
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SWGA: A Distributed Hyperparameter Search
Method for Time Series Prediction Models

Anonymous authors
Paper under double-blind review

Abstract

We propose a distributed hyperparameter search method for time series
prediction models named SWGA (Sliding Window Genetic Algorithm).
Compared to current genetic algorithms for hyperparameter search, our
method has three major advantages: (i) It adopts a configurable sliding
window mechanism to effectively combat overfitting from distribution shifts
inherent in time series data. (ii) It introduces a warm-up stage using Bayesian
optimization-based methods to generate a good initial population. (iii) It
supports distributed hyperparameter search across multi-node computing
clusters, enhancing both scalability and efficiency. To demonstrate SWGA’s
efficacy, we conduct hyperparameter search experiments on time series
datasets from various domains. The experiment results show that our
method consistently finds a hyperparameter configuration that achieves
better performance on out-of-sample time series data compared to the
traditional genetic algorithm. On average, it reduces the out-of-sample loss
by about 56.1%.

1 Introduction

In the realms of machine learning and deep learning, hyperparameter tuning stands as
a cornerstone to effective model training. It is important to tune the hyperparameters
of the model on a validation dataset. First, this adjustment helps minimize the risk
of model overfitting to the training data, which often severely degrades out-of-sample
performance. Second, by fine-tuning hyperparameters on a validation set with a distribution
similar to the training data, the model can achieve better performance on out-of-sample
data with a matching distribution. Lastly, since many hyperparameters pertain to the
model architecture and computational efficiency, optimal configurations can enhance model
efficiency. Consequently, researchers widely adopt hyperparameter tuning across various
machine learning and deep learning domains Vaswani et al. (2017); Dosovitskiy et al. (2020);
Zhang & Yan (2022); Liu et al. (2021); Zhou et al. (2021); Devlin et al. (2018); Arik & Pfister
(2021); Huang et al. (2020).

Time series prediction remains a crucial endeavor in various sectors. Domains such as
energy Hong et al. (2020); Nti et al. (2020); Reneau et al. (2023), finance Fischer & Krauss
(2018), house pricing Xu & Zhang (2021), and medical treatment Prakarsha & Sharma
(2022) heavily rely on predicting future time series values based on historical data. With
the swift advances in machine learning, optimizing performance on unseen data demands
rigorous hyperparameter search. Time series data, characterized by temporal dependencies
and non-stationarity, poses unique challenges. Temporal dependencies mandate models to
discern patterns evolving with time, while non-stationarity implies fluctuating statistical
properties, leading to potential distribution shifts Kim et al. (2021); Fan et al. (2023) and
possible model overfitting Roelofs et al. (2019).

Traditional general-purpose hyperparameter search algorithms do not take into account the
domain knowledge of the time series prediction problem by design. Specifically, many time
series prediction models suffer from non-stationary time series and the temporal distribution
shift in the dataset is a long-lasting problem Du et al. (2021). In this work, we propose

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

a hyperparameter search process that caters for temporal distribution shifts in time series
data.

Addressing these challenges, we present the Sliding Window Genetic Algorithm (SWGA),
a pioneering method tailored for hyperparameter search in time series prediction models.
SWGA offers three innovations: a sliding window technique to mitigate overfitting due
to time series distribution shifts, a warm-up phase that utilizes Bayesian optimization for
crafting a solid initial population, and inherent compatibility with distributed computation
across multi-node clusters.

This paper delves into SWGA’s underlying methodology and assesses its efficacy across
diverse time series datasets, consistently demonstrating its edge over conventional genetic
algorithms in identifying optimal hyperparameters for out-of-sample time series predictions.

There are four major contributions of this paper:

• We introduce a warm-up stage using a lightweight TPE method, enhancing the
initialization of the initial population. Compared to the random initialization
in traditional genetic algorithms, this approach offers a more promising starting
point for subsequent iterations, ultimately guiding the algorithm towards optimal
convergence.

• We unveil a configurable sliding window mechanism for hyperparameter search
tailored for time series datasets, bolstering the search’s resilience against distribution
shifts in time series data.

• We demonstrate an effective way to incorporate the consideration of the distribution
shift in time series into the hyperparameter search process to create a domain-
knowledge-enhanced hyperparameter search method that is better than its general-
purpose counterpart. Using genetic algorithm (GA) as an example in the experiments,
we demonstrated that our proposed way (warm-up and sliding window) can greatly
enhance the base method, GA, into SWGA, a method that gives much better
out-of-sample results for time series prediction models.

• Our algorithm seamlessly integrates with the Ray distributed computation framework
Moritz et al. (2018), making it adaptable to a wide range of parallelism scenarios.

We structure the rest of the paper as follows: Section 2 reviews related works. Section 3
provides the necessary background. Section 4 elaborates on the SWGA methodology. Section
5 outlines our experimental design, datasets, and results. Section 6 is the conclusion of the
paper.

2 Related Work

In this section, we discuss the relevant literature on hyperparameter tuning methods for
time series prediction, covering traditional optimization techniques, distributed computing
approaches, and evolutionary algorithms.

Researchers widely use traditional optimization techniques, such as grid search and random
search Bergstra & Bengio (2012), for hyperparameter tuning in time series prediction models.
Although these methods are conceptually simple, they come with high computational costs
and inefficient exploration of large hyperparameter search spaces. Bayesian optimization
methods, which gained popularity due to their ability to model the performance landscape
and guide the search towards promising regions of the hyperparameter space Snoek et al.
(2012), still demand substantial computational resources for large-scale time series prediction
problems.

To tackle the computational challenges associated with hyperparameter tuning, researchers
propose distributed computing approaches. Some examples include Population-based Training
(PBT) Jaderberg et al. (2017), Asynchronous Successive Halving Algorithm (ASHA) Li et al.
(2020), and Hyperband Li et al. (2017). These methods exploit parallelism to accelerate the
search and find success in various machine learning tasks. But, their full applicability to
time series prediction problems requires further study, and adaptations may be necessary

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

to handle the unique challenges of time series data, such as non-stationarity and temporal
dependencies.

Researchers employ evolutionary algorithms, such as Genetic Algorithms (GAs), for hy-
perparameter optimization in various machine learning tasks Alibrahim & Ludwig (2021)
Elgeldawi et al. (2021). GAs exhibit several attractive properties, such as global search
capabilities and robustness to local optima, making them suitable for complex optimization
problems. The literature contains several distributed GA variants, including Distributed
Genetic Algorithm (DGA) Belding (1995), Island Model Genetic Algorithm Whitley et al.
(1999), and Master-Slave Genetic Algorithm Cantu-Paz & Goldberg (2000). While these
methods apply to a wide range of optimization problems, their application to time series
prediction tasks remains limited.

K-fold cross-validation Kohavi et al. (1995) is a popular technique used for model evaluation
and hyperparameter tuning in machine learning. This method involves partitioning the
dataset into K equally sized folds, where each fold serves as a validation set exactly once,
while the remaining K-1 folds are used for training the model. By averaging the performance
metrics across all K iterations, K-fold cross-validation provides a more robust and reliable
estimate of the model’s generalization performance compared to a single train-test split. This
approach is particularly useful in scenarios where the dataset size is limited, as it maximizes
the usage of available data for both training and evaluation. Moreover, K-fold cross-validation
effectively reduces the risk of overfitting and helps to identify a model that generalizes well
to new, unseen data. Our algorithm may look similar to K-fold cross-validation, but they
are very different.

Ray Moritz et al. (2018) is a distributed computing framework that supports various
distributed computing infrastructures. We integrate it into our algorithm implementation to
enable the distributed hyperparameter search capability.

3 Background

Time series prediction Suppose that we have a multivariate time series with N variates.
It is also a set of N univariate time series {zi1:T0

}Ni=1. There are in total T0 time steps. The
prediction target is the next τ time steps {ziT0+1:T0+τ}Ni=1. We are trying to model:

p(ziT0+1:T0+τ |{zi1:T0
}Ni=1; Φ) =

τ∏
i=1

p(zTi
|{zi1:T0

}Ni=1; Φ)

In this conditional distribution, Φ is the parameter of the prediction model.

Hyperparameter search Consider a machine learning model M characterized by a set
of hyperparameters H = {h1, h2, ..., hn}. Each hyperparameter hi has a domain d(hi) from
which a value can be selected. The goal of hyperparameter search is to find a configuration
C = {c1, c2, ..., cn}, where each ci ∈ d(hi), that optimizes the performance of the model M
on a given dataset. This can be mathematically formulated as:

C∗ = arg min
C∈d(H)

L(M(H = C), D) (1)

Here, L represents a loss function that quantifies the discrepancy between the predictions of
the model M with hyperparameters set to C and the true values in the dataset D. The aim
is to find the hyperparameter configuration C∗ that minimizes this loss.

Distribution shift Time series prediction models often suffer from non-stationarity from
the time series data. The distribution in these data shifts along the time direction. To
mitigate distribution shift, people usually use domain generalization (Li et al. (2018); Muandet
et al. (2013); Wang et al. (2022)) and domain adaptation (Tzeng et al. (2017); Ganin et al.
(2016); Wang et al. (2018)). Domain generalization focuses on learning from the source
domain and hopes to generalize well on the target domain while domain adaptation is to

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

reduce the distribution distance between the source and target domain. They both have
the goal to bridge the distributions of source and target domains. However, our method is
different from these methods in the sense that we address the distribution shift from the
hyperparameter search perspective.

Tree-structured Parzen Estimator The Tree-structured Parzen Estimator (TPE) is a
prominent method for hyperparameter optimization. TPE models the joint distribution p(x, y)
of the hyperparameters x and the objective function y. In contrast to other optimization
techniques that model p(y|x) and then invert this relationship, TPE models p(x|y) and
p(y) directly. TPE divides the hyperparameters into two sets depending on the observed y
values and then generates new candidate hyperparameters from a distribution that favors the
promising set. In doing so, TPE provides a more flexible way of exploring the hyperparameter
space, especially when the distribution of hyperparameters is non-uniform. However, TPE
can be computationally expensive as the number of hyperparameters grows and sensitive to
the choice of the threshold that separates the two sets of hyperparameters. Besides, TPE
runs in a sequential manner. It is hard to run in parallel and utilize the modern multi-node
distributed computing clusters.

4 Methodology

To initialize the first population, rather than using random generation, we use a Tree-
structured Parzen Estimator (TPE) to repeatedly run a small number of trials to generate
the initial population. We call this process the warm-up stage and it provides a better starting
population for the genetic algorithm. To make the hyperparameter search more robust to
the time series’s distribution shift problem and prevent the algorithm from overfitting the
validation set, we create this configurable sliding window mechanism when conducting the
genetic algorithm. We first split a dataset into the training set, validation set, and testing
set according to a fixed ratio. Then, we evenly split the training set into multiple chunks
of the same size. Then, we split the validation set into the same number of chunks. The
hyperparameter search process goes as follows. First, we define a window of a length of a
fixed number of chunks. The window starts from the earliest chunk and slides one chunk
after each iteration of SWGA along the time direction. Starting from the population of the
first generation, at each iteration, SWGA trains the model with each individual config in the
population only on the data within the fixed-length window and does the model validation
on the data chunk right after the window. Then, the window slides along the time dimension
using a fixed stride of one data chunk. The size of each data chunk and the size of the
window are both configurable. Figure 1 shows an example of how SWGA works on a 3-year
time series dataset.

In detail, The entire process of SWGA, also shown by Algorithm 1 - 5, is as follows. First, it
splits the datasets into the training set, validation set, and testing set. In the warm-up stage,
the TPE algorithm runs a small number of trials on the training set and the validations set
to produce one hyperparameter config. This process repeats several times until it generates
enough individuals for the initial population. Then, the genetic algorithm process starts. In
each iteration, it first evaluates each individual in the population and sorts them according
to the ascending fitness value. The fitness value is the trained model’s Root Mean Square
Error (RMSE) or Mean Absolute Error (MAE) on the validation data. Then, based on
the ranking of each individual in the population regarding the fitness value, the algorithm
generates a new population for the next iteration. The population generation process is as
follows. It first creates a set of parents from the top k individuals (low fitness values) and
from the tail 2 individuals of the population. Then, it applies the crossover operator and
mutation operator to the parents to generate the offsprings. The offsprings and the top k
individuals together become the next generation of the population. Lastly, after the final
iteration, the top individual in the population becomes the final winner. SWGA then uses
this configuration to train a model on the original training set and report the RMSE or MAE
on the testing set.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 1: A demonstration of SWGA. From top to bottom, they are the different stages of
the tuning process. In this specific example, the training set is the history time series for
2015 and the validation set is the history time series for 2016. They are both divided into 12
chunks respectively. The test set is the history time series for 2017. In each iteration, there is
a sliding window including in total 13 chunks with 12 as training set and 1 as validation set.
It generates the population on this window for the next iteration. The best configuration
from the final generation is used to obtain the evaluation metrics on the test set.

SWGA variant We also consider a variant of the SWGA. In each iteration, rather than
only using one data chunk right after the training window to validate the model, we use all
the data chunks in the validation set that is not in the window. However, this variant is
much slower and the experiment results show that it does not provide a better performance.
Thus, we do not use this variant to run the experiments in the experiment section.

Since genetic algorithms are natively parallelization-friendly, we also integrate SWGA
with Ray compute framework to support parallelized hyperparameter search on various
computation infrastructures including single-node multi-core and multi-node multi-core.

Algorithm 1 SWGA
1: Raw dataset separates into trn_set, val_set, tst_set
2: Initialize population as an empty list
3: Initialize fitnesses as an empty list
4: for i = 1, 2, . . . ,K do
5: if i == 1 then
6: population0 =

WarmUpStage(trn_set, val_set)
7: trn_set splits into N chunks
8: val_set splits into N chunks
9: end if

10: trn_seti, val_seti = GetDataset(i, trn_set, val_set)
11: populationi =

GenNextPop(populationi−1, fitnessesi−1)
12: for each individual configuration h in populationi do
13: Evaluate the fitness of h and add to fitnessesi
14: end for
15: end for
16: return the config with the best fitness in fitnessesK

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 2 GetDataset(i, trn_set, val_set)
1: trn =

concatenate(trn_set[chunki, . . . , chunki+N−1])
2: val = val_set[chunki+N]
3: return trn, val

Algorithm 3 CrossoverMutate(parent1, parent2)
1: crossover_rate = 0.7
2: mutate_rate = 0.2
3: for each hyperparameter key c in the config space do
4: child[c] = RandomChoice(parent1[c], parent2[c])
5: child[c] = RandomChoice(child[c], default_config[c]) # mutation
6: end for
7: return child

Algorithm 4 WarmUpStage(trn_set, val_set)

1: Initialize init_pop as an empty list
2: while size_of(init_pop) < POPULATION_SIZE do
3: best_config = TPE(num_trials=10)
4: Add best_config to init_pop
5: end while
6: return init_pop

Algorithm 5 GenNextPop(populationi−1, fitnessesi−1)

1: Get topk_selection from populationi−1 according to fitness in fitnessesi−1

2: Get tail2_selection from populationi−1 according to fitness in fitnessesi−1

3: Initialize parent_pairs as empty list
4: Initialize next_pop as empty list
5: for i = 1, 3, 5,. . . , k-1 (two elements each time) do
6: Append (topk_selection[i], topk_selection[i+ 1]) to parent_pairs
7: end for
8: Append (tail2_selection[0], tail2_selection[1]) to parent_pairs
9: for each parent_pair in parent_pairs do

10: child = CrossoverMutate(parent_pair)
11: Add child to next_pop
12: end for
13: return next_pop ∪ topk_selection

5 Experiment

To demonstrate the efficacy of our methodology, we conduct two tasks in our experiments.

Task 1 In this task, we focus on showcasing the effectiveness of our proposed methodology
by ablation studies. We use SWGA, GA and SWGA* (SWGA without the warm-up stage)
to search for hyperparameters for 5 common time series prediction model architectures
respectively. Then, we compare the out-of-sample prediction performance of these models.
Through this task, we show that both our proposed warm-up stage and the sliding window
mechanism are effective and our proposed SWGA method indeed has a performance gain
compared to the base GA method. The results are in Table 1 and 2.

Task 2 In this task, we demonstrate SWGA’s values in real applications. We use SWGA
to search for hyperparameters for three latest SOTA time series prediction models in the
literature including iTransformer Liu et al. (2023), DLinear Zeng et al. (2023) and PatchTST
Nie et al. (2022). We show these models’ immediate improvements regarding the out-of-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

sample prediction performance on the same long-term forecasting task, training, and testing
dataset as the original setups in the literature.

Experiment Configurations We conduct all the experiments on a Ray cluster node
with 48 CPU cores and 8 Nvidia RTX 2080Ti GPUs. For Task 1, we use SWGA to do
a hyperparameter search on 4 different prediction models on 10 multivariate time series
datasets from different domains. For each dataset, we first split the dataset using the 8:1:1
ratio into the training set, validation set, and testing set. Then, we split the training set and
validation set respectively into 12 trunks. We use seven historical timesteps to predict one
timestep ahead. Each experiment repeats 5 times and we report the mean RMSE and mean
MAE. Since SWGA has the sliding window mechanism that increases the number of trials
on different hyperparameter configurations, to ensure that there is a fair comparison, we
make sure all the compared methods including the baseline have the same total number of
trials in the hyperparameter tuning process. To obtain the RMSE and the MAE, we first use
the hyperparameters that the hyperparameter search method finds to initialize the model.
Then, we train the model on the training set and test the model on the test set. We report
the model’s RMSE and MAE on the test set. For Task 2, we ensure that all models have
the same settings as that in Table 1 of the iTransformer Liu et al. (2023) paper. The only
difference is that we use SWGA to do hyperparameter search. The hyperparameter search
space we use is in A.1

Table 1: Comparison of RMSEs between SWGA and GA for different models and datasets.
SWGA achieves the best results on most of the models and datasets. SWGA* represents the
version of SWGA that does not use TPE to generate the initial population. Instead, it uses
the random sampling method.

Model Method
Dataset

Beijing
PM2.5 SML2010 Appliance

Energy

Individual
Household
Electricity

Exchange ETTh1 ETTh2 ETTm1 ETTm2 Traffic

Catboost
SWGA 0.071 0.055 0.069 0.032 0.015 0.034 0.056 0.027 0.015 0.015
SWGA* 0.073 0.056 0.074 0.022 0.015 0.073 0.056 0.074 0.022 0.039
GA 0.081 0.137 0.070 0.078 0.080 0.062 0.117 0.038 0.065 0.067

LightGBM
SWGA 0.079 0.159 0.068 0.062 0.051 0.072 0.095 0.051 0.052 0.051
SWGA* 0.088 0.164 0.078 0.065 0.051 0.071 0.093 0.070 0.085 0.054
GA 0.080 0.137 0.078 0.078 0.078 0.082 0.108 0.073 0.096 0.067

XGBoost
SWGA 0.087 0.136 0.108 0.070 0.049 0.080 0.100 0.108 0.050 0.078
SWGA* 0.091 0.159 0.147 0.052 0.052 0.091 0.159 0.147 0.052 0.052
GA 0.414 0.121 0.440 0.426 0.208 0.081 0.145 0.075 0.132 0.376

LSTM
SWGA 0.087 0.265 0.092 0.065 0.013 0.087 0.265 0.092 0.065 0.024
SWGA* 0.198 0.349 0.180 0.568 0.017 0.198 0.369 0.180 0.568 0.023
GA 0.168 0.636 0.197 0.176 0.260 0.737 0.649 0.593 0.656 0.110

Transformer
SWGA 0.071 0.121 0.071 0.058 0.109 0.056 0.040 0.078 0.109 0.042
SWGA* 0.072 0.197 0.089 0.084 0.095 0.118 0.181 0.102 0.143 0.084
GA 0.608 0.879 0.707 0.911 0.730 1.312 0.990 0.732 1.142 0.578

Datasets In the experiments, we use ten real-world datasets: (i) Beijing PM2.5: This is
an hourly multivariate time series dataset ranging from 2010 to 2014. It has (ii) SML2010:
A month of home monitoring multivariate time series data of resolution of 15 minutes. (iii)
Appliance Energy: Four months of energy use multivariate time series dataset of 10-minute
resolution. (iv) Individual household electricity: Four years electricity use multivariate time
series dataset of 1-minute resolution. (v) Exchange: It is a multivariate dataset including
daily exchange rates in eight different countries from 1990 to 2010. (vi) ETT (Electricity
Transformer Temperature) datasets are multivariate time series. There are two collection
sources of them with labels 1 and 2. There are two collection resolutions that are 1 hour and
15 minutes. So, there are four specific datasets in this category: ETTh1, ETTh2, ETTm1,
and ETTm2. (vii) Traffic: A multivariate dataset recording the hourly road occupancy rates
from various sensors on freeways in San Francisco from 2016 to 2018.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Comparison of MAEs between SWGA and GA for different models and datasets.
SWGA achieves the best results on most of the models and datasets.

Model Method
Dataset

Beijing
PM2.5 SML2010 Appliance

Energy

Individual
Household
Electricity

Exchange ETTh1 ETTh2 ETTm1 ETTm2 Traffic

Catboost
SWGA 0.018 0.039 0.026 0.015 0.045 0.058 0.023 0.053 0.023 0.016
SWGA* 0.034 0.116 0.027 0.016 0.054 0.143 0.180 0.024 0.132 0.014
GA 0.062 0.117 0.038 0.065 0.028 0.070 0.092 0.060 0.082 0.058

LightGBM
SWGA 0.067 0.120 0.050 0.063 0.051 0.068 0.077 0.045 0.057 0.051
SWGA* 0.072 0.114 0.051 0.052 0.052 0.067 0.082 0.047 0.058 0.053
GA 0.077 0.112 0.045 0.068 0.074 0.071 0.092 0.056 0.089 0.057

XGBoost
SWGA 0.089 0.106 0.313 0.022 0.042 0.048 0.045 0.045 0.042 0.034
SWGA* 0.080 0.110 0.108 0.275 0.059 0.049 0.063 0.049 0.060 0.199
GA 0.410 0.103 0.418 0.416 0.074 0.067 0.114 0.067 0.108 0.371

LSTM
SWGA 0.018 0.040 0.029 0.016 0.014 0.048 0.021 0.038 0.015 0.016
SWGA* 0.036 0.059 0.025 0.017 0.014 0.197 0.080 0.128 0.119 0.024
GA 0.236 0.665 0.217 0.089 0.288 0.491 0.569 0.719 0.583 0.152

Transformer
SWGA 0.069 0.109 0.056 0.053 0.093 0.083 0.105 0.061 0.072 0.060
SWGA* 0.076 0.170 0.051 0.065 0.125 0.163 0.121 0.082 0.084 0.156
GA 0.532 0.612 0.790 0.434 0.770 0.790 0.811 1.210 1.229 0.993

Out-of-sample performance (task 1) As we can see from Table 1, SWGA consistently
outperforms the traditional genetic algorithm on most of the datasets and different models.
On average, SWGA reduces the RMSE on the out-of-sample testing set by 54.6% compared
to GA. SWGA* is the SWGA without the warm-up stage. Instead, SWGA* uses the random
sampling method to generate the initial population as the traditional genetic algorithm. On
average, SWGA* reduces the RMSE on the out-of-sample testing set by 34.0% compared
to GA. By comparing the results of SWGA* and the results of GA, we can know that
the configurable sliding window mechanism indeed brings a significant reduction to the
out-of-sample RMSE. By comparing the results of SWGA and SWGA*, we can see that the
warm-up stage contributes additional reduction to the RMSE on top of the sliding window’s
contribution in most cases.

Table 2’s results are consistent with Table 1. SWGA has the lowest MAE on most of the
datasets. On average, SWGA has about a 57.6% reduction compared to the MAE of GA.
SWGA* reduces the MAE by about 42.6% compared to GA. In both the MAE and RMSE
metrics, SWGA yields a significant improvement over GA.

Besides, SWGA shows a consistent advantage in both Table 1 2 across various kinds of popular
time series prediction model architectures including tree models (Catboost, LightGBM,
XGBoost), recurrent models (LSTM), and attention-based models (Transformer). This
further demonstrates SWGA’s advantage and application value.

Table 3: The improvement of results on testing dataset of three SOTA time series forecasting
models by using SWGA to search for a better set of hyperparameters. We calculate and
show the average percentage of the reduction of the mean square error (MSE) after using
SWGA to do hyperparameter search. We can see that Each of them has a considerable
amount of free improvement without any change to their dataset and model architecture.

Model Dataset

ETTh1 Weather ETTm1 Exchange ETTh2 ETTm2

iTransformer 1.92% 1.90% 2.20% 1.14% 0.80% 4.00%

DLinear 0.80% 2.84% 5.50% 1.30% 4.25% 6.05%

PatchTST 6.46% 1.14% 3.30% 6.13% 1.60% 3.39%

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Catboost

2 3 4 5 6 12 24
Number of Chunks N

0.050

0.055

0.060

0.065

0.070

0.075

0.080

R
M

SE
 L

os
s

ETTh1
ETTh2
traffic
exchange

(b) LightGBM

2 3 4 5 6 12 24
Number of Chunks N

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

R
M

SE
 L

os
s

ETTh1
ETTh2
traffic
exchange

(c) XGBoost

2 3 4 5 6 12 24
Number of Chunks N

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
R

M
SE

 L
os

s
ETTh1
ETTh2
traffic
exchange

(d) LSTM

5 10 15 20 25
Number of Chunks N

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

RM
SE

 L
os

s

ETTh1
ETTh2
traffic
exchange

(e) Transformer

Figure 2: SWGA testing loss (RMSE) for different numbers of chunks (N).

Improvement on latest SOTA time series forecasting models (task 2) As we
can see from Table 3, by using SWGA to do hyperparameter search on three SOTA time
series forecasting models, without other additional modifications, we immediately get an
improvement as much as 6.46% of average reduction of MSE. This demonstrates that a
considerable amount of additional testing performance of time series predictions models is
achievable by using a good set of hyperparameters. Besides, it demonstrates our SWGA
method’s capability of gaining such addition testing performance on a wide range of existing
SOTA models in an easy plug-and-play manner.

Number of chunks The above experiments set the number of training chunks N to 12
and it already produces a much better performance than the baseline GA. To investigate the
effect of different Ns on the out-of-sample testing loss, we conduct experiments adjusting
the value of N in SWGA. Figure 2 shows that different models and datasets have their
own optimal N values. For instance, for XGBoost, SWGA with N = 6 exhibits the best
out-of-sample RMSE for all four of those datasets. The different effects from N further prove
that our sliding window mechanism is meaningful and necessary for time series data.

Scalability To examine how varying the number of distributed computer nodes impacts
optimisation time. We conduct experiments by adjusting the number of nodes in SWGA. All
experiments in this section are conducted using the ETTh1 dataset. As depicted in Figure 3,
we observe a reduction in optimization time with an increase in the number of nodes, and
this relationship appeared nearly linear. The results demonstrate the good scalability and
efficiency of our proposed framework.

6 Conclusion

We propose SWGA, a distributed genetic algorithm for hyperparameter search for time series
data. Compared to a regular genetic-based algorithm that uses random initialization to
initialize the initial population, we propose a warm-up stage that uses TPE with a small
number of trials to generate the initial population to provide a better starting point. To
combat the distribution shift challenge on time series datasets, we propose a configurable
sliding window mechanism. Besides, SWGA natively supports parallelized hyperparameter

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6
Number of Nodes

2000

2200

2400

2600

2800

3000

3200

Ti
m

e
(s

)

Figure 3: When the number of computation nodes increases, the optimization time decreases
nearly linearly.

search on a Ray cluster. The experiment results on various models and time series datasets
from different domains show that SWGA has a huge performance gain over the vanilla genetic
algorithm. On average, there is a decrease of roughly 57.6% in the MAE and 54.6% in the
RMSE when using SWGA in comparison to GA. Additionally, we also demonstrate the good
scalability of SWGA.

Boarder Impact. This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none which we feel
must be specifically highlighted here.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

References
Hussain Alibrahim and Simone A Ludwig. Hyperparameter optimization: Comparing genetic

algorithm against grid search and bayesian optimization. In 2021 IEEE Congress on
Evolutionary Computation (CEC), pp. 1551–1559. IEEE, 2021.

Sercan Ö Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 6679–6687,
2021.

Theodore C Belding. The distributed genetic algorithm revisited. arXiv preprint adap-
org/9504007, 1995.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of machine learning research, 13(2), 2012.

Erick Cantu-Paz and David E Goldberg. Efficient parallel genetic algorithms: theory and
practice. Computer methods in applied mechanics and engineering, 186(2-4):221–238, 2000.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Yuntao Du, Jindong Wang, Wenjie Feng, Sinno Pan, Tao Qin, Renjun Xu, and Chongjun
Wang. Adarnn: Adaptive learning and forecasting of time series. In Proceedings of the 30th
ACM international conference on information & knowledge management, pp. 402–411,
2021.

Enas Elgeldawi, Awny Sayed, Ahmed R Galal, and Alaa M Zaki. Hyperparameter tuning for
machine learning algorithms used for arabic sentiment analysis. In Informatics, volume 8,
pp. 79. Multidisciplinary Digital Publishing Institute, 2021.

Wei Fan, Pengyang Wang, Dongkun Wang, Dongjie Wang, Yuanchun Zhou, and Yanjie Fu.
Dish-ts: A general paradigm for alleviating distribution shift in time series forecasting. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 7522–7529,
2023.

Thomas Fischer and Christopher Krauss. Deep learning with long short-term memory
networks for financial market predictions. European journal of operational research, 270
(2):654–669, 2018.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural
networks. Journal of machine learning research, 17(59):1–35, 2016.

Tao Hong, Pierre Pinson, Yi Wang, Rafał Weron, Dazhi Yang, and Hamidreza Zareipour.
Energy forecasting: A review and outlook. IEEE Open Access Journal of Power and
Energy, 7:376–388, 2020.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular
data modeling using contextual embeddings. arXiv preprint arXiv:2012.06678, 2020.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue,
Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population
based training of neural networks. arXiv preprint arXiv:1711.09846, 2017.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo.
Reversible instance normalization for accurate time-series forecasting against distribution
shift. In International Conference on Learning Representations, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation and
model selection. In Ijcai, volume 14, pp. 1137–1145. Montreal, Canada, 1995.

Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. Domain generalization with
adversarial feature learning. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 5400–5409, 2018.

Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Jonathan Ben-Tzur,
Moritz Hardt, Benjamin Recht, and Ameet Talwalkar. A system for massively parallel
hyperparameter tuning. Proceedings of Machine Learning and Systems, 2:230–246, 2020.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar.
Hyperband: A novel bandit-based approach to hyperparameter optimization. The Journal
of Machine Learning Research, 18(1):6765–6816, 2017.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram
Dustdar. Pyraformer: Low-complexity pyramidal attention for long-range time series
modeling and forecasting. In International conference on learning representations, 2021.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng
Long. itransformer: Inverted transformers are effective for time series forecasting. arXiv
preprint arXiv:2310.06625, 2023.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric
Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. Ray: A
distributed framework for emerging {AI} applications. In 13th USENIX symposium on
operating systems design and implementation (OSDI 18), pp. 561–577, 2018.

Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. Domain generalization via
invariant feature representation. In International conference on machine learning, pp.
10–18. PMLR, 2013.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is
worth 64 words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730,
2022.

Isaac Kofi Nti, Moses Teimeh, Owusu Nyarko-Boateng, and Adebayo Felix Adekoya. Electric-
ity load forecasting: a systematic review. Journal of Electrical Systems and Information
Technology, 7(1):1–19, 2020.

Kandukuri Ratna Prakarsha and Gaurav Sharma. Time series signal forecasting using
artificial neural networks: An application on ecg signal. Biomedical Signal Processing and
Control, 76:103705, 2022.

Alex Reneau, Jerry Yao-Chieh Hu, Chenwei Xu, Weijian Li, Ammar Gilani, and Han Liu. Fea-
ture programming for multivariate time series prediction. arXiv preprint arXiv:2306.06252,
2023.

Rebecca Roelofs, Vaishaal Shankar, Benjamin Recht, Sara Fridovich-Keil, Moritz Hardt,
John Miller, and Ludwig Schmidt. A meta-analysis of overfitting in machine learning.
Advances in Neural Information Processing Systems, 32, 2019.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of
machine learning algorithms. Advances in neural information processing systems, 25, 2012.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative
domain adaptation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 7167–7176, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jindong Wang, Wenjie Feng, Yiqiang Chen, Han Yu, Meiyu Huang, and Philip S Yu. Visual
domain adaptation with manifold embedded distribution alignment. In Proceedings of the
26th ACM international conference on Multimedia, pp. 402–410, 2018.

Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen,
Wenjun Zeng, and S Yu Philip. Generalizing to unseen domains: A survey on domain
generalization. IEEE transactions on knowledge and data engineering, 35(8):8052–8072,
2022.

Darrell Whitley, Soraya Rana, and Robert B Heckendorn. The island model genetic algorithm:
On separability, population size and convergence. Journal of computing and information
technology, 7(1):33–47, 1999.

Xiaojie Xu and Yun Zhang. House price forecasting with neural networks. Intelligent Systems
with Applications, 12:200052, 2021.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37,
pp. 11121–11128, 2023.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension depen-
dency for multivariate time series forecasting. In The Eleventh International Conference
on Learning Representations, 2022.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115,
2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A Appendix

A.1 Hyperparameter

The hyperparameters we tuned for each model are as follows.

Table 4: Hyperparameters For Models

Model Hyperparameter Space

LSTM

learning_rate [1e-6, 1e-1]
num_layers [4, 64]
hidden_size [4, 128]
max_epochs [5, 100]
batch_size {16, 32, 64, 128, 256, 512}
dropout [0.1, 0.5]

Catboost

learning_rate {1e-2, 1e-3, 1e-4, 1e-5, 1e-6}
iterations [5, 80]
depth [4, 12]
random_strength [1, 8]
l2_leaf_reg [1e-3, 1e3]
bagging_temperature [0, 10]

Lightgbm

learning_rate {1e-2, 1e-3, 1e-4, 1e-5, 1e-6}
n_estimators {5, 10, 20, 40, 80}
max_depth {4, 6, 8, 10]}
lambda_l2 {16, 32, 64, 128}

XGBoost

learning_rate {1e-2, 1e-3, 1e-4, 1e-5, 1e-6}
n_estimators [5, 80]
max_depth [4, 12]
reg_lambda [1e-3, 1e3]

iTransformer
learning_rate {1e-2, 1e-3, 1e-4, 1e-5, 1e-6}
d_model {32, 64, 96, 128, 160, 192, 224, 256 }
encoder_layers [1, 10]

DLinear
learning_rate {1e-2, 1e-3, 1e-4, 1e-5, 1e-6}
d_model {32, 64, 96, 128, 160, 192, 224, 256 }
encoder_layers [1, 10]

PatchTST
learning_rate {1e-2, 1e-3, 1e-4, 1e-5, 1e-6}
d_model {32, 64, 96, 128, 160, 192, 224, 256 }
encoder_layers [1, 10]

A.2 Dataset Information

We use 10 different multivariate time series datasets in the paper. They are all commonly used
time series datasets. These datasets are from different domains, of different resolutions, and
have different numbers of variates. We chose such diverse multivariate time series datasets
to demonstrate our method’s general efficacy. The following are some brief introductions
and a table including the details of the datasets we used.

Beijing PM2.51 includes hourly multivariate data from 2010 to 2014. SML20102 is a month
of home monitoring multivariate data of the resolution of 15 minutes. Appliance Energy3

has 4 months of energy use data of 10-minute resolution. Individual Household Electricity4

1https://archive.ics.uci.edu/dataset/381/beijing+pm2+5+data
2https://archive.ics.uci.edu/dataset/274/sml2010
3https://archive.ics.uci.edu/dataset/374/appliances+energy+prediction
4https://archive.ics.uci.edu/dataset/235/

individual+household+electric+power+consumption

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

is 4 years of electricity use. The Exchange dataset5 includes daily exchange rates in eight
different countries from 1990 to 2016. The ETT(Electricity Transformer Temperature)
dataset6 datasets are multivariate time series. There are two collection sources of them with
labels 1 and 2. There are two collection resolutions that are 1 hour and 15 minutes. So,
there are four specific datasets in this category: ETTh1, ETTh2, ETTm1, and ETTm2.
The Traffic dataset7 consists of hourly road occupancy rates from California’s Department
of Transportation on San Francisco Bay area freeways. All datasets are split into training,
validation, and test sets in an 8:1:1 ratio chronologically.

Table 5: Dataset Details

Dataset Number of Samples Number of Variates

Beijing PM2.5 43824 13
SML2010 4137 24
AE 19735 29
IHE 2075259 9
Exchange 7589 8
ETTh1 17421 7
ETTh2 17421 7
ETTm1 69681 7
ETTm2 69681 7
Traffic 17544 862

(AE: Appliance Energy, IHE: Individual Household Electricity)

A.3 Computation Hardware and Software

All experiments are conducted on a cluster (except the distributed compute node experiment),
where each node has 8 NVIDIA GEFORCE RTX 2080 Ti GPUs and 4 12-core Intel XEON
Silver 4214 @ 2.20GHz. The total RAM is 790GB. The operating system is Ubuntu 18.04.
The random seed we used was {1, 2, 5, 10, 24}. The major software and framework we used
are PyTorch8, scikit-learn9, and Ray10.

For the scalability experiments, the computing setup consists of computation nodes equipped
with 16 Intel(R) Xeon(R) Gold 6230R CPUs and 1 A100 GPU each, with a combined RAM
capacity of 1024G.

A.4 Optimization Dynamics

We conduct experiments to show the optimization dynamics of the baseline, GA algorithm
on the four models on those four different datasets. Figure 4 and Figure 5 have three major
takeaways: (i) For all four models, on most of the datasets, SWGA is able to reach a much
lower out-of-sample testing loss compared to the baseline GA. (ii) SWGA’s out-of-sample
testing loss decreases in a smoother way while the baseline GA’s loss optimization process is
much more volatile bouncing up and down. This indicates that it is safer to use the tuned
hyperparameter configuration from SWGA compared to that from the baseline GA where
there is a higher chance that the tuned configuration is on the out-of-sample testing loss peak
that bounces up from a previous local minimum. (iii) In some cases such as the XGBoost
case, the out-of-sample loss from the base GA fails to decrease properly while the SWGA is
able to.

5https://github.com/laiguokun/multivariate-time-series-data
6https://github.com/zhouhaoyi/ETDataset
7http://pems.dot.ca.gov
8https://pytorch.org/
9https://scikit-learn.org/stable/

10https://www.ray.io/

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0 250 500 750 1000 1250 1500 1750 2000
Generation Number

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

RM
SE

 L
os

s

PM2.5
SML2010
Appliance
Individual

0 250 500 750 1000 1250 1500 1750 2000
Generation Number

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

RM
SE

 L
os

s

PM2.5
SML2010
Appliance
Individual

(a) Catboost (b) LightGBM

0 250 500 750 1000 1250 1500 1750 2000
Generation Number

0.15

0.20

0.25

0.30

0.35

0.40

RM
SE

 L
os

s

PM2.5
SML2010
Appliance
Individual

0 250 500 750 1000 1250 1500 1750 2000
Generation Number

0.2

0.4

0.6

0.8

RM
SE

 L
os

s

PM2.5
SML2010
Appliance
Individual

(c) XGBoost (d) LSTM

Figure 4: RMSE loss of the final model on the out-of-sample testing set after using the GA
to search for hyperparameters. It shows the results after GA runs for different number of
generations.

0 50 100 150 200 250 300 350 400
Generation Number

0.03

0.04

0.05

0.06

0.07

0.08

RM
SE

 L
os

s

PM2.5
SML2010
Appliance
Individual

0 50 100 150 200 250 300 350 400
Generation Number

0.06

0.08

0.10

0.12

0.14

0.16

RM
SE

 L
os

s

PM2.5
SML2010
Appliance
Individual

(a) Catboost (b) LightGBM

0 50 100 150 200 250 300 350 400
Generation Number

0.06

0.08

0.10

0.12

0.14

RM
SE

 L
os

s

PM2.5
SML2010
Appliance
Individual

0 50 100 150 200 250 300 350 400
Generation Number

0.015

0.020

0.025

0.030

0.035

0.040

0.045

RM
SE

 L
os

s

PM25
SML2010
energy
individual

(c) XGBoost (d) LSTM

Figure 5: RMSE loss of the final model on the out-of-sample testing set after using SWGA
to search for hyperparameters. It shows the results after SWGA runs for different numbers
of generations.

16

	Introduction
	Related Work
	Background
	Methodology
	Experiment
	Conclusion
	Appendix
	Hyperparameter
	Dataset Information
	Computation Hardware and Software
	Optimization Dynamics

