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Abstract

Pre-trained language models have brought sig-001
nificant improvements in performance in a002
variety of natural language processing tasks.003
Most existing models performing state-of-the-004
art results have shown their approaches in the005
separate perspectives of data processing, pre-006
training tasks, neural network modeling, or007
fine-tuning. In this paper, we demonstrate how008
the approaches affect performance individually,009
and that the language model performs the best010
results on a specific question answering task011
when those approaches are jointly considered012
in pre-training models. In particular, we pro-013
pose an extended pre-training task, and a new014
neighbor-aware mechanism that attends neigh-015
boring tokens more to capture the richness016
of context for pre-training language modeling.017
Our best model achieves new state-of-the-art018
results of 95.7% F1 and 90.6% EM on SQuAD019
1.1 and also outperforms existing pre-trained020
language models such as RoBERTa, ALBERT,021
ELECTRA, and XLNet on the SQuAD 2.0022
benchmark.023

1 Introduction024

Question answering (QA) is the task of answering025

given questions, which demands a high level of lan-026

guage understanding and machine reading compre-027

hension abilities. As pre-trained language models028

based on Transformer (Vaswani et al., 2017) have029

brought a huge improvement in performance on a030

broad range of natural language processing (NLP)031

tasks including QA tasks, methodologies for QA032

tasks are widely used to develop applications such033

as dialog systems (Bansal et al., 2021) and chat-034

bots (Hemant et al., 2022; Duggirala et al., 2021)035

in a variety of domains.036

Pre-trained language models like BERT (Devlin037

et al., 2018) are designed to represent individual038

words for contextualization. However, recent ex-039

tractive QA tasks such as Stanford Question An-040

swering Dataset (SQuAD) benchmarks (Rajpurkar041

Figure 1: Example of a passage with a pair of question
and answer sampled from the SQuAD 1.1 dataset.

et al., 2016, 2018) involve reasoning relationships 042

between spans of texts that include a group of two 043

or more words in the evidence document (Lee et al., 044

2016). In the example, as shown in Figure 1, “a 045

golden statue of the Virgin Mar”, the correct an- 046

swer for the question “What sits on top of the Main 047

Building at Notre Dame?”, is a group of words 048

consisting of nouns and other words and is called 049

as a noun phrase, which performs as a noun in a 050

sentence. Since predicting a span of answer texts 051

including a start and end positions may be chal- 052

lenging for self-supervised training rather than pre- 053

dicting an individual word, we introduce a novel 054

pre-training approach that extends a standard mask- 055

ing scheme to wider spans of texts such as a noun- 056

phrase rather than an entity level and prove that 057

this approach is more effective for an extractive 058

QA task by outperforming existing models. 059

In this paper, we present a new pre-training 060

approach, ANNA (Approach of Noun-phrase 061

based language representation with Neighbor- 062

aware Attention), which is designed to better under- 063
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stand syntactic and contextual information based064

on comprehensive experimental evaluation of data065

processing, pre-training tasks, attention mecha-066

nisms. First, we extend the conventional pre-067

training tasks. Our models are trained to predict068

not only individual tokens but also an entire span069

of noun phrases during the pre-training procedure.070

This noun-phrase span masking scheme lets models071

learn contextualized representations in the whole072

span level, which benefits predicting answer texts073

for the specific extractive QA tasks. Second, we en-074

hance the self-attention approach by incorporating075

a novel neighbor-aware mechanism in Transformer076

architecture (Vaswani et al., 2017). We find that077

more consideration of relationships between neigh-078

boring tokens by masking diagonality in attention079

matrix is helpful for contextualized representations.080

Additionally, we use a larger volume of corpora for081

pre-training language models and find that using a082

lot of of additional datasets does not guarantee the083

best performance.084

We evaluate our proposed models on the SQuAD085

datasets which is a major extractive QA bench-086

marks for pre-trained language models. For087

SQuAD 1.1 task, ANNA achieves new state-of-the-088

art results of 90.6% Exact Match (EM) and 95.7%089

F1-score (F1). When evaluated on the SQuAD 2.0090

development dataset, the results show that our pro-091

posed approaches obtain competitive performance092

outperforming self-supervised pre-training models093

such as BERT, ALBERT, RoBERTa, and XLNet094

models.095

We summarize our main contributions as fol-096

lows:097

• We propose a new pre-trained language model,098

ANNA that is designed to address extractive099

QA tasks. ANNA is trained to predict the100

masked group of words that is an entire noun101

phrase, in order to better learn syntactic and102

contextual information by taking advantage of103

span-level representations.104

• We introduce a novel transformer encoding105

mechanism stacking new neighbor-aware self-106

attention on an original self-attention in the107

transformer encoder block. The proposed108

method takes into account neighbor tokens109

more importantly than identical tokens during110

the computation of attention scores.111

• ANNA establishes new state-of-the-art results112

on the SQuAD 1.1 leaderboard and outper-113

forms existing pre-trained language models 114

for the SQuAD 2.0 dataset. 115

2 Related works 116

Pre-trained contextualized word representations 117

There have been many recent efforts on pre-training 118

language representation models aiming for captur- 119

ing linguistic and contextual information, and the 120

models have brought a significant improvement of 121

performance in a variety of NLP tasks. ELMo (Pe- 122

ters et al., 2018) is a deep contextualized word 123

representation to learn complex characteristics of 124

word use across linguistic contexts, and pre-trained 125

models with these representations have shown no- 126

ticeable improvements in many NLP challenges. 127

BERT (Devlin et al., 2018) is a pre-trained lan- 128

guage model with a deep bidirectional long short- 129

term memory, which learns context in text using 130

the masked language modeling (MLM) and the 131

next sentence prediction (NSP) objectives for self- 132

supervised pre-training. The latest language mod- 133

els (Liu et al., 2019; Lan et al., 2019; Yang et al., 134

2019b; Radford et al., 2018; Raffel et al., 2019a; 135

Lewis et al., 2019) influenced by BERT mainly em- 136

ploy the transformer architecture (Vaswani et al., 137

2017) for pre-training but are trained with similar 138

or extended to the pre-training objectives used in 139

BERT implementation for enhancement of perfor- 140

mance. There also exist many attempts to improve 141

the capabilities of the standard transformer mecha- 142

nism in contextualized word representations. 143

Extension of MLM Many recent studies have 144

attempted to use different pre-training objectives 145

by extending the MLM task in language modeling 146

including BART (Lewis et al., 2019) and T5 (Raf- 147

fel et al., 2019b). ELECTRA (Clark et al., 2020) 148

introduces a new pre-training method of replaced 149

token detection that replaces input tokens with al- 150

ternative samples and detects whether the tokens 151

are replaced or not. MASS (Song et al., 2019) is 152

pre-trained on the sequence to sequence framework 153

where fragments of input sentences are masked, 154

and the masked fragment is predicted in its decoder 155

part. XLNet (Yang et al., 2019b) adopts a span- 156

based masking approach that predicts a masked 157

subsequent span of tokens in a context of tokens au- 158

toregressively. SpanBERT (Joshi et al., 2020) and 159

REALM (Guu et al., 2020) employ a span masking 160

scheme that masks spans of tokens rather than ran- 161

dom individual tokens, and the model is designed to 162

learn span representations during pre-training. Sim- 163
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ilarly, LUKE (Yamada et al., 2020), ERNIE (Zhang164

et al., 2019), and KnowBERT (Peters et al., 2019)165

learn joint representations of words and entities by166

incorporating knowledge of entity embeddings.167

Improvement of Attention Mechanism Since the168

standard transformer architecture has flexibility,169

many studies have shown the implementation of170

Transformer-based variants for improving further171

performance on language modeling and NLP tasks172

such as machine translation. Shaw et al. ex-173

tends self-attention mechanism by incorporating174

embeddings of relative positions or distances be-175

tween sequence elements, which is beneficial for176

performance improvement in machine translation177

tasks. Yang et al. introduces a context-aware self-178

attention approach that improves the self-attention179

with additional contextual information. Sukhbaatar180

et al. presents a novel attention method extend-181

ing the self-attention layer with persistent vectors182

storing information which plays a similar role as183

the feed-forward layer. Fan et al. proposes a mask184

attention network that is a sequential layered struc-185

ture incorporated a new dynamic mask attention186

layer with the self-attention and feed-forward net-187

works.188

3 Methodology189

We introduce a novel transformer encoder architec-190

ture integrating a new neighbor-aware mechanism191

for pre-training a language model. Figure 2 demon-192

strates the architecture of ANNA model. ANNA193

extends the original transformer encoder blocks194

by including a neighbor-aware self-attention layer195

stacked on a multi-head self-attention layer.196

3.1 Neighbor-aware Self-Attention197

In this study, we propose a neighbor-aware atten-198

tion mechanism. We assume that a single self-199

attention in Transformer encoder may be insuffi-200

cient to learn context and the pre-trained models201

based on the transformer are hard to predict cor-202

rect answers in downstream tasks due to linguistic203

noises brought in unrelated areas to a potential204

answer in the transformer encoder blocks. Here,205

we integrate a new neighbor-aware self-attention206

layer that is designed to remove influences of iden-207

tical tokens by ignoring the diagonality in attention208

matrix when attention scores are computed. In-209

stead, other tokens are more attended, so that the210

neighbor-aware mechanism enhances better under-211

standing for relationships between tokens in inputs.212

Figure 2: Architecture of ANNA.

As the Self-Attention layer shown in Figure 2 is 213

adopted from the standard transformer architecture 214

(Vaswani et al., 2017), we denote the self-attention 215

as AS that is calculated using query (Q), key (K) 216

and value (V) projections as follows: 217

AS(Q,K, V ) = SS(Q,K)V 218

219

SS(Q,K) =

[
exp(QiK

T
j /

√
dk)∑

k exp(QiKT
k /

√
dk)

]
220

where Q, K and V represent HWq, HWk and 221

HWv, respectively. H ∈ RL×d denoted as the 222

input hidden vectors, L is the length of the input 223

sequence, and d is the hidden size. Wq,Wk,Wv ∈ 224

Rd×d are the projection matrices, and dk is the 225

query/key dimension. AS , AN ∈ RL×L represents 226

the attention matrices. 227

We define the Neighbor-aware Attention layer 228

presented with AN as follows: 229

AN (Q,K, V ) = SN (Q,K)V 230

231

SN (Q,K) =
M(i, j)exp(QiK

T
j /

√
dk)∑

k M(i, j)exp(QiKT
k /

√
dk)

232
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Figure 3: Example of the input sequence “Animal Farm is a satirical allegorical novella by George Orwell, first
published on 1945” for pre-training ANNA. Different types of masking schemes are illustrated with such colors:
masking a noun or noun phrase span (Orange), a whole word masking (Blue), and a wordpiece token masking
(Green).

233

M(i, j) =

{
0, if i = j
1, others

234

where M denotes a mask that functions to omit235

capturing interactions of identical tokens. The in-236

teractions between each pair of input tokens xi and237

xj at positions i and j for 0 ≤ i, j ≤ L are calculated238

except for i = j.239

3.2 Pre-training Task240

We present a new pre-training task for training241

ANNA model. We follow the conventional MLM242

pre-training objective similar to BERT (Devlin243

et al., 2018). BERT is more sensible and effective244

to deeply represent context fusing the left and the245

right text with the MLM objective rather than uni-246

directional language models (Radford et al., 2018,247

2019; Brown et al., 2020) or shallow Bi-LSTM248

models (Clark et al., 2018; Huang et al., 2015).249

In addition, a new masking scheme is applied for250

focusing on noun phrases in order to train our lan-251

guage model for better understanding syntactic and252

lexical information considering the specific down-253

stream tasks. Here, we define three different mask-254

ing schemes as illustrated in Figure 3. First, we255

use a span masking scheme that masks a group of256

texts in a span-level adopted by SpanBERT (Joshi257

et al., 2020). In this study, nouns or noun phrases258

identified by spaCy’s parser (Honnibal and Mon-259

tani, 2017) are randomly masked for span masking260

selection. Then we apply a whole word masking261

approach that masks all of the sub-tokens corre-262

spondings to a word at once, while we randomly263

mask tokens not included in the above two cases.264

Following BERT, we randomly select 15% of the265

tokens in input sequences, and 80% of the selected266

tokens are replaced with the special token [MASK]. 267

We keep 10% of the tokens in the rest of them un- 268

changed, and the other 10% are replaced with ran- 269

domly selected tokens. Our language model is also 270

designed to train for the prediction of each token in 271

the masked span by computing the cross-entropy 272

loss function. However, the next sentence predic- 273

tion (NSP) objective used in the BERT implemen- 274

tation is not used in this study, as RoBERTa (Liu 275

et al., 2019) removes the NSP task due to perfor- 276

mance decreases on downstream tasks. 277

3.3 Vocabulary and Tokenizer 278

In this study, we build a new vocabulary of 127,490 279

wordpieces that are extracted from the English 280

Common Crawl corpus (Raffel et al., 2019a) and 281

English Wikipedia dump datasets. The vocabu- 282

lary consists of sub-words (30%) tokenized by the 283

WordPiece algorithm (Wu et al., 2016), and 70% of 284

the rest include noun-phrase words in their original 285

form. We aim to prevent words from being out 286

of vocabulary words and also keep noun phrases 287

as the original forms so that our model is able to 288

take many words in order to better learn human 289

linguistic understanding during training. 290

In addition, we propose a new approach of word 291

tokenization to suit our vocabulary used to pre- 292

train ANNA model. This approach avoids sepa- 293

rating words by special symbols since our vocab- 294

ulary contains words including special characters 295

by tokenizing noun-phrase words with white space 296

only. Many studies use a subword-based word rep- 297

resentation method for efficiency in vocabulary. A 298

word is represented with several subword units tok- 299

enized by BERT tokenizer as exampled in Table 1. 300

However, we do not follow this conventional tok- 301
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Words BERT tokens ANNA tokens
Sant’Egidio Sant , ’ , E , ##gi , ##dio Sant’Egidio
COVID-19 CO , ##VI , ##D , - , ’19’ COVID-19
U.S. U , . , S , . U.S.
Ph.D. Ph , . , D , . Ph.D.
l’amour l , ’ , am , ##our l’amour
non-profit non , - , profit non-profit
X-Files X , - , Files X-Files
UTF-16 U , ##TF , - , 16 UTF-16
C++ C , + , + C++

Table 1: Comparison of tokenization results between BERT and ANNA.

enization method (Wu et al., 2016), since we use302

a span masking scheme that masks an entire noun303

phrase randomly selected during a pre-training pro-304

cedure. It is not suitable to train models as the305

length of masking tokens gets longer if subword306

units are used for the span masking scheme. We307

also aim to represent a whole-word token rather308

than subword units when attention scores are calcu-309

lated. We implement an ANNA tokenizer in order310

to enhance a better understanding of contexts by311

not separating words as much as possible. Table 1312

compares word tokenization results between BERT313

and ANNA tokenizers.314

3.4 Pre-training Datasets315

We use an English Wikipedia dataset like BERT316

(Devlin et al., 2018), and add publicly avail-317

able English-language corpora such as a Colossal-318

Cleaned version of Common Crawl (C4) corpus319

(Raffel et al., 2019a), Books3 (Gao et al., 2020),320

and OpenWebText2 (OWT2) extended from Web-321

Text (Radford et al., 2019) and OpenWebTextCor-322

pus (Gokaslan and Cohen) for pre-training our323

models. As shown in Table 2, the total size of data324

is about 900GB for the four corpora.325

For pre-training language models with a large326

volume of corpora, it is crucial to generate high-327

quality data for inputs. We use heuristic pre-328

processing techniques to improve the data quality329

for the generation of input sequences as follows:330

• Each document is split into sentences, and331

we filter the sentences including less than 10332

words out due to their incompleteness. Also,333

documents with less than 100 words are ig-334

nored for input sequences.335

• Text noises such as paragraph separators, spe-336

cial characters, URL addresses, and directory337

paths are heuristically filtered by regular ex- 338

pressions. 339

• For Books3 data, non-English documents 340

are deleted by a language-detection module 341

(Shuyo, 2010) which is utilized for the dele- 342

tion of documents written in non-English 343

words in the Common Crawl dataset. 344

• Since the maximum sequence length is 512 345

tokens, we split the pre-processed documents 346

into multiple sentence chunks that do not ex- 347

ceed the predefined maximum length for the 348

input of pre-training. 349

After the extensive data pre-processing proce- 350

dure, we gain the size of 12GB, 580GB, 51GB, 351

and 22GB for Wikipedia, C4, Books3, and OWT2, 352

respectively. The pre-processed texts are tok- 353

enized into 410B word-piece tokens in total for 354

pre-training our models. 355

In this study, we conduct an experiment in order 356

to investigate whether the use of different sources 357

of data for pre-training language models affects 358

model performance on downstream tasks. We 359

compare the performance of models pre-trained 360

with different datasets in Table 3. We observe 361

that C4 improves performance on the SQuAD 1.1 362

task when it is added to the Wikipedia dataset, but 363

that models pre-trained over Books3 and OWT2 364

datasets are not beneficial for performance in- 365

creases. We also find that the use of the larger 366

volume of data including all of these four corpora 367

is not helpful to improve performance. Thus we 368

use both the C4 data and the Wikipedia corpus for 369

pre-training ANNA models. Pre-training details 370

for ANNA models can be found in Appendix A. 371
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Wikipedia C4 Books3 OWT2
Size of text 16GB 730GB 100GB 62GB
Token counts for text 3.3B 160B 22B 13B
Size of pre-processed text 12GB 580GB 51GB 22GB
Token counts for pre-processed text 2.6B 126B 12B 5B

Table 2: Statistics of four corpora for pre-training including before and after the pre-processing procedure.

Corpora EM F1
Wikipedia 85.51 90.99
Wikipedia + C4 85.90 91.02
Wikipedia + Books3 85.40 90.79
Wikipedia + OWT2 84.79 90.27
ALL 85.14 90.22

Table 3: Comparison of model performance pre-trained
with the different data sources. Models pre-trained
with different pre-training corpora are evaluated on the
SQuAD1.1 dataset. ALL includes the four datasets of
Wikipedia, C4, Books3, and OWT2. Due to the limita-
tion of computing resources, ANNABase model is used
for this experiment.

4 Experiments372

In this section, we present the fine-tuning results of373

ANNA transferred to specific extractive question374

answering tasks.375

We evaluate ANNA on SQuAD 1.1 and 2.0 tasks376

that are well-known machine reading comprehen-377

sion benchmarks in the NLP area. The dataset378

of SQuAD 1.1 consists of around 100k pairs of a379

question and an answer along with Wikipedia pas-380

sages where the answers are included. This task381

is to predict a correct span of an answer text for a382

given question from the corresponding Wikipedia383

passage (Rajpurkar et al., 2016). For SQuAD 2.0,384

the dataset is extended to the SQuAD 1.1 dataset385

by combining over 50,000 unanswerable questions,386

so that systems are required to predict answers to387

both answerable and unanswerable questions (Ra-388

jpurkar et al., 2018). We follow the fine-tuning pro-389

cedure of BERT (Devlin et al., 2018), but the pro-390

vided SQuAD training dataset only is used for fine-391

tuning, while BERT augments its training dataset392

with other QA datasets available in public.393

Table 4 indicates the results of our best per-394

forming system compared with top results on the395

SQuAD 1.1 leaderboard. We also compare ours396

with BERT baselines. ANNA establishes a new397

state-of-the-art result on this task outperforming398

LUKE (Yamada et al., 2020) by EM 0.4 points and399

F1 0.3 points on the test dataset. LUKE is the lat- 400

est best performing system in the leaderboard, and 401

it is designed for contextualized representations 402

of words and entities. As for a comparison with 403

SpanBERT (Joshi et al., 2020) that masks contigu- 404

ous sequences of token for span representations, 405

ANNA also achieves better performance by both 406

EM 0.8 points and F1 0.9 points. 407

ANNA is evaluated on SQuAD 2.0 development 408

dataset, and the results are compared with the pub- 409

lished pre-trained language models (Devlin et al., 410

2018; Liu et al., 2019; Lan et al., 2019; Yang et al., 411

2019b; Clark et al., 2020) in Table 5, which demon- 412

strates that ANNA outperforms all of those lan- 413

guage models and in particular, produces perfor- 414

mance increases than ELECTRA by 0.4 points of 415

EM and 0.2 points of F1. 416

5 Model Analysis 417

We conduct four additional experiments in terms of 418

perspectives such as data processing, pre-training 419

task, and attention mechanisms. We report a de- 420

tailed analysis of how those approaches affect the 421

performance of ANNA on a specific downstream 422

task individually. In this study, ANNABase model 423

is used for these additional experiments due to the 424

limitation of computing resources. 425

5.1 Effect of Data Processing 426

We describe several data pre-processing techniques 427

we conduct to build a high-quality dataset for pre- 428

training ANNA in Section 3.4. Here we demon- 429

strate how the use of the data processing techniques 430

affects the performance on the extractive question 431

answering task. There exist documents with a va- 432

riety of ranges of word length in the pre-training 433

corpora. For a generation of an input sequence, doc- 434

uments containing less than 100 words are filtered 435

out, while the others are split into multiple sentence 436

chunks. Due to the maximum sequence length of 437

512, we limit the size of the chunks to not exceed- 438

ing approximately 300 words. We observe that the 439

data processing procedure making a suitable word 440
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System
Dev Test

EM F1 EM F1
BERTLarge (Devlin et al., 2018) 84.2 91.1 85.1 91.8
BERTLarge (ensemble) - - 87.4 93.1
SpanBERT (Joshi et al., 2020) - - 88.8 94.6
XLNetLarge (Yang et al., 2019b) 89.0 94.5 89.9 95.1
LUKE (Yamada et al., 2020) 89.8 95.0 90.2 95.4
ANNABase 87.0 92.8 - -
ANNALarge 90.0 95.4 90.6 95.7

Table 4: Performance of systems evaluated on the SQuAD 1.1 datasets.

System
SQuAD 2.0 SQuAD 2.0

Dev EM Dev F1
BERTLarge (Devlin et al., 2018) 79.0 81.8
ALBERTLarge (Lan et al., 2019) 85.1 88.1
RoBERTa (Liu et al., 2019) 86.5 89.4
XLNetLarge (Yang et al., 2019b) 87.9 90.6
ELECTRALarge (Clark et al., 2020) 88.0 90.6
ANNALarge 88.4 90.8

Table 5: Performance of systems evaluated on the SQuAD 2.0 development dataset.

length for the max sequence length is helpful to441

improve performance slightly as shown in Table 6.442

However, the input sequences overlapped with 128443

tokens at the back and front between successive444

sentence chunks rather hurt system performance.445

5.2 Effect of Pre-training Mechanism446

We investigate how different MLM objectives af-447

fect the performance of models on a specific down-448

stream task. During a pre-training procedure, a449

model is trained with a deep bidirectional represen-450

tation of input sequences. First, we concatenate451

part-of-speech (POS) tags to each word, then we452

apply a whole word masking approach to explore453

whether a masking method employing syntactic in-454

formation is helpful to understand the context. We455

also mask tokens identified as named entities and456

noun phrases instead of masking single tokens ran-457

domly. In all of the experiments, we use the same458

percentage of 15% for the masking tasks. Table 7459

compares results on the SQuAD 1.1 task for mod-460

els using those MLM schemes. Comparing with461

the standard MLM approach that simply masks462

15% of tokens, the pre-trained models using Entity463

and Noun-phrase MLM schemes improve perfor-464

mance, but the approach masking words including465

POS tags decreases performance than the standard466

MLM. Thus we use the Noun-phrase MLM ap-467

proach to pre-train ANNA models for final results.468

5.3 Effect of Neighbor-aware Self-Attention 469

We attempt to implement a new transformer en- 470

coder focusing on relatives, entities, or neighbors 471

in input tokens in order to enhance capturing syn- 472

tactic and contextual information. First, we extend 473

the original self-attention based on the transformer 474

in order to consider the pair-wise relationships be- 475

tween input tokens. The relation matrix of input 476

tokens is simply added when attention scores are 477

computed. For an entity-self-attention that focuses 478

on named entities, we identify named entities in 479

text and then compute additional attention scores to 480

those entities for learning effective representations. 481

We describe the mechanism of a neighbor-aware 482

self-attention in detail in Section 3.1. We report 483

that the neighbor-aware self-attention approach per- 484

forms better than the original self-attention and 485

other transformer modifications on the extractive 486

question-answering task in Table 8. We consider 487

that the neighbor-aware query mechanism is effec- 488

tive to capture relation information of neighboring 489

tokens in an input sequence. 490

5.4 Effect of Layer-stacking Approach 491

We examine how approaches to stack sub-layers in 492

a transformer encoder architecture impact perfor- 493

mance. We compose a transformer encoder block 494

by collaborating three sub-layers such as a self- 495
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Data Processing
SQuAD1.1 SQuAD1.1

Dev EM Dev F1
Wiki+C4

85.9 91.0
(Without sentence chunking)
Wiki+C4

85.0 90.5
(Sentence chunking with 128 token-overlap)
Wiki+C4 86.3 91.2
(Sentence chunking)

Table 6: Comparison of model performance pre-trained with the use of different data processing techniques.

Model
SQuAD1.1 SQuAD1.1

Dev EM Dev F1
Standard MLM 83.7 89.1
w/POS 80.7 87.1
Entity 85.3 90.8
Noun phrase 86.3 91.2

Table 7: Results of different masking schemes during
the pre-training task.

Model
SQuAD1.1 SQuAD1.1

Dev EM Dev F1
Self-Att. 86.1 91.3
Relative-QK-Att. 86.0 91.1
Relative-QV-Att. 85.2 90.7
Entity-Self-Att. 85.7 90.9
Neighbor-Aware-Att. 86.4 91.4

Table 8: Comparison of model performance pre-trained
with different transformer variants. Att is an abbrevia-
tion for Attention.

attention, a neighbor-aware self-attention, and a496

feed-forward network in different combinations.497

We evaluate the models using different combination498

methods of stacking layers and report the results499

on the SQuAD 1.1 dataset in Table 9.500

We observe that a self-attention substituted with501

a neighbor-aware attention in an original trans-502

former architecture decreases performance by F1503

0.3 points. When a neighbor-aware attention is504

stacked between a self-attention and a feed-forward505

network, the model slightly performs better than506

the original transformer. The sequential layered507

structure of a self-attention, a neighbor-aware at-508

tention, and a feed-forward network achieve the509

best performance on the exact matching criteria,510

which demonstrates that our proposed approach511

has an effect on the extractive question answering512

task. We consider that attention scores computed513

in a self-attention layer are re-weighted to actually514

related tokens by ignoring identical tokens during 515

the computation of attention scores in the neighbor- 516

aware attention so that the neighbor-aware mech- 517

anism is helpful to capture relationships between 518

input tokens. 519

Model
SQuAD1.1 SQuAD1.1

Dev EM Dev F1
SA → FFN 85.6 90.9
NAA → FFN 85.5 90.6
SA → SA → FFN 85.5 91.0
NAA → NAA → FFN 86.1 91.5
NAA → SA → FFN 86.1 91.4
SA → NAA → FFN 86.4 91.4

Table 9: Performance of different stacking approaches
of Self-attention (SA), Neighbor-aware-attention (NAA)
and Feed-forward-network (FNN) layers in transformer
encoder blocks.

6 Conclusion 520

In this paper, we present a novel pre-trained lan- 521

guage representation model, ANNA which im- 522

proves the original transformer encoder architec- 523

ture by collaborating a neighbor-aware mechanism, 524

and is pre-trained for contextualized representa- 525

tions of words and noun phrases in a span level. 526

The experimental results show that ANNA achieves 527

a new state-of-the-art on the specific extractive 528

question answering task by outperforming pub- 529

lished language model systems including BERT 530

baselines, as well as the latest top system on the 531

corresponding leaderboard. There are two main di- 532

rections for future research: (1) validating the com- 533

petitiveness of ANNA to a variety of NLP tasks; 534

and (2) enhancing the robustness of ANNA in order 535

to apply for real-world question answering tasks in 536

business. 537
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Appendix 697

A Pre-training Details 698

Table 10 summarizes hyperparameters that we 699

use for pre-training our two models: ANNABase 700

(L=12, H=768, A=12, Total Parameters=160M) 701

and ANNALarge (L=24, H=1024, A=16, Total Pa- 702

rameters=550M). We use the maximum sequence 703

length of 512, the Adam optimization (Kingma 704

and Ba, 2014) with learning rates of 2e-4 and 1e-4 705

is used for the large and base models, respectively. 706

Our large model ANNALarge is trained on 256 TPU 707

v3 for 1M steps with the batch size of 2048, and it 708

takes about 10 days. 709

Hyper-parameter ANNALarge ANNABase

Number of layers 24 12
Hidden size 1024 768
FFN inner hidden size 4096 3072
Attention heads 16 12
Attention head size 64 64
Dropout 0.1 0.1
Warmup steps 10k 10k
Learning rates 2e-4 1e-4
Batch size 2048 1024
Weight decay 0.01 0.01
Max steps 1M 1M
Learning rate decay Linear Linear
Adam ε 1e-6 1e-6
Adam β1 0.9 0.9
Adam β2 0.999 0.999
Number of TPU 266 64
Training time 10 days 5 days

Table 10: Hyperparameters for pre-training ANNA
models.
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