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Abstract

We propose a distributed hyperparameter search method for time series
prediction models named SWGA (Sliding Window Genetic Algorithm).
Compared to current genetic algorithms for hyperparameter search, our
method has three major advantages: (i) It adopts a configurable sliding
window mechanism to effectively combat overfitting from distribution shifts
inherent in time series data. (ii) It introduces a warm-up stage using Bayesian
optimization-based methods to generate a good initial population. (iii) It
supports distributed hyperparameter search across multi-node computing
clusters, enhancing both scalability and efficiency. To demonstrate SWGA’s
efficacy, we conduct hyperparameter search experiments on time series
datasets from various domains. The experiment results show that our
method consistently finds a hyperparameter configuration that achieves
better performance on out-of-sample time series data compared to the
traditional genetic algorithm. On average, it reduces the out-of-sample loss
by about 56.1%.

1 Introduction

In the realms of machine learning and deep learning, hyperparameter tuning stands as
a cornerstone to effective model training. It is important to tune the hyperparameters
of the model on a validation dataset. First, this adjustment helps minimize the risk
of model overfitting to the training data, which often severely degrades out-of-sample
performance. Second, by fine-tuning hyperparameters on a validation set with a distribution
similar to the training data, the model can achieve better performance on out-of-sample
data with a matching distribution. Lastly, since many hyperparameters pertain to the
model architecture and computational efficiency, optimal configurations can enhance model
efficiency. Consequently, researchers widely adopt hyperparameter tuning across various
machine learning and deep learning domains Vaswani et al. (2017); Dosovitskiy et al. (2020);
Zhang & Yan (2022); Liu et al. (2021); Zhou et al. (2021); Devlin et al. (2018); Arik & Pfister
(2021); Huang et al. (2020).

Time series prediction remains a crucial endeavor in various sectors. Domains such as
energy Hong et al. (2020); Nti et al. (2020); Reneau et al. (2023), finance Fischer & Krauss
(2018), house pricing Xu & Zhang (2021), and medical treatment Prakarsha & Sharma
(2022) heavily rely on predicting future time series values based on historical data. With
the swift advances in machine learning, optimizing performance on unseen data demands
rigorous hyperparameter search. Time series data, characterized by temporal dependencies
and non-stationarity, poses unique challenges. Temporal dependencies mandate models to
discern patterns evolving with time, while non-stationarity implies fluctuating statistical
properties, leading to potential distribution shifts Kim et al. (2021); Fan et al. (2023) and
possible model overfitting Roelofs et al. (2019).

Traditional general-purpose hyperparameter search algorithms do not take into account the
domain knowledge of the time series prediction problem by design. Specifically, many time
series prediction models suffer from non-stationary time series and the temporal distribution
shift in the dataset is a long-lasting problem Du et al. (2021). In this work, we propose
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a hyperparameter search process that caters for temporal distribution shifts in time series
data.

Addressing these challenges, we present the Sliding Window Genetic Algorithm (SWGA),
a pioneering method tailored for hyperparameter search in time series prediction models.
SWGA offers three innovations: a sliding window technique to mitigate overfitting due
to time series distribution shifts, a warm-up phase that utilizes Bayesian optimization for
crafting a solid initial population, and inherent compatibility with distributed computation
across multi-node clusters.

This paper delves into SWGA’s underlying methodology and assesses its efficacy across
diverse time series datasets, consistently demonstrating its edge over conventional genetic
algorithms in identifying optimal hyperparameters for out-of-sample time series predictions.

There are four major contributions of this paper:

• We introduce a warm-up stage using a lightweight TPE method, enhancing the
initialization of the initial population. Compared to the random initialization
in traditional genetic algorithms, this approach offers a more promising starting
point for subsequent iterations, ultimately guiding the algorithm towards optimal
convergence.

• We unveil a configurable sliding window mechanism for hyperparameter search
tailored for time series datasets, bolstering the search’s resilience against distribution
shifts in time series data.

• We demonstrate an effective way to incorporate the consideration of the distribution
shift in time series into the hyperparameter search process to create a domain-
knowledge-enhanced hyperparameter search method that is better than its general-
purpose counterpart. Using genetic algorithm (GA) as an example in the experiments,
we demonstrated that our proposed way (warm-up and sliding window) can greatly
enhance the base method, GA, into SWGA, a method that gives much better
out-of-sample results for time series prediction models.

• Our algorithm seamlessly integrates with the Ray distributed computation framework
Moritz et al. (2018), making it adaptable to a wide range of parallelism scenarios.

We structure the rest of the paper as follows: Section 2 reviews related works. Section 3
provides the necessary background. Section 4 elaborates on the SWGA methodology. Section
5 outlines our experimental design, datasets, and results. Section 6 is the conclusion of the
paper.

2 Related Work

In this section, we discuss the relevant literature on hyperparameter tuning methods for
time series prediction, covering traditional optimization techniques, distributed computing
approaches, and evolutionary algorithms.

Researchers widely use traditional optimization techniques, such as grid search and random
search Bergstra & Bengio (2012), for hyperparameter tuning in time series prediction models.
Although these methods are conceptually simple, they come with high computational costs
and inefficient exploration of large hyperparameter search spaces. Bayesian optimization
methods, which gained popularity due to their ability to model the performance landscape
and guide the search towards promising regions of the hyperparameter space Snoek et al.
(2012), still demand substantial computational resources for large-scale time series prediction
problems.

To tackle the computational challenges associated with hyperparameter tuning, researchers
propose distributed computing approaches. Some examples include Population-based Training
(PBT) Jaderberg et al. (2017), Asynchronous Successive Halving Algorithm (ASHA) Li et al.
(2020), and Hyperband Li et al. (2017). These methods exploit parallelism to accelerate the
search and find success in various machine learning tasks. But, their full applicability to
time series prediction problems requires further study, and adaptations may be necessary
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to handle the unique challenges of time series data, such as non-stationarity and temporal
dependencies.

Researchers employ evolutionary algorithms, such as Genetic Algorithms (GAs), for hy-
perparameter optimization in various machine learning tasks Alibrahim & Ludwig (2021)
Elgeldawi et al. (2021). GAs exhibit several attractive properties, such as global search
capabilities and robustness to local optima, making them suitable for complex optimization
problems. The literature contains several distributed GA variants, including Distributed
Genetic Algorithm (DGA) Belding (1995), Island Model Genetic Algorithm Whitley et al.
(1999), and Master-Slave Genetic Algorithm Cantu-Paz & Goldberg (2000). While these
methods apply to a wide range of optimization problems, their application to time series
prediction tasks remains limited.

K-fold cross-validation Kohavi et al. (1995) is a popular technique used for model evaluation
and hyperparameter tuning in machine learning. This method involves partitioning the
dataset into K equally sized folds, where each fold serves as a validation set exactly once,
while the remaining K-1 folds are used for training the model. By averaging the performance
metrics across all K iterations, K-fold cross-validation provides a more robust and reliable
estimate of the model’s generalization performance compared to a single train-test split. This
approach is particularly useful in scenarios where the dataset size is limited, as it maximizes
the usage of available data for both training and evaluation. Moreover, K-fold cross-validation
effectively reduces the risk of overfitting and helps to identify a model that generalizes well
to new, unseen data. Our algorithm may look similar to K-fold cross-validation, but they
are very different.

Ray Moritz et al. (2018) is a distributed computing framework that supports various
distributed computing infrastructures. We integrate it into our algorithm implementation to
enable the distributed hyperparameter search capability.

3 Background

Time series prediction Suppose that we have a multivariate time series with N variates.
It is also a set of N univariate time series {zi1:T0

}Ni=1. There are in total T0 time steps. The
prediction target is the next τ time steps {ziT0+1:T0+τ}Ni=1. We are trying to model:

p(ziT0+1:T0+τ |{zi1:T0
}Ni=1; Φ) =

τ∏
i=1

p(zTi
|{zi1:T0

}Ni=1; Φ)

In this conditional distribution, Φ is the parameter of the prediction model.

Hyperparameter search Consider a machine learning model M characterized by a set
of hyperparameters H = {h1, h2, ..., hn}. Each hyperparameter hi has a domain d(hi) from
which a value can be selected. The goal of hyperparameter search is to find a configuration
C = {c1, c2, ..., cn}, where each ci ∈ d(hi), that optimizes the performance of the model M
on a given dataset. This can be mathematically formulated as:

C∗ = arg min
C∈d(H)

L(M(H = C), D) (1)

Here, L represents a loss function that quantifies the discrepancy between the predictions of
the model M with hyperparameters set to C and the true values in the dataset D. The aim
is to find the hyperparameter configuration C∗ that minimizes this loss.

Distribution shift Time series prediction models often suffer from non-stationarity from
the time series data. The distribution in these data shifts along the time direction. To
mitigate distribution shift, people usually use domain generalization (Li et al. (2018); Muandet
et al. (2013); Wang et al. (2022)) and domain adaptation (Tzeng et al. (2017); Ganin et al.
(2016); Wang et al. (2018)). Domain generalization focuses on learning from the source
domain and hopes to generalize well on the target domain while domain adaptation is to
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reduce the distribution distance between the source and target domain. They both have
the goal to bridge the distributions of source and target domains. However, our method is
different from these methods in the sense that we address the distribution shift from the
hyperparameter search perspective.

Tree-structured Parzen Estimator The Tree-structured Parzen Estimator (TPE) is a
prominent method for hyperparameter optimization. TPE models the joint distribution p(x, y)
of the hyperparameters x and the objective function y. In contrast to other optimization
techniques that model p(y|x) and then invert this relationship, TPE models p(x|y) and
p(y) directly. TPE divides the hyperparameters into two sets depending on the observed y
values and then generates new candidate hyperparameters from a distribution that favors the
promising set. In doing so, TPE provides a more flexible way of exploring the hyperparameter
space, especially when the distribution of hyperparameters is non-uniform. However, TPE
can be computationally expensive as the number of hyperparameters grows and sensitive to
the choice of the threshold that separates the two sets of hyperparameters. Besides, TPE
runs in a sequential manner. It is hard to run in parallel and utilize the modern multi-node
distributed computing clusters.

4 Methodology

To initialize the first population, rather than using random generation, we use a Tree-
structured Parzen Estimator (TPE) to repeatedly run a small number of trials to generate
the initial population. We call this process the warm-up stage and it provides a better starting
population for the genetic algorithm. To make the hyperparameter search more robust to
the time series’s distribution shift problem and prevent the algorithm from overfitting the
validation set, we create this configurable sliding window mechanism when conducting the
genetic algorithm. We first split a dataset into the training set, validation set, and testing
set according to a fixed ratio. Then, we evenly split the training set into multiple chunks
of the same size. Then, we split the validation set into the same number of chunks. The
hyperparameter search process goes as follows. First, we define a window of a length of a
fixed number of chunks. The window starts from the earliest chunk and slides one chunk
after each iteration of SWGA along the time direction. Starting from the population of the
first generation, at each iteration, SWGA trains the model with each individual config in the
population only on the data within the fixed-length window and does the model validation
on the data chunk right after the window. Then, the window slides along the time dimension
using a fixed stride of one data chunk. The size of each data chunk and the size of the
window are both configurable. Figure 1 shows an example of how SWGA works on a 3-year
time series dataset.

In detail, The entire process of SWGA, also shown by Algorithm 1 - 5, is as follows. First, it
splits the datasets into the training set, validation set, and testing set. In the warm-up stage,
the TPE algorithm runs a small number of trials on the training set and the validations set
to produce one hyperparameter config. This process repeats several times until it generates
enough individuals for the initial population. Then, the genetic algorithm process starts. In
each iteration, it first evaluates each individual in the population and sorts them according
to the ascending fitness value. The fitness value is the trained model’s Root Mean Square
Error (RMSE) or Mean Absolute Error (MAE) on the validation data. Then, based on
the ranking of each individual in the population regarding the fitness value, the algorithm
generates a new population for the next iteration. The population generation process is as
follows. It first creates a set of parents from the top k individuals (low fitness values) and
from the tail 2 individuals of the population. Then, it applies the crossover operator and
mutation operator to the parents to generate the offsprings. The offsprings and the top k
individuals together become the next generation of the population. Lastly, after the final
iteration, the top individual in the population becomes the final winner. SWGA then uses
this configuration to train a model on the original training set and report the RMSE or MAE
on the testing set.
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Figure 1: A demonstration of SWGA. From top to bottom, they are the different stages of
the tuning process. In this specific example, the training set is the history time series for
2015 and the validation set is the history time series for 2016. They are both divided into 12
chunks respectively. The test set is the history time series for 2017. In each iteration, there is
a sliding window including in total 13 chunks with 12 as training set and 1 as validation set.
It generates the population on this window for the next iteration. The best configuration
from the final generation is used to obtain the evaluation metrics on the test set.

SWGA variant We also consider a variant of the SWGA. In each iteration, rather than
only using one data chunk right after the training window to validate the model, we use all
the data chunks in the validation set that is not in the window. However, this variant is
much slower and the experiment results show that it does not provide a better performance.
Thus, we do not use this variant to run the experiments in the experiment section.

Since genetic algorithms are natively parallelization-friendly, we also integrate SWGA
with Ray compute framework to support parallelized hyperparameter search on various
computation infrastructures including single-node multi-core and multi-node multi-core.

Algorithm 1 SWGA
1: Raw dataset separates into trn_set, val_set, tst_set
2: Initialize population as an empty list
3: Initialize fitnesses as an empty list
4: for i = 1, 2, . . . ,K do
5: if i == 1 then
6: population0 =

WarmUpStage(trn_set, val_set)
7: trn_set splits into N chunks
8: val_set splits into N chunks
9: end if

10: trn_seti, val_seti = GetDataset(i, trn_set, val_set)
11: populationi =

GenNextPop(populationi−1, fitnessesi−1)
12: for each individual configuration h in populationi do
13: Evaluate the fitness of h and add to fitnessesi
14: end for
15: end for
16: return the config with the best fitness in fitnessesK
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Algorithm 2 GetDataset(i, trn_set, val_set)
1: trn =

concatenate(trn_set[chunki, . . . , chunki+N−1])
2: val = val_set[chunki+N ]
3: return trn, val

Algorithm 3 CrossoverMutate(parent1, parent2)
1: crossover_rate = 0.7
2: mutate_rate = 0.2
3: for each hyperparameter key c in the config space do
4: child[c] = RandomChoice(parent1[c], parent2[c])
5: child[c] = RandomChoice(child[c], default_config[c]) # mutation
6: end for
7: return child

Algorithm 4 WarmUpStage(trn_set, val_set)

1: Initialize init_pop as an empty list
2: while size_of(init_pop) < POPULATION_SIZE do
3: best_config = TPE(num_trials=10)
4: Add best_config to init_pop
5: end while
6: return init_pop

Algorithm 5 GenNextPop(populationi−1, fitnessesi−1)

1: Get topk_selection from populationi−1 according to fitness in fitnessesi−1

2: Get tail2_selection from populationi−1 according to fitness in fitnessesi−1

3: Initialize parent_pairs as empty list
4: Initialize next_pop as empty list
5: for i = 1, 3, 5,. . . , k-1 (two elements each time) do
6: Append (topk_selection[i], topk_selection[i+ 1]) to parent_pairs
7: end for
8: Append (tail2_selection[0], tail2_selection[1]) to parent_pairs
9: for each parent_pair in parent_pairs do

10: child = CrossoverMutate(parent_pair)
11: Add child to next_pop
12: end for
13: return next_pop ∪ topk_selection

5 Experiment

To demonstrate the efficacy of our methodology, we conduct two tasks in our experiments.

Task 1 In this task, we focus on showcasing the effectiveness of our proposed methodology
by ablation studies. We use SWGA, GA and SWGA* (SWGA without the warm-up stage)
to search for hyperparameters for 5 common time series prediction model architectures
respectively. Then, we compare the out-of-sample prediction performance of these models.
Through this task, we show that both our proposed warm-up stage and the sliding window
mechanism are effective and our proposed SWGA method indeed has a performance gain
compared to the base GA method. The results are in Table 1 and 2.

Task 2 In this task, we demonstrate SWGA’s values in real applications. We use SWGA
to search for hyperparameters for three latest SOTA time series prediction models in the
literature including iTransformer Liu et al. (2023), DLinear Zeng et al. (2023) and PatchTST
Nie et al. (2022). We show these models’ immediate improvements regarding the out-of-
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sample prediction performance on the same long-term forecasting task, training, and testing
dataset as the original setups in the literature.

Experiment Configurations We conduct all the experiments on a Ray cluster node
with 48 CPU cores and 8 Nvidia RTX 2080Ti GPUs. For Task 1, we use SWGA to do
a hyperparameter search on 4 different prediction models on 10 multivariate time series
datasets from different domains. For each dataset, we first split the dataset using the 8:1:1
ratio into the training set, validation set, and testing set. Then, we split the training set and
validation set respectively into 12 trunks. We use seven historical timesteps to predict one
timestep ahead. Each experiment repeats 5 times and we report the mean RMSE and mean
MAE. Since SWGA has the sliding window mechanism that increases the number of trials
on different hyperparameter configurations, to ensure that there is a fair comparison, we
make sure all the compared methods including the baseline have the same total number of
trials in the hyperparameter tuning process. To obtain the RMSE and the MAE, we first use
the hyperparameters that the hyperparameter search method finds to initialize the model.
Then, we train the model on the training set and test the model on the test set. We report
the model’s RMSE and MAE on the test set. For Task 2, we ensure that all models have
the same settings as that in Table 1 of the iTransformer Liu et al. (2023) paper. The only
difference is that we use SWGA to do hyperparameter search. The hyperparameter search
space we use is in A.1

Table 1: Comparison of RMSEs between SWGA and GA for different models and datasets.
SWGA achieves the best results on most of the models and datasets. SWGA* represents the
version of SWGA that does not use TPE to generate the initial population. Instead, it uses
the random sampling method.

Model Method
Dataset

Beijing
PM2.5 SML2010 Appliance

Energy

Individual
Household
Electricity

Exchange ETTh1 ETTh2 ETTm1 ETTm2 Traffic

Catboost
SWGA 0.071 0.055 0.069 0.032 0.015 0.034 0.056 0.027 0.015 0.015
SWGA* 0.073 0.056 0.074 0.022 0.015 0.073 0.056 0.074 0.022 0.039
GA 0.081 0.137 0.070 0.078 0.080 0.062 0.117 0.038 0.065 0.067

LightGBM
SWGA 0.079 0.159 0.068 0.062 0.051 0.072 0.095 0.051 0.052 0.051
SWGA* 0.088 0.164 0.078 0.065 0.051 0.071 0.093 0.070 0.085 0.054
GA 0.080 0.137 0.078 0.078 0.078 0.082 0.108 0.073 0.096 0.067

XGBoost
SWGA 0.087 0.136 0.108 0.070 0.049 0.080 0.100 0.108 0.050 0.078
SWGA* 0.091 0.159 0.147 0.052 0.052 0.091 0.159 0.147 0.052 0.052
GA 0.414 0.121 0.440 0.426 0.208 0.081 0.145 0.075 0.132 0.376

LSTM
SWGA 0.087 0.265 0.092 0.065 0.013 0.087 0.265 0.092 0.065 0.024
SWGA* 0.198 0.349 0.180 0.568 0.017 0.198 0.369 0.180 0.568 0.023
GA 0.168 0.636 0.197 0.176 0.260 0.737 0.649 0.593 0.656 0.110

Transformer
SWGA 0.071 0.121 0.071 0.058 0.109 0.056 0.040 0.078 0.109 0.042
SWGA* 0.072 0.197 0.089 0.084 0.095 0.118 0.181 0.102 0.143 0.084
GA 0.608 0.879 0.707 0.911 0.730 1.312 0.990 0.732 1.142 0.578

Datasets In the experiments, we use ten real-world datasets: (i) Beijing PM2.5: This is
an hourly multivariate time series dataset ranging from 2010 to 2014. It has (ii) SML2010:
A month of home monitoring multivariate time series data of resolution of 15 minutes. (iii)
Appliance Energy: Four months of energy use multivariate time series dataset of 10-minute
resolution. (iv) Individual household electricity: Four years electricity use multivariate time
series dataset of 1-minute resolution. (v) Exchange: It is a multivariate dataset including
daily exchange rates in eight different countries from 1990 to 2010. (vi) ETT (Electricity
Transformer Temperature) datasets are multivariate time series. There are two collection
sources of them with labels 1 and 2. There are two collection resolutions that are 1 hour and
15 minutes. So, there are four specific datasets in this category: ETTh1, ETTh2, ETTm1,
and ETTm2. (vii) Traffic: A multivariate dataset recording the hourly road occupancy rates
from various sensors on freeways in San Francisco from 2016 to 2018.
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Table 2: Comparison of MAEs between SWGA and GA for different models and datasets.
SWGA achieves the best results on most of the models and datasets.

Model Method
Dataset

Beijing
PM2.5 SML2010 Appliance

Energy

Individual
Household
Electricity

Exchange ETTh1 ETTh2 ETTm1 ETTm2 Traffic

Catboost
SWGA 0.018 0.039 0.026 0.015 0.045 0.058 0.023 0.053 0.023 0.016
SWGA* 0.034 0.116 0.027 0.016 0.054 0.143 0.180 0.024 0.132 0.014
GA 0.062 0.117 0.038 0.065 0.028 0.070 0.092 0.060 0.082 0.058

LightGBM
SWGA 0.067 0.120 0.050 0.063 0.051 0.068 0.077 0.045 0.057 0.051
SWGA* 0.072 0.114 0.051 0.052 0.052 0.067 0.082 0.047 0.058 0.053
GA 0.077 0.112 0.045 0.068 0.074 0.071 0.092 0.056 0.089 0.057

XGBoost
SWGA 0.089 0.106 0.313 0.022 0.042 0.048 0.045 0.045 0.042 0.034
SWGA* 0.080 0.110 0.108 0.275 0.059 0.049 0.063 0.049 0.060 0.199
GA 0.410 0.103 0.418 0.416 0.074 0.067 0.114 0.067 0.108 0.371

LSTM
SWGA 0.018 0.040 0.029 0.016 0.014 0.048 0.021 0.038 0.015 0.016
SWGA* 0.036 0.059 0.025 0.017 0.014 0.197 0.080 0.128 0.119 0.024
GA 0.236 0.665 0.217 0.089 0.288 0.491 0.569 0.719 0.583 0.152

Transformer
SWGA 0.069 0.109 0.056 0.053 0.093 0.083 0.105 0.061 0.072 0.060
SWGA* 0.076 0.170 0.051 0.065 0.125 0.163 0.121 0.082 0.084 0.156
GA 0.532 0.612 0.790 0.434 0.770 0.790 0.811 1.210 1.229 0.993

Out-of-sample performance (task 1) As we can see from Table 1, SWGA consistently
outperforms the traditional genetic algorithm on most of the datasets and different models.
On average, SWGA reduces the RMSE on the out-of-sample testing set by 54.6% compared
to GA. SWGA* is the SWGA without the warm-up stage. Instead, SWGA* uses the random
sampling method to generate the initial population as the traditional genetic algorithm. On
average, SWGA* reduces the RMSE on the out-of-sample testing set by 34.0% compared
to GA. By comparing the results of SWGA* and the results of GA, we can know that
the configurable sliding window mechanism indeed brings a significant reduction to the
out-of-sample RMSE. By comparing the results of SWGA and SWGA*, we can see that the
warm-up stage contributes additional reduction to the RMSE on top of the sliding window’s
contribution in most cases.

Table 2’s results are consistent with Table 1. SWGA has the lowest MAE on most of the
datasets. On average, SWGA has about a 57.6% reduction compared to the MAE of GA.
SWGA* reduces the MAE by about 42.6% compared to GA. In both the MAE and RMSE
metrics, SWGA yields a significant improvement over GA.

Besides, SWGA shows a consistent advantage in both Table 1 2 across various kinds of popular
time series prediction model architectures including tree models (Catboost, LightGBM,
XGBoost), recurrent models (LSTM), and attention-based models (Transformer). This
further demonstrates SWGA’s advantage and application value.

Table 3: The improvement of results on testing dataset of three SOTA time series forecasting
models by using SWGA to search for a better set of hyperparameters. We calculate and
show the average percentage of the reduction of the mean square error (MSE) after using
SWGA to do hyperparameter search. We can see that Each of them has a considerable
amount of free improvement without any change to their dataset and model architecture.

Model Dataset

ETTh1 Weather ETTm1 Exchange ETTh2 ETTm2

iTransformer 1.92% 1.90% 2.20% 1.14% 0.80% 4.00%

DLinear 0.80% 2.84% 5.50% 1.30% 4.25% 6.05%

PatchTST 6.46% 1.14% 3.30% 6.13% 1.60% 3.39%
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(c) XGBoost
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(d) LSTM
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(e) Transformer

Figure 2: SWGA testing loss (RMSE) for different numbers of chunks (N).

Improvement on latest SOTA time series forecasting models (task 2) As we
can see from Table 3, by using SWGA to do hyperparameter search on three SOTA time
series forecasting models, without other additional modifications, we immediately get an
improvement as much as 6.46% of average reduction of MSE. This demonstrates that a
considerable amount of additional testing performance of time series predictions models is
achievable by using a good set of hyperparameters. Besides, it demonstrates our SWGA
method’s capability of gaining such addition testing performance on a wide range of existing
SOTA models in an easy plug-and-play manner.

Number of chunks The above experiments set the number of training chunks N to 12
and it already produces a much better performance than the baseline GA. To investigate the
effect of different Ns on the out-of-sample testing loss, we conduct experiments adjusting
the value of N in SWGA. Figure 2 shows that different models and datasets have their
own optimal N values. For instance, for XGBoost, SWGA with N = 6 exhibits the best
out-of-sample RMSE for all four of those datasets. The different effects from N further prove
that our sliding window mechanism is meaningful and necessary for time series data.

Scalability To examine how varying the number of distributed computer nodes impacts
optimisation time. We conduct experiments by adjusting the number of nodes in SWGA. All
experiments in this section are conducted using the ETTh1 dataset. As depicted in Figure 3,
we observe a reduction in optimization time with an increase in the number of nodes, and
this relationship appeared nearly linear. The results demonstrate the good scalability and
efficiency of our proposed framework.

6 Conclusion

We propose SWGA, a distributed genetic algorithm for hyperparameter search for time series
data. Compared to a regular genetic-based algorithm that uses random initialization to
initialize the initial population, we propose a warm-up stage that uses TPE with a small
number of trials to generate the initial population to provide a better starting point. To
combat the distribution shift challenge on time series datasets, we propose a configurable
sliding window mechanism. Besides, SWGA natively supports parallelized hyperparameter

9
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Figure 3: When the number of computation nodes increases, the optimization time decreases
nearly linearly.

search on a Ray cluster. The experiment results on various models and time series datasets
from different domains show that SWGA has a huge performance gain over the vanilla genetic
algorithm. On average, there is a decrease of roughly 57.6% in the MAE and 54.6% in the
RMSE when using SWGA in comparison to GA. Additionally, we also demonstrate the good
scalability of SWGA.

Boarder Impact. This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none which we feel
must be specifically highlighted here.
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A Appendix

A.1 Hyperparameter

The hyperparameters we tuned for each model are as follows.

Table 4: Hyperparameters For Models

Model Hyperparameter Space

LSTM

learning_rate [1e-6, 1e-1]
num_layers [4, 64]
hidden_size [4, 128]
max_epochs [5, 100]
batch_size {16, 32, 64, 128, 256, 512}
dropout [0.1, 0.5]

Catboost

learning_rate {1e-2, 1e-3, 1e-4, 1e-5, 1e-6}
iterations [5, 80]
depth [4, 12]
random_strength [1, 8]
l2_leaf_reg [1e-3, 1e3]
bagging_temperature [0, 10]

Lightgbm

learning_rate {1e-2, 1e-3, 1e-4, 1e-5, 1e-6}
n_estimators {5, 10, 20, 40, 80}
max_depth {4, 6, 8, 10]}
lambda_l2 {16, 32, 64, 128}

XGBoost

learning_rate {1e-2, 1e-3, 1e-4, 1e-5, 1e-6}
n_estimators [5, 80]
max_depth [4, 12]
reg_lambda [1e-3, 1e3]

iTransformer
learning_rate {1e-2, 1e-3, 1e-4, 1e-5, 1e-6}
d_model {32, 64, 96, 128, 160, 192, 224, 256 }
encoder_layers [1, 10]

DLinear
learning_rate {1e-2, 1e-3, 1e-4, 1e-5, 1e-6}
d_model {32, 64, 96, 128, 160, 192, 224, 256 }
encoder_layers [1, 10]

PatchTST
learning_rate {1e-2, 1e-3, 1e-4, 1e-5, 1e-6}
d_model {32, 64, 96, 128, 160, 192, 224, 256 }
encoder_layers [1, 10]

A.2 Dataset Information

We use 10 different multivariate time series datasets in the paper. They are all commonly used
time series datasets. These datasets are from different domains, of different resolutions, and
have different numbers of variates. We chose such diverse multivariate time series datasets
to demonstrate our method’s general efficacy. The following are some brief introductions
and a table including the details of the datasets we used.

Beijing PM2.51 includes hourly multivariate data from 2010 to 2014. SML20102 is a month
of home monitoring multivariate data of the resolution of 15 minutes. Appliance Energy3

has 4 months of energy use data of 10-minute resolution. Individual Household Electricity4

1https://archive.ics.uci.edu/dataset/381/beijing+pm2+5+data
2https://archive.ics.uci.edu/dataset/274/sml2010
3https://archive.ics.uci.edu/dataset/374/appliances+energy+prediction
4https://archive.ics.uci.edu/dataset/235/

individual+household+electric+power+consumption
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is 4 years of electricity use. The Exchange dataset5 includes daily exchange rates in eight
different countries from 1990 to 2016. The ETT(Electricity Transformer Temperature)
dataset6 datasets are multivariate time series. There are two collection sources of them with
labels 1 and 2. There are two collection resolutions that are 1 hour and 15 minutes. So,
there are four specific datasets in this category: ETTh1, ETTh2, ETTm1, and ETTm2.
The Traffic dataset7 consists of hourly road occupancy rates from California’s Department
of Transportation on San Francisco Bay area freeways. All datasets are split into training,
validation, and test sets in an 8:1:1 ratio chronologically.

Table 5: Dataset Details

Dataset Number of Samples Number of Variates

Beijing PM2.5 43824 13
SML2010 4137 24
AE 19735 29
IHE 2075259 9
Exchange 7589 8
ETTh1 17421 7
ETTh2 17421 7
ETTm1 69681 7
ETTm2 69681 7
Traffic 17544 862

(AE: Appliance Energy, IHE: Individual Household Electricity)

A.3 Computation Hardware and Software

All experiments are conducted on a cluster (except the distributed compute node experiment),
where each node has 8 NVIDIA GEFORCE RTX 2080 Ti GPUs and 4 12-core Intel XEON
Silver 4214 @ 2.20GHz. The total RAM is 790GB. The operating system is Ubuntu 18.04.
The random seed we used was {1, 2, 5, 10, 24}. The major software and framework we used
are PyTorch8, scikit-learn9, and Ray10.

For the scalability experiments, the computing setup consists of computation nodes equipped
with 16 Intel(R) Xeon(R) Gold 6230R CPUs and 1 A100 GPU each, with a combined RAM
capacity of 1024G.

A.4 Optimization Dynamics

We conduct experiments to show the optimization dynamics of the baseline, GA algorithm
on the four models on those four different datasets. Figure 4 and Figure 5 have three major
takeaways: (i) For all four models, on most of the datasets, SWGA is able to reach a much
lower out-of-sample testing loss compared to the baseline GA. (ii) SWGA’s out-of-sample
testing loss decreases in a smoother way while the baseline GA’s loss optimization process is
much more volatile bouncing up and down. This indicates that it is safer to use the tuned
hyperparameter configuration from SWGA compared to that from the baseline GA where
there is a higher chance that the tuned configuration is on the out-of-sample testing loss peak
that bounces up from a previous local minimum. (iii) In some cases such as the XGBoost
case, the out-of-sample loss from the base GA fails to decrease properly while the SWGA is
able to.

5https://github.com/laiguokun/multivariate-time-series-data
6https://github.com/zhouhaoyi/ETDataset
7http://pems.dot.ca.gov
8https://pytorch.org/
9https://scikit-learn.org/stable/

10https://www.ray.io/
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Figure 4: RMSE loss of the final model on the out-of-sample testing set after using the GA
to search for hyperparameters. It shows the results after GA runs for different number of
generations.
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Figure 5: RMSE loss of the final model on the out-of-sample testing set after using SWGA
to search for hyperparameters. It shows the results after SWGA runs for different numbers
of generations.
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