as units, abilities, and map structures through clean Python APIs, enabling researchers to focus on strategic logic rather than low-level implementation details. Our EvoCurr framework leverages python-sc2's accessibility and expressiveness to generate behavior tree scripts that can be easily interpreted, debugged, and modified, making it an ideal choice for our curriculum-based approach to complex tactical reasoning.
 707
 708

709 A.3 GENERATED BEHAVIOR TREE CODE EXAMPLES

710
 711 This section presents complete examples of behavior tree implementations generated by the EvoCurr
 712 framework at different curriculum stages, demonstrating the evolution of tactical complexity.
 713

714 A.3.1 EARLY STAGE: BASIC MARINE MICRO-MANAGEMENT

```
716
717 from sc2 import maps
718 from sc2.bot_ai import BotAI
719 from sc2.data import Race, Difficulty
720 from sc2.ids.ability_id import AbilityId
721 from sc2.ids.unit_typeid import UnitTypeId
722 from sc2.main import run_game
723 from sc2.player import Bot, Computer

724 class BattleBot(BotAI):
725     def __init__(self):
726         super().__init__()
727         self.stim_used = set()

728     async def on_step(self, iteration: int):
729         if iteration == 0:
730             print("Marine Micro Bot - 5v2 Marines vs Zealots!")
731         if self.units.exists:
732             await self.marine_micro()

733         async def marine_micro(self):
734             marines = self.units(UnitTypeId.MARINE)
735             zealots = self.enemy_units(UnitTypeId.ZEALOT)

736             if not marines.exists or not zealots.exists:
737                 return

738             close_zealots = zealots.filter(lambda z:
739                 marines.closest_to(z.position).distance_to(z) < 6)

740             if close_zealots.exists:
741                 for marine in marines:
742                     if (marine.tag not in self.stim_used and
743                         AbilityId.EFFECT_STIM_MARINE in
744                         await self.get_available_abilities(marine)):
745                         marine(AbilityId.EFFECT_STIM_MARINE)
746                         self.stim_used.add(marine.tag)

747             target = min(zealots, key=lambda z: z.health + z.shield)

748             for marine in marines:
749                 dist = marine.distance_to(target)
750                 if dist < 1:
751                     retreat_pos = marine.position.towards(target.position, -3)
752                     marine.move(retreat_pos)
753                 elif dist <= 5:
754                     marine.attack(target)
755                 else:
756                     marine.move(target.position)
```

```

756 A.3.2 INTERMEDIATE STAGE: MULTI-UNIT COORDINATION
757
758 class BattleBot(BotAI):
759     async def on_step(self, iteration: int):
760         if iteration == 0:
761             print("Terran Battle Bot Activated!")
762
763         if self.units.exists:
764             await self.control_ghosts()
765             await self.control_marines()
766             await self.control_marauders()
767             await self.control_medivacs()
768
769         async def control_ghosts(self):
770             ghosts = self.units(UnitTypeId.GHOST)
771             if not ghosts.exists:
772                 return
773
774             high_templars = self.enemy_units(UnitTypeId.HIGHTEMPLAR)
775             stalkers = self.enemy_units(UnitTypeId.STALKER)
776
777             for ghost in ghosts:
778                 if high_templars.exists:
779                     templar = high_templars.closest_to(ghost.position)
780                     if ghost.distance_to(templar) < 12:
781                         if AbilityId.SNIPER_SNIPE in
782                             await self.get_available_abilities(ghost):
783                             ghost(AbilityId.SNIPER_SNIPE, templar)
784                         elif AbilityId.EMP_EMP in
785                             await self.get_available_abilities(ghost):
786                             ghost(AbilityId.EMP_EMP, templar.position)
787                             ghost.move(templar.position)
788                         if AbilityId.BEHAVIOR_CLOAKON_GHOST in
789                             await self.get_available_abilities(ghost):
790                             ghost(AbilityId.BEHAVIOR_CLOAKON_GHOST)
791                         elif stalkers.exists:
792                             target = stalkers.closest_to(ghost.position)
793                             ghost.attack(target)
794
795             async def control_medivacs(self):
796                 medivacs = self.units(UnitTypeId.MEDIVAC)
797                 if not medivacs.exists:
798                     return
799
800                 bio_units = self.units.filter(lambda unit:
801                     unit.type_id in {UnitTypeId.MARINE,
802                         UnitTypeId.MARAUDER})
803
804                 for medivac in medivacs:
805                     injured = bio_units.filter(lambda unit:
806                         unit.health_percentage < 0.75)
807
808                     if injured.exists:
809                         target = injured.closest_to(medivac.position)
810                         medivac.move(target.position)
811                         if medivac.distance_to(target) < 5:
812                             medivac(AbilityId.MEDIVACHEAL_HEAL, target)
813                         elif bio_units.exists:
814                             medivac.move(bio_units.center)
815
816 A.4 ADVANCED STAGE: COMPLEX MULTI-UNIT TACTICAL FRAMEWORK
817
818 class BattleBot(BotAI):
819     async def on_step(self, iteration: int):
820         if iteration == 0:

```

```

810         self.setup_complete = False
811         await self.initial_positioning()
812         self.setup_complete = True
813
814         bio_units = self.units.of_type({UnitTypeId.MARINE,
815                                         UnitTypeId.MARAUDER})
816         medivacs = self.units(UnitTypeId.MEDIVAC)
817
818         await self.avoid_aoe(bio_units + medivacs)
819         await self.control_siege_tanks()
820         await self.control_vikings()
821         await self.control_liberators()
822         await self.control_ghosts()
823         await self.control_bio(UnitTypeId.MARINE)
824         await self.control_bio(UnitTypeId.MARAUDER)
825         await self.control_medivacs()
826
827     async def avoid_aoe(self, units: Units):
828         storms = [e for e in self.state.effects
829                   if e.id == EffectId.PSISTORMPERSISTENT]
830         disruptor_balls = self.enemy_units(UnitTypeId.DISRUPTORPHASED)
831
832         threats = []
833         for storm in storms:
834             threats.append((storm.position, 2.5))
835         for ball in disruptor_balls:
836             threats.append((ball.position, 2.5))
837
838         for unit in units:
839             for pos, radius in threats:
840                 if unit.distance_to(pos) < radius:
841                     away = unit.position.towards(pos, -3)
842                     unit.move(away)
843                     break
844
845     async def control_siege_tanks(self):
846         siege_tanks = self.units(UnitTypeId.SIEGETANKSIEGED)
847         sieged_tanks = self.units(UnitTypeId.SIEGETANKSIEGED)
848
849         for tank in siege_tanks:
850             if tank.distance_to(Point2((15, 15))) > 2:
851                 continue
852             abilities = await self.safe_get_abilities(tank)
853             if AbilityId.SIEGEMODE_SIEGEMODE in abilities:
854                 tank(AbilityId.SIEGEMODE_SIEGEMODE)
855
856         if sieged_tanks.exists:
857             enemies = self.enemy_units
858             if not enemies.exists:
859                 return
860             priority_targets = enemies.of_type([UnitTypeId.COLOSSUS,
861                                               UnitTypeId.STALKER, UnitTypeId.HIGHTEMPLAR,
862                                               UnitTypeId.ZEALOT])
863
864             for tank in sieged_tanks:
865                 targets_in_range = priority_targets.in_attack_range_of(tank)
866                 if targets_in_range:
867                     target = min(targets_in_range,
868                                 key=lambda t: (t.type_id not in
869                                 {UnitTypeId.COLOSSUS, UnitTypeId.HIGHTEMPLAR},
870                                 t.distance_to(tank)))
871                     tank.attack(target)
872
873

```

864
 865
 866
 867
 868 Table 6: Complete curriculum evolution across five independent runs. Each row is one curriculum
 869 within a path; acceptance requires $\mathcal{P} \geq 0.67$. Detailed map/unit/tech descriptors for each curriculum
 870 are elided for space.

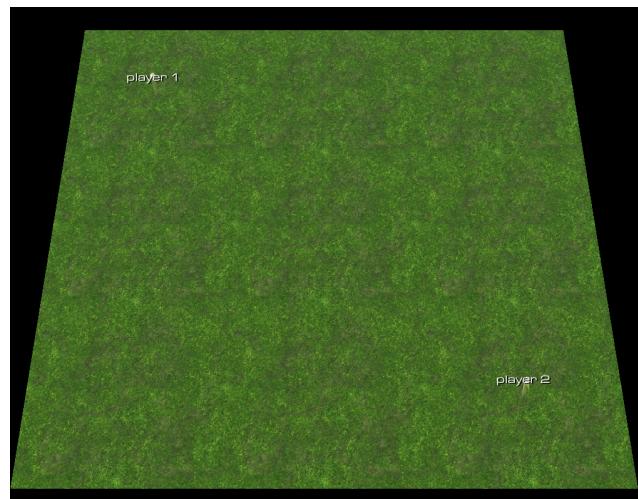
Path	Task	Agent Composition	Enemy Composition	Result
1	1	Marine (5)	Zealot (2, Charge)	67%
	2	Marine (10), Marauder (5), Medivac (1)	Zealot (5, Charge), Stalker (5, Blink), HighTemplar (1, PsiStorm)	67%
	3	Marine (15), Marauder (8), Ghost (2), Medivac (2), SiegeTank (1)	Zealot (10, Charge), Stalker (8, Blink), HighTemplar (2, PsiStorm), Failed Colossus (1, ExtLance)	
	4	Marine (12), Marauder (6), Ghost (1), Medivac (1)	Zealot (8, Charge), Stalker (6, Blink), HighTemplar (1, PsiStorm)	67%
	5	Marine (18), Marauder (10), Ghost (2), Medivac (2), SiegeTank (1), Viking (2)	Zealot (12, Charge), Stalker (10, Blink), HighTemplar (2, PsiStorm), Failed Colossus (1, ExtLance)	67%
	6	Final Task (Table 1)	Final Task (Table 1)	100%
2	1	Marine (5)	Zealot (2, Charge)	100%
	2	Marine (10), Marauder (5), Medivac (2), SiegeTank (1)	Zealot (8, Charge), Stalker (5, Blink), HighTemplar (2, PsiStorm)	67%
	3	Marine (15), Marauder (8), Ghost (2), Medivac (3), SiegeTank (1), Viking (4)	Zealot (12, Charge), Stalker (10, Blink), HighTemplar (3, PsiStorm), Failed Colossus (2, ExtLance)	
	4	Marine (12), Marauder (6), Ghost (1), Medivac (2), SiegeTank (1), Viking (2)	Zealot (10, Charge), Stalker (8, Blink), HighTemplar (2, PsiStorm), Failed Colossus (1, ExtLance)	
3	1	Marine (5)	Zealot (2, Charge)	100%
	2	Marine (8), Marauder (5, PunisherGrenades), SiegeTank (1), Medivac (1, CaduceusReactor)	Zealot (7, Charge), Stalker (3, Blink), HighTemplar (2, PsiStorm), Failed Colossus (1, ExtLance)	
	3	Marine (8), Marauder (4), SiegeTank (1), Medivac (2, CaduceusReactor)	Zealot (5, Charge), Stalker (2, Blink), Colossus (1)	100%
	4	Marine (14), Marauder (7, PunisherGrenades), SiegeTank (2), Medivac (3, CaduceusReactor), Viking (2), Ghost (1)	Zealot (9, Charge), Stalker (5, Blink), HighTemplar (2, PsiStorm), Failed Colossus (2, ExtLance), Disruptor (1)	
	5	Marine (10), Marauder (5), SiegeTank (1), Medivac (2, CaduceusReactor)	Zealot (6, Charge), Stalker (3, Blink), Colossus (1)	100%
	6	Marine (14), Marauder (7, PunisherGrenades), SiegeTank (2), Medivac (3, CaduceusReactor), Viking (2), Ghost (1)	Zealot (9, Charge), Stalker (5, Blink), HighTemplar (2, PsiStorm), Failed Colossus (2, ExtLance), Disruptor (1)	
	7	Marine (14), Marauder (7, PunisherGrenades), SiegeTank (1), Medivac (2, CaduceusReactor), Ghost (1)	Zealot (9, Charge), Stalker (4, Blink), Colossus (1, ExtLance)	Failed
4	1	Marine (5)	Zealot (2, Charge)	67%
	2	Marine (10), Marauder (5), Ghost (2), Medivac (1, CaduceusReactor)	Zealot (8, Charge), Stalker (4, Blink), HighTemplar (1, PsiStorm)	100%
	3	Marine (15), Marauder (8), Ghost (3), Medivac (2, CaduceusReactor), SiegeTank (1), Viking (2)	Zealot (12, Charge), Stalker (8, Blink), HighTemplar (2, PsiStorm), Failed Colossus (1, ExtLance)	
5	1	Marine (5)	Zealot (2, Charge)	67%
	2	Marine (10), Marauder (5), Medivac (1)	Zealot (5, Charge), Stalker (5, Blink), HighTemplar (1, PsiStorm)	67%
	3	Marine (15), Marauder (8), Ghost (2), Medivac (2), SiegeTank (1)	Zealot (10, Charge), Stalker (8, Blink), HighTemplar (2, PsiStorm), Failed Colossus (1, ExtLance)	
	4	Marine (12), Marauder (6), Ghost (1), Medivac (1)	Zealot (8, Charge), Stalker (6, Blink), HighTemplar (1, PsiStorm)	67%
	5	Marine (18), Marauder (10), Ghost (2), Medivac (2), SiegeTank (1), Viking (2)	Zealot (12, Charge), Stalker (10, Blink), HighTemplar (2, PsiStorm), Failed Colossus (1, ExtLance)	67%
	6	Final Task (Table 1)	Final Task (Table 1)	Failed

892
 893 **B COMPLETE CURRICULUM EVOLUTION ACROSS ALL FIVE PATHS**
 894 **(STARCRAFT II)**
 895

896 **B.1 STARCRAFT II MINI GAME MAPS**
 897

898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

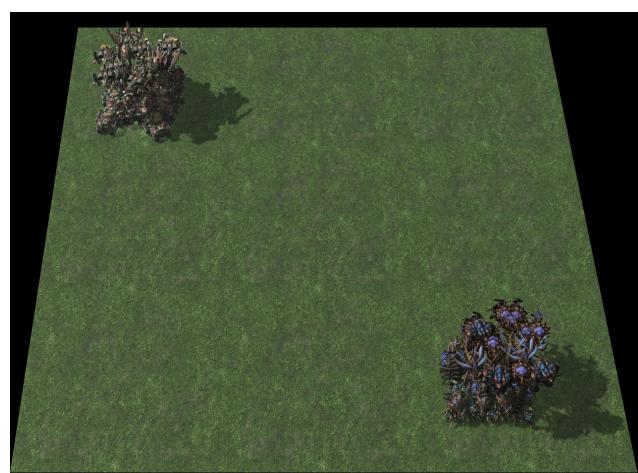


(a) Flat map layout

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951

(b) Terran vs Protoss on Flat

952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970



(c) Terran vs Zerg on Flat

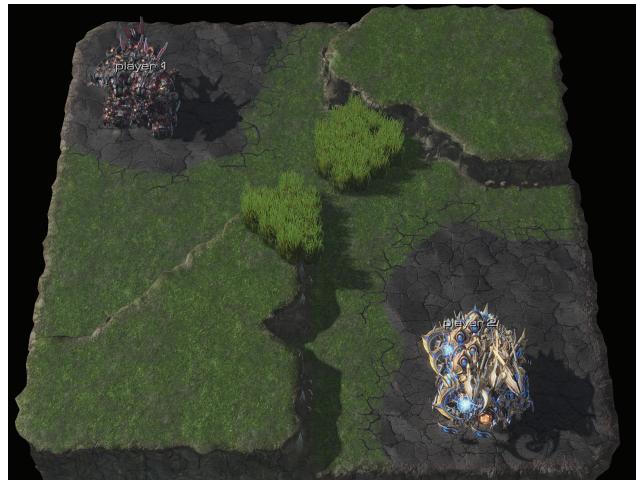
971

Figure 4: Flat map configurations: base layout and unit compositions for different matchups

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988

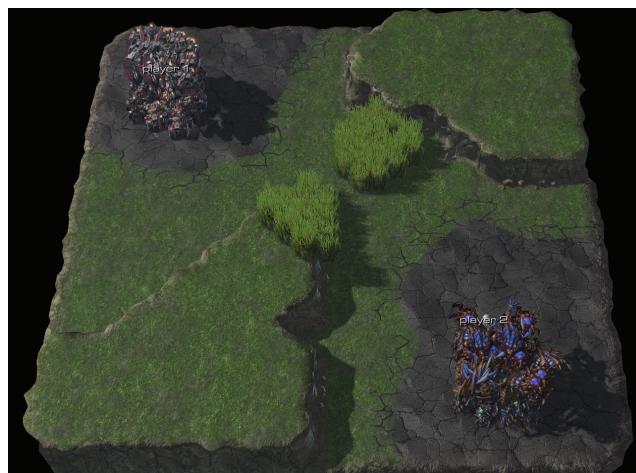
(a) Bush map layout

989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005



(b) Terran vs Protoss on Bush

1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024



(c) Terran vs Zerg on Bush

1025
Figure 5: Bush map configurations: base layout and unit compositions for different matchups

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041

(a) Corner map layout

1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

(b) Terran vs Protoss on Corner

1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077

(c) Terran vs Zerg on Corner

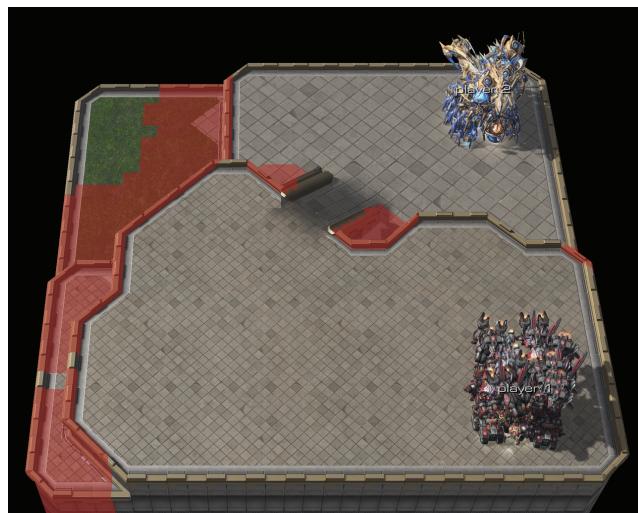
1078
1079

Figure 6: Corner map configurations: base layout and unit compositions for different matchups

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094

(a) Main map layout

1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112



(b) Terran vs Protoss on Main

1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129

(c) Terran vs Zerg on Main

1130
1131
1132
1133

Figure 7: Main map configurations: base layout and unit compositions for different matchups

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

(a) Ramp map layout

1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170

(b) Terran vs Protoss on Ramp

1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

(c) Terran vs Zerg on Ramp

Figure 8: Ramp map configurations: base layout and unit compositions for different matchups

1188 C OVERCOOKED DETAILS
11891190 C.1 MARL TRAINING CONFIGURATION
11911192 For the Overcooked experiments, we employ the E3T (Efficient End-to-End Training) algorithm (Yan et al.,
1193 2023) as our MARL training framework. The training configuration is detailed in Table 7.
11941195 Table 7: Overcooked MARL training hyperparameters
1196

Parameter	Value
Algorithm	E3T
Number of agents	2
Episode length	400
Number of environment steps per curriculum	10^7
PPO epochs	15
Number of mini-batches	1
Rollout threads	100
Evaluation threads	10
Evaluation interval	20 episodes
Entropy Regularization Schedule	
Entropy coefficients	[0.2, 0.05, 0.01]
Entropy coefficient horizons	$[0, 6 \times 10^6, 10^7]$
Network Architecture	
CNN layers	$[(32, 3 \times 3, \text{stride}=1), (64, 3 \times 3, \text{stride}=1), (32, 3 \times 3, \text{stride}=1)]$
Recurrent policy	LSTM
Shared policy	True
E3T Specific	
Epsilon (diversity bonus)	0.25
Weights copy factor	0.1
Random index	Enabled
Curriculum-specific	
Reward shaping horizon	10^8
Budget per curriculum	10^7 timesteps

1224 C.2 CURRICULUM DESIGN FOR OVERCOOKED
12251226 The curriculum progression in Overcooked is structured around three key dimensions:
12271228 1. **Layout Complexity:** Starting from simple layouts (e.g., `small_corridor`) with direct paths be-
1229 between stations, progressing to complex layouts with obstacles and longer navigation requirements.
1230 2. **Order Complexity:** Beginning with single-ingredient dishes, advancing to multi-ingredient recipes
1231 requiring precise coordination between agents.
1232 3. **Temporal Constraints:** Initially allowing unlimited time for order completion, then introducing time
1233 pressure and simultaneous order requirements.
12341235 The acceptance criterion $\mathcal{P}(\pi|C) = 1$ is achieved when all required orders are completed within the episode.
1236 After meeting this criterion, agents can pursue bonus orders to maximize total deliveries. The entropy regu-
1237 larization schedule ensures exploration early in training (high entropy) while converging to more deterministic
1238 policies as training progresses.1239 For layouts with particular navigation challenges (e.g., `small_corridor`), we adjust the entropy coefficient
1240 horizons to $[0, 8 \times 10^6, 10^7]$ to allow for extended exploration before convergence. The shared policy architec-
1241 ture enables agents to learn cooperative behaviors more efficiently by sharing representations while maintaining
individual action distributions.

1242
1243

D OVERCOOKED EXPERIMENTAL RESULTS DETAILS

1244
1245
1246

This appendix provides detailed experimental results for the Overcooked environment, showing the complete curriculum evolution and performance metrics for two different map configurations.

1247
1248

D.1 MAP CONFIGURATION 1

1249
1250

D.1.1 FINAL LAYOUT SPECIFICATION

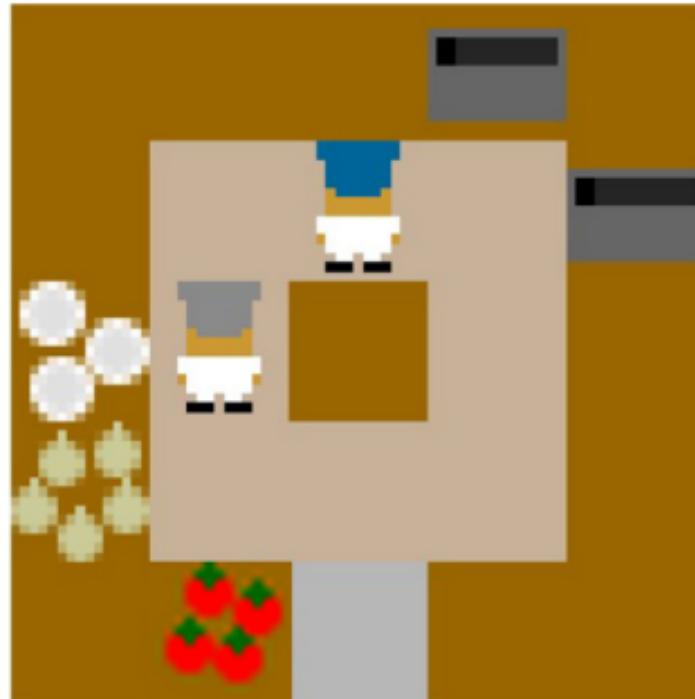
1251
12521253
12541255
12561257
12581259
12601261
12621263
12641265
12661267
12681269
12701271
12721273
12741275
12761277
1278

Figure 9: overcook map1

1279
1280

```
{
  "grid": "XXXPX
            X 2 P
            D1X X
            O   X
            XTSXX",
  "start_all_orders": [
    {"ingredients": ["onion", "tomato"]},
    {"ingredients": ["onion", "onion"]},
    {"ingredients": ["onion", "tomato", "tomato"]},
    {"ingredients": ["onion", "onion", "tomato"]},
    {"ingredients": ["onion", "onion", "onion"]}
  ],
  "recipe_value": [10, 10, 20, 20, 20],
  "recipe_time": [10, 10, 20, 20, 20]
}
```

1294
1295

Grid Legend: X=Wall, P=Pot, D=Dish, O=Onion, T=Tomato, S=Service, 1/2=Agent spawn

Table 8: Map 1: Curriculum progression and performance metrics

Task	Orders	Agent0 Delivery	Agent1 Delivery	Total Delivery	Sparse Reward
Task 0	3	11.75	12.33	24.08	239.2
Task 1	4	14.56	14.33	28.89	288.1
Task 2 (Final)	5	14.74	14.36	29.10	290.9
Direct Training	5	11.93	12.18	24.11	240.5

D.1.2 CURRICULUM EVOLUTION RESULTS

D.1.3 DETAILED PERFORMANCE METRICS COMPARISON

Table 9: Map 1: Key performance indicators for final task

Metric	EvoCurr (Final)		Direct Training	
	Agent0	Agent1	Agent0	Agent1
Onion Placement in Pot	15.77	15.94	13.38	13.57
Tomato Placement in Pot	0.31	0.32	0.21	0.26
Useful Dish Pickup	7.81	7.63	6.15	6.34
Soup Pickup	7.68	7.55	6.31	6.33
Cook Actions	7.44	8.67	6.34	7.30
Delivery Actions	7.37	7.19	5.99	6.11
Idle Movement	9.40	8.68	14.90	15.10

D.2 MAP CONFIGURATION 2

D.2.1 FINAL LAYOUT SPECIFICATION

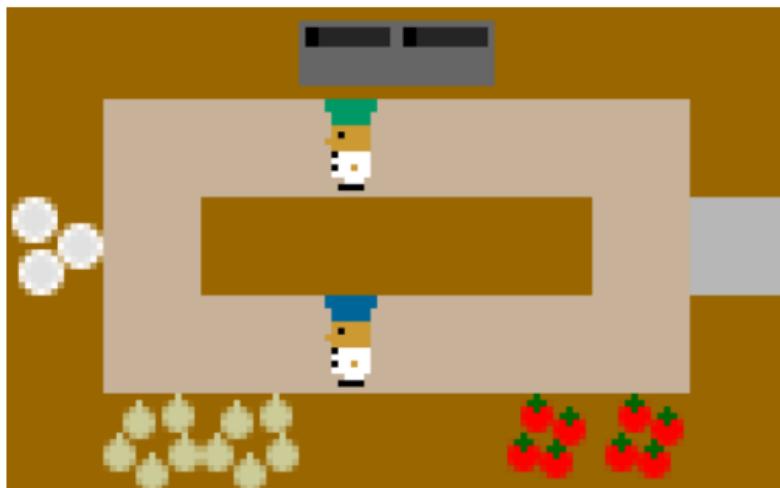


Figure 10: overcook map2

```

{
  "grid": "XXXPDPXXX
          X 2 X
          X XXXXX X
          X 1 X
          XXXOSTXXX",

```

```

1350     "start_all_orders": [
1351         {"ingredients": ["onion", "tomato"]},
1352         {"ingredients": ["onion", "onion"]},
1353         {"ingredients": ["onion", "tomato", "tomato"]},
1354         {"ingredients": ["onion", "onion", "tomato"]},
1355         {"ingredients": ["onion", "onion", "onion"]}
1356     ],
1357     "recipe_value": [10, 10, 20, 20, 20],
1358     "recipe_time": [10, 10, 20, 20, 20]
1359 }
1360
1361 Grid Legend: X=Wall, P=Pot, D=Dish, O=Onion, T=Tomato, S=Service, 1/2=Agent spawn
1362
1363 D.2.2 CURRICULUM EVOLUTION RESULTS
1364
1365 Table 10: Curriculum progression and performance metrics
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

```

Grid Legend: X=Wall, P=Pot, D=Dish, O=Onion, T=Tomato, S=Service, 1/2=Agent spawn

D.2.2 CURRICULUM EVOLUTION RESULTS

Table 10: Curriculum progression and performance metrics

Task	Orders	Agent0 Delivery	Agent1 Delivery	Total Delivery	Sparse Reward
Task 0	3	7.28	7.25	14.53	290.3
Task 1	5*	7.32	7.28	14.60	291.6
Task 2 (Final)	5	7.82	10.82	18.64	186.2
Direct Training	5	7.40	8.96	16.36	163.4

*Task 1 includes two single-ingredient recipes alongside complex recipes for easier transition

D.2.3 DETAILED PERFORMANCE METRICS COMPARISON

Table 11: Key performance indicators for final task

Metric	EvoCurr (Final)		Direct Training	
	Agent0	Agent1	Agent0	Agent1
Onion Placement in Pot	7.91	5.95	9.85	9.29
Tomato Placement in Pot	3.17	3.87	0.08	0.07
Useful Dish Pickup	5.45	4.20	4.32	4.81
Soup Pickup	4.12	5.62	4.24	4.79
Cook Actions	5.45	4.85	5.16	4.38
Delivery Actions	3.92	5.42	3.71	4.49
Size-2 Order Delivery	3.84	5.27	3.65	4.40
Size-3 Order Delivery	0.07	0.14	0.05	0.08
Idle Movement	14.42	14.21	10.49	11.28