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ABSTRACT

While large language models (LLMs) demonstrate remarkable capabilities across
diverse domains, they fail catastrophically on high-complexity tasks requiring
long-horizon reasoning and multi-step coordination. To address this problem,
we present EvoCurr, a self-evolving curriculum learning framework that enables
LLMs to solve complex decision-making problems through cooperative multi-
agent learning. The core of EvoCurr is a multi-agent cooperative system where
a Designer agent generates adaptive task sequences and a Solver agent produces
executable solutions through coordinated interaction. Both agents share identi-
cal rewards based on task performance and proximity to the target task, creating
a fully cooperative framework that naturally aligns their objectives for progres-
sive skill acquisition. A critical innovation is the accepted-floor constraint that
prevents difficulty regression below previously solved levels, ensuring monotonic
skill advancement while preventing catastrophic forgetting. The framework en-
forces feasibility through a validation gate and supports both open-loop code gen-
eration and closed-loop policy learning paradigms. We evaluate EvoCurr on two
complementary domains: StarCraft II micro-management and Overcooked coor-
dination tasks. On StarCraft II micro-management, where the Solver generates
Python behavior-tree scripts for complex tactical scenarios, EvoCurr achieves av-
erage combat winning rates above 90% while state-of-the-art models achieve less
than 50% when directly attempting these scenarios. On Overcooked coordination
tasks, where the Solver uses multi-agent reinforcement learning to train cooper-
ative policies, EvoCurr achieves 20% higher task completion rates (measured by
dish orders delivered) compared to direct training. Our results demonstrate that
EvoCurr provides a principled, domain-agnostic approach for extending LLM ca-
pabilities to complex decision-making tasks previously beyond their reach.

1 INTRODUCTION

Large language models (LLMs) have revolutionized automated problem-solving, from synthesiz-
ing formal proofs to generating executable Python programs |Brown et al.| (2020); |OpenAl| (2023);
Bubeck et al.| (2023); |Chen et al.| (2021); Li et al.| (2022). Yet when faced with truly complex
decision-making tasks—those requiring long-horizon planning, multi-step coordination, and adap-
tive strategies—even the most advanced models struggle dramatically. Consider StarCraft II micro-
management: controlling dozens of military units with diverse abilities against sophisticated oppo-
nents. When asked to generate control code for such scenarios directly, GPT-5, Claude-4, DeepSeek-
3.1, and Gemini-2.5 achieve less than 50% win rates, despite these tasks being well within human
capability |Zelikman et al.| (2022). This performance gap reveals a fundamental challenge: while
LLMs possess vast knowledge, they cannot effectively marshal this knowledge for complex, multi-
step decision problems.

The core issue is complexity scaling. Simple tasks succeed reliably, but compound tasks—such
as coordinating 20 Marines, 8 Ghosts with cloaking, and 4 Medivacs for healing while engaging
enemy Protoss forces—overwhelm even the most capable models. The failure is not due to lack
of knowledge; these models understand unit capabilities, tactical concepts, and programming in-
terfaces. Rather, they cannot synthesize this knowledge into working solutions when the problem
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Figure 1: Brief introduction for EvoCurr. Showing the framework of EvoCurr that the designer gains
advantage by generating feasible yet demanding tasks that progress toward the objective, whereas
the Solver profits from mastering increasingly difficult challenges and ultimately achieving the target
goal.

space becomes too large. Two control paradigms illustrate this challenge concretely. In open-loop
control, one compiles an interpretable program (e.g., a behavior tree) and runs it without adapting to
new observations; this eases debugging but is sensitive to missing cases. In closed-loop control, one
learns a reactive policy mapping observations to actions (typically via reinforcement learning); this
improves robustness but sacrifices transparency. A mechanism that can at inference time progress
from easy to hard tasks in both paradigms—without retraining the base model—would substantially
increase the practical utility of LLM-based decision making.

Humans don’t learn complex skills by jumping directly to the hardest version. A chess player starts
with basic piece movements before attempting complex strategies. This observation suggests a nat-
ural solution: can we enable LLMs to solve complex problems by automatically discovering and
following a learning curriculum? Curriculum learning has proven effective for graduated complex-
ity Bengio et al.[(2009); |Graves et al.| (2017); Narvekar et al.| (2020); Narvekar & Stone|(2018), but
three obstacles limit its use for LLM inference. First, curricula typically require domain expertise
and manual task design, which is expensive and brittle. Second, most approaches optimize training-
time schedules and offer little guidance for inference-time problem solving with pretrained models.
Third, existing practices lack a simple, verifiable rule for when and how to escalate difficulty while
avoiding catastrophic forgetting once a skill threshold has been reached.

We propose EvoCurr, a self-evolving curriculum framework that enables LLMs to solve complex
decision-making problems they cannot handle directly. The key insight is that LLMs themselves can
design appropriate curricula—they understand what makes tasks easier or harder and can propose
suitable stepping stones toward a final goal. EvoCurr instantiates this as a cooperative two-agent sys-
tem. A Designer analyzes current capabilities and proposes the next task by adjusting controllable
factors (e.g., in StarCraft II: unit composition, abilities, and map; in Overcooked: layout, recipes,
and timing). A Solver produces an executable solution, evaluates it on the proposed task, and returns
the outcome.

Two simple rules make this loop progress reliably without manual intervention. First, the accepted-
Sfloor rule remembers the most recently mastered task and forbids future proposals from going easier
than that point—once a skill is demonstrated, the system maintains this skill floor, preventing catas-
trophic forgetting. Second, a feasibility gate discards ill-formed proposals early by checking basic
validity: the task compiles (syntax), its logic allows the goal to be attempted (e.g., reachable way-
points), and it can be run to produce a measurable outcome (runtime). With just a single acceptance
threshold defining “mastery” (e.g., winning rate above 90%), these rules let EvoCurr autonomously
navigate the frontier of learned capabilities without hand-crafted schedules or domain-specific dif-
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ficulty metrics. Crucially, the same framework applies to both control paradigms: the Solver either
generates executable behavior-tree code (open-loop code-as-policy) or trains a reactive policy for a
fixed budget (closed-loop).

We validate EvoCurr on two challenging domains that have resisted direct LLM approaches. In
StarCraft II micro-management across twelve complex combat scenarios, EvoCurr progressively
achieves winning rates exceeding 90% by generating sophisticated behavior-tree scripts, while di-
rect one-shot generation with the same models achieves less than 50%. The evolution typically
requires 4-6 intermediate tasks, automatically discovered by the system, to bridge from simple unit
control to complex multi-unit coordination with advanced abilities. In Overcooked, a challenging
multi-agent coordination benchmark, EvoCurr achieves 20% higher task completion rates (measured
by successfully delivered orders) compared with direct training under matched total budgets. The
framework discovers curricula that first master basic movement and item handling, then progress
to timing-critical coordination in confined spaces. These results demonstrate that an inference-
time curriculum—implemented by simple “do not go backwards” and “only propose valid tasks”
rules—can reliably unlock LLM capabilities for complex decision-making previously beyond their
reach.

Summarizing, our contributions are:

1. Inference-time curriculum mechanism. A self-evolving framework that advances task
difficulty using only an acceptance threshold, an accepted-floor rule preventing skill re-
gression, and a feasibility gate filtering invalid proposals—eliminating manual curriculum
design and domain-specific difficulty metrics.

2. Practical Designer—Solver procedure. The Designer diagnoses capability bottlenecks
from historical outcomes and proposes targeted task adjustments; the Solver produces
executable artifacts and measured performance, forming an autonomous improvement
loop that works across both open-loop code generation and closed-loop policy learning
paradigms.

3. Empirical evidence across domains. On StarCraft II micro-management, EvoCurr pro-
gressively attains winning rates > 90% where direct generation fails; on Overcooked,
with matched budgets, EvoCurr achieves 20% higher completion rates, demonstrating that
inference-time curriculum evolution can extend LLM capabilities to complex tasks previ-
ously beyond their reach.

2 RELATED WORK

Curriculum Learning. Bengio et al. (Bengio et al.l 2009) formalized curriculum learning, demon-
strating that training on examples organized from easy to hard improves generalization and conver-
gence compared to random data shuffling. This paradigm has achieved success across computer
vision, NLP, and reinforcement learning (Soviany et al., [2022; Wang et al.| |2021b). Kumar et
al. (Kumar et al., [2010) introduced self-paced learning (SPL) where models automatically deter-
mine learning pace based on sample difficulty, eliminating predefined curricula. Jiang et al. (Jiang
et all 2015) extended SPL with diversity constraints to prevent premature convergence. In rein-
forcement learning, Narvekar et al. (Narvekar et al., [2020) provided a comprehensive curriculum
framework, while Klink et al. (Klink et al., 2020) interpreted curriculum generation as an inference
problem. Recent advances include Teacher-Student Curriculum Learning (Matiisen et al., 2019)
with teacher networks generating student tasks, and Prioritized Level Replay (Jiang et al., [2021)
sampling training levels based on learning potential. However, these approaches primarily focus on
training phase optimization and require either manual curriculum design or domain-specific diffi-
culty metrics, leaving a gap for inference-time adaptive curriculum generation.

Environment Generation. Procedural content generation has evolved from rule-based methods to
learning-based approaches (Liu et al.2021a). POET (Wang et al.||2019) co-evolves agents and en-
vironments through population-based training, while PAIRED (Dennis et al.,|2020) uses adversarial
training to generate challenging yet solvable environments. EnvGen (Zhai et al., [2024) leverages
LLMs to adaptively create training environments for RL agents, using world knowledge to generate
environment configurations based on task descriptions. Samvelyan et al. (Samvelyan et al.| [2023)
introduced Rainbow Teaming for diverse adversarial scenarios. Recent work explores evolution
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Figure 2: EvoCurr overview. A curriculum designer proposes the next curriculum C1; a solver
produces an executable policy 7y and evaluates it; the outcome feeds back to the designer. The
loop starts from a simplified version of the final target 7' and proceeds until T’ is solved.

strategies for environment generation (Liu et al, and evolved curricula that transfer across
different learners (Parker-Holder et al.| 2022). These methods generate static training data or envi-
ronments before agent training, rather than dynamically adapting during inference based on solver
capabilities.

Code Generation in StarCraft II. StarCraft II has become a standard benchmark for complex

decision-making research following DeepMind’s PySC2 (Vinyals et al, 2017). AlphaStar
achieved Grandmaster level through large-scale reinforcement learning, with subse-
quent work exploring efficient strategies 2021cib), offline learning (Mathieu et al.} [2021),
and federated frameworks [2021a). Recent integration of language

models includes TextStarCraft IT (Ma et al., [2024; [2025aib; [Li et al. [2025) and behavior tree ap-
proaches (Deng et all, 2025}, [2024). Beyond StarCraft II, collaborative environments like Over-

cooked have emerged as benchmarks for multi-agent coordination (Carroll et al} [2020), with recent
work providing comprehensive evaluation toolkits for zero-shot coordination (Wang et all, [2024).
For code generation, Liang et al. (Liang et al., 2023)) proposed Code as Policies for robot control,
while behavior tree synthesis work (Colledanchise & Ogren, 2018} |Lykov & Tsetserukou, 2023)
demonstrated that LLMs can produce structurally correct trees. These methods successfully gener-
ate executable policies but operate on fixed tasks without adaptive difficulty progression. Building
upon these foundations, we propose EvoCurr, a framework that enables autonomous curriculum evo-
lution for complex decision-making scenarios through self-adaptive task generation and progressive
skill acquisition.

3 METHOD

This section presents EvoCurr, a framework that enables LLMs to solve complex decision-making
tasks through self-evolving curricula. We employ a two-agent cooperative framework (Section [3.1)),
design a curriculum generation mechanism with feasibility constraints (Section [3.2), and describe
the code-as-policy realization for behavior tree synthesis (Section [3.3).

3.1 TwoO-AGENT COOPERATIVE FRAMEWORK

EvoCurr employs two cooperating agents: a Designer that generates curricula and a Solver that
produces policies. These agents share identical rewards, creating a fully cooperative system where
success requires coordinated action across different decision spaces.

Let C denote the task space containing target 7y € C, and II the policy space. Each task C' € C has
difficulty d(C) € R measuring complexity through unit count and ability diversity. The distance
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A(C, Ty) quantifies the configuration gap to the final target. The performance function P : IIxC —
[0, 1] evaluates policy m € II on task C, typically as win rate over multiple rollouts. The history
H: = {(C;, mi, P;, Accept;) }t_, records past curricula, policies, performances P; = P(m;|C;), and
acceptance status Accept, = 1[P; > 7] where 7 € (0, 1) is the acceptance threshold.

At round ¢, the Designer generates a new curriculum through LLM-based transformation:
Ciy1 = T(C, My, T, Accept,) (1)

Curriculum generation follows the accepted-floor constraint. Let C}« denote the most recently
accepted task. Then:

d(Cy1) > d(Cy) and A(Ciy1,Ty) < A(Cy, Ty)  if Accept, =1 )
d(Cy) < d(Cyq1) < d(Ch) if Accept, =0
This ensures monotonic skill acquisition—the system never regresses below previously mastered
difficulty levels.

The Solver generates policies via LLM-based code synthesis or neural network training:
Ti+1 = Solver(CtH, Ht) (3)
Accept, , = 1[P(my41[Ciy1) > 7] “)

Both agents optimize toward high performance on progressively harder tasks approaching Ty, with
shared incentives ensuring the Designer proposes solvable challenges while the Solver develops
increasingly sophisticated policies.

3.2 CURRICULUM GENERATION AND FEASIBILITY CONSTRAINTS

A task C' = (M, A, G) consists of map configuration M, agent specifications A = {a;}?_; where
a; = (type;, count;, abilities;), and goal G. The Designer uses history H; to identify capability
bottlenecks: coordination failures lead to reduced agent count while maintaining tactical structure;
timing issues trigger ability simplification before count adjustment.

For example: Task 2 succeeds with Marinex10, Medivacx2 (90% win rate); Task 3 fails with
Marinex15, Ghostx4, Tankx3 (40%); Task 4 adjusts to Marinex12, Ghostx2 (90%), ensuring
d(Task 2) < d(Task 4) < d(Task 3) per the accepted-floor constraint.

A feasibility gate gr.,s validates curricula through syntax checking (code compilation), logic verifi-
cation (path reachability), and runtime validation (execution success).

3.3 CODE-AS-PoLICY: BEHAVIOR TREE SYNTHESIS

The Solver adapts its policy generation based on the control paradigm required by the task domain.

For open-loop control requiring interpretable policies, the Solver generates executable behavior tree
code through three stages: (1) strategic planning extracts high-level objectives S from Cyy1; (2)
code synthesis translates S into structured behavior trees; (3) compilation produces the final policy
mi4+1. On failure (P < 7), the system adjusts decision thresholds and action priorities based on
performance feedback.

For closed-loop control requiring continuous adaptation, the Solver trains neural policies via RL
algorithms, with 741 representing network parameters optimized in environment Cy 1. Training
continues for a fixed timestep budget before evaluation. Both paradigms share the same coopera-
tive dynamics, accepted-floor constraints, and performance evaluation, enabling EvoCurr to handle
diverse decision-making challenges within a unified framework.

4 EXPERIMENTS

We evaluate EvoCurr in two complementary domains that demonstrate its versatility across differ-
ent control paradigms. In StarCraft I micro-management, we transform the traditionally closed-
loop problem into open-loop control: the Solver generates complete behavior tree scripts upfront
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that execute without real-time adaptation, departing from typical RL approaches (Samvelyan et al.,
2019; [Vinyals et al., [2017)) that react at each timestep. This code-as-policy approach tests whether
LLMs can tackle reactive domains through strategic pre-planning while producing interpretable so-
lutions. Conversely, in Overcooked (Carroll et al., [2020), the Solver trains MARL policies that
continuously adapt to observations, maintaining the conventional closed-loop paradigm. Despite
these fundamentally different policy realizations—pre-compiled behavior trees versus learned neu-
ral networks—both operate under the same EvoCurr framework with the feasibility gate gf..s and
accepted-floor constraint ensuring monotonic progression. Implementation details are in Appen-

dices[Cland[A 1]

AGENTS (Terran): ENEMIES (Protoss):

Unit Type Quantity Technology Unit Type Quantity  Technology
Marine 20 Stimpack Zealot 15 Charge

Marauder 12 Stimpack Stalker 14 BlinkTech
Medivac 4 Heal Sentry 10 ForceField

Ghost 8 PersonalCloaking | HighTemplar 8 PsiStormTech
SiegeTank 6 SiegeTech Colossus 4 ExtendedThermalLance
VikingFighter 8 AssaultMode Tempest 5 GroundAttack
Cyclone 7 LockOn Disruptor 4 PurificationNova
WidowMine 7 Burrow Carrier 4 InterceptorLaunch
Raven 3 HunterSeeker

Liberator 2 DefenderMode

Table 1: Final Terran vs Protoss Task Specification

AGENTS (Terran): ENEMIES (Zerg):

Unit Type Quantity Technology Unit Type Quantity Technology

Marine 20 Stimpack Zergling 60 ZerglingMovementSpeed

Marauder 12 Stimpack Baneling 24 CentrificalHooks

Medivac 4 Heal Roach 15 GlialReconstitution

Ghost 8 PersonalCloaking | Hydralisk 10 HydraliskSpeed

SiegeTank 6 SiegeTech Lurker 6 Burrow

VikingFighter 8 AssaultMode Corruptor 10 FlyerWeaponsLevell

Cyclone 7 LockOn Infestor 3 EnergyUpgrade

WidowMine 7 Burrow Viper 4 FlyerArmorsLevell

Raven 3 HunterSeeker Overseer 3 FlyerArmorsLevell

Liberator 2 DefenderMode Queen 4 MissileWeaponsLevell
Broodlord 4 FlyerWeaponsLevell

Table 2: Final Terran vs Zerg Task Specification

4.1 STARCRAFT Il MICRO-MANAGEMENT

Experiment Setup The Solver generates python-sc?2 behavior trees that act at the unit-action
level and is evaluated in an open-loop manner. We test on five newly designed micro maps against
two opponent races (Terran vs Protoss and Terran vs Zerg). Each curriculum specifies unit sets,
technologies, and spawn regions on a selected map; compile-and-run serves as a hard feasibility
gate in line with gre,s. The final target T’y for the canonical Terran—Protoss and Terran—Zerg settings
is given in Table and Table [2| For acceptance, we require P(xw|C') > 7 = 0.9, evaluated as win
rate over 10 rollouts. The primary baseline, Direct Code, attempts to solve T in one shot under
the same rollout and validation budgets as EvoCurr. Per-curriculum compositions and complete
evolution traces are summarized in the appendix.

Because direct long-horizon code generation can be brittle (syntax/API errors) and win rate alone
may not capture partial successes, we additionally report a damage-cost-aware combat score Scompbat
for more nuanced evaluation. This metric evaluates the comparative performance of EvoCurr against
closed-source large language model performances (DeepSeek3.1, GPT-5, Claude4, Gemini2.5) on
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direct target task implementation., given by:
R, . R .
Scombat —05- agent_final +05-(1— enemy_final 7 (5)
Ragent,init Renemy,init
where the total combat power for one side is

hp, + shields;
hp_max, + shields_max; '

Rgge = Z (minerals; + o - vespene, + (3 - build_time; )

i

(6)

This metric aggregates resource cost and remaining health/shields; scores range from 0 to 1. A
combat score S¢omper > 0.5 indicates successful annihilation of the majority of enemy forces while
preserving our own, providing a finer-grained assessment than binary win/loss especially for failed
code executions where the first term becomes 0.

Task Win Rate Win Rate Score Score Task

EvoCurr (%) DeepSeek (%) EvoCurr DeepSeek nums
Bush (TvP) 100 0 0.67 0.33 6
Bush (TvZ) 100 100 0.73 0.61 4
Corridor (TvP) 100 80 0.71 0.66 5
Corridor (TvZ) 100 90 0.69 0.58 5
Main (TvP) 100 100 0.72 0.69 4
Main (TvZ) 100 100 0.70 0.68 5
Ramp (TvP) 100 10 0.72 0.45 4
Ramp (TvZ) 100 50 0.74 0.45 5
Corner (TVP) 90 90 0.55 0.56 5
Corner (TvZ) 100 30 0.84 0.41 5
Flat (TvP) 100 0 0.69 0.41 5
Flat (TvZ) 100 0 0.62 0.36 5

Table 3: Combat score Scompay among correct scripts on StarCraft II micro tasks. T denotes Terran,
P Protoss, Z Zerg. Each entry is the maximum over 10 evaluations. Task nums denotes the nums of
tasks to complete the target task.

Experimental Results We evaluate 12 complex micro-management tasks (2 matchups x 6 maps)
in Table 3] EvoCurr achieves most of the highest combat scores (often exceeding 0.7), demon-
strating consistent performance regardless of task difficulty. When one-shot code generation proved
challenging for all models (scores j 0.5), EvoCurr reliably achieved scores near 0.7. Conversely,
on simpler tasks where most one-shot methods scored above 0.5, EvoCurr still delivered robust,
high-performing results, though not necessarily the peak score, aligning with its goal of final task
accomplishment through progressive curriculum advancement.

4.2 OVERCOOKED

Map Task Orders Agent( Delivery Agentl Delivery Total Delivery Sparse Reward
Map 1  EvoCurr 5 14.74 14.36 29.10 290.9
Map 1 Direct Training 5 11.93 12.18 24.11 240.5
Map2 EvoCurr 5 7.82 10.82 18.64 186.2
Map 2 Direct Training 5 7.40 8.96 16.36 163.4

Table 4: Curriculum progression and performance metrics for overcook maps

Experiment Setup We instantiate EvoCurr in a closed-loop regime on Overcooked while keeping
the game dynamics consistent with Section [3} The Designer proposes curricula parameterized by
layouts, ingredient placements, order timing constraints, and stochasticity. Unlike the StarCraft II
setting, the Solver here is a MARL trainer that optimizes decentralized policies under a fixed per-
curriculum budget B = 107 timesteps. The acceptance criterion P(7|C) > 7 is defined as com-
pleting all required orders, where P(w|C) = 1 if all orders are fulfilled and 0 otherwise. The
framework also allows completing bonus orders after required ones, contributing to the total deliv-
ery count shown in Table 4| Orders define the prescribed objectives for agent operations, where



Under review as a conference paper at ICLR 2026

reward structures are calibrated to provide greater compensation for deliveries that exceed the estab-
lished order quantities. This isolates the effect of inference-time curriculum evolution from policy
realizations.Detailed curriculum specifications and complete performance metrics for both map con-
figurations are provided in Appendix

Experimental Results As shown in Table ] EvoCurr outperforms directly applying ET3 under
matched total budgets (After testing the budgets that need to be used with EvoCurr, then directly
conduct testing using the same budget). On the first task, EvoCurr achieves 29.1 effective deliveries
on average vs 24.11 for the baseline; on the second, EvoCurr reaches 18.64 vs 16.36. The Mapl is
Coord. Ring with Multi-recip and the Map 2 is Counter Circuit with Multi-reci (Wang et al.| [2024).
The higher delivery counts for EvoCurr include both required and bonus orders, demonstrating that
the progressive curriculum not only ensures completion of primary objectives but also enables more
efficient exploration of bonus rewards. Performance drops at curriculum transitions reflect distri-
bution shift: policies specialized to one curriculum must re-explore when difficulty increases, yet
prior experience accelerates re-convergence—consistent with the progressive, monotone advance-
ment prescribed by the framework.

5 ANALYSIS

Curriculum Design We show the effectiveness of the curriculum designing module by providing
the sub-tasks generated for solving the final task in Table[5] The sub-tasks are designed based on the
accomplishment of the previous curriculum. For StarCraft II tasks, we set the acceptance threshold
7 = 0.9, which indicates that the difficulty should increase when the winning rate is above 90%
during the evaluation process and in contrast decrease otherwise. In the 12 new tasks, according to
the table, the Terran vs Protoss setting on the map of Bush takes the longest curriculum trajectory.
The enemies are invisible in the bush, which brings challenges to the agents, so the designer has to
decrease the difficulty twice before the solver finally finish the task.

Final Task Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7
Flat (TvP) 100% 100% 70% 90% 100% - -
Flat (TvZ) 100% 100% 100% 100% 100% - -

Bush (TvP) 100% 100% 40% 90% 50% 100% 100%
Bush (TvZ) 100% 90% 60% 100% 100% - -
Corridor (TvP) 100% 90% 100% 100% 90% - -
Corridor (TvZ) 100% 90% 90% 100% 100% - -
Corner (TvP) 90% 90% 90% 100% - - -
Corner (TvZ) 100% 100% 90% 90% 100% - -
Main (TvP) 100% 100% 100% 100% - - -
Main (TvZ) 100% 100% 100% 100% - - -
Ramp (TvP) 100% 100% 90% 100% 100% - -
Ramp (TvZ) 100% 100% 100% 90% 100% - -

Table 5: The winning rates of each curricula designed for the 12 complex decision-making scenarios.

Figure[3|also demonstrates curriculum paths on StarCraft IT micromanagement tasks solved by open-
loop behavior trees and Overcook scenarios solved by MARL algorithms. Given a final task, the
designer determines the first class with limited difficulty. The solver starts to finish the task and
respond the rollout results to the designer. Then the designer generates new curriculum based on the
rollout results. In the Figure, the solver achieves more than 90% winning rates in the curricula which
are shown in cyan color. When the solver cannot finish the task, red points, the designer then selects
the latest finished task as the basement and generates new curriculum with different map settings.
When the solver solves the final task, the tree-based evolution process is terminated and the final
behavior tree/black-box policy model are returned as the final solution to the task.

Behavior Coder Generation When facing new curriculum with larger unit amount and new unit
type, the behavior coder generates new scripts based on the previous script that finish the previous
curriculum. The new scripts are refined in two phases. The first phase is the addition of new control
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@ Finish

Figure 3: A demonstration of the evolution traces from the initial task to the final tasks in StarCraft II
setting and the overcook settings. In the StarCraft II, the curriculum is designed based on the maps,
units, and abilities. In the overcook scenarios, the curricula are designed on the recipes, times, and
orders.

functions. As shown in Code[A3.2]and Code[A4]in the Appendix, the advanced solution contains
more control functions for each unit type, such as control_vikings, control_ghosts, etc. The second
phase is the refinement of each existing control function which promotes the coordination among
units. For instance, in the early coding stage, the Marine units are responsible for focusing fire on
the enemy and rapidly decrease the enemy units. In the latter curriculum where the enemy has the
area of effect (aoe) attacking ability, the Marines should firstly split to avoid aoe attacks and then
focus fire on the enemy. In such case, the split skill is learned during the evolution and the fire focus
skill is reserved and promoted.

Layered Critic Refinement Despite that the LLMs have learnt extensive coding script resouces
during the pre-training process. The ability of generating scripts following python_sc2 package
depends on the amount of handcrafted python_sc2 scripts from the community, which results in the
different code generating ability of different LLMs. Therefore, in the behavior tree generation, we
leverage a two-layered critic to improve the quality of behavior tree. The first layer is the sanity
check module that is responsible for correcting the potential mistakes such as grammar bugs, API
misuse, and exceptions. The second layer of the critic refines the strategy which provides suggestion
on the implementation logic of the behavior tree scripts. The two-layer critic module serves as a
critical support to the solver for higher success behavior tree generating rates.

6 DISCUSSION, FUTURE WORK, AND CONCLUSION

EvoCurr demonstrates that self-evolving curricula enable LLMs to solve complex decision-making
tasks at inference time without manual curriculum design. The cooperative Designer-Solver frame-
work, constrained by the accepted-floor rule and feasibility gating, achieves systematic progression
toward target tasks across both open-loop behavior tree generation and closed-loop MARL train-
ing—reaching 90% win rates in StarCraft II where direct approaches achieve only 50%, and 20%
higher task completion in Overcooked. Key limitations include sensitivity to difficulty scaling lead-
ing to rejection cycles, LLM context constraints limiting behavior tree complexity, and computa-
tional overhead from maintaining historical information ;. Future directions include hierarchical
multi-agent architectures for the Solver to handle complex task decomposition, adaptive difficulty
scaling based on acceptance patterns, and hybrid approaches combining behavior tree interpretabil-
ity with neural policy robustness through distillation. EvoCurr provides a principled, domain-
agnostic mechanism for extending LLM capabilities to complex sequential decision-making, of-
fering a practical path toward deployable systems that maintain interpretability while handling tasks
previously beyond their reach.
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A STARCRAFT II MICRO MANAGEMENT

A.1 INTRODUCTION TO STARCRAFT II

StarCraft II is a real-time strategy game developed by Blizzard Entertainment that has become one
of the most challenging and strategically complex video games ever created. Released in 2010,
the game features three asymmetric factions—Terrans, Protoss, and Zerg—each with distinct units,
technologies, and strategic approaches. Players must simultaneously manage multiple intercon-
nected systems: resource collection and allocation, base construction and expansion, technological
research and upgrades, unit production and army composition, and real-time tactical combat con-
trol. The game demands rapid decision-making under time pressure, long-term strategic planning,
adaptation to opponent strategies, and precise micro-management of individual units during combat.
Professional matches can involve hundreds of units across multiple battlefronts, requiring players
to process vast amounts of information while executing complex multi-layered strategies. The skill
ceiling is extraordinarily high, with professional players dedicating years to master the intricate
mechanics, build orders, timing attacks, and unit interactions that define high-level play.

The significance of StarCraft II for artificial intelligence research extends far beyond its entertain-
ment value. The game presents a comprehensive testbed for studying complex decision-making
under uncertainty, partial information, and real-time constraints challenges that mirror many real-
world applications of Al Unlike traditional board games such as chess or Go, which have perfect
information and turn-based mechanics, StarCraft II requires agents to operate in a partially ob-
servable environment with continuous action spaces and exponentially large state representations.
The game’s multi-scale nature demands both macro-level strategic planning spanning tens of min-
utes and micro-level tactical execution occurring within milliseconds. This dual requirement has
driven significant advances in hierarchical reinforcement learning, multi-agent coordination, and
long-horizon planning algorithms. Notable breakthroughs include DeepMind’s AlphaStar, which
achieved Grandmaster level performance and demonstrated that Al systems could master complex
strategic reasoning, and subsequent research that has explored everything from curriculum learning
and imitation learning to neural architecture search and federated training. The availability of ex-
tensive replay datasets, standardized evaluation protocols through environments like PySC2, and the
game’s inherent interpretability through observable unit actions have made StarCraft II an invaluable
platform for developing and benchmarking AI systems capable of human-level strategic reasoning
in complex, dynamic environments.

A.2 STARCRAFT II API AND PYTHON INTERFACES

The technical foundation enabling Al research in StarCraft II rests on Blizzard Entertainment’s of-
ficial StarCraft II Machine Learning API, which provides programmatic access to the game’s com-
plete state information and action execution capabilities. This API exposes the game engine through
a protocol buffer-based interface that delivers real-time observations including unit positions, re-
source states, map geometry, and tactical information while accepting high-level commands for unit
control, building construction, and technology research. The official s2client-proto defines the core
communication protocol between external programs and the StarCraft II executable, establishing
standardized data structures for observations, actions, and game configuration. This low-level inter-
face handles the complex details of game state serialization, network communication, and command
validation, but requires substantial boilerplate code and deep understanding of the underlying proto-
col specifications to implement effective Al agents.

Building upon this foundation, the research community has developed higher-level abstractions that
significantly simplify Al development while preserving the full functionality of the underlying API.
PySC2, developed by DeepMind, transforms the raw API into a structured reinforcement learning
environment that follows standard RL conventions with observation spaces, action spaces, and re-
ward functions. This environment emphasizes feature-layer representations and provides built-in
mini-games for curriculum learning, making it particularly suitable for deep reinforcement learning
approaches.

Complementing PySC2, the python-sc2 library offers a more direct and intuitive interface focused
on scripted bot development, where complex strategic behaviors can be implemented using straight-
forward Python code with minimal boilerplate. The python-sc2 library abstracts away protocol
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buffer complexities while exposing high-level game objects such as units, abilities, and map struc-
tures through clean Python APIs, enabling researchers to focus on strategic logic rather than low-
level implementation details. Our EvoCurr framework leverages python-sc2’s accessibility and ex-
pressiveness to generate behavior tree scripts that can be easily interpreted, debugged, and modified,
making it an ideal choice for our curriculum-based approach to complex tactical reasoning.

A.3 GENERATED BEHAVIOR TREE CODE EXAMPLES

This section presents complete examples of behavior tree implementations generated by the EvoCurr
framework at different curriculum stages, demonstrating the evolution of tactical complexity.

A.3.1 EARLY STAGE: BASIC MARINE MICRO-MANAGEMENT

from sc2 import maps

from sc2.bot_ai import BotAI

from sc2.data import Race, Difficulty

from sc2.ids.ability_id import AbilityId
from sc2.ids.unit_typeid import UnitTypeId
from sc2.main import run_game

from sc2.player import Bot, Computer

class BattleBot (BotAI) :
def _ _init__ (self):
super () .__init__ ()
self.stim_used = set ()

async def on_step(self, iteration: int):
if iteration == 0:
print ("Marine Micro Bot - 5v2 Marines vs Zealots!")
if self.units.exists:
await self.marine_micro ()

async def marine_micro(self):
marines = self.units (UnitTypeId.MARINE)
zealots = self.enemy_units (UnitTypeld.ZEALOT)

if not marines.exists or not zealots.exists:
return

close_zealots = zealots.filter (lambda z:
marines.closest_to(z.position) .distance_to(z) < 6)

if close_zealots.exists:
for marine in marines:
if (marine.tag not in self.stim_used and
AbilityId.EFFECT_STIM_MARINE in
await self.get_available_abilities(marine)):
marine (AbilityId.EFFECT_STIM_MARINE)
self.stim_used.add(marine.taq)

target = min(zealots, key=lambda z: z.health + z.shield)

for marine in marines:

dist = marine.distance_to (target)

if dist < 1:
retreat_pos = marine.position.towards (target.position, -3)
marine.move (retreat_pos)

elif dist <= 5:
marine.attack (target)

else:
marine.move (target.position)
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A.3.2 INTERMEDIATE STAGE: MULTI-UNIT COORDINATION

class BattleBot (BotAI) :
async def on_step(self, iteration: int):
if iteration == 0:
print ("Terran Battle Bot Activated!")

if self.units.exists:
await self.control_ghosts ()
await self.control_marines ()
await self.control_marauders ()
await self.control_medivacs ()

async def control_ghosts(self):
ghosts = self.units (UnitTypeId.GHOST)
if not ghosts.exists:
return

high_templars = self.enemy_units (UnitTypeld.HIGHTEMPLAR)
stalkers = self.enemy_units (UnitTypeId.STALKER)

for ghost in ghosts:
if high_templars.exists:
templar = high_templars.closest_to(ghost.position)
if ghost.distance_to(templar) < 12:
if AbilityId.SNIPE_SNIPE in
await self.get_available_abilities (ghost):
ghost (AbilityId.SNIPE_SNIPE, templar)
elif AbilityId.EMP_EMP in
await self.get_available_abilities (ghost):
ghost (AbilityId.EMP_EMP, templar.position)
ghost .move (templar.position)
if AbilityId.BEHAVIOR_CLOAKON_GHOST in
await self.get_available_abilities (ghost) :
ghost (AbilityId.BEHAVIOR_CLOAKON_GHOST)
elif stalkers.exists:
target = stalkers.closest_to(ghost.position)
ghost.attack (target)

async def control_medivacs (self):
medivacs = self.units (UnitTypeId.MEDIVAC)
if not medivacs.exists:
return

bio_units = self.units.filter (lambda unit:
unit.type_id in {UnitTypeId.MARINE,
UnitTypeId.MARAUDER})
for medivac in medivacs:
injured = bio_units.filter (lambda unit:
unit.health_percentage < 0.75)
if injured.exists:
target = injured.closest_to(medivac.position)
medivac.move (target.position)
if medivac.distance_to(target) < 5:
medivac (AbilityId.MEDIVACHEAL_HEAL, target)
elif bio_units.exists:
medivac.move (bio_units.center)

A.4 ADVANCED STAGE: COMPLEX MULTI-UNIT TACTICAL FRAMEWORK

class BattleBot (BotAI) :
async def on_step(self, iteration: int):
if iteration ==
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self.setup_complete = False
await self.initial_positioning()
self.setup_complete = True

bio_units = self.units.of_type ({UnitTypeld.MARINE,
UnitTypeId.MARAUDER})
medivacs = self.units (UnitTypeId.MEDIVAC)

awailt self.avoid_aoe (bio_units + medivacs)
await self.control_siege_tanks()

await self.control_vikings()

await self.control_liberators()

await self.control_ghosts /()

await self.control_bio (UnitTypeId.MARINE)
await self.control_bio (UnitTypeId.MARAUDER)
await self.control_medivacs ()

async def avoid_aoce(self, units: Units):
storms = [e for e in self.state.effects
if e.id == EffectId.PSISTORMPERSISTENT]
disruptor_balls = self.enemy_units (UnitTypeId.DISRUPTORPHASED)

threats = []

for storm in storms:
threats.append((storm.position, 2.5))

for ball in disruptor_balls:
threats.append((ball.position, 2.5))

for unit in units:
for pos, radius in threats:
if unit.distance_to(pos) < radius:
away = unit.position.towards (pos, -3)
unit.move (away)
break

async def control_siege_tanks (self):
siege_tanks = self.units (UnitTypeld.SIEGETANKSIEGED)
sieged_tanks = self.units (UnitTypeld.SIEGETANKSIEGED)

for tank in siege_tanks:
if tank.distance_to (Point2 ((15, 15))) > 2:
continue
abilities = await self.safe_get_abilities (tank)
if AbilityId.SIEGEMODE_SIEGEMODE in abilities:
tank (AbilityId.SIEGEMODE_SIEGEMODE)

if sieged_tanks.exists:
enemies = self.enemy_units
if not enemies.exists:
return
priority_targets = enemies.of_type ([UnitTypeId.COLOSSUS,
UnitTypeId.STALKER, UnitTypeId.HIGHTEMPLAR,
UnitTypeId.ZEALOT])

for tank in sieged_tanks:
targets_in_range = priority_targets.in_attack_range_of (tank)
if targets_in_range:
target = min(targets_in_range,
key=lambda t: (t.type_id not in
{UnitTypeId.COLOSSUS, UnitTypelId.HIGHTEMPLAR},
t.distance_to(tank)))
tank.attack (target)
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Table 6: Complete curriculum evolution across five independent runs. Each row is one curriculum
within a path; acceptance requires P > 0.67. Detailed map/unit/tech descriptors for each curriculum
are elided for space.

Path  Task  Agent Composition Enemy Composition Result
1 Marine (5) Zealot (2, Charge) 67%
2 Marine (10), Marauder (5), Medivac (1) Zealot (5, Charge), Stalker (5, Blink), HighTemplar (1, PsiStorm) 67%
1 3 Marine (15), Marauder (8), Ghost (2), Medivac (2), SiegeTank (1) Zealot (10, Charge), Stalker (8, Blink), HighTemplar (2, PsiStorm), Failed
Colossus (1, ExtLance)
4 Marine (12), Marauder (6), Ghost (1), Medivac (1) Zealot (8, Charge), Stalker (6, Blink), HighTemplar (1, PsiStorm) 67%
5 Marine (18), Marauder (10), Ghost (2), Medivac (2), SiegeTank (1), Zealot (12, Charge), Stalker (10, Blink), HighTemplar (2, PsiStorm), 67%
Viking (2) Colossus (1, ExtLance)
6 Final Task (Tablem Final Task (Tub]eD 100%
1 Marine (5) Zealot (2, Charge) 100%
5 2 Marine (10), Marauder (5), Medivac (2), SiegeTank (1) Zealot (8, Charge), Stalker (5, Blink), HighTemplar (2, PsiStorm) 67%
3 Marine (15), Marauder (8), Ghost (2), Medivac (3), SiegeTank (1), Zealot (12, Charge), Stalker (10, Blink), HighTemplar (3, PsiStorm), Failed
Viking (4) Colossus (2, ExtLance)
4 Marine (12), Marauder (6), Ghost (1), Medivac (2), SiegeTank (1), Zealot (10, Charge), Stalker (8, Blink), HighTemplar (2, PsiStorm), Failed
Viking (2) Colossus (1, ExtLance)
1 Marine (5) Zealot (2, Charge) 100%
2 Marine (8), Marauder (5, PunisherGrenades), SiegeTank (1), Medivac ~ Zealot (7, Charge), Stalker (3, Blink), HighTemplar (2, PsiStorm), Failed
(1, CaduceusReactor) Colossus (1, ExtLance)
3 3 Marine (8), Marauder (4), SiegeTank (1), Medivac (2, CaduceusRe- Zealot (5, Charge), Stalker (2, Blink), Colossus (1) 100%
actor)
4 Marine (14), Marauder (7, PunisherGrenades), SiegeTank (2), Medi- Zealot (9, Charge), Stalker (5, Blink), HighTemplar (2, PsiStorm), Failed
vac (3, CaduceusReactor), Viking (2), Ghost (1) Colossus (2, ExtLance), Disruptor (1)
5 Marine (10), Marauder (5), SiegeTank (1), Medivac (2, CaduceusRe- Zealot (6, Charge), Stalker (3, Blink), Colossus (1) 100%
actor)
6 Marine (14), Marauder (7, PunisherGrenades), SiegeTank (2), Medi- Zealot (9, Charge), Stalker (5, Blink), HighTemplar (2, PsiStorm), Failed
vac (3, CaduceusReactor), Viking (2), Ghost (1) Colossus (2, ExtLance), Disruptor (1)
7 Marine (14), Marauder (7, PunisherGrenades), SiegeTank (1), Medi- Zealot (9, Charge), Stalker (4, Blink), Colossus (1, ExtLance) Failed
vac (2, CaduceusReactor), Ghost (1)
1 Marine (5) Zealot (2, Charge) 67%
4 2 Marine (10), Marauder (5), Ghost (2), Medivac (1, CaduceusReactor) Zealot (8, Charge), Stalker (4, Blink), HighTemplar (1, PsiStorm) 100%
3 Marine (15), Marauder (8), Ghost (3), Medivac (2, CaduceusReactor), ~Zealot (12, Charge), Stalker (8, Blink), HighTemplar (2, PsiStorm), Failed
SiegeTank (1), Viking (2) Colossus (1, ExtLance)
1 Marine (5) Zealot (2, Charge) 67%
2 Marine (10), Marauder (5), Medivac (1) Zealot (5, Charge), Stalker (5, Blink), HighTemplar (1, PsiStorm) 67%
5 3 Marine (15), Marauder (8), Ghost (2), Medivac (2), SiegeTank (1) Zealot (10, Charge), Stalker (8, Blink), HighTemplar (2, PsiStorm), Failed
Colossus (1, ExtLance)
4 Marine (12), Marauder (6), Ghost (1), Medivac (1) Zealot (8, Charge), Stalker (6, Blink), HighTemplar (1, PsiStorm) 67%
5 Marine (18), Marauder (10), Ghost (2), Medivac (2), SiegeTank (1), Zealot (12, Charge), Stalker (10, Blink), HighTemplar (2, PsiStorm), 67%
Viking (2) Colossus (1, ExtLance)
6 Final Task (Table[T] Final Task (Table[1] Failed

B COMPLETE CURRICULUM EVOLUTION ACROSS ALL FIVE PATHS

B.1

(STARCRAFT II)

STARCRAFT II MINI GAME MAPS
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playen 1

playen 2

(a) Flat map layout

(b) Terran vs Protoss on Flat

(c) Terran vs Zerg on Flat

Figure 4: Flat map configurations: base layout and unit compositions for different matchups
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player 1

playgr 2

(a) Bush map layout

(b) Terran vs Protoss on Bush

(c) Terran vs Zerg on Bush

Figure 5: Bush map configurations: base layout and unit compositions for different matchups
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player 1

player 2

(a) Corner map layout

(c) Terran vs Zerg on Corner

Figure 6: Corner map configurations: base layout and unit compositions for different matchups
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playan 2

player 1

(a) Main map layout

(c) Terran vs Zerg on Main

Figure 7: Main map configurations: base layout and unit compositions for different matchups
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play&r 2

player 1

(a) Ramp map layout

(c) Terran vs Zerg on Ramp

Figure 8: Ramp map configurations: base layout and unit compositions for different matchups
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C OVERCOOKED DETAILS

C.1 MARL TRAINING CONFIGURATION

For the Overcooked experiments, we employ the E3T (Efficient End-to-End Training) algorithm (Yan et al.|
2023) as our MARL training framework. The training configuration is detailed in Tablem

Table 7: Overcooked MARL training hyperparameters

Parameter Value
Algorithm E3T

Number of agents 2

Episode length 400

Number of environment steps per curriculum 107

PPO epochs 15

Number of mini-batches 1

Rollout threads 100

Evaluation threads 10

Evaluation interval 20 episodes
Entropy Regularization Schedule

Entropy coefficients [0.2,0.05, 0.01]
Entropy coefficient horizons [0, 6 x 106, 107]
Network Architecture

CNN layers [(32, 3x3, stride=1), (64, 3x3, stride=1), (32, 3x3, stride=1)]
Recurrent policy LSTM

Shared policy True

E3T Specific

Epsilon (diversity bonus) 0.25

Weights copy factor 0.1

Random index Enabled
Curriculum-specific

Reward shaping horizon 108

Budget per curriculum 107 timesteps

C.2 CURRICULUM DESIGN FOR OVERCOOKED

The curriculum progression in Overcooked is structured around three key dimensions:

1. Layout Complexity: Starting from simple layouts (e.g., small_corridor) with direct paths be-
tween stations, progressing to complex layouts with obstacles and longer navigation requirements.

2. Order Complexity: Beginning with single-ingredient dishes, advancing to multi-ingredient recipes
requiring precise coordination between agents.

3. Temporal Constraints: Initially allowing unlimited time for order completion, then introducing time
pressure and simultaneous order requirements.

The acceptance criterion P(7|C) = 1 is achieved when all required orders are completed within the episode.
After meeting this criterion, agents can pursue bonus orders to maximize total deliveries. The entropy regu-
larization schedule ensures exploration early in training (high entropy) while converging to more deterministic
policies as training progresses.

For layouts with particular navigation challenges (e.g., small_corridor), we adjust the entropy coefficient
horizons to [0, 8 x 10°, 107] to allow for extended exploration before convergence. The shared policy architec-
ture enables agents to learn cooperative behaviors more efficiently by sharing representations while maintaining
individual action distributions.
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D OVERCOOKED EXPERIMENTAL RESULTS DETAILS

This appendix provides detailed experimental results for the Overcooked environment, showing the complete
curriculum evolution and performance metrics for two different map configurations.

D.1.1 FINAL LAYOUT SPECIFICATION

1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278 Figure 9: overcook mapl
1279

1280

1281 (

1282 "grid": "XXXPX

1283 X 2P
1284 D1x X
O X
1285 XTSXX",
1286 "start_all_orders": [
1287 {"ingredients": ["onion", "tomato"l]},
1288 {"ingredients": ["onion", "onion"]},
1289 {"ingredients": ["onion", "tomato", "tomato"]},
[
[

{"ingredients": ["onion", "onion", "tomato"]},
1290 "2 3 ”. AL 3 n " 3 mw n” 3 AL
1291 {"ingredients": onion", onion", onion"]}
1,

1292 "recipe_value": [10, 10, 20, 20, 20],
1293 "recipe_time": [10, 10, 20, 20, 20]
1294 !}

1295
Grid Legend: X=Wall, P=Pot, D=Dish, O=Onion, T=Tomato, S=Service, 1/2=Agent spawn
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Table 8: Map 1: Curriculum progression and performance metrics

Task Orders Agent() Delivery Agentl Delivery Total Delivery Sparse Reward
Task O 3 11.75 12.33 24.08 239.2
Task 1 4 14.56 14.33 28.89 288.1
Task 2 (Final) 5 14.74 14.36 29.10 290.9
Direct Training 5 11.93 12.18 24.11 240.5

D.1.2 CURRICULUM EVOLUTION RESULTS

D.1.3 DETAILED PERFORMANCE METRICS COMPARISON

Table 9: Map 1: Key performance indicators for final task

Metric EvoCurr (Final)
Agent0 Agentl

Direct Training
Agent0 Agentl

Onion Placement in Pot 15.77
Tomato Placement in Pot 0.31

Useful Dish Pickup 7.81
Soup Pickup 7.68
Cook Actions 7.44
Delivery Actions 7.37
Idle Movement 9.40

15.94
0.32
7.63
7.55
8.67
7.19
8.68

13.38
0.21
6.15
6.31
6.34
5.99
14.90

13.57
0.26
6.34
6.33
7.30
6.11
15.10

D.2 MaAp CONFIGURATION 2

D.2.1 FINAL LAYOUT SPECIFICATION

'ill

Figure 10: overcook map2

{
"grid": "XXXPDPXXX
X 2 X
X XXXXX X
X 1 X
XXXOSTXXX",
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"start_all_orders": [
{"ingredients": ["onion", "tomato"]},
{"ingredients": ["onion", "onion"]},
{"ingredients": ["onion", "tomato", "tomato"]},
{"ingredients": ["onion", "onion", "tomato"]},
{"ingredients": [ "onion", "onion"]}

1,

"recipe_value": [10, 10, 20, 20, 20],

"recipe_time": [10, 10, 20, 20, 20]

}

Grid Legend: X=Wall, P=Pot, D=Dish, O=Onion, T=Tomato, S=Service, 1/2=Agent spawn
D.2.2 CURRICULUM EVOLUTION RESULTS

Table 10: Map 2: Curriculum progression and performance metrics

Task Orders Agent0 Delivery Agentl Delivery Total Delivery Sparse Reward
Task 0 3 7.28 7.25 14.53 290.3
Task 1 5% 7.32 7.28 14.60 291.6
Task 2 (Final) 5 7.82 10.82 18.64 186.2
Direct Training 5 7.40 8.96 16.36 163.4

*Task 1 includes two single-ingredient recipes alongside complex recipes for easier transition
D.2.3 DETAILED PERFORMANCE METRICS COMPARISON

Table 11: Map 2: Key performance indicators for final task

Metric EvoCurr (Final)  Direct Training
Agent0 Agentl Agent0 Agentl

Onion Placement in Pot 7.91 5.95 9.85 9.29
Tomato Placement in Pot 3.17 3.87 0.08 0.07

Useful Dish Pickup 5.45 4.20 4.32 4.81

Soup Pickup 4.12 5.62 4.24 4.79
Cook Actions 5.45 4.85 5.16 4.38
Delivery Actions 3.92 542 3.71 4.49
Size-2 Order Delivery 3.84 527 3.65 4.40
Size-3 Order Delivery 0.07 0.14 0.05 0.08

Idle Movement 14.42 14.21 10.49 11.28
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