
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EVOCURR: SELF-EVOLVING CURRICULUM WITH
BEHAVIOR CODE GENERATION FOR COMPLEX
DECISION-MAKING

Anonymous authors
Paper under double-blind review

ABSTRACT

While large language models (LLMs) demonstrate remarkable capabilities across
diverse domains, they fail catastrophically on high-complexity tasks requiring
long-horizon reasoning and multi-step coordination. To address this problem,
we present EvoCurr, a self-evolving curriculum learning framework that enables
LLMs to solve complex decision-making problems through cooperative multi-
agent learning. The core of EvoCurr is a multi-agent cooperative system where
a Designer agent generates adaptive task sequences and a Solver agent produces
executable solutions through coordinated interaction. Both agents share identi-
cal rewards based on task performance and proximity to the target task, creating
a fully cooperative framework that naturally aligns their objectives for progres-
sive skill acquisition. A critical innovation is the accepted-floor constraint that
prevents difficulty regression below previously solved levels, ensuring monotonic
skill advancement while preventing catastrophic forgetting. The framework en-
forces feasibility through a validation gate and supports both open-loop code gen-
eration and closed-loop policy learning paradigms. We evaluate EvoCurr on two
complementary domains: StarCraft II micro-management and Overcooked coor-
dination tasks. On StarCraft II micro-management, where the Solver generates
Python behavior-tree scripts for complex tactical scenarios, EvoCurr achieves av-
erage combat winning rates above 90% while state-of-the-art models achieve less
than 50% when directly attempting these scenarios. On Overcooked coordination
tasks, where the Solver uses multi-agent reinforcement learning to train cooper-
ative policies, EvoCurr achieves 20% higher task completion rates (measured by
dish orders delivered) compared to direct training. Our results demonstrate that
EvoCurr provides a principled, domain-agnostic approach for extending LLM ca-
pabilities to complex decision-making tasks previously beyond their reach.

1 INTRODUCTION

Large language models (LLMs) have revolutionized automated problem-solving, from synthesiz-
ing formal proofs to generating executable Python programs Brown et al. (2020); OpenAI (2023);
Bubeck et al. (2023); Chen et al. (2021); Li et al. (2022). Yet when faced with truly complex
decision-making tasks—those requiring long-horizon planning, multi-step coordination, and adap-
tive strategies—even the most advanced models struggle dramatically. Consider StarCraft II micro-
management: controlling dozens of military units with diverse abilities against sophisticated oppo-
nents. When asked to generate control code for such scenarios directly, GPT-5, Claude-4, DeepSeek-
3.1, and Gemini-2.5 achieve less than 50% win rates, despite these tasks being well within human
capability Zelikman et al. (2022). This performance gap reveals a fundamental challenge: while
LLMs possess vast knowledge, they cannot effectively marshal this knowledge for complex, multi-
step decision problems.

The core issue is complexity scaling. Simple tasks succeed reliably, but compound tasks—such
as coordinating 20 Marines, 8 Ghosts with cloaking, and 4 Medivacs for healing while engaging
enemy Protoss forces—overwhelm even the most capable models. The failure is not due to lack
of knowledge; these models understand unit capabilities, tactical concepts, and programming in-
terfaces. Rather, they cannot synthesize this knowledge into working solutions when the problem

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Final Target Task Curriculum Designer Curriculum Task i

SolverEnvironment

Behavior Tree MARL

Units

Enemy units

Abilities

Map

…

Menu

Materials

Price

Time

…

Your task is winning this game.

You may begin with …

Designer

Difficulty Adjustment Feasibility Constraint

𝐶 = 𝑀, 𝐴, 𝑂, Ω

ℋ = (𝐶, 𝜋, 𝒫, 𝐹)

Curriculum

History

𝒯: 𝐶 ×ℋ → 𝐶Transformation

function

Hard Constraints

Soft Constraints

Feasible

curriculum

Success/failure

analysis

∇𝐶𝒫 ∣𝐶𝑡Gradient Computing

History of past interactions Current curriculum

Interaction

Environmental configuration

Map generator

World State

Interaction Interface

Physics/Rules Engine

…

Env Config

Agent Spec

Objectives

Complexity Modifiers

Final solution
Completes the final target task

Figure 1: Brief introduction for EvoCurr. Showing the framework of EvoCurr that the designer gains
advantage by generating feasible yet demanding tasks that progress toward the objective, whereas
the Solver profits from mastering increasingly difficult challenges and ultimately achieving the target
goal.

space becomes too large. Two control paradigms illustrate this challenge concretely. In open-loop
control, one compiles an interpretable program (e.g., a behavior tree) and runs it without adapting to
new observations; this eases debugging but is sensitive to missing cases. In closed-loop control, one
learns a reactive policy mapping observations to actions (typically via reinforcement learning); this
improves robustness but sacrifices transparency. A mechanism that can at inference time progress
from easy to hard tasks in both paradigms—without retraining the base model—would substantially
increase the practical utility of LLM-based decision making.

Humans don’t learn complex skills by jumping directly to the hardest version. A chess player starts
with basic piece movements before attempting complex strategies. This observation suggests a nat-
ural solution: can we enable LLMs to solve complex problems by automatically discovering and
following a learning curriculum? Curriculum learning has proven effective for graduated complex-
ity Bengio et al. (2009); Graves et al. (2017); Narvekar et al. (2020); Narvekar & Stone (2018), but
three obstacles limit its use for LLM inference. First, curricula typically require domain expertise
and manual task design, which is expensive and brittle. Second, most approaches optimize training-
time schedules and offer little guidance for inference-time problem solving with pretrained models.
Third, existing practices lack a simple, verifiable rule for when and how to escalate difficulty while
avoiding catastrophic forgetting once a skill threshold has been reached.

We propose EvoCurr, a self-evolving curriculum framework that enables LLMs to solve complex
decision-making problems they cannot handle directly. The key insight is that LLMs themselves can
design appropriate curricula—they understand what makes tasks easier or harder and can propose
suitable stepping stones toward a final goal. EvoCurr instantiates this as a cooperative two-agent sys-
tem. A Designer analyzes current capabilities and proposes the next task by adjusting controllable
factors (e.g., in StarCraft II: unit composition, abilities, and map; in Overcooked: layout, recipes,
and timing). A Solver produces an executable solution, evaluates it on the proposed task, and returns
the outcome.

Two simple rules make this loop progress reliably without manual intervention. First, the accepted-
floor rule remembers the most recently mastered task and forbids future proposals from going easier
than that point—once a skill is demonstrated, the system maintains this skill floor, preventing catas-
trophic forgetting. Second, a feasibility gate discards ill-formed proposals early by checking basic
validity: the task compiles (syntax), its logic allows the goal to be attempted (e.g., reachable way-
points), and it can be run to produce a measurable outcome (runtime). With just a single acceptance
threshold defining “mastery” (e.g., winning rate above 90%), these rules let EvoCurr autonomously
navigate the frontier of learned capabilities without hand-crafted schedules or domain-specific dif-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

ficulty metrics. Crucially, the same framework applies to both control paradigms: the Solver either
generates executable behavior-tree code (open-loop code-as-policy) or trains a reactive policy for a
fixed budget (closed-loop).

We validate EvoCurr on two challenging domains that have resisted direct LLM approaches. In
StarCraft II micro-management across twelve complex combat scenarios, EvoCurr progressively
achieves winning rates exceeding 90% by generating sophisticated behavior-tree scripts, while di-
rect one-shot generation with the same models achieves less than 50%. The evolution typically
requires 4-6 intermediate tasks, automatically discovered by the system, to bridge from simple unit
control to complex multi-unit coordination with advanced abilities. In Overcooked, a challenging
multi-agent coordination benchmark, EvoCurr achieves 20% higher task completion rates (measured
by successfully delivered orders) compared with direct training under matched total budgets. The
framework discovers curricula that first master basic movement and item handling, then progress
to timing-critical coordination in confined spaces. These results demonstrate that an inference-
time curriculum—implemented by simple “do not go backwards” and “only propose valid tasks”
rules—can reliably unlock LLM capabilities for complex decision-making previously beyond their
reach.

Summarizing, our contributions are:

1. Inference-time curriculum mechanism. A self-evolving framework that advances task
difficulty using only an acceptance threshold, an accepted-floor rule preventing skill re-
gression, and a feasibility gate filtering invalid proposals—eliminating manual curriculum
design and domain-specific difficulty metrics.

2. Practical Designer–Solver procedure. The Designer diagnoses capability bottlenecks
from historical outcomes and proposes targeted task adjustments; the Solver produces
executable artifacts and measured performance, forming an autonomous improvement
loop that works across both open-loop code generation and closed-loop policy learning
paradigms.

3. Empirical evidence across domains. On StarCraft II micro-management, EvoCurr pro-
gressively attains winning rates ≥ 90% where direct generation fails; on Overcooked,
with matched budgets, EvoCurr achieves 20% higher completion rates, demonstrating that
inference-time curriculum evolution can extend LLM capabilities to complex tasks previ-
ously beyond their reach.

2 RELATED WORK

Curriculum Learning. Bengio et al. (Bengio et al., 2009) formalized curriculum learning, demon-
strating that training on examples organized from easy to hard improves generalization and conver-
gence compared to random data shuffling. This paradigm has achieved success across computer
vision, NLP, and reinforcement learning (Soviany et al., 2022; Wang et al., 2021b). Kumar et
al. (Kumar et al., 2010) introduced self-paced learning (SPL) where models automatically deter-
mine learning pace based on sample difficulty, eliminating predefined curricula. Jiang et al. (Jiang
et al., 2015) extended SPL with diversity constraints to prevent premature convergence. In rein-
forcement learning, Narvekar et al. (Narvekar et al., 2020) provided a comprehensive curriculum
framework, while Klink et al. (Klink et al., 2020) interpreted curriculum generation as an inference
problem. Recent advances include Teacher-Student Curriculum Learning (Matiisen et al., 2019)
with teacher networks generating student tasks, and Prioritized Level Replay (Jiang et al., 2021)
sampling training levels based on learning potential. However, these approaches primarily focus on
training phase optimization and require either manual curriculum design or domain-specific diffi-
culty metrics, leaving a gap for inference-time adaptive curriculum generation.

Environment Generation. Procedural content generation has evolved from rule-based methods to
learning-based approaches (Liu et al., 2021a). POET (Wang et al., 2019) co-evolves agents and en-
vironments through population-based training, while PAIRED (Dennis et al., 2020) uses adversarial
training to generate challenging yet solvable environments. EnvGen (Zhai et al., 2024) leverages
LLMs to adaptively create training environments for RL agents, using world knowledge to generate
environment configurations based on task descriptions. Samvelyan et al. (Samvelyan et al., 2023)
introduced Rainbow Teaming for diverse adversarial scenarios. Recent work explores evolution

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The current curriculum is:

The result of this curriculum is:

10 win/ 0 tie/ 0 lose

The map and the abilities are:

I should increase/decrease the

difficulty.

Curriculum Design

Coder

Syntax

Critic

Code

Critic

Your current task is: xxx. Please show me

the behavior code.

I finish this task. The code is … and the

result is 10 win/0 tie/ 0 lose.

I will increase the difficulty. Your current

task is xxx

I finish this task. The code is … and the

result is 1 win/3 tie/6 lose.

I will decrease the difficulty. Your current

task is xxx

…

How should I translate

the strategies into code?

Does the code follow the

correct syntax rules?

How should I design the

optimal behavior tree

code for this environment?

Final Task Map Units Abilities

Figure 2: EvoCurr overview. A curriculum designer proposes the next curriculum Ct+1; a solver
produces an executable policy πt+1 and evaluates it; the outcome feeds back to the designer. The
loop starts from a simplified version of the final target Tf and proceeds until Tf is solved.

strategies for environment generation (Liu et al., 2024) and evolved curricula that transfer across
different learners (Parker-Holder et al., 2022). These methods generate static training data or envi-
ronments before agent training, rather than dynamically adapting during inference based on solver
capabilities.

Code Generation in StarCraft II. StarCraft II has become a standard benchmark for complex
decision-making research following DeepMind’s PySC2 (Vinyals et al., 2017). AlphaStar (Vinyals
et al., 2019) achieved Grandmaster level through large-scale reinforcement learning, with subse-
quent work exploring efficient strategies (Liu et al., 2021c;b), offline learning (Mathieu et al., 2021),
and federated frameworks (Han et al., 2020; Wang et al., 2021a). Recent integration of language
models includes TextStarCraft II (Ma et al., 2024; 2025a;b; Li et al., 2025) and behavior tree ap-
proaches (Deng et al., 2025; 2024). Beyond StarCraft II, collaborative environments like Over-
cooked have emerged as benchmarks for multi-agent coordination (Carroll et al., 2020), with recent
work providing comprehensive evaluation toolkits for zero-shot coordination (Wang et al., 2024).
For code generation, Liang et al. (Liang et al., 2023) proposed Code as Policies for robot control,
while behavior tree synthesis work (Colledanchise & Ögren, 2018; Lykov & Tsetserukou, 2023)
demonstrated that LLMs can produce structurally correct trees. These methods successfully gener-
ate executable policies but operate on fixed tasks without adaptive difficulty progression. Building
upon these foundations, we propose EvoCurr, a framework that enables autonomous curriculum evo-
lution for complex decision-making scenarios through self-adaptive task generation and progressive
skill acquisition.

3 METHOD

This section presents EvoCurr, a framework that enables LLMs to solve complex decision-making
tasks through self-evolving curricula. We employ a two-agent cooperative framework (Section 3.1),
design a curriculum generation mechanism with feasibility constraints (Section 3.2), and describe
the code-as-policy realization for behavior tree synthesis (Section 3.3).

3.1 TWO-AGENT COOPERATIVE FRAMEWORK

EvoCurr employs two cooperating agents: a Designer that generates curricula and a Solver that
produces policies. These agents share identical rewards, creating a fully cooperative system where
success requires coordinated action across different decision spaces.

Let C denote the task space containing target Tf ∈ C, and Π the policy space. Each task C ∈ C has
difficulty d(C) ∈ R+ measuring complexity through unit count and ability diversity. The distance

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

∆(C, Tf) quantifies the configuration gap to the final target. The performance function P : Π×C →
[0, 1] evaluates policy π ∈ Π on task C, typically as win rate over multiple rollouts. The history
Ht = {(Ci, πi,Pi,Accepti)}ti=1 records past curricula, policies, performances Pi = P(πi|Ci), and
acceptance status Accepti = 1[Pi ≥ τ] where τ ∈ (0, 1) is the acceptance threshold.

At round t, the Designer generates a new curriculum through LLM-based transformation:

Ct+1 = T (Ct,Ht, Tf ,Acceptt) (1)

Curriculum generation follows the accepted-floor constraint. Let Ct∗ denote the most recently
accepted task. Then:{

d(Ct+1) > d(Ct) and ∆(Ct+1, Tf) < ∆(Ct, Tf) if Acceptt = 1

d(Ct∗) < d(Ct+1) < d(Ct) if Acceptt = 0
(2)

This ensures monotonic skill acquisition—the system never regresses below previously mastered
difficulty levels.

The Solver generates policies via LLM-based code synthesis or neural network training:

πt+1 = Solver(Ct+1,Ht) (3)

Acceptt+1 = 1[P(πt+1|Ct+1) ≥ τ] (4)

Both agents optimize toward high performance on progressively harder tasks approaching Tf , with
shared incentives ensuring the Designer proposes solvable challenges while the Solver develops
increasingly sophisticated policies.

3.2 CURRICULUM GENERATION AND FEASIBILITY CONSTRAINTS

A task C = (M,A,G) consists of map configuration M , agent specifications A = {ai}ni=1 where
ai = (typei, counti, abilitiesi), and goal G. The Designer uses history Ht to identify capability
bottlenecks: coordination failures lead to reduced agent count while maintaining tactical structure;
timing issues trigger ability simplification before count adjustment.

For example: Task 2 succeeds with Marine×10, Medivac×2 (90% win rate); Task 3 fails with
Marine×15, Ghost×4, Tank×3 (40%); Task 4 adjusts to Marine×12, Ghost×2 (90%), ensuring
d(Task 2) < d(Task 4) < d(Task 3) per the accepted-floor constraint.

A feasibility gate gfeas validates curricula through syntax checking (code compilation), logic verifi-
cation (path reachability), and runtime validation (execution success).

3.3 CODE-AS-POLICY: BEHAVIOR TREE SYNTHESIS

The Solver adapts its policy generation based on the control paradigm required by the task domain.

For open-loop control requiring interpretable policies, the Solver generates executable behavior tree
code through three stages: (1) strategic planning extracts high-level objectives S from Ct+1; (2)
code synthesis translates S into structured behavior trees; (3) compilation produces the final policy
πt+1. On failure (P < τ), the system adjusts decision thresholds and action priorities based on
performance feedback.

For closed-loop control requiring continuous adaptation, the Solver trains neural policies via RL
algorithms, with πt+1 representing network parameters optimized in environment Ct+1. Training
continues for a fixed timestep budget before evaluation. Both paradigms share the same coopera-
tive dynamics, accepted-floor constraints, and performance evaluation, enabling EvoCurr to handle
diverse decision-making challenges within a unified framework.

4 EXPERIMENTS

We evaluate EvoCurr in two complementary domains that demonstrate its versatility across differ-
ent control paradigms. In StarCraft II micro-management, we transform the traditionally closed-
loop problem into open-loop control: the Solver generates complete behavior tree scripts upfront

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

that execute without real-time adaptation, departing from typical RL approaches (Samvelyan et al.,
2019; Vinyals et al., 2017) that react at each timestep. This code-as-policy approach tests whether
LLMs can tackle reactive domains through strategic pre-planning while producing interpretable so-
lutions. Conversely, in Overcooked (Carroll et al., 2020), the Solver trains MARL policies that
continuously adapt to observations, maintaining the conventional closed-loop paradigm. Despite
these fundamentally different policy realizations—pre-compiled behavior trees versus learned neu-
ral networks—both operate under the same EvoCurr framework with the feasibility gate gfeas and
accepted-floor constraint ensuring monotonic progression. Implementation details are in Appen-
dices C and A.1.

AGENTS (Terran): ENEMIES (Protoss):

Unit Type Quantity Technology Unit Type Quantity Technology
Marine 20 Stimpack Zealot 15 Charge
Marauder 12 Stimpack Stalker 14 BlinkTech
Medivac 4 Heal Sentry 10 ForceField
Ghost 8 PersonalCloaking HighTemplar 8 PsiStormTech
SiegeTank 6 SiegeTech Colossus 4 ExtendedThermalLance
VikingFighter 8 AssaultMode Tempest 5 GroundAttack
Cyclone 7 LockOn Disruptor 4 PurificationNova
WidowMine 7 Burrow Carrier 4 InterceptorLaunch
Raven 3 HunterSeeker
Liberator 2 DefenderMode

Table 1: Final Terran vs Protoss Task Specification

AGENTS (Terran): ENEMIES (Zerg):

Unit Type Quantity Technology Unit Type Quantity Technology
Marine 20 Stimpack Zergling 60 ZerglingMovementSpeed
Marauder 12 Stimpack Baneling 24 CentrificalHooks
Medivac 4 Heal Roach 15 GlialReconstitution
Ghost 8 PersonalCloaking Hydralisk 10 HydraliskSpeed
SiegeTank 6 SiegeTech Lurker 6 Burrow
VikingFighter 8 AssaultMode Corruptor 10 FlyerWeaponsLevel1
Cyclone 7 LockOn Infestor 3 EnergyUpgrade
WidowMine 7 Burrow Viper 4 FlyerArmorsLevel1
Raven 3 HunterSeeker Overseer 3 FlyerArmorsLevel1
Liberator 2 DefenderMode Queen 4 MissileWeaponsLevel1

Broodlord 4 FlyerWeaponsLevel1

Table 2: Final Terran vs Zerg Task Specification

4.1 STARCRAFT II MICRO-MANAGEMENT

Experiment Setup The Solver generates python-sc2 behavior trees that act at the unit-action
level and is evaluated in an open-loop manner. We test on five newly designed micro maps against
two opponent races (Terran vs Protoss and Terran vs Zerg). Each curriculum specifies unit sets,
technologies, and spawn regions on a selected map; compile-and-run serves as a hard feasibility
gate in line with gfeas. The final target Tf for the canonical Terran–Protoss and Terran–Zerg settings
is given in Table 1 and Table 2. For acceptance, we require P(π|C) ≥ τ = 0.9, evaluated as win
rate over 10 rollouts. The primary baseline, Direct Code, attempts to solve Tf in one shot under
the same rollout and validation budgets as EvoCurr. Per-curriculum compositions and complete
evolution traces are summarized in the appendix.

Because direct long-horizon code generation can be brittle (syntax/API errors) and win rate alone
may not capture partial successes, we additionally report a damage-cost-aware combat score Scombat

for more nuanced evaluation. This metric evaluates the comparative performance of EvoCurr against
closed-source large language model performances (DeepSeek3.1, GPT-5, Claude4, Gemini2.5) on

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

direct target task implementation., given by:

Scombat = 0.5 ·
Ragent final

Ragent init
+ 0.5 ·

(
1−

Renemy final

Renemy init

)
, (5)

where the total combat power for one side is

Rside =
∑
i

(mineralsi + α · vespenei + β · build timei) ·
hpi + shieldsi

hp maxi + shields maxi
. (6)

This metric aggregates resource cost and remaining health/shields; scores range from 0 to 1. A
combat score Scombat > 0.5 indicates successful annihilation of the majority of enemy forces while
preserving our own, providing a finer-grained assessment than binary win/loss especially for failed
code executions where the first term becomes 0.

Task Win Rate
EvoCurr (%)

Win Rate
DeepSeek (%)

Score
EvoCurr

Score
DeepSeek

Task
nums

Bush (TvP) 100 0 0.67 0.33 6
Bush (TvZ) 100 100 0.73 0.61 4

Corridor (TvP) 100 80 0.71 0.66 5
Corridor (TvZ) 100 90 0.69 0.58 5

Main (TvP) 100 100 0.72 0.69 4
Main (TvZ) 100 100 0.70 0.68 5
Ramp (TvP) 100 10 0.72 0.45 4
Ramp (TvZ) 100 50 0.74 0.45 5
Corner (TvP) 90 90 0.55 0.56 5
Corner (TvZ) 100 30 0.84 0.41 5

Flat (TvP) 100 0 0.69 0.41 5
Flat (TvZ) 100 0 0.62 0.36 5

Table 3: Combat score Scombat among correct scripts on StarCraft II micro tasks. T denotes Terran,
P Protoss, Z Zerg. Each entry is the maximum over 10 evaluations. Task nums denotes the nums of
tasks to complete the target task.

Experimental Results We evaluate 12 complex micro-management tasks (2 matchups × 6 maps)
in Table 3. EvoCurr achieves most of the highest combat scores (often exceeding 0.7), demon-
strating consistent performance regardless of task difficulty. When one-shot code generation proved
challenging for all models (scores ¡ 0.5), EvoCurr reliably achieved scores near 0.7. Conversely,
on simpler tasks where most one-shot methods scored above 0.5, EvoCurr still delivered robust,
high-performing results, though not necessarily the peak score, aligning with its goal of final task
accomplishment through progressive curriculum advancement.

4.2 OVERCOOKED

Map Task Orders Agent0 Delivery Agent1 Delivery Total Delivery Sparse Reward
Map 1 EvoCurr 5 14.74 14.36 29.10 290.9
Map 1 Direct Training 5 11.93 12.18 24.11 240.5

Map 2 EvoCurr 5 7.82 10.82 18.64 186.2
Map 2 Direct Training 5 7.40 8.96 16.36 163.4

Table 4: Curriculum progression and performance metrics for overcook maps

Experiment Setup We instantiate EvoCurr in a closed-loop regime on Overcooked while keeping
the game dynamics consistent with Section 3. The Designer proposes curricula parameterized by
layouts, ingredient placements, order timing constraints, and stochasticity. Unlike the StarCraft II
setting, the Solver here is a MARL trainer that optimizes decentralized policies under a fixed per-
curriculum budget B = 107 timesteps. The acceptance criterion P(π|C) ≥ τ is defined as com-
pleting all required orders, where P(π|C) = 1 if all orders are fulfilled and 0 otherwise. The
framework also allows completing bonus orders after required ones, contributing to the total deliv-
ery count shown in Table 4. Orders define the prescribed objectives for agent operations, where

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

reward structures are calibrated to provide greater compensation for deliveries that exceed the estab-
lished order quantities. This isolates the effect of inference-time curriculum evolution from policy
realizations.Detailed curriculum specifications and complete performance metrics for both map con-
figurations are provided in Appendix D.

Experimental Results As shown in Table 4, EvoCurr outperforms directly applying ET3 under
matched total budgets (After testing the budgets that need to be used with EvoCurr, then directly
conduct testing using the same budget). On the first task, EvoCurr achieves 29.1 effective deliveries
on average vs 24.11 for the baseline; on the second, EvoCurr reaches 18.64 vs 16.36. The Map1 is
Coord. Ring with Multi-recip and the Map 2 is Counter Circuit with Multi-reci (Wang et al., 2024).
The higher delivery counts for EvoCurr include both required and bonus orders, demonstrating that
the progressive curriculum not only ensures completion of primary objectives but also enables more
efficient exploration of bonus rewards. Performance drops at curriculum transitions reflect distri-
bution shift: policies specialized to one curriculum must re-explore when difficulty increases, yet
prior experience accelerates re-convergence—consistent with the progressive, monotone advance-
ment prescribed by the framework.

5 ANALYSIS

Curriculum Design We show the effectiveness of the curriculum designing module by providing
the sub-tasks generated for solving the final task in Table 5. The sub-tasks are designed based on the
accomplishment of the previous curriculum. For StarCraft II tasks, we set the acceptance threshold
τ = 0.9, which indicates that the difficulty should increase when the winning rate is above 90%
during the evaluation process and in contrast decrease otherwise. In the 12 new tasks, according to
the table, the Terran vs Protoss setting on the map of Bush takes the longest curriculum trajectory.
The enemies are invisible in the bush, which brings challenges to the agents, so the designer has to
decrease the difficulty twice before the solver finally finish the task.

Final Task Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7
Flat (TvP) 100% 100% 70% 90% 100% - -
Flat (TvZ) 100% 100% 100% 100% 100% - -
Bush (TvP) 100% 100% 40% 90% 50% 100% 100%
Bush (TvZ) 100% 90% 60% 100% 100% - -

Corridor (TvP) 100% 90% 100% 100% 90% - -
Corridor (TvZ) 100% 90% 90% 100% 100% - -
Corner (TvP) 90% 90% 90% 100% - - -
Corner (TvZ) 100% 100% 90% 90% 100% - -
Main (TvP) 100% 100% 100% 100% - - -
Main (TvZ) 100% 100% 100% 100% - - -
Ramp (TvP) 100% 100% 90% 100% 100% - -
Ramp (TvZ) 100% 100% 100% 90% 100% - -

Table 5: The winning rates of each curricula designed for the 12 complex decision-making scenarios.

Figure 3 also demonstrates curriculum paths on StarCraft II micromanagement tasks solved by open-
loop behavior trees and Overcook scenarios solved by MARL algorithms. Given a final task, the
designer determines the first class with limited difficulty. The solver starts to finish the task and
respond the rollout results to the designer. Then the designer generates new curriculum based on the
rollout results. In the Figure, the solver achieves more than 90% winning rates in the curricula which
are shown in cyan color. When the solver cannot finish the task, red points, the designer then selects
the latest finished task as the basement and generates new curriculum with different map settings.
When the solver solves the final task, the tree-based evolution process is terminated and the final
behavior tree/black-box policy model are returned as the final solution to the task.

Behavior Coder Generation When facing new curriculum with larger unit amount and new unit
type, the behavior coder generates new scripts based on the previous script that finish the previous
curriculum. The new scripts are refined in two phases. The first phase is the addition of new control

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Success

Fail

Finish

…… … …

Figure 3: A demonstration of the evolution traces from the initial task to the final tasks in StarCraft II
setting and the overcook settings. In the StarCraft II, the curriculum is designed based on the maps,
units, and abilities. In the overcook scenarios, the curricula are designed on the recipes, times, and
orders.

functions. As shown in Code A.3.2 and Code A.4 in the Appendix, the advanced solution contains
more control functions for each unit type, such as control vikings, control ghosts, etc. The second
phase is the refinement of each existing control function which promotes the coordination among
units. For instance, in the early coding stage, the Marine units are responsible for focusing fire on
the enemy and rapidly decrease the enemy units. In the latter curriculum where the enemy has the
area of effect (aoe) attacking ability, the Marines should firstly split to avoid aoe attacks and then
focus fire on the enemy. In such case, the split skill is learned during the evolution and the fire focus
skill is reserved and promoted.

Layered Critic Refinement Despite that the LLMs have learnt extensive coding script resouces
during the pre-training process. The ability of generating scripts following python sc2 package
depends on the amount of handcrafted python sc2 scripts from the community, which results in the
different code generating ability of different LLMs. Therefore, in the behavior tree generation, we
leverage a two-layered critic to improve the quality of behavior tree. The first layer is the sanity
check module that is responsible for correcting the potential mistakes such as grammar bugs, API
misuse, and exceptions. The second layer of the critic refines the strategy which provides suggestion
on the implementation logic of the behavior tree scripts. The two-layer critic module serves as a
critical support to the solver for higher success behavior tree generating rates.

6 DISCUSSION, FUTURE WORK, AND CONCLUSION

EvoCurr demonstrates that self-evolving curricula enable LLMs to solve complex decision-making
tasks at inference time without manual curriculum design. The cooperative Designer-Solver frame-
work, constrained by the accepted-floor rule and feasibility gating, achieves systematic progression
toward target tasks across both open-loop behavior tree generation and closed-loop MARL train-
ing—reaching 90% win rates in StarCraft II where direct approaches achieve only 50%, and 20%
higher task completion in Overcooked. Key limitations include sensitivity to difficulty scaling lead-
ing to rejection cycles, LLM context constraints limiting behavior tree complexity, and computa-
tional overhead from maintaining historical information Ht. Future directions include hierarchical
multi-agent architectures for the Solver to handle complex task decomposition, adaptive difficulty
scaling based on acceptance patterns, and hybrid approaches combining behavior tree interpretabil-
ity with neural policy robustness through distillation. EvoCurr provides a principled, domain-
agnostic mechanism for extending LLM capabilities to complex sequential decision-making, of-
fering a practical path toward deployable systems that maintain interpretability while handling tasks
previously beyond their reach.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
International Conference on Machine Learning (ICML), pp. 41–48, 2009.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems (NeurIPS), 33:1877–1901,
2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Li, Scott Lundberg, Harsha Nori, et al. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Micah Carroll, Rohin Shah, Mark K. Ho, Thomas L. Griffiths, Sanjit A. Seshia, Pieter Abbeel, and
Anca Dragan. On the utility of learning about humans for human-ai coordination, 2020. URL
https://arxiv.org/abs/1910.05789.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Michele Colledanchise and Petter Ögren. Behavior trees in robotics and AI: An introduction. CRC
Press, 2018.

Yue Deng, Yan Yu, Weiyu Ma, Zirui Wang, Wenhui Zhu, Jian Zhao, and Yin Zhang. Smac-hard:
Enabling mixed opponent strategy script and self-play on smac, 2024. URL https://arxiv.
org/abs/2412.17707.

Yue Deng, Weiyu Ma, Yuxin Fan, Ruyi Song, Yin Zhang, Haifeng Zhang, and Jian Zhao. Smac-r1:
The emergence of intelligence in decision-making tasks, 2025. URL https://arxiv.org/
abs/2410.16024.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design. In Advances in Neural Information Processing Systems (NeurIPS), volume 33, pp. 13049–
13061, 2020.

Alex Graves, Marc G Bellemare, Jacob Menick, Rémi Munos, and Koray Kavukcuoglu. Auto-
mated curriculum learning for neural networks. In International Conference on Machine Learning
(ICML), pp. 1311–1320. PMLR, 2017.

Lei Han, Jiechao Xiong, Peng Sun, Xinghai Sun, Meng Fang, Qingwei Guo, Qiaobo Chen, Tengfei
Shi, Hongsheng Yu, Xipeng Wu, et al. Tstarbot-x: An open-sourced and comprehensive study for
efficient league training in starcraft ii full game. arXiv preprint arXiv:2011.13729, 2020.

Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander G Hauptmann. Self-paced cur-
riculum learning. In AAAI conference on artificial intelligence (AAAI), volume 29, 2015.

Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. In International
Conference on Machine Learning (ICML), pp. 4940–4950, 2021.

Pascal Klink, Carlo D’Eramo, Jan Peters, and Joni Pajarinen. Self-paced deep reinforcement learn-
ing. In Advances in Neural Information Processing Systems (NeurIPS), volume 33, pp. 16185–
16195, 2020.

M Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable
models. In Advances in Neural Information Processing Systems (NeurIPS), pp. 1189–1197, 2010.

Yujia Li, Maxwell Nye, Jacob Andreas, Jasmijn Bastings, Shruti Bhosale, James Bradbury, Jacob
Austin, Greg Brockman, Trevor Cai, Ciprian Chelba, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

10

https://arxiv.org/abs/1910.05789
https://arxiv.org/abs/2412.17707
https://arxiv.org/abs/2412.17707
https://arxiv.org/abs/2410.16024
https://arxiv.org/abs/2410.16024

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zongyuan Li, Yanan Ni, Runnan Qi, Lumin Jiang, Chang Lu, Xiaojie Xu, Xiangbei Liu, Pengfei
Li, Yunzheng Guo, Zhe Ma, Huanyu Li, Hui Wu, Xian Guo, Kuihua Huang, and Xuebo Zhang.
Llm-pysc2: Starcraft ii learning environment for large language models, 2025. URL https:
//arxiv.org/abs/2411.05348.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence,
and Andy Zeng. Code as policies: Language model programs for embodied control. In IEEE
International Conference on Robotics and Automation (ICRA), pp. 9493–9500, 2023.

Jialin Liu, Sam Snodgrass, Ahmed Khalifa, Sebastian Risi, Georgios N Yannakakis, and Julian
Togelius. Deep learning for procedural content generation. Neural Computing and Applications,
33:19–37, 2021a.

Ruo-Ze Liu, Haifeng Guo, Xiaozhong Ji, Yang Yu, Zhen-Jia Pang, Zitai Xiao, Yuzhou Wu, and
Tong Lu. Efficient reinforcement learning for starcraft by abstract forward models and transfer
learning. IEEE Transactions on Games, 14(2):294–307, 2021b.

Ruo-Ze Liu, Wenhai Wang, Yanjie Shen, Zhiqi Li, Yang Yu, and Tong Lu. An introduction of
mini-alphastar. arXiv preprint arXiv:2104.06890, 2021c.

Yuxing Liu, Jack Parker-Holder, and Philip J Ball. Evolution strategies for environment design.
arXiv preprint arXiv:2402.18530, 2024.

Artem Lykov and Dzmitry Tsetserukou. Llm-brain: Ai-driven fast generation of robot behaviour
tree based on large language model. arXiv preprint arXiv:2305.19352, 2023.

Weiyu Ma, Qirui Mi, Yongcheng Zeng, Xue Yan, Yuqiao Wu, Runji Lin, Haifeng Zhang, and Jun
Wang. Large language models play starcraft ii: Benchmarks and a chain of summarization ap-
proach, 2024. URL https://arxiv.org/abs/2312.11865.

Weiyu Ma, Yuqian Fu, Zecheng Zhang, Bernard Ghanem, and Guohao Li. Ava: Attentive vlm agent
for mastering starcraft ii, 2025a. URL https://arxiv.org/abs/2503.05383.

Weiyu Ma, Jiwen Jiang, Haobo Fu, and Haifeng Zhang. Tacticcraft: Natural language-driven tactical
adaptation for starcraft ii, 2025b. URL https://arxiv.org/abs/2507.15618.

Michael Mathieu, Sherjil Ozair, Srivatsan Srinivasan, Caglar Gulcehre, Shangtong Zhang, Ray
Jiang, Tom Le Paine, Konrad Zolna, Richard Powell, Julian Schrittwieser, et al. Starcraft ii
unplugged: Large scale offline reinforcement learning. In Deep RL Workshop NeurIPS 2021,
2021.

Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher-student curriculum learn-
ing. In IEEE Transactions on Neural Networks and Learning Systems (TNNLS), volume 31, pp.
3732–3740, 2019.

Sanmit Narvekar and Peter Stone. Learning curriculum policies for reinforcement learning. arXiv
preprint arXiv:1812.00285, 2018.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter Stone.
Curriculum learning for reinforcement learning domains: A framework and survey. Journal of
Machine Learning Research (JMLR), 21(1):7382–7431, 2020.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward
Grefenstette, and Tim Rocktäschel. Evolving curricula with regret-based environment design. In
International Conference on Machine Learning (ICML), pp. 17473–17498, 2022.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas
Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson.
The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

Mikayel Samvelyan, Sharath Chandra Raparthy, Andrej Bhatt, and Aditya Shyam. Rainbow team-
ing: Open-ended generation of diverse adversarial prompts. In arXiv preprint arXiv:2402.16822,
2023.

11

https://arxiv.org/abs/2411.05348
https://arxiv.org/abs/2411.05348
https://arxiv.org/abs/2312.11865
https://arxiv.org/abs/2503.05383
https://arxiv.org/abs/2507.15618

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey.
International Journal of Computer Vision (IJCV), 130(6):1526–1565, 2022.

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets,
Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, et al.
Starcraft ii: A new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782, 2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Paired open-ended trailblazer (poet):
Endlessly generating increasingly complex and diverse learning environments and their solutions.
In arXiv preprint arXiv:1901.01753, 2019.

Xiangjun Wang, Junxiao Song, Penghui Qi, Peng Peng, Zhenkun Tang, Wei Zhang, Weimin Li,
Xiongjun Pi, Jujie He, Chao Gao, et al. Scc: An efficient deep reinforcement learning agent
mastering the game of starcraft ii. In International Conference on Machine Learning (ICML), pp.
10905–10915. PMLR, 2021a.

Xihuai Wang, Shao Zhang, Wenhao Zhang, Wentao Dong, Jingxiao Chen, Ying Wen, and Weinan
Zhang. Zsc-eval: An evaluation toolkit and benchmark for multi-agent zero-shot coordination,
2024. URL https://arxiv.org/abs/2310.05208.

Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), 44(9):4555–4576, 2021b.

Xue Yan, Jiaxian Guo, Xingzhou Lou, Jun Wang, Haifeng Zhang, and Yali Du. An efficient end-
to-end training approach for zero-shot human-ai coordination. Advances in neural information
processing systems, 36:2636–2658, 2023.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D Goodman. Star: Bootstrapping reasoning with
reasoning. In Advances in Neural Information Processing Systems (NeurIPS), volume 35, pp.
15398–15411, 2022.

Xiangyu Zhai, Chenghao Lyu, Shengyu Zhang, Tengyu Xu, and Yi Wu. Envgen: Generating and
adapting environments via llms for training embodied agents. arXiv preprint arXiv:2403.12014,
2024.

12

https://arxiv.org/abs/2310.05208

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A STARCRAFT II MICRO MANAGEMENT

A.1 INTRODUCTION TO STARCRAFT II

StarCraft II is a real-time strategy game developed by Blizzard Entertainment that has become one
of the most challenging and strategically complex video games ever created. Released in 2010,
the game features three asymmetric factions—Terrans, Protoss, and Zerg—each with distinct units,
technologies, and strategic approaches. Players must simultaneously manage multiple intercon-
nected systems: resource collection and allocation, base construction and expansion, technological
research and upgrades, unit production and army composition, and real-time tactical combat con-
trol. The game demands rapid decision-making under time pressure, long-term strategic planning,
adaptation to opponent strategies, and precise micro-management of individual units during combat.
Professional matches can involve hundreds of units across multiple battlefronts, requiring players
to process vast amounts of information while executing complex multi-layered strategies. The skill
ceiling is extraordinarily high, with professional players dedicating years to master the intricate
mechanics, build orders, timing attacks, and unit interactions that define high-level play.

The significance of StarCraft II for artificial intelligence research extends far beyond its entertain-
ment value. The game presents a comprehensive testbed for studying complex decision-making
under uncertainty, partial information, and real-time constraints challenges that mirror many real-
world applications of AI. Unlike traditional board games such as chess or Go, which have perfect
information and turn-based mechanics, StarCraft II requires agents to operate in a partially ob-
servable environment with continuous action spaces and exponentially large state representations.
The game’s multi-scale nature demands both macro-level strategic planning spanning tens of min-
utes and micro-level tactical execution occurring within milliseconds. This dual requirement has
driven significant advances in hierarchical reinforcement learning, multi-agent coordination, and
long-horizon planning algorithms. Notable breakthroughs include DeepMind’s AlphaStar, which
achieved Grandmaster level performance and demonstrated that AI systems could master complex
strategic reasoning, and subsequent research that has explored everything from curriculum learning
and imitation learning to neural architecture search and federated training. The availability of ex-
tensive replay datasets, standardized evaluation protocols through environments like PySC2, and the
game’s inherent interpretability through observable unit actions have made StarCraft II an invaluable
platform for developing and benchmarking AI systems capable of human-level strategic reasoning
in complex, dynamic environments.

A.2 STARCRAFT II API AND PYTHON INTERFACES

The technical foundation enabling AI research in StarCraft II rests on Blizzard Entertainment’s of-
ficial StarCraft II Machine Learning API, which provides programmatic access to the game’s com-
plete state information and action execution capabilities. This API exposes the game engine through
a protocol buffer-based interface that delivers real-time observations including unit positions, re-
source states, map geometry, and tactical information while accepting high-level commands for unit
control, building construction, and technology research. The official s2client-proto defines the core
communication protocol between external programs and the StarCraft II executable, establishing
standardized data structures for observations, actions, and game configuration. This low-level inter-
face handles the complex details of game state serialization, network communication, and command
validation, but requires substantial boilerplate code and deep understanding of the underlying proto-
col specifications to implement effective AI agents.

Building upon this foundation, the research community has developed higher-level abstractions that
significantly simplify AI development while preserving the full functionality of the underlying API.
PySC2, developed by DeepMind, transforms the raw API into a structured reinforcement learning
environment that follows standard RL conventions with observation spaces, action spaces, and re-
ward functions. This environment emphasizes feature-layer representations and provides built-in
mini-games for curriculum learning, making it particularly suitable for deep reinforcement learning
approaches.

Complementing PySC2, the python-sc2 library offers a more direct and intuitive interface focused
on scripted bot development, where complex strategic behaviors can be implemented using straight-
forward Python code with minimal boilerplate. The python-sc2 library abstracts away protocol

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

buffer complexities while exposing high-level game objects such as units, abilities, and map struc-
tures through clean Python APIs, enabling researchers to focus on strategic logic rather than low-
level implementation details. Our EvoCurr framework leverages python-sc2’s accessibility and ex-
pressiveness to generate behavior tree scripts that can be easily interpreted, debugged, and modified,
making it an ideal choice for our curriculum-based approach to complex tactical reasoning.

A.3 GENERATED BEHAVIOR TREE CODE EXAMPLES

This section presents complete examples of behavior tree implementations generated by the EvoCurr
framework at different curriculum stages, demonstrating the evolution of tactical complexity.

A.3.1 EARLY STAGE: BASIC MARINE MICRO-MANAGEMENT

from sc2 import maps
from sc2.bot_ai import BotAI
from sc2.data import Race, Difficulty
from sc2.ids.ability_id import AbilityId
from sc2.ids.unit_typeid import UnitTypeId
from sc2.main import run_game
from sc2.player import Bot, Computer

class BattleBot(BotAI):
def __init__(self):

super().__init__()
self.stim_used = set()

async def on_step(self, iteration: int):
if iteration == 0:

print("Marine Micro Bot - 5v2 Marines vs Zealots!")
if self.units.exists:

await self.marine_micro()

async def marine_micro(self):
marines = self.units(UnitTypeId.MARINE)
zealots = self.enemy_units(UnitTypeId.ZEALOT)

if not marines.exists or not zealots.exists:
return

close_zealots = zealots.filter(lambda z:
marines.closest_to(z.position).distance_to(z) < 6)

if close_zealots.exists:
for marine in marines:

if (marine.tag not in self.stim_used and
AbilityId.EFFECT_STIM_MARINE in
await self.get_available_abilities(marine)):
marine(AbilityId.EFFECT_STIM_MARINE)
self.stim_used.add(marine.tag)

target = min(zealots, key=lambda z: z.health + z.shield)

for marine in marines:
dist = marine.distance_to(target)
if dist < 1:

retreat_pos = marine.position.towards(target.position, -3)
marine.move(retreat_pos)

elif dist <= 5:
marine.attack(target)

else:
marine.move(target.position)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.3.2 INTERMEDIATE STAGE: MULTI-UNIT COORDINATION

class BattleBot(BotAI):
async def on_step(self, iteration: int):

if iteration == 0:
print("Terran Battle Bot Activated!")

if self.units.exists:
await self.control_ghosts()
await self.control_marines()
await self.control_marauders()
await self.control_medivacs()

async def control_ghosts(self):
ghosts = self.units(UnitTypeId.GHOST)
if not ghosts.exists:

return

high_templars = self.enemy_units(UnitTypeId.HIGHTEMPLAR)
stalkers = self.enemy_units(UnitTypeId.STALKER)

for ghost in ghosts:
if high_templars.exists:

templar = high_templars.closest_to(ghost.position)
if ghost.distance_to(templar) < 12:

if AbilityId.SNIPE_SNIPE in
await self.get_available_abilities(ghost):
ghost(AbilityId.SNIPE_SNIPE, templar)

elif AbilityId.EMP_EMP in
await self.get_available_abilities(ghost):

ghost(AbilityId.EMP_EMP, templar.position)
ghost.move(templar.position)
if AbilityId.BEHAVIOR_CLOAKON_GHOST in

await self.get_available_abilities(ghost):
ghost(AbilityId.BEHAVIOR_CLOAKON_GHOST)

elif stalkers.exists:
target = stalkers.closest_to(ghost.position)
ghost.attack(target)

async def control_medivacs(self):
medivacs = self.units(UnitTypeId.MEDIVAC)
if not medivacs.exists:

return

bio_units = self.units.filter(lambda unit:
unit.type_id in {UnitTypeId.MARINE,
UnitTypeId.MARAUDER})

for medivac in medivacs:
injured = bio_units.filter(lambda unit:

unit.health_percentage < 0.75)
if injured.exists:

target = injured.closest_to(medivac.position)
medivac.move(target.position)
if medivac.distance_to(target) < 5:

medivac(AbilityId.MEDIVACHEAL_HEAL, target)
elif bio_units.exists:

medivac.move(bio_units.center)

A.4 ADVANCED STAGE: COMPLEX MULTI-UNIT TACTICAL FRAMEWORK

class BattleBot(BotAI):
async def on_step(self, iteration: int):

if iteration == 0:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

self.setup_complete = False
await self.initial_positioning()
self.setup_complete = True

bio_units = self.units.of_type({UnitTypeId.MARINE,
UnitTypeId.MARAUDER})
medivacs = self.units(UnitTypeId.MEDIVAC)

await self.avoid_aoe(bio_units + medivacs)
await self.control_siege_tanks()
await self.control_vikings()
await self.control_liberators()
await self.control_ghosts()
await self.control_bio(UnitTypeId.MARINE)
await self.control_bio(UnitTypeId.MARAUDER)
await self.control_medivacs()

async def avoid_aoe(self, units: Units):
storms = [e for e in self.state.effects

if e.id == EffectId.PSISTORMPERSISTENT]
disruptor_balls = self.enemy_units(UnitTypeId.DISRUPTORPHASED)

threats = []
for storm in storms:

threats.append((storm.position, 2.5))
for ball in disruptor_balls:

threats.append((ball.position, 2.5))

for unit in units:
for pos, radius in threats:

if unit.distance_to(pos) < radius:
away = unit.position.towards(pos, -3)
unit.move(away)
break

async def control_siege_tanks(self):
siege_tanks = self.units(UnitTypeId.SIEGETANKSIEGED)
sieged_tanks = self.units(UnitTypeId.SIEGETANKSIEGED)

for tank in siege_tanks:
if tank.distance_to(Point2((15, 15))) > 2:

continue
abilities = await self.safe_get_abilities(tank)
if AbilityId.SIEGEMODE_SIEGEMODE in abilities:

tank(AbilityId.SIEGEMODE_SIEGEMODE)

if sieged_tanks.exists:
enemies = self.enemy_units
if not enemies.exists:

return
priority_targets = enemies.of_type([UnitTypeId.COLOSSUS,

UnitTypeId.STALKER, UnitTypeId.HIGHTEMPLAR,
UnitTypeId.ZEALOT])

for tank in sieged_tanks:
targets_in_range = priority_targets.in_attack_range_of(tank)
if targets_in_range:

target = min(targets_in_range,
key=lambda t: (t.type_id not in
{UnitTypeId.COLOSSUS, UnitTypeId.HIGHTEMPLAR},
t.distance_to(tank)))

tank.attack(target)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: Complete curriculum evolution across five independent runs. Each row is one curriculum
within a path; acceptance requires P≥0.67. Detailed map/unit/tech descriptors for each curriculum
are elided for space.

Path Task Agent Composition Enemy Composition Result

1

1 Marine (5) Zealot (2, Charge) 67%
2 Marine (10), Marauder (5), Medivac (1) Zealot (5, Charge), Stalker (5, Blink), HighTemplar (1, PsiStorm) 67%
3 Marine (15), Marauder (8), Ghost (2), Medivac (2), SiegeTank (1) Zealot (10, Charge), Stalker (8, Blink), HighTemplar (2, PsiStorm),

Colossus (1, ExtLance)
Failed

4 Marine (12), Marauder (6), Ghost (1), Medivac (1) Zealot (8, Charge), Stalker (6, Blink), HighTemplar (1, PsiStorm) 67%
5 Marine (18), Marauder (10), Ghost (2), Medivac (2), SiegeTank (1),

Viking (2)
Zealot (12, Charge), Stalker (10, Blink), HighTemplar (2, PsiStorm),
Colossus (1, ExtLance)

67%

6 Final Task (Table 1) Final Task (Table 1) 100%

2

1 Marine (5) Zealot (2, Charge) 100%
2 Marine (10), Marauder (5), Medivac (2), SiegeTank (1) Zealot (8, Charge), Stalker (5, Blink), HighTemplar (2, PsiStorm) 67%
3 Marine (15), Marauder (8), Ghost (2), Medivac (3), SiegeTank (1),

Viking (4)
Zealot (12, Charge), Stalker (10, Blink), HighTemplar (3, PsiStorm),
Colossus (2, ExtLance)

Failed

4 Marine (12), Marauder (6), Ghost (1), Medivac (2), SiegeTank (1),
Viking (2)

Zealot (10, Charge), Stalker (8, Blink), HighTemplar (2, PsiStorm),
Colossus (1, ExtLance)

Failed

3

1 Marine (5) Zealot (2, Charge) 100%
2 Marine (8), Marauder (5, PunisherGrenades), SiegeTank (1), Medivac

(1, CaduceusReactor)
Zealot (7, Charge), Stalker (3, Blink), HighTemplar (2, PsiStorm),
Colossus (1, ExtLance)

Failed

3 Marine (8), Marauder (4), SiegeTank (1), Medivac (2, CaduceusRe-
actor)

Zealot (5, Charge), Stalker (2, Blink), Colossus (1) 100%

4 Marine (14), Marauder (7, PunisherGrenades), SiegeTank (2), Medi-
vac (3, CaduceusReactor), Viking (2), Ghost (1)

Zealot (9, Charge), Stalker (5, Blink), HighTemplar (2, PsiStorm),
Colossus (2, ExtLance), Disruptor (1)

Failed

5 Marine (10), Marauder (5), SiegeTank (1), Medivac (2, CaduceusRe-
actor)

Zealot (6, Charge), Stalker (3, Blink), Colossus (1) 100%

6 Marine (14), Marauder (7, PunisherGrenades), SiegeTank (2), Medi-
vac (3, CaduceusReactor), Viking (2), Ghost (1)

Zealot (9, Charge), Stalker (5, Blink), HighTemplar (2, PsiStorm),
Colossus (2, ExtLance), Disruptor (1)

Failed

7 Marine (14), Marauder (7, PunisherGrenades), SiegeTank (1), Medi-
vac (2, CaduceusReactor), Ghost (1)

Zealot (9, Charge), Stalker (4, Blink), Colossus (1, ExtLance) Failed

4
1 Marine (5) Zealot (2, Charge) 67%
2 Marine (10), Marauder (5), Ghost (2), Medivac (1, CaduceusReactor) Zealot (8, Charge), Stalker (4, Blink), HighTemplar (1, PsiStorm) 100%
3 Marine (15), Marauder (8), Ghost (3), Medivac (2, CaduceusReactor),

SiegeTank (1), Viking (2)
Zealot (12, Charge), Stalker (8, Blink), HighTemplar (2, PsiStorm),
Colossus (1, ExtLance)

Failed

5

1 Marine (5) Zealot (2, Charge) 67%
2 Marine (10), Marauder (5), Medivac (1) Zealot (5, Charge), Stalker (5, Blink), HighTemplar (1, PsiStorm) 67%
3 Marine (15), Marauder (8), Ghost (2), Medivac (2), SiegeTank (1) Zealot (10, Charge), Stalker (8, Blink), HighTemplar (2, PsiStorm),

Colossus (1, ExtLance)
Failed

4 Marine (12), Marauder (6), Ghost (1), Medivac (1) Zealot (8, Charge), Stalker (6, Blink), HighTemplar (1, PsiStorm) 67%
5 Marine (18), Marauder (10), Ghost (2), Medivac (2), SiegeTank (1),

Viking (2)
Zealot (12, Charge), Stalker (10, Blink), HighTemplar (2, PsiStorm),
Colossus (1, ExtLance)

67%

6 Final Task (Table 1) Final Task (Table 1) Failed

B COMPLETE CURRICULUM EVOLUTION ACROSS ALL FIVE PATHS
(STARCRAFT II)

B.1 STARCRAFT II MINI GAME MAPS

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) Flat map layout

(b) Terran vs Protoss on Flat

(c) Terran vs Zerg on Flat

Figure 4: Flat map configurations: base layout and unit compositions for different matchups

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) Bush map layout

(b) Terran vs Protoss on Bush

(c) Terran vs Zerg on Bush

Figure 5: Bush map configurations: base layout and unit compositions for different matchups

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) Corner map layout

(b) Terran vs Protoss on Corner

(c) Terran vs Zerg on Corner

Figure 6: Corner map configurations: base layout and unit compositions for different matchups

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) Main map layout

(b) Terran vs Protoss on Main

(c) Terran vs Zerg on Main

Figure 7: Main map configurations: base layout and unit compositions for different matchups

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) Ramp map layout

(b) Terran vs Protoss on Ramp

(c) Terran vs Zerg on Ramp

Figure 8: Ramp map configurations: base layout and unit compositions for different matchups
22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C OVERCOOKED DETAILS

C.1 MARL TRAINING CONFIGURATION

For the Overcooked experiments, we employ the E3T (Efficient End-to-End Training) algorithm (Yan et al.,
2023) as our MARL training framework. The training configuration is detailed in Table 7.

Table 7: Overcooked MARL training hyperparameters

Parameter Value
Algorithm E3T
Number of agents 2
Episode length 400
Number of environment steps per curriculum 107

PPO epochs 15
Number of mini-batches 1
Rollout threads 100
Evaluation threads 10
Evaluation interval 20 episodes

Entropy Regularization Schedule
Entropy coefficients [0.2, 0.05, 0.01]
Entropy coefficient horizons [0, 6× 106, 107]

Network Architecture
CNN layers [(32, 3×3, stride=1), (64, 3×3, stride=1), (32, 3×3, stride=1)]
Recurrent policy LSTM
Shared policy True

E3T Specific
Epsilon (diversity bonus) 0.25
Weights copy factor 0.1
Random index Enabled

Curriculum-specific
Reward shaping horizon 108

Budget per curriculum 107 timesteps

C.2 CURRICULUM DESIGN FOR OVERCOOKED

The curriculum progression in Overcooked is structured around three key dimensions:

1. Layout Complexity: Starting from simple layouts (e.g., small corridor) with direct paths be-
tween stations, progressing to complex layouts with obstacles and longer navigation requirements.

2. Order Complexity: Beginning with single-ingredient dishes, advancing to multi-ingredient recipes
requiring precise coordination between agents.

3. Temporal Constraints: Initially allowing unlimited time for order completion, then introducing time
pressure and simultaneous order requirements.

The acceptance criterion P(π|C) = 1 is achieved when all required orders are completed within the episode.
After meeting this criterion, agents can pursue bonus orders to maximize total deliveries. The entropy regu-
larization schedule ensures exploration early in training (high entropy) while converging to more deterministic
policies as training progresses.

For layouts with particular navigation challenges (e.g., small corridor), we adjust the entropy coefficient
horizons to [0, 8×106, 107] to allow for extended exploration before convergence. The shared policy architec-
ture enables agents to learn cooperative behaviors more efficiently by sharing representations while maintaining
individual action distributions.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D OVERCOOKED EXPERIMENTAL RESULTS DETAILS

This appendix provides detailed experimental results for the Overcooked environment, showing the complete
curriculum evolution and performance metrics for two different map configurations.

D.1 MAP CONFIGURATION 1

D.1.1 FINAL LAYOUT SPECIFICATION

Figure 9: overcook map1

{
"grid": "XXXPX

X 2 P
D1X X
O X
XTSXX",

"start_all_orders": [
{"ingredients": ["onion", "tomato"]},
{"ingredients": ["onion", "onion"]},
{"ingredients": ["onion", "tomato", "tomato"]},
{"ingredients": ["onion", "onion", "tomato"]},
{"ingredients": ["onion", "onion", "onion"]}

],
"recipe_value": [10, 10, 20, 20, 20],
"recipe_time": [10, 10, 20, 20, 20]

}

Grid Legend: X=Wall, P=Pot, D=Dish, O=Onion, T=Tomato, S=Service, 1/2=Agent spawn

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 8: Map 1: Curriculum progression and performance metrics

Task Orders Agent0 Delivery Agent1 Delivery Total Delivery Sparse Reward
Task 0 3 11.75 12.33 24.08 239.2
Task 1 4 14.56 14.33 28.89 288.1
Task 2 (Final) 5 14.74 14.36 29.10 290.9

Direct Training 5 11.93 12.18 24.11 240.5

D.1.2 CURRICULUM EVOLUTION RESULTS

D.1.3 DETAILED PERFORMANCE METRICS COMPARISON

Table 9: Map 1: Key performance indicators for final task

Metric EvoCurr (Final) Direct Training
Agent0 Agent1 Agent0 Agent1

Onion Placement in Pot 15.77 15.94 13.38 13.57
Tomato Placement in Pot 0.31 0.32 0.21 0.26
Useful Dish Pickup 7.81 7.63 6.15 6.34
Soup Pickup 7.68 7.55 6.31 6.33
Cook Actions 7.44 8.67 6.34 7.30
Delivery Actions 7.37 7.19 5.99 6.11
Idle Movement 9.40 8.68 14.90 15.10

D.2 MAP CONFIGURATION 2

D.2.1 FINAL LAYOUT SPECIFICATION

Figure 10: overcook map2

{
"grid": "XXXPDPXXX

X 2 X
X XXXXX X
X 1 X
XXXOSTXXX",

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

"start_all_orders": [
{"ingredients": ["onion", "tomato"]},
{"ingredients": ["onion", "onion"]},
{"ingredients": ["onion", "tomato", "tomato"]},
{"ingredients": ["onion", "onion", "tomato"]},
{"ingredients": ["onion", "onion", "onion"]}

],
"recipe_value": [10, 10, 20, 20, 20],
"recipe_time": [10, 10, 20, 20, 20]

}

Grid Legend: X=Wall, P=Pot, D=Dish, O=Onion, T=Tomato, S=Service, 1/2=Agent spawn

D.2.2 CURRICULUM EVOLUTION RESULTS

Table 10: Map 2: Curriculum progression and performance metrics

Task Orders Agent0 Delivery Agent1 Delivery Total Delivery Sparse Reward
Task 0 3 7.28 7.25 14.53 290.3
Task 1 5* 7.32 7.28 14.60 291.6
Task 2 (Final) 5 7.82 10.82 18.64 186.2

Direct Training 5 7.40 8.96 16.36 163.4

*Task 1 includes two single-ingredient recipes alongside complex recipes for easier transition

D.2.3 DETAILED PERFORMANCE METRICS COMPARISON

Table 11: Map 2: Key performance indicators for final task

Metric EvoCurr (Final) Direct Training
Agent0 Agent1 Agent0 Agent1

Onion Placement in Pot 7.91 5.95 9.85 9.29
Tomato Placement in Pot 3.17 3.87 0.08 0.07
Useful Dish Pickup 5.45 4.20 4.32 4.81
Soup Pickup 4.12 5.62 4.24 4.79
Cook Actions 5.45 4.85 5.16 4.38
Delivery Actions 3.92 5.42 3.71 4.49
Size-2 Order Delivery 3.84 5.27 3.65 4.40
Size-3 Order Delivery 0.07 0.14 0.05 0.08
Idle Movement 14.42 14.21 10.49 11.28

26

	Introduction
	Related Work
	Method
	Two-Agent Cooperative Framework
	Curriculum Generation and Feasibility Constraints
	Code-as-Policy: Behavior Tree Synthesis

	Experiments
	StarCraft II Micro-Management
	Overcooked

	Analysis
	Discussion, Future Work, and Conclusion
	StarCraft II micro management
	Introduction to StarCraft II
	StarCraft II API and Python Interfaces
	Generated Behavior Tree Code Examples
	Early Stage: Basic Marine Micro-management
	Intermediate Stage: Multi-unit Coordination

	Advanced Stage: Complex Multi-unit Tactical Framework

	Complete Curriculum Evolution Across All Five Paths (StarCraft II)
	StarCraft II mini game maps

	Overcooked Details
	MARL Training Configuration
	Curriculum Design for Overcooked

	Overcooked Experimental Results Details
	Map Configuration 1
	Final Layout Specification
	Curriculum Evolution Results
	Detailed Performance Metrics Comparison

	Map Configuration 2
	Final Layout Specification
	Curriculum Evolution Results
	Detailed Performance Metrics Comparison

