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Abstract

We develop two novel stochastic variance-
reduction methods to approximate solutions of
a class of nonmonotone [generalized] equations.
Our algorithms leverage a new combination of
ideas from the forward-reflected-backward split-
ting method and a class of unbiased variance-
reduced estimators. We construct two new
stochastic estimators within this class, inspired
by the well-known SVRG and SAGA estimators.
These estimators significantly differ from existing
approaches used in minimax and variational in-
equality problems. By appropriately choosing pa-
rameters, both algorithms achieve state-of-the-art
oracle complexity of O(n + n?/3¢~2) for obtain-
ing an e-solution in terms of the operator residual
norm for a class of nonmonotone problems, where
n is the number of summands and e signifies the
desired accuracy. This complexity aligns with the
best-known results in SVRG and SAGA methods
for stochastic nonconvex optimization. We test
our algorithms on some numerical examples and
compare them with existing methods. The results
demonstrate promising improvements offered by
the new methods compared to their competitors.

1. Introduction

[Non]linear equations and inclusions are cornerstones of
computational mathematics, finding applications in diverse
fields like engineering, mechanics, economics, statistics,
optimization, and machine learning, see, e.g., (Bauschke
& Combettes, 2017; Burachik & Iusem, 2008; Facchinei &
Pang, 2003; Phelps, 2009; Ryu & Yin, 2022; Ryu & Boyd,
2016). These problems, known as generalized equations
(Rockafellar & Wets, 1997), are equivalent to fixed-point
problems. The recent revolution in modern machine learn-
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ing and robust optimization has brought renewed interest
to generalized equations and their special case: minimax
problem. They serve as powerful tools for handling Nash’s
equilibria and minimax models in generative adversarial
nets, adversarial training, and robust learning, see (Arjovsky
et al., 2017; Goodfellow et al., 2014; Madry et al., 2018;
Namkoong & Duchi, 2016). Notably, most problems arising
from these applications are nonmonotone, nonsmooth, and
large-scale. This paper develops new and simple stochastic
algorithms with variance reduction for solving this class of
problems, equipped with rigorous theoretical guarantees.

1.1. Nonmonotone finite-sum generalized equations
The central problem we study in this paper is the following
[possibly nonmonotone] generalized equation (also known
as composite inclusion) (Rockafellar & Wets, 1997):

Find z* € R? such that: 0 € Gz* + Tz*, (NI)

where G : RP — RP is a single-valued operator, possibly
nonlinear, and 7' : R? =% 2% is a multivalued mapping
from R” to 28" (the set of all subsets of RP). In addition,
we assume that G is given in the following large finite-sum:

1 n
= — E ; 1
Gx ”i IGZ.Z‘, (1)

where G; : RP — RP? are given operators for all i € [n] :=
{1,2,--- ,n} and n > 1. This structure often arises from
statistical learning, [generative] machine learning, networks,
distributed systems, and data science. For simplicity of
notation, we denote ¥ := G+7T and dom(¥) := dom(G)N
dom(T"), where dom(R) is the domain of R.

We highlight that the methods developed in this paper can be
straightforwardly extended to tackle Gz = E¢.up[G(z, )]
as the expectation of a stochastic operator G involving a
random vector ¢ defined on a probability space (2, P, ¥).

1.2. Equivalent forms and special cases
The model (NI) covers many fundamental problems in opti-
mization and related fields, including the following ones.

(a) [Non]linear equation. If 7' = 0, then (NI) reduces to
the following [non]linear equation:

Find 2* € dom(G) such that: Ga* = 0. (NE)
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Both (NI) and (NE) are also called root-finding problems.
Clearly, (NE) is a special case of (NI). However, un-
der appropriate assumptions on G and/or 1" (e.g., using
the resolvent of T'), one can also transform (NI) to (NE).
Let zer(¥) := {z* € dom(¥) : 0 € ¥z*} and zer(G) :=
{z* € dom(G) : Gz* = 0} be the solution sets of (NI) and
(NE), respectively, which are assumed to be nonempty.

(b) Variational inequality problem (VIP). If T' = Ny, the
normal cone of a nonempty, closed, and convex set X in R?,
then (NI) reduces to the following VIP:

Find z* € X such that: (Gz*,x — 2*) > 0,Vz € X. (VIP)

If T' = Jg, the subdifferential of a convex function g, then
(NI) reduces to a mixed VIP, denoted by MVIP. Both VIP
and MVIP cover many problems in practice, including min-
imax problems and Nash’s equilibria, see, e.g., (Burachik &
Tusem, 2008; Facchinei & Pang, 2003; Phelps, 2009).

(c) Minimax optimization. Another important special case
of (NI) (or MVIP) is the following minimax optimization (or
saddle-point) problem, which has found various applications
in machine learning and robust optimization:

urélﬂié}l max {[,(u, v) = p(u) + H(u,v) — w(v)}7 (SP)

where H : RP? x RP2 — R is a smooth function, and
@ and v are proper, closed, and convex. Let us define
x := [u,v] € RP as the concatenation of v and v with p :=
p1 + p2. Gz = [V H(u,v), -V, H(u,v)], and Tz :=
[0¢(u), 01 (v)]. Then, the optimality condition of (SP) is
written in the form of (NI). Since (VIP), and in particular,
(SP) are special cases of (NI), our algorithms for (NI) in the
sequel can be specified to solve these problems.

(d) Fixed-point problem. Problem (NE) is equivalent to
the following fixed-point problem:

Find 2* € dom(F) such that: z* = Fz*,  (FP)

where F' := [ — A\G with I being the identity operator and
A > 0. Since (FP) is equivalent to (NE), our algorithms for
(NE) from this paper can also be applied to solve (FP).

1.3. Motivation
Our work is mainly motivated by the following aspects.

(i) Recent applications. Both (NE) and (NI) cover the mini-
max problem (SP) as a special case. This minimax problem,
especially in nonconvex-nonconcave settings, has recently
gained its popularity as it provides a powerful tool to model
applications in generative adversarial networks (Arjovsky
et al., 2017; Goodfellow et al., 2014), robust and distribu-
tionally robust optimization (Ben-Tal et al., 2009; Bertsimas
& Caramanis, 2011; Levy et al., 2020), adversarial train-
ing (Madry et al., 2018), online optimization (Bhatia &
Sridharan, 2020), and reinforcement learning (Azar et al.,
2017; Zhang et al., 2021). Our work is motivated by those
applications.

(ii) Optimality certification. Existing stochastic methods
often target special cases of (NI) such as (NE) and (VIP).
In addition, these methods frequently rely on a monotonic-
ity assumption, which excludes many problems of current
interest, e.g., (Alacaoglu et al., 2023; Alacaoglu & Malit-
sky, 2022; Beznosikov et al., 2023; Gorbunov et al., 2022a;
Loizou et al., 2021). Furthermore, existing methods analyze
convergence based on a [duality] gap function (Facchinei &
Pang, 2003) or a restricted gap function (Nesterov, 2007).
As discussed in (Cai et al., 2024; Diakonikolas, 2020), these
metrics have limitations, particularly in nonmonotone set-
tings. It is important to note that standard gap functions are
not applicable to our settings due to Assumption 1.4. Re-
garding oracle complexity, several works, e.g., (Alacaoglu
& Malitsky, 2022; Beznosikov et al., 2023; Gorbunov et al.,
2022a; Loizou et al., 2021) claim an oracle complexity of
O(n + y/ne™!) to attain an e-solution, but this is measured
using a restricted gap function. Again, as highlighted in (Cai
et al., 2024; Diakonikolas, 2020), this certification does not
translate to the operator residual norm and is inapplicable
to nonmonotone settings. Therefore, a direct comparison
between our results and these previous works is challenging
due to these methodological discrepancies (see Table 1).

(iii) New and simple algorithms. Various existing stochas-
tic methods for solving (VIP) and (NI) rely on estab-
lished techniques. These include mirror-prox/averaging
and extragradient-type schemes combined with the clas-
sic Robbin-Monro stochastic approximation (Robbins &
Monro, 1951) (e.g., (Cui & Shanbhag, 2021; Iusem et al.,
2017; Juditsky et al., 2011; Kannan & Shanbhag, 2019; Kot-
salis et al., 2022; Yousefian et al., 2018)). Some approaches
utilize increasing mini-batch sizes for variance reduction
(e.g., (Iusem et al., 2017; Pethick et al., 2023)). Recent
works have explored alternative variance-reduced methods
for (NI) and its special cases (e.g., (Alacaoglu et al., 2023;
Alacaoglu & Malitsky, 2022; Bot et al., 2019; Cai et al.,
2022; Davis, 2022)). However, these methods primarily
adapt existing optimization estimators to approximate the
operator GG without significant differences. Our approach de-
parts from directly approximating G. Instead, we construct
an intermediate quantity S¥ := Ga* — yGz*~! as a linear
combination of two consecutive evaluations of G (i.e. Gz*
and Gz*~1). We then develop stochastic variance-reduced
estimators specifically for S’;. Note that S’j alone is not new,
but our idea of using it in stochastic methods is new. This
idea allows us to design new and simple algorithms with a
single loop for both (NE) and (NI) where the state-of-the-art
oracle complexity is achieved (cf. Sections 3 and 4).

1.4. Basic assumptions

We tackle both (NE) and (NI) covered by the following
basic assumptions (see (Bauschke & Combettes, 2017) for
terminologies and concepts used in these assumptions).

Assumption 1.1. [Well-definedness] zer(¥) of (NI) and
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zer(G) of (NE) are nonempty.

Assumption 1.2. [Maximal monotonicity of T T in (NI) is
maximally monotone on dom (7).

Assumption 1.3. [Lipschitz continuity of G] G in (1) is
L-averaged Lipschitz continuous, i.e. Vz,y € dom(G):

5 i IGiz = Gay||? < L?||lo — . @

Assumption 1.4. [Weak-Minty solution] There exist a solu-
tion x* € zer(¥) and k > 0 such that (Gx + v,z — z*) >
—k||Gx + v||? for all z € dom(¥) and v € Tx.

While Assumption 1.1 is basic, Assumption 1.2 guarantees
the single-valued and well-definiteness of the resolvent Jr
of T'. In fact, this assumption can be relaxed to some classes
of nonmonotone operators 7', but we omit this extension.
The L-averaged Lipschitz continuity (2) is standard and has
been used in most deterministic, randomized, and stochas-
tic methods. It is slightly stronger that the L-Lipschitz
continuity of the sum G. The star-co-hypomonotonicity
in Assumption 1.4 is significantly different from the star-
strong monotonicity used in, e.g., (Kotsalis et al., 2022).
It covers a class of nonmonotone operators G (see Supp.
Doc. A.2 for a concrete example). It is also weaker than the
co-hypomotonicity, used, e.g., in (Cai et al., 2024).

1.5. Contribution and related work

Our primary goal is to develop a class of variance-reduction
methods to solve both (NE) and (NI), their special cases
such as (VIP) and (SP), and equivalent problems, like (FP).

Our contribution. Our main contribution consists of:

(a) We exploit the variable S’j in (FRQ) and introduce a
class of unbiased variance-reduced estimators gfj for
S’;, not for G, covered by Definition 2.1.

(b) We construct two instances of §’,§ by leveraging the
SVRG (Johnson & Zhang, 2013) and SAGA (Defazio
et al., 2014) estimators, respectively that fulfill our Def-
inition 2.1. These estimators are also of independent
interest, and can be applied to develop other methods.

(c) We develop a variance-reduced forward-reflected-type
method (VFR) to solve (NE) required O(n-+n?/3¢2)
evaluations of GG; to obtain an e-solution.

(d) We design a novel stochastic variance-reduced forward-
reflected-backward splitting method (VFRBS) to solve
(NI), also required O(n+n?/3¢2) evaluations of G;.

Table 1 below compares our work and some existing single-
loop variance-reduction methods, but in either the co-
coercive or monotone settings. Now, let us highlight the
following points of our contribution. First, our intermediate
quantity S lj can be viewed as a generalization of the forward-
reflected-backward splitting (FRBS) operator (Malitsky &
Tam, 2020) or an optimistic gradient operator (Daskalakis
et al., 2018) used in the literature. However, the chosen

range v € (1/2,1) excludes these classical methods from
recovering as special cases of S’,j. Second, since our SVRG
and SAGA estimators are designed specifically for S,’j, they
differ from existing estimators in the literature, including
recent works (Alacaoglu et al., 2023; Alacaoglu & Malitsky,
2022; Bot et al., 2019). Third, both proposed algorithms are
single-loop and straightforward to implement. Fourth, our
algorithm for nonlinear inclusions (NI) significantly differs
from existing methods, including deterministic ones, due to
the additional term v~!(2y — 1)(y* — 2*). For a compre-
hensive survey of deterministic methods, we refer to (Tran-
Dinh, 2023). Fifth, our oracle complexity estimates rely on
the metric E[||Gz*||?] or E[||Gx* + v*||?] for v* € Tk,
commonly used in nonmonotone settings. Unlike the mono-
tone case, this metric cannot be directly converted to a gap
function, see, e.g., (Alacaoglu et al., 2023; Alacaoglu &
Malitsky, 2022). Our complexity bounds match the best
known in stochastic nonconvex optimization using SAGA
or SVRG without additional enhancements, e.g., utilizing a
nested technique as in (Zhou et al., 2018).

Related work. Since both theory and solution methods for
solving (NE) and (NI) are ubiquitous, see, e.g., (Bauschke
& Combettes, 2017; Burachik & Iusem, 2008; Facchinei &
Pang, 2003; Phelps, 2009; Ryu & Yin, 2022; Ryu & Boyd,
2016), especially under the monotonicity, we only highlight
the most recent related works (see more in Supp. Doc. A).

(i) Weak-Minty solution. Assumption 1.4 is known as a
weak-Minty solution of (NI) (in particular, of (NE)), which
has been widely used in recent works, e.g., (Bohm, 2022;
Diakonikolas et al., 2021; Lee & Kim, 2021; Pethick et al.,
2022; Tran-Dinh, 2023a) for deterministic methods and,
e.g., (Lee & Kim, 2021; Pethick et al., 2023; Tran-Dinh
& Luo, 2025) for stochastic methods. This weak-Minty
solution condition is weaker than the co-hypomonotonicity
(Bauschke et al., 2020), which was used earlier in proximal-
point methods (Combettes & Pennanen, 2004). Diakoniko-
las et al. exploited this condition to develop an extragradient
variant (called EG+) to solve (NE). Following up works in-
clude (Bohm, 2022; Cai & Zheng, 2023; Luo & Tran-Dinh,
2022; Pethick et al., 2022; Tran-Dinh, 2023a). A recent
survey in (Tran-Dinh, 2023) provides several deterministic
methods that rely on this condition. This assumption covers
a class of nonmonotone operators G or G + T'.

(ii) Stochastic approximation methods. Stochastic meth-
ods for both (NE) and (NI) and their special cases have
been extensively developed, see, e.g., (Juditsky et al., 2011;
Kotsalis et al., 2022; Pethick et al., 2023). Several meth-
ods exploited mirror-prox and averaging techniques such
as (Juditsky et al., 2011; Kotsalis et al., 2022), while others
relied on projection or extragradient schemes, e.g., (Cui &
Shanbhag, 2021; Iusem et al., 2017; Kannan & Shanbhag,
2019; Pethick et al., 2023; Yousefian et al., 2018). Many
of these algorithms use standard Robbin-Monro stochastic
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Table 1: Comparison of recent existing single-loop variance-reduction methods and our algorithms

Papers Problem Assumptions Estimators  [Residual Rates Oracle Complexity
(Davis, 2022) (NE) and (NI) | co-coercive/SQM [SVRG & SAGA linear O ((L /1) log(efl))
(Tran-Dinh, 2024) (NE) and (NI) | co-coercive a class o(1/k%) O(n+n*3e 1)
(Cai et al., 2024) (NE) and (NI) | co-coercive SARAH O(1/k*) | O(n+n'log(n)e")
(Alacaoglu & Malitsky, 2022) (VIP) monotone SVRG X @ (n +n'/ Qe’l)
(Alacaoglu et al., 2023) (VIP) monotone SVRG X 9] (ne -1 )
Ours (NE) and (NI) weak Minity aclass o (1 / k) @] (n +n? 3672)

Notes: SQM means “strong quasi-monotonicity”; Residual Rate is the convergence rate on E[HGmkHQ} or IE[HGJC’c + vk||2] for
v € Tz*; and a class is a class of variance-reduced estimators. The complexity of (Alacaoglu & Malitsky, 2022) and (Alacaoglu et al.,
2023) marked by magenta is on a gap function, a different metric than in other works in Table 1. Thus, it is unclear how to compare them.

approximation with fixed or increasing batch sizes. Some
other works generalized the analysis to a general class of
algorithms such as (Beznosikov et al., 2023; Gorbunov et al.,
2022a; Loizou et al., 2021) covering both standard stochas-
tic approximation and variance reduction algorithms.

(iii) Variance-reduction methods. Variance-reduction tech-
niques have been broadly explored in optimization, where
many estimators were proposed, including SAGA (Defazio
et al., 2014), SVRG (Johnson & Zhang, 2013), SARAH
(Nguyen et al., 2017), and Hybrid-SGD (Tran-Dinh et al.,
2019; 2022), and STORM (Cutkosky & Orabona, 2019). Re-
searchers have adopted these estimators to develop methods
for (NE) and (NI). For example, (Davis, 2022) proposed a
SAGA-type methods for (NE) under a [quasi]-strong mono-
tonicity. The authors in (Alacaoglu et al., 2023; Alacaoglu &
Malitsky, 2022) employed SVRG estimators and developed
methods for (VIP). Other works can be found in (Bot et al.,
2019; Carmon et al., 2019; Chavdarova et al., 2019; Huang
et al., 2022; Palaniappan & Bach, 2016; Yu et al., 2022). All
of these results are different from ours. Some recent works
exploited Halpern’s fixed-point iterations and develop cor-
responding variance-reduced methods, see, e.g., (Cai et al.,
2024; 2022). However, varying parameters or incorporat-
ing double-loop/inexact methods must be used to achieve
improved theoretical oracle complexity. We believe that
such approaches may be challenging to select parameters
and to implement in practice. Finally, unlike optimization,
it has been realized that using biased estimators such as
SARAH or Hybrid-SGD/STORM for (NI) (including (SP)
and (VIP)) is challenging due to the lack of an objective
function, a key metric to prove convergence, and product
terms like (¥, x*+1 — 2*) in convergence analyses, where
k

e” is a bias rendered from §§ (see Supp. Doc. A).

Notation. We use Fy := o(2°, 2!, --- | 2¥) to denote the
o-algebra generated by 2°,--- ¥ up to the iteration k.
Ey[-] = E[- | Fk] denotes the conditional expectation w.r.t.
Fi» and E[ - | is the total expectation. We also use O (+)
to characterize convergence rates and oracle complexity.
For an operator G, dom(G) := {z : Gz # 0} denotes its

domain, and Jg denotes its resolvent.

Paper organization. Section 2 introduces S’; and defines a

class of stochastic estimators for it. It also constructs two
instances: SVRG and SAGA, and proves their key proper-
ties. Section 3 develops an algorithm for solving (NE) and
establishes its oracle complexity. Section 4 designs a new
algorithm for solving (NI) and proves its oracle complexity.
Section 5 presents two concrete numerical examples. Proofs
and additional results are deferred to Sup. Docs. A to E.

2. Forward-Reflected Quantity and Its
Stochastic Variance-Reduced Estimators

We first define our forward-reflected quantity (FRQ) for G
in (NE) and (NI) using here. Next, we propose a class of
unbiased variance-reduced estimators for FRQ. Finally, we
construct two instances relying on the two well-known esti-
mators: SVRG from (Johnson & Zhang, 2013) and SAGA
from (Defazio et al., 2014).

2.1. The forward-reflected quantity

Our methods for solving (NE) and (NI) rely on the fol-
lowing intermediate quantity constructed from G via two
consecutive iterates ¥~ ! and 2* controlled by v € [0, 1]:

Sk = Ga* — yGaF 1. (FRQ)

Here, v € (%, 1) plays a crucial role in our methods in the
sequel. Clearly, if v = %, then we can write S' f 1o = %Gmk +
1(Ga* — G2*1) = 1[2G2* — G2*!] used in both the
forward-reflected-backward splitting (FRBS) method (Mal-
itsky & Tam, 2020) and the optimistic gradient method
(Daskalakis et al., 2018). In deterministic unconstrained set-
tings (i.e. solving (NE)), see (Tran-Dinh, 2023), FRBS
is also equivalent to Popov’s past-extragradient method
(Popov, 1980), reflected-forward-backward splitting algo-
rithm (Cevher & Vi, 2021; Malitsky, 2015), and optimistic
gradient scheme (Daskalakis et al., 2018). In the determin-
istic constrained case, i.e. solving (NI), these methods are
different. Since vy € (%, 1), our methods below exclude
these classical schemes. However, due to a similarity pat-
tern of (FRQ) and FRBS, we still term our quantity S* by
the “forward-reflected quantity”, abbreviated by FRQ.

2.2. Unbiased variance-reduced estimators for FRQ
Now, let us propose the following class of stochastic
variance-reduced estimators S¥ of S¥.
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Definition 2.1. A stochastic estimator S,’j is said to be a
stochastic unbiased variance-reduced estimator of S’; in

(FRQ) if there exist constants p € (0,1], C' > 0 and C > 0,
and a nonnegative sequence {A} such that:

E[5¢ - 58] =0,

E[|IS - S51°] < A,

A <(1=p)Ay 1 +C-Up +C - Uy,
where Uy, := % Sy ]E[||Gi:ck — Gi:ck’le}.

3

Here, ALy = 0,272 =o' =2° and E;[ - | and E[ - |

are the conditional and total expectations defined earlier,
respectively. The condition p > 0 is important to achieve a
variance reduction as long as z* is close to #*~* and 2%~!
is close to 2zF~2. Otherwise, S’VC may not be a variance-
reduced estimator of S¥. Since S¥ is evaluated at both 2~
and z*, our bound for the estimator :S’Vﬁ depends on three
consecutive points 22, =1, and 2*, which is different
from previous works, including (Alacaoglu et al., 2021;
Beznosikov et al., 2023; Davis, 2022; Driggs et al., 2020).

Now, we will construct two variance-reduced estimators
satisfying Definition 2.1 by exploiting SVRG (Johnson &
Zhang, 2013) and SAGA (Defazio et al., 2014).

(a) Loopless-SVRG estimator for S’,j . Consider a mini-
batch By C [n] := {1,2,---,n} with a fixed batch
size b := |Bg|. Denote Gp,z = 3> .5, Giz for
z € dom(G). We define the following estimator for Slj:
Sk . k k
+ G a* — 4G,

where the snapshot point w" is selected randomly as follows:

k . a1s
Wt =" with probability p

o)
wk with probability 1 — p.

The probability p € (0,1) will appropriately be chosen
later by nonuniformly flipping a coin. This estimator is
known as a loopless variant (Kovalev et al., 2020) of the
SVRG estimator (Johnson & Zhang, 2013). However, it is
different from existing ones used in root-finding algorithms,
including (Davis, 2022) because we define it for S* . not for
Gx*. In addition, the first term is also damped by a factor
1 — ~y to guarantee the unbiasedness of Sij to S,’j.

The following lemma shows that §§ satisfies Definition 2.1.
Lemma 2.2. Let Sij be given by (FRQ) and §,’; be generated
by the SVRG estimator (L-SVRG) and

Ap = Y0 E[|Giak — 4Gkt — (1 — )Gk |?].

Then, Slj satisfies Definition 2.1 with this {Ay}, p == 5,

._ 4—6p+3p? AL 29°(2—3p+p?)
C .= 7S ,and C = i

(b) SAGA estimator for S*. Given S* as in (FRQ) and
a mini-batch estimator G'g,, as in (L-SVRG), we construct
the following SAGA estimator for S’j :

55 = [Gp, 2" — G2t — (1 - ’Y)égk]

L iase o (SAGA)

where B}, is a mini-batch of size b, and éf is updated as
Gixk ifs € Bk,

Ahk+1 . _
Git= 0
G,

&)

otherwise.

To form g’;, we need to store n components Gf computed so
far for i € [n] in a table 75, := [G¥,G%, --- , G*] initialized
at G9 := G,;z° forall i € [n]. Clearly, the SAGA estimator
requires significant memory to store 7, if n and p are both
large. We have the following result.

Lemma 2.3. Let S,’j be defined by (FRQ) and gfj be gener-
ated by the SAGA estimator (SAGA), and

Ap = o 2 B[ Giak — 4Gkt — (1 - W)GfHQ]

Then, g’,j satisfies Definition 2.1 with this {Ag}, p := % c
0,1], C := [Q(W*b)(i—’b”rb)ﬂﬂ’ and C = W

We only provide two instances: (L-SVRG) and (SAGA)
covered by Definition 2.1. However, we believe that similar
estimators for S’; relied on, e.g., JacSketch (Gower et al.,
2021) or SEGA (Hanzely et al., 2018), among others can
fulfill our Definition 2.1.

3. A Variance-Reduced Forward-Reflected
Method for [Non]linear Equations

We first utilize the class of stochastic estimators in Defi-
nition 2.1 to develop a variance-reduced forward-reflected
(VFR) method for solving (NE) under Ass. 1.3 and 1.4.

3.1. The VFR method and its convergence guarantee

(a) VFR Method. Our method is described as follows.
Starting from 2° € dom(G), at each iteration k > 0, we
construct an estimator S,’j satisfying Definition 2.1 with

parameters p € (0,1], C > 0, and C' > 0, and then update

gkl = gk — ngfj, (VFR)

where n > 0 and v > 0 are determined below, x~' =

27?2 =2 and §2 = (1 — )G

At least two estimators 55 : the Loopless-SVRG estimator in
(L-SVRG) and the SAGA estimator in (SAGA), can be used
in our method (VFR). In terms of per-iteration complexity,
each iteration k of VFR, the loopless SVRG variant requires
three mini-batch evaluations G5, w*, G, z*, and G, 2%~
of G, and occasionally computes one full evaluation Gw*
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of GG with the probability p. It needs one more mini-batch
evaluation G, ¥~ compared to SVRG-type methods in
optimization. Similarly, the SAGA estimator also requires
two mini-batch evaluations G, z* and Gg, v*~1, which
is one more mini-batch Gz, z¥~* compared to SAGA-type
methods in optimization, see, e.g., (Reddi et al., 2016b). The
SAGA estimator can avoid the occasional full-batch evalua-
tion Gw* from L-SVRG, but as a compensation, we need
to store a table 7y, := [G¥,G%, .- GF], which requires
significant memory in the large-scale regime.

(b) Convergence guarantee. Fixed v € (3, 1), with p, C,

and C' as in Definition 2.1 we define

146y  C+C
3(2v-1) p

M = 20550

2y—1
327 =1) and §:= 8’\Y/M' (6)

Then, the following theorem states the convergence of
(VFR), whose proof is given in Supp. Doc. C.

Theorem 3.1. Let us fix v € (%, 1), and define M and ¢
as in (6). Suppose that Assumptions 1.1, 1.3, and 1.4 hold
for (NE) with some x > 0 such that L < 0. Let {x"*} be

generated by (VFR) using a learning rate n > 0 such that
8/@
-1 == \ﬁ :

1 X
S Bl
k=0
1 K
m ZE[”xk _ l‘k71||2]
k=1

M and 0 -

O1z% —a*|?
K+1

IN

™
O5[|2° — a*]”

K+1 ’

IN

8(1+L%n?)

where O := 3(2y—1)(1—ML2n?)

Theorem 3.1 only proves a O (1/K) convergence rate
of both ﬁ ZkK:O E[||Gz*|?] and ﬁ Zszl E[||lz* —
2*~1]12], but does not characterize the oracle complexity
of (VFR). If we choose v := %, then from (6), we have
M = %—&—711(?:@ and § = =
bounds in Theorem 3.1. In addition, it allows x > 0 such
that Lk < § =0 (\/ﬁ) , which means that s can be positive,
but depends on /p. This condition allows us to cover a
class of nonmonotone operators GG, where a weak-Minty
solution exists as stated in Assumption 1.4.

3.2. Complexity Bounds of VFR with SVRG and SAGA
Let us first apply Theorem 3.1 to the mini-batch SVRG
estimator L- SVRG) in Section 2. For simplicity, we choose
v:=2andn:= f but any v € (3,1) still works.

Corollary 3.2. Suppose that Assumptions 1.1, 1.3, and 1.4
hold for (NE) with k > 0 as in Theorem 3.1. Let {xk} be
generated by (VFR) using (L-SVRG), v := g, and n =

L\}M > 0 144£fp, provided that bp? < 1. Then

1 K
il > E[|Ga*|?] <
k=0

526L2||;z: Pk
p2(K +1)

®)

For e > 0, if we choose p := n=13 and b .= an/?’J, then

252 2/3
(VFR) requires Te, == n+ L%

to attain ﬁ Zéio E[HGl‘k”Q] Se

J evaluations of G;
2 where T := 731.

Corollary 3.2 states that the oracle complexity of (VFR) is
@) (n + n?/ 36*2), matching (up to a constant) the one of
SVRG in nonconvex optimization, see, e.g., (Allen-Zhu &
Hazan, 2016; Reddi et al., 2016a). It improves by a fac-
tor O (nl/ 3) compared to deterministic counterparts. This
complexity is known to be the best for SVRG so far without
any additional enhancement (e.g., nested techniques (Zhou
et al., 2018)) even for a special case of (NE): Gz = V f(x)
in nonconvex optimization.

Note that 7 can be computed explicitly when b and p are
given. For example, if n = 10000 and we choose p =
n~1/3 = 0.0464 and b = |n?/3| = 464, then = 21456,
Ifp=0.1,thenn = & 3838 Note that, in general, we can
choose appropriate p := O(n~/3) and b := O (n?/3).
Alternatively, we can apply Theorem 3.1 to (SAGA).
Corollary 3.3. Suppose that Assumptions 1.1, 1.3, and

1.4 hold for (NE) with k > 0 as in Theorem 3.]. Let {z*}
be generated by (VFR) using (SAGA), v := 2, and n :=

\1ﬁ > 0 149‘5’ , provided that 1 < b < n2/3 Then

K

71 2 EllGa"7] <

k:

489L2||m0 —x*|?
bp?(K +1)

©))

Moreover, for a given € > 0, if we choose b := |n?/3|, then
. 3T L2RZn?/3

(VFR) requires Te, == n+ Lij

to achieve KL—H Zk:o [IGz*[]?] <

evaluations of G;
< €2, where T := 2816.

Similar to Corollary 3.2, the learning rate 7 in Corollary 3.3
can explicitly be computed if we know n and b. For instance,
if n = 10000, and we choose b = [n?/3], then n = 21603,

If Kk = 0, i.e. G reduces to a star-monotone operator, then
we can choose v € (4,1) and 7 as:

. _1
For SVRG, we have n € (0, L\/M}'
p=0(n"'3)and b= O(n*?),thenn = O(1);

* For SAGA, we have n € (0, L%/M] If we choose
b= 0O(n*?), thenn = O(1).

Hitherto, the constant factor I" in both corollaries is still rel-

atively large, but it can be further improved by refining our
technical proofs (e.g., carefully using Young’s inequality).

4. A New Variance-Reduced FRBS Method for
Nonmonotone Generalized Equations

In this section, we develop a new stochastic variance-
reduced forward-reflected-backward splitting (FRBS)
method to solve (NI) under Assumptions 1.2, 1.3, and 1.4.

If we choose
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4.1. The algorithm and its convergence

(a) The variance-reduced FRBS method (VFRBS). Our
scheme for solving (NI) is as follows. Starting from x° €
dom(W), at each iteration k > 0, we generate an estimator
g’; satisfying Definition 2.1 and update

af = oF — Sk —p(yoh ! — (29 - 1)0F), (VFRBS)

where 1 > 0 and v > O are determined later, vk € Tk,
et =272 := 2% and S5 := (1 — )Gz’

(b) Implementable version. Since v**! € Tx**+1 appears
on the RHS of (VFRBS), using the resolvent J,7 := T+
ynT)~1 of T, we can rewrite (VFRBS) equivalently to

yk+1 = CCk o nS’]: + (2"/’;1) (yk o Ik), (10)
Ty (y*11).

Here, y° € dom(¥) is given, and 20 = 271 := J,,r(y°).
This is an implementable variant of (VFRBS) using the
resolvent J., . Clearly, if v = % then (10) reduces to

k+1

xT

$k+1

— k Sk

= Jis2r (27 = 1SY)5),

which can be viewed as a stochastic forward-reflected-
backward splitting scheme. However, our v € (%, 1), mak-
ing (10) different from existing methods, even in the deter-
ministic case.

Compared to (Alacaoglu & Malitsky, 2022), (10) requires
only one J,,r as in (Alacaoglu et al., 2023), while (Ala-
caoglu & Mali§ky, 2022) needs more than ones. Moreover,
our estimator S’; is also different from (Alacaoglu & Mal-
itsky, 2022). Compared to (Beznosikov et al., 2023) and
(Alacaoglu et al., 2023), the term v~ (2y — 1)(y* — 2%)
makes it different from SGDA in (Beznosikov et al., 2023)
and the golden-ratio method in (Alacaoglu et al., 2023), and
also other existing deterministic methods.

(c) Approximate solution certification. To certify an ap-
proximate solution of (NI), we note that its exact solution
x* € zer(V) satisfies || Gx* +v*||? = 0 for some v* € Tz*.
Therefore, if (2", v%) satisfies E[[|Gz" + v*||?] < €2 for
some v* € Tx*, then we can say that 2" is an e-solution
of (NI). Alternatively, we can define the following forward-
backward splitting (FBS) residual of (NI):

Gnx =10~z — Jy(x — nGx)),

for any given n > 0. It is well-known that 2* € zer(¥)
iff G,z* = 0. Hence, if E[||G,z*[?] < €, then 2* is
also called an e-solution of (NI). One can easily prove
that ||G,z*|| < ||Ga® + v*| for any v* € Tz*. Clearly,
the former metric implies the latter one. Therefore, it is
sufficient to only certify E[[|Gz* + v*||?] < €2, which
implies E[[|G,z*||?] < €2.

(d) Convergence analysis. For simplicity of our presenta-
tion, for a given v € (%, 1), with p, C, and C in Defini-
tion 2.1, we define the following two parameters:

v(2y=1) (11

482 4 Ay CHC —
M = 4~* + -~ and 6 := By Vil

Then, Theorem 4.1 below states the convergence of
(VFRBS), whose proof can be found in Supp. Doc. D.

Theorem 4.1. Let us fix v € (%, 1), and define M and § as
in (11). Suppose that Assumptions 1.1, 1.2, 1.3, and 1.4
hold for (NI) for some r > 0 such that Lk < §. Let {z*}
be generated by (VFRBS) using a fixed learning rate 1 such

that B2=1r - n < ﬁ Then, we have

v(2v-1)
K ~ A~
1 0112
- EllG k+ k2 < 707
K—i-l]; lGz"+ o1 = ey .
K A A
1 O, R2
Elllz* — 251121 < 0
K+1kz:0 lle® == = 27

where ]A%(Q) ©1, and O are respectively given by

B3 = [|a® = *|? +722l|G0 + 0|,

= W (3y=1)n
01 = e o-E-Da
62 L 4(3y—1)R2

— A-mQA-ML?n?)"

The bounds in Theorem 4.1 are similar to Theorem 3.1, but
their proof relies on a new Lyapunov function. Note that the
condition on Lk still depends on p as Lr < § = O(,/p).

4.2. Complexity of VFRBS with SVRG and SAGA

Similar to Section 3, we can apply Theorem 4.1 for the
mini-batch SVRG estimator in Section 2.

Corollary 4.2. Suppose that Assumptions 1.1, 1.2 1.3,
and 1.4 hold for (NI) with k > 0 as in Theorem 4.1. Let

{2*} be generated by (VFRBS) using the SVRG estima-
1 o 1 U\/E .
tor (L-SVRG), v € (5,1), and n := T > 2R with
— V1—~y : 2 <
0= e—— Tt provided that bp* < 1. Then, we have

K A A

1 01LRj
e E[||Gz* M2l < ——-9% 13
K+1kZ:0 [IGz" + ||]—0—2bp2(K+1)’ (13)

where R2 := ||z0 — 2*||> + 7212 Gz® + 0|2

For given ¢ > 0, if we choose p :=n~/3 and b := |n?/?],
252 2/3

then (VFRBS) requires Tg, = n + L%J
IL?R2

uations of G; and Tr = LTO

achieve ﬁ Zf:o]E[”ka"'UkHﬂ < €, where T := &4

eval-

J evaluations of J.yr to

Alternatively, we can apply Theorem 4.1 to the mini-batch
SAGA estimator (SAGA) in Section 2.



Variance-Reduced Forward-Reflected-Backward Splitting Methods

Corollary 4.3. Suppose that Assumptions 1.1, 1.2, 1.3,
and 1.4 hold for (NI) with k > 0 as in Theorem 4.1. Let
{x*} be generated by (VFRBS) using the SAGA estimator

ob3/2 .
(SAGA), v € (%,1), andn = L\}M > ZL with o :=
— MY provided that 1 < b < n2/3. Then
24/7(104+7+77?)
K A A
1 n?0,L*R32
—— ) E[|Ga* +*|P] € 52, (14
KH; liGa* +o"1°) < ey (9
where R2 := |20 — 2*||> + v21?||Gz® + 0|2,
For a given ¢ > 0, if we choose b = |n*/3|, then

2752, 2/3

(VFRBS) requires T, := n + L%
2 H2

of G; and Tr = LFLezROJ evaluations of J., to achieve

ﬁ Zi(:OIE[HG:z:k + vF||?] < €2 whereT := %.

J evaluations

Similar to Subsection 3.2, when v, n, b, and p are given, we
can compute concrete values of the theoretical learning rate
7 in both corollaries. They are larger than the corresponding
lower bounds given in these corollaries.

5. Numerical Experiments

We provide two examples to illustrate (VFR) and (VFRBS)
and compare them with other methods.

5.1. Nonconvex-nonconcave minimax optimization
We consider the following nonconvex-nonconcave minimax
optimization problem as a special case of (SP):

Jnin - max {£(u,v) = p(u) + H(u,v) = P(v)}, (15)
where H(u,v) == 25" Hi(u,v) = 230 [ul A +
uT'Liv — vI'Byv + b/ u — ¢/ v] such that A; € RP1*P
and B; € RP2*P2 are symmetric matrices, L; € RP1*P2,
b; € RP' and ¢; € RP?; ¢ and v are two proper, closed,
and convex functions. The optimality of (15) becomes (NI)
(see Supp. Doc. E). In our experiments, we choose A; and
B; to be not positive semidefinite such that Assumption 1.4
holds. Thus, (15) is nonconvex-nonconcave.

We generate A; = QZ-DZ-Q;TF for a given orthonormal ma-
trix ; and a diagonal matrix D;, where its entries Df are
generated from standard normal distribution and clipped by
max{D/, —0.1}. The matrix B; is also generated by the
same way, while L;, b;, and ¢; are generated from standard
normal distribution. Hence, G in (NI) is not symmetric and
also not positive semidefinite.

The unconstrained case. We implement three variants
of (VFR): VFR-svrg (double-loop SVRG), LVFR-svrg
(loopless SVRG), VFR-saga (using SAGA estimator) in
Python to solve (15) when both ¢ and ¢ are vanished, i.e.
its optimality is a special case of (NE). We also compare our
methods with the deterministic optimistic gradient method
(0G) in (Daskalakis et al., 2018), the variance-reduced

FRBS scheme (VFRBS) in (Alacaoglu et al., 2023), and
the variance-reduced extragradient algorithm (VEG) in (Ala-
caoglu & Malitsky, 2022). We select the parameters as sug-
gested by our theory, while choosing appropriate parameters
for OG, VFRBS, and VEG. The details of this experiment,
including generating data and specific choice of parameters,
are given in Supp. Doc. E.

The relative residual norm ||Gz*||/||Gz°|| against the num-
ber of epochs averaged on 10 problem instances is revealed
in Figure 1 for two datasets (p,n) = (100,5000) and
(p,n) = (200, 10000).

Experiment 1: n = 5000 and p = 100

—e- 0G
1051 == VFResvrg
=—4— LVFR-svrg
1064 = VFR-saga
VFRBS
10774 —— VEG

Relative operator norm ||Ga* || /|| Gz°||

T T T T T T
0 10 20 30 40 50
Number of epochs

Experiment 2: n = 10000 and p = 200

1054 =+ 0G
=#= VFR-svrg
=—4— LVFR-svrg
10-74 ==+ VFR-saga
VFRBS
== VEG

Relative operator norm ||Gz*||/||G°||

6 lb 2b 3‘1] r'l‘li f:lJ
Number of epochs
Figure 1: Comparison of 6 algorithms to solve the uncon-
strained (15) on 2 experiments (The average of 10 runs).

Clearly, with these experiments, three SVRG variants of our
method (VFRBS) work well and significantly outperform
other competitors. The LVFR-svrg variant of (VFRBS)
seems to work best, while VFRBS and VEG still cannot beat
the deterministic algorithm OG in this example.

The constrained case. We now adding two simplex con-
straints w € A, and v € A, to (15), where A, := {u €
RE : >P | w; = 1} is the standard simplex in R?. These
constraints are common in bilinear games. To handle these
constraints, we set p(u) 1= da, (u) and P(v) = da,_(v)
as the indicators of A, and A, respectively.

Again, we run 6 algorithms for solving this constrained case
of (15) using the same parameters as the unconstrained
case. We report the relative norm of the FBS residual
G2 1/11Gy2°| against the number of epochs. The re-
sults are revealed in Figure 2 for two datasets (p,n) =
(100, 5000) and (p,n) = (200, 10000).
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Experiment 1: n = 5000 and p = 100

—-e- 0OG

-1
10 == VFRswrg
- =4+ LVFR-svrg
-4
10 .\‘\o.\ —& - VFR-saga
L T VFRBS

,_.
15}
4

—— VEG

10-10 4

10713 4

Relative operator norm |Gx||/[|Gx°||

10-16 4

0 20 40 60 80 100
Number of epochs

Experiment 2: n = 10000 and p = 200

1071 =e- 06
B =#= VFR-svrg
’\‘
ne. —+— LVFR-svrg

1074 A =

—a - VFR-saga

VFRBS
1077 A N . —— VEG

10710 4

10-13 4

Relative operator norm [|GxX||/|Gx°||

10-16 4

0 2‘0 4‘0 6‘0 Sb 160

Number of epochs
Figure 2: The performance of 6 algorithms to solve the
constrained (15) on 2 experiments (The average of 10 runs).

Clearly, with these experiments, both SVRG variants of
our method (VFRBS) work well and significantly outper-
form other competitors. The SVRG variant (VER-svrg) of
(VFRBS) seems to work best, while our VFR-saga has a
similar performance as VEG. Again, we also see that VERBS
tends to have a similar performance as OG.

5.2. Logistic regression with ambiguous features

We consider the following minimax optimization problem
arising from a regularized logistic regression with ambigu-
ous features (see Supp. Doc. E for more details):

1 1 N m
e { 2= 2 T (0 )

+ TR(w) — 5Am(z)},

where £(7,s) := log(1 4+ exp(7)) — s7 is the standard
logistic loss, R(w) := ||w||1 is an ¢;-norm regularizer, 7 >
0 is a regularization parameter, and d, is the indicator of
A,, to handle the constraint z € A,,,. Then, the optimality
condition of (16) can be cast into (NI), where z := [w, z].

We implement three variants of (VFRBS) to solve (16):
VFR-svrg, LVFR-svrg, and VFR-saga. We also com-
pare our methods with OG, VFRBS, and VEG as in Subsec-
tion 5.1. We cary out a mannual tuning procedure to select
appropriate learning rates for all methods. We test these
algorithms on two real datasets: a9a (134 features and
3561 samples) and w8a (311 features and 45546 samples)
downloaded from LIBSVM (Chang & Lin, 2011). We first
normalize the feature vector X, ; and add a column of all ones
to address the bias term. To generate ambiguous features,

we take the nominal feature vector )A(l and add a random
noise generated from a normal distribution of zero mean and
variance of o2 = 0.5. In our test, we choose 7 := 1072 and
m := 10. The relative FBS residual norm ||G,z*||/||G,2° ||
against the epochs is plotted in Figure 3 for both datasets.

The a9a Dataset: (n, p, m) = (32561, 134, 10)

= 0 4 4

L 1w —e- 0G

S -+- VFR-svrg
e - —+— LVFR-svrg
_:: 10~ —~e, —=- VFR-saga
= ¥ T VFRBS

£ 00—

5 —e— VEG

€ 1072

o

©

2

o 1073 4 \

Q

2

B \-‘M
& 104

0 20 40 60 80 100
Number of epochs

The w8a Dataset: (n, p, m) = (45546, 311, 10)

107 4 —- 0G
—#- VFR-svrg
—— LVFR-svrg
—=&- VFR-saga
VFRBS

VEG

10-1 4

1072 4

1073 4

Relative operator norm [[G,xX[I/[|G,x°]l

6 Zb 4‘0 6‘0 8‘0 160
Number of epochs
Figure 3: Comparison of 6 algorithms to solve (16) on two
real datasets: a8a and w8a.

As we can observe from Figure 3 that three variants
VFR-svrg, LVFR-svrg, and VFR-saga have similar
performance and are better than their competitors. Among
three competitors, VERBS still works well, and is much bet-
ter than OG and VEG. The deterministic method, OG, is the
worst one in terms of oracle complexity. In this test, VEG
has a larger learning rate than ours and VFRBS.

6. Conclusions

We develop two new variance-reduced algorithms based on
the forward-reflected-backward splitting method to tackle
both root-finding problems (NE) and (NI). These methods
encompass both SVRG and SAGA estimators as special
cases. By carefully selecting the parameters, our algorithms
achieve the state-of-the-art oracle complexity for attain-
ing an e-solution, matching the state-of-the-art complexity
bounds observed in nonconvex optimization methods us-
ing SVRG and SAGA. While the first scheme resembles
a stochastic variant of the optimistic gradient method, the
second one is entirely novel and distinct from existing ap-
proaches, even their deterministic counterparts. We have
validated our methods through numerical examples, and the
results demonstrate promising performance compared to
existing techniques under careful parameter selections.
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Impact Statement

This paper proposes new algorithms with rigorous conver-
gence guarantees and complexity estimates for solving a
broad class of large-scale problems. These problems cover
many fundamental challenges and applications in optimiza-
tion, machine learning, and related fields as special cases.
We believe that our new algorithms have the potential to
make a significant impact in machine learning and related
areas. Additionally, there are various potential societal con-
sequences of our work, though none that we feel require
specific emphasis at this time.
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Supplementary Document:
Variance-Reduced Forward-Reflected-Backward Splitting Methods for
Nonmonotone Generalized Equations

Due to space limit, some parts of our algorithmic construction and theory are not described in detail and motivated in the
main text. This supplementary document aims at providing more details of the algorithmic construction, motivation, related
work, technical proofs, and additional experiments related to our methods.

A. Further Discussion of Related Work and Assumptions

Let us further expand our discussion of related work in the main text. Then, we show that our assumptions, Assumptions 1.3
and 1.4, indeed cover nonmonotone problems.

A.1. Further Discussion of Related Work

As we already discussed in the introduction of the main text, both standard stochastic approximation and variance-reduction
methods have been broadly studied for (NE) and (NI), including (Juditsky et al., 2011; Kotsalis et al., 2022; Pethick et al.,
2023). In this section, we further discuss some other related work to (NE) and (NI), their special cases, and equivalent forms.

(a) Beyond monotonicity. Classical methods such as extragradient, prox-mirror, and projective schemes often relax the
monotonicity to star-monotonicity, and other forms such as pseudo-monotonicity and quasi-monotonicity (Konnov, 2001;
Noor, 2003; Noor & Al-Said, 1999; Tu, 2018). These assumptions are certainly weaker than the monotonicity and can
cover some wider classes of problems, including some nonmonotone subclasses. Another extension of monotonicity is the
weak-Minty solution condition in Assumption 1.4, which was proposed in early work, perhaps in the most recent one such
as (Diakonikolas et al., 2021), as an extension of the star-monotonicity and star-weak-monotonicity assumptions. Other
following-up works include (Bohm, 2022; Gorbunov et al., 2022b; Luo & Tran-Dinh, 2022). A comprehensive survey
for extragradient-type methods using the weak-Minty solution condition can be found in (Tran-Dinh, 2023; Tran-Dinh &
Nguyen-Trung, 2025a;b). The monotonicity has also been extended to a weak monotonicity, or related, prox-regularity
(Rockafellar & Wets, 1997) (in particular, weak-convexity). Other types of hypo-monotonicity or co-monotonicity concepts
can be found, e.g., in (Bauschke et al., 2020). These concepts have been exploited to develop algorithms for solving (NE) and
(NI) and their special cases. For stochastic methods, extensions beyond monotonicity have been also extensively explored.
For instance, some further structures beyond monotonicity such as weak solution were exploited for MVIs in (Song et al.,
2020), a pseudo-monotonicity was used in (Bot et al., 2021; Kannan & Shanbhag, 2019) for stochastic VIPs, a two-sided
Polyak-t.ojasiewicz condition was extended to VIP in (Yang et al., 2020) to tackle a class on nonconvex-nononcave minimax
problems, an expected co-coercivity was used (Loizou et al., 2021), and a strongly star-monotone was further exploited in
(Gorbunov et al., 2022a). While these structures are occasionally used in different works, the relation between them is still
largely elusive. In addition, their relation to concrete applications is still not well studied.

(b) Further discussion on stochastic methods. Under the monotonicity, several authors have exploited the stochastic
approximation approach (Robbins & Monro, 1951) to develop stochastic variants for solving (NE) and (NI) and their special
cases. For example, a stochastic Mirror-Prox was proposed in (Juditsky et al., 2011), which has convergence on a gap
function, but requires a bounded domain assumption. This approach was later extended to the extragradient method under
additional assumptions in (Mishchenko et al., 2020). In (Hsieh et al., 2019), the authors discussed several methods for
solving MVIs, a special case of (NI), including stochastic methods. They experimented on numerical examples and showed
that the norm of the operator can asymptotically converge for unconstrained MVIs with a double learning rate. In the last few
years, there were many works focusing on developing stochastic methods for solving (NE) and (NI), and their special cases
using different techniques such as single-call stochastic schemes in (Hsieh et al., 2019), non-accelerated and accelerated
variance reduction with Halpern-type iterations in (Cai et al., 2024; 2022), co-coercive structures in (Beznosikov et al.,
2023), and bilinear game models in (Li et al., 2022).

(c) The challenge of using biased estimators in algorithms for solving (NI) and related problems. In optimization,
especially in nonconvex optimization, stochastic methods using biased estimators such as SARAH, Nested SVRG, Hybrid-
SGD, and STORM can achieve better, even “optimal” oracle complexity compared to unbiased ones such as standard SVRG
and SAGA, see, e.g., (Cutkosky & Orabona, 2019; Driggs et al., 2022; Pham et al., 2020; Tran-Dinh et al., 2022). However,
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it becomes challenging in root-finding algorithms for solving (NI) and related problems such as minimax optimization
and VIPs. One main reason for this is that the convergence analysis of these optimization methods relies on the objective
function as a key metric to prove convergence guarantee and to estimate oracle complexity. However, in (NI) and (NE), we
do not have such an object, making it difficult to process the biased terms, including product terms such as (¥, z*+1 — z*)
and (e¥, 2¥*1 — 2¥), where e” is a bias rendered from the underlying stochastic estimator. This is currently one of the main
obstacles to move from using unbiased to biased estimators in root-finding algorithms, including our methods in this paper.

(d) Comparison to (Cai et al., 2024). Among many existing works, perhaps, (Cai et al., 2024) is one of the most
recent works that develops variance-reduction methods for solving (NI) and achieves the state-of-the-art oracle complexity.
However, (Cai et al., 2024) explores a different approach than ours, which relies on some recent development of the
Halpern fixed-point iteration and a biased SARAH estimator. Let us clarify the differences of this work and our paper here.
Algorithm 1 in (Cai et al., 2024) is a single-loop and achieves a better oracle complexity. However, it requires a much
stronger assumption, Assumption 3, which is a co-coercive condition. Note that this assumption excludes the well-known
bilinear matrix game, or the synthetic WGAN model (37) below. Section 4 of (Cai et al., 2024) studies both the monotone
and the co-hypomonotone cases of (NI). The main idea is to reformulate (NI) into a resolvent equation J, g4z = 0
and then apply a deterministic variant of Algorithm 1 to this equation, where J,, (¢ 1) is co-coercive. However, exactly
evaluating J, (g4 1) is impractical, one needs to approximate it by an appropriate algorithm. For instance, (Cai et al., 2024)
suggests to use the variance-reduced FRBS method in (Alacaoglu et al., 2023) to approximate this resolvent, leading to
a double loop algorithm. Note that this method also relies on a unbiased estimator, namely SVRG. This approach is not
a direct variance-reduced method (i.e., the inner loop can be any algorithm) as ours or Algorithm 1 of (Cai et al., 2024).
Moreover, practically implementing as well as rigorously analyzing an inexact double loop algorithm, when the inner loop is
also a stochastic method, is often very challenging and technical as it is difficult to conduct a stopping criterion of the inner
loop, and to select appropriate parameters. Nevertheless, our algorithms developed in this paper are simple to implement
and applicable to both (NE) and (NI) whose weak-Minty solution exists. These problems are broader than the ones in (Cai
et al., 2024). We also believe that our oracle complexity in this paper can be further improved by exploiting enhancement
techniques such as nested trick or multiple loops as done in (Cai et al., 2024; Zhou et al., 2018).

(e) Randomized coordinate and cyclic coordinate methods for (NE) and (NI). Together with stochastic algorithms for
solving (NE) and (NI) and their special cases, randomized coordinate methods have also been proposed to solve these
problems, including (Combettes & Eckstein, 2018; Combettes & Pesquet, 2015; Peng et al., 2016). Recent works on
randomized coordinate and cyclic coordinate methods can be found, e.g., in (Chakrabarti et al., 2024; Cui & Shanbhag,
2021; Hamedani et al., 2018; Song & Diakonikolas, 2023; Tran-Dinh & Luo, 2025; Yousefian et al., 2018). These methods
are not directly related to our work, but they can be considered as a dual form of stochastic methods in certain settings
such as convex-concave minimax problems. Studying relations between randomized coordinate methods and stochastic
algorithms for (NE) and (NI) appears to be an interesting research topic.

A.2. A Nonmonotone Example (NI)
As an example of (NI), we can consider the following linear operators

Gr:=Gx+g and Tzx:=Tzx,
where G and T are given square matrices in RP*? and g € IR? is a given vector. Clearly, for any G, G is L-Lipschitz
continuous with L := ||G|| (the operator norm of G). Our goal is to choose G and T such that Uz := Gz + Tx is
nonmonotone and satisfies Assumption 1.4.

¢ Clearly, we can choose G and T such that $(G + G ") is positive semidefinite and (G + G™ + T + T") is not
positive semidefinite. This shows that ¥ is nonmonotone.

* Now, Assumption 1.4 holds if ¥ is x-co-hypomonotone, i.e. there exists > 0 such that (v — v,z —y) > —kl|ju —v||?,
for any (z,u), (y,v) € gra(¥). In the linear case, this condition is equivalent to

1
S := §(G +G T +T+T")+k(G+T)"(G+T) is positive semidefinite.

However, since (G + G ") is positive semidefinite, this condition holds if 3(T + T") + (G + T) " (G + T) is
positive semidefinite. In particular, U satisfies Assumption 1.4.

For example, given any € > 0, we choose
01 —e0

G .= , T:= , and kK:=€>0.
10 00
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Then, it is clear that G is symmetric and positive semidefinite, but G + T is symmetric and not positive semidefinite. Thus,
Vx = Gz 4+ Tz is nonmonotone. Moreover, Gx = Gz + g is L-Lipschitz continuous with L = 1.

Next, we check Assumption 1.4. Clearly, G is symmetric and positive semidefinite. Moreover, since G and T are symmetric,
we have
N 2
1 —€ 0 —€1 —€1 —e+ k(1 +€%) —kKe
M:=_(T+T")+k(G+T)(G+T)= + K = ( )
2 00 10l |10 — ke K

If we choose k = ¢, then one can easily check that M is positive semidefinite. Hence, we can conclude that ¥ is k-co-
hypomonotone with Kk = ¢ > 0. In particular, ¥ satisfies Assumption 1.4. In addition, we can choose € sufficiently small
such that Lk is sufficiently small, which fulfills the condition Lx < § in Theorem 4.1.

B. The Proof of Technical Results in Section 2

This supplementary section provides the full proof of Lemma 2.2 and Lemma 2.3.

Further discussion of the FR quantity. Let us recall our quantity S,’j defined by (FRQ) as follows:
k._ ok k—1
Sy = Ga" —yGz" . (FRO)

As we mentioned earlier, 7y plays a crucial role in our methods as v € (%, 1). Ify = %, then we can write Sf 1o =

1GaP + 1(Ga* — GzF~1) = 1[2G2* — Ga*~1] used in both the forward-reflected-backward splitting (FRBS) method
(Malitsky & Tam, 2020) and the optimistic gradient method (Daskalakis et al., 2018).

Note that if we write Gz* — Ga* =1 = Jg(2%)(2* — 2F~1) by the Mean-Value Theorem, where J (z¥) := fol VG(zF—1 +
T(z® — 2*71))dr, then S¥ = (1 —)G(a*) + yJa(z®) (zF — 2F=1). Clearly, if y is small, then S% can be considered
as an approximation of Gz* augmented by a second-order correction term *ng(xk) (x* — 2%=1) (called Hessian-driven
damping term or second-order dissipative term) widely used in dynamical systems for convex optimization, see, e.g., (Adly
& Attouch, 2021; Attouch & Cabot, 2020). These two viewpoints motivate the use of our new operator .S, k not only in our
(VFR) and (VFRBS), but in other methods such as accelerated algorithms. Thus, the results in Section 2 are of independent
interest, and can potentially be used to develop other methods.

Other possible stochastic estimators for Sfj . One natural idea to construct an unbiased estimator for S* is to use an

1
b7k i€By
in [n], with b, := |Bg| > prL > by_1, see, e.g., (Tusem et al., 2017). While this idea may work well for the general
expectation case G = E¢ [G(x, 13 )] , it may not be an ideal choice for the finite-sum operator (1) as by, < n, which requires

%) iterations). Other stochastic approximations may also fall into our
)

class in Definition 2.1 such as JacSketch (Gower et al., 2021), SEGA (Hanzely et al., 2018), and quantized and compressed
estimators ( see, e.g., (Horvith et al., 2023)).

B.1. Proof of Lemma 2.2: Loopless-SVRG Estimator
Let us further expand Lemma 2.2 in detail as follows and then provide its full proof.

Lemma B.1. Let Sfj = Gaz* — yGz*~1 be defined by (FRQ) and §§ be generated by (L-SVRG). We define

increasing mini-batch stochastic estimator as S’j = [Gigc’C — vGix’“_l], where By, is an increasing mini-batch

to stop increasing after finite iterations (i.e. O (

Ap = o5 i E[|Gia® — 4Gt — (1 =) Giw|?]. (17)
Then, we have
Eg [55] = S’; = G2k — yGaF 1,
E[|S% - S51°] < Ak = $E[IGa* —1Ga* ™ — (1 - 7)Guw*|?] < Ay, s
A < (1= B)Apo + CBERD S E|Giak — Gt ]
n 2w2(2;5§+p2) Y E[|Giat T - Gaah 2.

Consequently, the SVRG estimator g’j constructed by (L-SVRG) satisfies Definition 2.1 with Ay in (17), p := § € (0,1],

— 2 A 44%(2-3 2
C = =R gpg ¢ 1= 2 2RER) (2-Sp+p)
P bp
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Proof. 1t is well-known, see, e.g., (Johnson & Zhang, 2013), that g’; is an unbiased estimator of S* conditioned on Fy, we
have Ej, [gs] = Sk

Next, let X; := G,;2* —yG;a"~! — (1 —)G,;w" forany i € [n]. Then, we have E;, [ X;] = Gz¥F —yGa*~1 — (1 —7)Gu*
for any ¢ € [n]. Since By, is in Fy, using the property of expectation, we can derive

B [I155 — 5%[2] 2 B[ Siem, Xi — [Ga* + 4Gk — (1 - 9)Gut]|?]
Er[l|} Tics, [Xi — B [X]]|I")

BBk T, X — Bx [X:] ]

b%Ek[ZieBk |Ga* — 7Gxkt — (1 — )G |?] — § [Ex [XZ]]
LS |Gk — 4Gkt — (1 - 7) G |2 — LB, [X:]]%.

e 1

Here, @ holds due to the i.i.d. property of By, and @ holds since Ey, [||Xl — E& [XZ] ||2] =E; [HXIHQ] — (Ek [XZ] )2. This
estimate implies the second line of (18) by taking the total expectation ]E[ . ] both sides and the definition of Ay from (17).

Now, from (4) and (17), we can show that

)

Ay = oy i E[[|Giat = yGiah Tt — (1= 7)Giw®|?]
2 P T Gt — Giah T — (L= )Gt ]
+ 5 Y E[lGia? —9Giah Tt — (1= y) G 7]
GS) (1+C)(17p) S ]E[”G,xkq — G2 — (1 — ’Y)GiwkﬂHQ]
+ 7(1“67511) P) S E[Giat — 4Gigk Tt — [Giah Tt — 4G22
+ 23 E[|Gizk — GizP ]
%) (1+C)(1 P) Z ]ET[HG k-1 7Gixk—z —(1- ’Y)Giwk_1”2]

(1+CZLb10 p)~? Zi:l E[HGixk*l _ Gizk72H2}
p+ 2(1+CZ(1_p)] S E[|Giak — G2

—p)Ay_y + LRI S0 R Gah o — Giak o2 2]
+ AR 570 | B[ Gia* — Giat ).

—
+
_ O =

»-c/_\

Here, in both inequalities @ and @, we have used Young’s inequality twice. If we choose ¢ := 5 (1 L then (1+¢)(1—p) =

1-&, 7(1“)6(1_") =(1-p)(1+ 2(1;")) = (2_")!)(1_1’) = 2*31‘;“’2, and 2(1+C)c(1_p) +p=12= 6pp+3p . Hence, we obtain

Ap < (1 — g)Ak—l + (4=6p+3p?) Z?:l ]E[”Gzl‘k - Gi$k71|‘2}

nbp

2 2
+ 2~y (2;§§+p ) Z?:l]E[HGixk_l _ Gixk—2”2]

This is exactly the last inequality of (18). O

B.2. Proof of Lemma 2.3: SAGA estimator
Similarly, we also further expand Lemma 2.3 in detail as follows and then provide its full proof.

Lemma B.2. Let S,’YC = Ga* — yGzF~1 be defined by (FRQ) and g,’j be generated by the SAGA estimator (SAGA), and
k= §§ — Slj. We consider the following quantity:

Ay = 2 S B[|Gia® — 4Gt — (1 - 4)GF |12 (19
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Then, we have

Ex [g,’j] = S,’j = Gzt — vakfl,
[IS% — S51P] < v — bE[|rt Gt — 225 GHY) < A, -
Ay < (1 — %)Ak—l + —[Q(n_b)gz;rb”b?] S IE[HGixk — Gixk_1||2]

— n 2 n — -
4 2D S B[t - Gt 22).

Consequently, the SAGA estimator § k constructed by (SAGA) satisfies Definition 2.1 with Ay, in (19), p := % € (0,1],
C = [2(n—b)(27;+b)+b2] and €' = 2(n b)(2n+b)~?

nb ’ . nb?

Proof. 1t is well-known, see, e. g (Defazio et al., 2014), that §’§ defined by (SAGA) is an unbiased estimator of S*. Indeed,
we have E; [ézksk] = L3 GF, Ei[Gg,2*] = GzF, and E,[Gg,z"7'] = Ga*~!. Using these relations and the
definition of S*, we have
E,[S*] = B[22 S0 GF] — (1 - 7)Ei[Gl, ] + Er[Gr,2"] — 7E4 [Gpo2* 1]
_ (1;7) 2?21 G‘f _ (1;7) 2?21 G‘f + Gak — yGaF—1
= G2k — G2k
= Sk,
Hence, S* is an unbiased estimator of S*.
Next, let X; := Gz* —yGz* =1 — (1 —~)G¥ forany i € [n]. Then, we have Ey, [X;] = Ga¥ —7GaF~1 - % S GE
for any ¢ € [n]. Therefore, we can derive
~ 1— n A
B 1%~ SHIF] = BulI} Siep, Xi - [03% 42601 - G50 572 G
= E[ll3 ZiGBk X; = Ex[X]]117]
= 2B Zies, X — Bx [X] 7]
= #Ek[Yien, [Gia* -Gkt — (1= )GH|?] - §[E[Xi]]”
n _ 2
= a5 2y [1Giak =4 Giak ™ — (1= )GE|? = §[Ex[Xi]]™.

This implies the second line of (20) by taking the total expectation ]E[ : ] both sides.

Now, from (5) and (19) and the rule (5), for any ¢ > 0, by Young’s inequality, we can show that

(19) n — A
Ap = 3 E[|Gizk — 4Gkt — (1 - 4)GE|?]

D (1= 1) 5 T B[lGiak — 1Giah ! — (1= )G
+ % : % > i E[HGi.’L’k —Gih Tt — (1 - 'Y)Gixk_lHQ}

< U5 (1= B) T E[IGat ! —9Git2 - (1= )G ]
+ 2 (1= 5) SLE[IGit -Gt — (Gaat T Gt )]
+ 0z 2 E[Gia® = Gia 7]
< A+ 01— DA + [+ (1 - 52 T B[l Gt — Gt
c 2 n — —
+ 2(1c+nb)7 (1- %) S E[|Giat Tt — Gaat 2|7
If we choose ¢ := - € (0,1), then (1 — 2)(14+¢) =1— 2 — % < 1— 2. Hence, we can further upper bound the last
inequality as
Ak_( ) +WZ E[HGJ? — G 1”]

(” )(22 > Z E[HG k-1 Gixk—zu ]
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This is exactly the last inequality of (20). O

C. Convergence Analysis of VFR for (NE): Technical Proofs

To analyze our (VFR) scheme, we introduce the following two functions:

L o= [t +mGet ! = P+ pa® — 212,

: 2D
Ep = L1+ Wﬁk—l + w”xkfl — k2|2,

1

where p is a given positive parameter, p, C, C, and Ay, are given in Definition 2.1, and 272 = 2~ ! = 20, Clearly, we have

Ly >0and &, > 0forallk > 0 a.s.

One key step to analyze the convergence of (VFR) is to prove a descent property of & defined by (21). The following
lemma provides such a key estimate to prove the convergence of (VFR).

Lemma C.1. Suppose that Assumptions 1.3 and 1.4 hold for (NE). Let {z*} be generated by (VFR) and &y, be defined by
(21) for any v € [0,1]. Then, with M := 'Y(Hlf_” + (1+“L(pc+c), we have

E[&] —E[&ki1] > (1 - M- L?n?) E[|la> — 212
+n(1 =) [n(2y = 1 - u) — 26]E[[|Ga*||?] (22)
+Py(1 =) (A + wE[| G2

Proof. First, using z*+1 := 2k — nglj from (VFR), we can expand

(VER)
2=

|z*+ + ynGak — F — ¥ 4 ynGak — n§§|\2

= [a* — 2% + 2yn(Gat, 2% — %) + 470 G2
— 2(SE, 2k — a*) — 29 (G, SE) + 2|1 SE |
Second, it is obvious to show that
2%+ ynGat—t —a*|? = [la* — 2*|? 4 2yn(Ga* T 2k — ) + 4P| G R
Third, using again okl = gk — ngf{ from (VFR), we can show that
J*+t — a2 = || SE2

Combining three expressions above, and using L from (21), we can establish that

L= Liss = [l% +mGah=1 — 2*[|2 = 541 + nGa* — a2

+pllat — 2R ? = |l — a2

2yn(GxF L ok — a*) — 2yn(Gak, 2k — 2*) + 42n?|| GzF |2 (23)
— *P(|GaR | + 29 (S, 2 — a*) + 29n*(Ga*, SE)

+ et — 22— (14 )| SR

Next, since E, [glj] = S’j = Gz¥ — yGzF~1 as shown in the first line of (3) of Definition 2.1. Moreover, since §’§ is
conditionally independent of ¥ — 2* and G2* w.r.t. the o-field Fy,, we have

Es [(glj, ab — 2]
2Ey, [(SF, Ga*)]

(Gx* ok — %) — y(GzF 1 2k — o),
2[|Gak||? — 29(GaF 1, Ga?)
2 = NIGL™|]? = A|GzF 12 + A]|GzF — Gk 12
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Taking the conditional expectation Ey, [ . ] both sides of (23) and using the last two expressions, we can show that

Ly —Ex[Lia] = 2yn(Ga 1 2 — o%) — 2yn(Gak, ok — 2*) +920?|| G212

— V|| Gt || + 2B [(S], 2% — )] + 291°Ey [(Ga¥, 5%)]

— ?(1+ B [|ISE]?] + pllz® — 2+ 12

2n(1 — y)(Ga*, 2% — %) + 29(1 — )n?|| G2

+90?)|Gak — G2 — P (14 w)Ex [||SE]?] + llz® — 2R 12

Since 55 is an unbiased estimator of Sﬁ , if we denote eF = 55 — 5%, then we have E [¢*] = 0. Hence, we can show that
Ex [1S511?] = Ex [IS% + €¥|1?] = [|SE]1? + 2B [(e¥, SE)] + Ex[[[€]|°] = Ex [lle*[|?] + [|S%]|?. Using this relation and
Sk = GxF — yGx*~, we can show that
Ex [IISE)12] = 1SE12 + Ex[lle*]?] = |Ga* —1Gah=1 )2 + By [|le*)?]
= [|Ga*|]? — 29(Ga", G2"1) + 92| G |2 + B[]l €[]
= (L=NGz*|> =71 = PG H? + y[|Ga* — Ga*~|1* + By [[|e*]]?].
Substituting this expression into the last estimate, we can show that
Ly —Ex[Lry1] = 2n(1 — y)(Gak, 2F — %) + n?(1 — ) (2vy — 1 — p) || Ga*|?
+ 7?1 =)@+ |G P = (1 + p = y)l|Ga? — Ga* 12
=P (L+ WEx[[|€¥[]*] + plla® — 212
Taking the total expectation E[ - | both sides of this expression, we get
E[Lk] —E[Lr] = 201 = ymE[(Ga*, 2% — 2*)] + n*y(1 = 7) (1 + wE[|Gz*~1||?]
+ 77 (1= 7)(2y = 1 = p)E[||Ga*|]*] + pE[[l2* — 2*~1|?]
=P (L+ p = NE[|Ga* — Gz P] — (1 + p)E[[|e*]?].

By Young’s inequality in @ and (2) of Assumption 1.3, we have
. O]
1Ga* — Gah= Y2 = |13 L, [Gaa® — Gaa' |12 < 1 X0, [1Gia® — Gaa* 1 o4)
(@)
< L2||zk — 2R 12,

Utilizing this inequality, (Gz*, 2% — z*) > —x||G2*|| from Assumption 1.4 with T = 0, and E[[|e¥||?] < A, from (3),
we can bound the last expression as

E[Li] —E[Lis1] > [p— L2y +p—)]E[l|lz* — 2]
+ (1 + (1= E[| G ?] (25)
+ (1 =) [n(2y =1 - p) = 2&]E[|G*|]?] = > (1 + p) A
By the third line of (3) in Definition 2.1 and again (2), we have
Ap £ (1= p)Ay_1 + CL2E[||z* — 212 + CL2E[||2%~1 — 2*=2||2].
Rearranging this inequality, we get
A < (552 (Bems = An) + = [E[la* = ah 2] —EJlo* —a*1)7]]

C+C)L? _
+( +p)L E[ka—xk 1”2].
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Substituting this inequality into (25), we can show that

E[Ly] ~E[Len] > [n— L2021+ p— ) - EEEHICEA Rk — obo1)2)
+ (1 =) [n(2y = 1 = p) = 2&]E[||Gz*|]?]
+ (L + m)y(1 = y)nE[[|Ga* 7]
_ LGQCF‘)(l-&-u) []E[”xk—l _ xk—2”2] _ E[”xk _ xk—lHQH

_ n2(1+/;)(1—p) (Ap_1 — Ay).

Rearranging this inequality and using &, from (21), we obtain (22). O

Now, we are ready to prove our first main result, Theorem 3.1 in the main text.

Proof of Theorem 3.1. Let us denote by M := V(H:_”) + (1+”)p(f+é). Then, to keep the right-hand side of (22)

positive, we need to choose the parameters such that L%n? < ﬁ and n > 5 25 These two conditions lead to
Y—1—p
4L%K? 2,2 1
(27—1—p)? <L <
Now, for a given v € (,1), let us choose p := w > 0. Then, the last condition holds if Lx < § := 2:*/% as

Y(1457) 4 146y . C+C

stated in Theorem 3.1. In this case, we have M = 5575 + 3521y © —,

as stated in (6). Hence, we can choose

8K 1 . .
<n<
1 = ns JAVaTi as claimed in Theorem 3.1.

Next, utilizing 1 + 1 = @ >1land p = W, (22) reduces to

E[&] - E[&1] > 2B (1 — M- L2?) B2k — 2% 1)12] + 7(1 — »)n2E[|| G —12].

Averaging this inequality from k := 0 to k := K, we obtain

K - E[€
w1 Zi=o E[1GZ ] < SERETT
1-ML? — 4E[E
( K+1n ) Zk [”wk_l'k 1||2} < W

Finally, since v~! = 272 = 2°, and SO is chosen as SO (1—~)G2° wehave A_; = Ay = 0. Using this fact, Gz* = 0,

the Lipschitz continuity of G, p € [0, 1] and v < 1, we can show that

E[&] = E[|l2® + mG(a0) — 2*|?] + TUHmA=2) A,

2E[Ja? — 2*|2] + 2P E[|Ga® — G |7] + LH
2

2(1+ L2n272)E[||x0 — x*HQJ + %Ao

2 (14 L*n?) [|2° — =*||2.

IN A

IN

Substituting this upper bound into the above estimates, we get the second bound of (7). For the first bound, we replace k — 1
by k, and K by K + 1, using || Gz°||* < 2[|Gz°||?, and then multiplying both sides of the result by £== to obtain the first
line of (7). O]

Next, we restate Corollary 3.2 for the case v € (1,1) instead of v = 2 as in the main text. Then, we derive the proof of
Corollary 3.2 from this result by fixing v = %

Corollary C.2. Suppose that Assumptions 1.1, 1.3, and 1.4 hold for (NE) with > 0 as in Theorem 3.1. Let {x*} be
generated by (VFR) using the SVRG estimator (L-SVRG), v € (%, 1), and

1 _ 4(14+9°)(2=3p)+2(3+27%)p? _ 70145 146
ni= i, Where A c= 20+ bl[;)g G+27)P" nd M = 7527 17; —1—3(27]1) AL (26)
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> bp — 3(2v-1) . .
Then, we have 1 > == for o Y TSR and the following bound holds:
K 2(14+L%*n?)R2 %
21 S E[IGa* 7] < AR where Rg = [|2° — 27]|. 27)

252 2/3
For a given tolerance € > 0, if we choose p := n~'/3 and b := Ln2/3j, then (VFR) requires Te, == n + L%J

: ‘ - 1 K k2 2 o 2057 +77=3)(8+497+137% +48+%)
evaluations of G; to achieve 7= 3 1 _ E[||Gz*||?] < €2, where T := 352 D (=215 .

Proof. For the SVRG estimator (L-SVRG), by Lemma 2.2, we have p := & € (0,1], C := %, and C =
2 2

2%(2—(}7?);:-“02). Therefore, we can compute A := C';é = 4<1+72)(2_3§2j2(3+27 P~ < 8(2:;;2) ,and M in Theorem 3.1 as
M = ;’8;{?; + 3(1216_71) A< g((;,ﬁg + 8(?}(;37_)1()1;; 722) as stated in (26). The estimate (27) is exactly the first line of (7).
Now, suppose that bp2 < 1. Then, by (26), we have M < %. Therefore, if we choose 7 := ﬁ then n
satisfies the conditions of Theorem 3.1, provided that Lp < §. Moreover, we have 1 > V3(y—1)Vop = ”‘/Bp, where
/8449741372 +4873 L
o= V3(2y-1)
© /8497413424483
From (27), to guarantee = S E [[[G2*||?] < €2, we need to impose % < €2, where Ry := ||z — 2*]|.

o\bp L°R

5 47y-3 and n > ===, the last condition holds if we choose K := {F . pr@J s

~v(1457)
2572 +7v=3) _ 2(5724+7y—3)(8+497+13~v>+48~)
o?y?(1-y)(1+57) — 372 (2y=1)(1—7)(1+57)

: 2,2 _ 1
However, since 1 + L*n* =1+ 5; <

where I' .=

Finally, note that, at each iteration k, (VFR) requires 3 mini-batches of size b, and occasionally compute the full batch Guw*,
leading to the cost of np + 3b. The total complexity is

L _ TL?R2(np+3b) _ TL2R2 3
773 T K(np+3b) - b(;,2€2 - €2 O(%"‘?)

/
If we choose b := Ln2/3j and p := n~1/3, then bp2 =1land 7, = w. For the SVRG estimator (L-SVRG),
one needs to compute Gw®, which requires n evaluations of ;. Hence, the total complexity of the algorithm is Tg, :=

n2/

n —+ {%J as stated. O

Proof of Corollary 3.2. Since we fix v := 3 we can easily compute o := V321 — =~ (0.144025 > 0.1440
4 \/8+497+1372+48+3

and T 1= 200 LR 40897) o 730 736842 < 731. Therefore, we obtain 7 > *M0VPR and T, = i
L4Fn2/3L2R§

L 1 K k12 32(140.1440%) L R2 526-L° R2
- J, where I' := 731. Moreover, (27) reduces to 75 Y keo E[”GJC I } < 3‘0_14402bp2(K+1§ < bp2(K+10)' O

€

Finally, we also restate Corollary 3.3 for the case v € (%, 1) and then derive the oracle complexity of Corollary 3.3 from
this result by fixing v := %.

Corollary C.3. Suppose that Assumptions 1.1, 1.3, and 1.4 hold for (NE) with > 0 as in Theorem 3.1. Let {x*} be
generated by (VFR) using the SAGA estimator (SAGA), v € (%, 1), and

1 2, 404D (n=b)(2n+b) . y(1+57) 1+6
ni= i, Where Ai=3+ L and M := ;’(27_17) + 3(27—’Y1) A (28)
Then, we have 1 > ab/2 foro = V32— 1) , and the following bound holds:
nlL /10461741372 +48~3
K 2(1+L%*n?)R? «
21 S E[IGaR 7] < AL where Ro = [|2° — 27|, (29)

3TL2R2n?/3
2

Moreover, for a given tolerance € > 0, if we choose b := Ln2/3j, then (VFR) requires T, == n+ L

' . 1 K k2 2 L 2(Ty+57v2—3)(104+-61y+13~v24+48+%)
of G; to achieve S oo E[|Ga* (2] < €2, where T := BT (=) (25— 1) (757 .

J evaluations
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Proof. Since we use the SAGA estimator (SAGA), we have p := zl; e (0,1], C := W, and C =

2 2 2 2 2
72(714’)7553%)7 . In this case, since b > 1, we can easily show that A := C+¢ = 2 4 4047 )(?};b)(Z"er) <24 S(Hbl o

P b
Hence, M in Theorem 3.1 reduces to

. (1+57) 1+6 241374592 | 8(1+y7)(1467)n?
M := 3(2vy—1) + 3(27_71) A< 3(2;—1)'Y + 3(2vy—1)b3

2 2 2 2 3 2
Suppose that 1 < b < n2/3. Then, one can prove that M < {2+137+5w 4 804y )(1+67)} n? _ (104617+137°+487%)n® _

3(2y—1) 3(2v—1) b3 3(2y—1)b3

v/ 3(2y—1)
/10461741372 +48~3
obtain (27) from the first line of (7) as before.

1

. Hence, if we choose 1 := TRATE

as stated. Moreover, we

2 3/2
n . ob
25 where o := then we getn > T

1 ab3/? 1 K k|2 2 . 2(14+L%*n*)R3
Now, for n := v 2 5L , from (27), to guarantee Zk:(;E [||Ga: I ] §/e , we need to impose WZ(KJFUD <
. _ 3/2 .. .
€2, where Ry := ||z — 2*||. Since 1 + L?n* =1+ 4 < % and n > 22— the last condition holds if we choose
L L%R2n? L 2(Ty+59%=3) _ 2(Ty+572—3)(104+61y+13~2+48+%)
K= F ' ﬁj’ where I' := & —msm = 32 (- E@y—D)([I+57)

Finally, at each iteration k, (VFR) requires 3 mini-batches of size b, leading to the cost of 3b per iteration. Hence, the total
complexity is
T. = 3bK = LWJ )

b2e2

If we choose b := [n?/3|, then T = [SFL?#J For the SAGA estimator (SAGA), one needs to compute Gw", which

) . . . . L 3TL2R2n?/3
requires n evaluations of G;. Hence, the total complexity of the algorithm is 7, :=n + ij . [

Proof of Corollary 3.3. Since we choose v := %, we have ¢ := \/10+6V13(z;12)+48 = = 0.14948 > 0.1494 and I :=
Y+1372+48y

= 2815.8 < 2816. Applying the results of Corollary C.3, we obtain our conclusions in

2(7y+5v% —3)(104+61v+137%+48~3)
372(1—7)(2v—1)(1+57)

1 K k12 32(140.4942) L2 R2 489.-L% R2
Corollary 3.3. Moreover, (29) reduces to = >_,_, E[[|Gz*|?] < 3-0.14942bp2)(K+10) < pp7(rcT) as stated. O

D. Convergence Analysis of VFRBS for (NI): Technical Proofs

One key step to analyze the convergence of (VFRBS) is to construct an appropriate potential function. For this purpose, we
introduce the following function:

Ly, = ||a* + (G~ +0%) — 2|2 + plla® — 2P+ n(Gatt 4082, (30)
where 1 > 0 is a given parameter and v* € T'z* is given. This function is then combined with £ from (21) to establish the
convergence of (VFRBS).

Let us first state and prove Lemma D.1, which provides a key estimate for our convergence analysis of (VFRBS) in
Theorem 4.1.

Lemma D.1. Suppose that Assumption 1.3 holds for (NI). Let {x*} be generated by (VFRBS), Ly, be defined by (30), and
&k be defined by (21). Then, we have
Lx—Ex[Lesa] = 20— 1)n(Ga* + ¥, 0% — 2%) + (1 + )(1 —7)(2y — DG + ¥ 2
L=y = uBy = DI G+ o8P = (1 + )nEr [|le*]|?] GD
+ 5[ =201+ )y (1 = ) L] ||la* — 22

If, additionally, Assumption 1.4 holds for (NI), then we have

p
+9[1 =7 = pBy = DIPE[[|Ga* 1 + oF||?] (32)

+ (1= y)n[(1 4 p)(2y — 1)n — 2&]E[||Gz* + oF|12].

E[&] — E[&1] 2 § |1 =201+ py(1 = 7) L2 — ZEEAEICEO [k g1 )2]
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Proof. Let us introduce two notations w* := Ga* + v* and W% := Ga*~! + v*, where vk € Tx*. We also recall
Sk = Ga* —yGzF 1 and €F := Sk Sk from (FRQ). Then, it is obvious that Sk S}“ + ek = Gab — 4GPl 4 ek,

Now, using Sk Ga* — yGa*~1 4 eF, it follows from (VFRBS) that

h = ok — Sk — ekt — (27 = 1)t

= b = n(Ga* + v — (1 = 9)n(Ga* +v*) + 9y (Ga* 1 + o) — net (33)
= 2 — ™t — (1= )nuw® + yni* — ek,
Then, using (33) and @W**! = Gz* + v*+1, we can show that
Ty o= [T +yn(Gak + o) — 2|2 = [z — 2 + T2

= |k — ymhtt — (1 = y)nwk + ik — ek — a* + ynik T2
= |lz¥ — 2| = 2(1 — y)n(wk, a* — 2*) 4 2yn(@*, ¥ — 2*) + n?(|e* |2

+ (1 =720 [ w||? = 29(1 — y)n* (W, &%) 4+ +2n?|| " ||?

- 2,]7<ek7xk: - CE*> + 2(1 - ’7)772<ek7w > - 2’777 <€ awk>‘

Alternatively, using % = Gz*~! + v*, we also have

Ty o= lla® + am(Gah !+ 08) = | = [la¥ — o i
= llak =[P + 2,2k = 2*) + 202 4

Subtracting 7[;) from 7|2}, we can show that

Ty = lla® +n(Ga* =t +0F) — a*|2 — []a™F! + yn(Ga® + o Fh) — 7|2
= 2(1 = y)n{w*,2* —z*) — (1 =)0 [w*|* + 29(1 — 7)n? (w", @*)
+2n(e", 2% — a¥) = 2(1 = )P (ef, wh) + 29m> ek, ) — n?le”||?
= 2(1 —y)n(w®, 2 — %) + (1 — 7)(2y — Dn?[|w”]?
+ (L =P = 4 (1 = y)n?[lw* — ]2
+2n(e*, 2% — a7) = 2(1 — ) (e, w") + 29n* (", w*) — n?[le .

(34)

Next, using again w*+! = Ga* 4 v**! and (33), we have

T = [P =2 4 yn(Gab + oF)||2 = ||2F T — b ikt 2
= 7?11 = y)wk — ik + F||?
= (1= )2n?[|w”[]* = 2y(1 = 7)) (w", &%) +~2n?|[o*||?
+ 7 [|eF]1? +2(1 = )P (¥, wk) — 29m? (e, )
= —(L=7)(2y = D)n?[|w”||* + (27 = D[ @¥]]* + v(1 = y)n?|lw* — &[]
+ 7P[leF )1+ 2(1 = y)nP (e, wh) — 29 (eF, oF).

Moreover, by the Cauchy-Schwarz inequality in @ and Young’s inequality in @, we can prove that

|2F — 251 4+ k|2 = [Ja* — 2F 12 4 2yn(k, 2 — 2R 1) 20?0k |2
® ) . )
> |la% — 2P |2 = 2ymll@” ||| zF — 2R + 20?2
@
> Llla? — P12 — 422 |02
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Combining the last two expressions, we can show that

Ty o= Nl — 251 am(Ga =+ o) — a4 — 2% 4 (G + o) |2

B b=l k|2 — (ot — zF 4yt |2

> Lok — 2P 12 4+ (1= ) (2y = D)n?[|wF||? — v(3y — 1)n?||o*||?
— (1 =) |lwh — @k |2 — n?||eF || — 2(1 — 7)n? (e, wk) + 2yn?(e*, *).

= |l

Multiplying 75) by 4+ > 0, and adding the result to (34), and using £ from (30), we have

Lo = Lipr = 2% 4G5 +0F) = ¥|? — b+ + (G +vh+) — ¥
+plla® — 2t 4 an(Gat Tt o) |2 = pl|at 2k (Gt R )2
> 2(1 = y)n{wk, 2% —2*) + §llab — 2P 4 (14 ) (1 =) (27 = Dn?flw”|?
+ (1 =) = By = DIP[0*[]> = (1 + p)y(1 = 7)n?lw* — @F|?
+ 2n(eF, 2% — o) = 2(1 + p) (1 = y)n? (e, wh)
+ 2(1+ p)yn? ek, ") — (14 p)n?[le¥]|.

Taking the conditional expectation Ej [ . ] both sides of this expression, and noting that

we obtain
Ly, =By [Lrya] > 201 = y)np(w®, o —a*) + 5% — 22+ (14 p)(1 = 7) 2y = D |lw”|?
A1 =) = 3y = DI [* ]2 = (14 )y (1 — Pk — )
— (1+ )0 By [|le*]|?].

Finally, by the L-Lipschitz continuity of G' from (2) of Assumption 1.3, we have ||w* — @¥||? = ||Gz* — Gz*~ 1|2 <
L?||z*% — 2%=1||? as shown in (24). Using this inequality into the last estimate, we can show that

Ly = Ex[Lrs1] > 2(1 = y)n(w”, a* —a*) + (1 + @) (1 —7)(2y — Dn?|lw®|®
+9L =7 = uBy = DI [@0"]* = (1 + w)n’Ex[[le*]]
+ 5[ — 200+ )y (1 =) L] [l — 2,
which proves (31) by recalling w* := Ga* + v* and W* := Ga*~1 4 vF.
Taking the full expectation of (31) and using (Gx* + vk 2% — 2*) > —k||Gz* + v*||? from Assumption 1.4 and
Ex[|le¥||?] < Ay from (3), we can bound it as
E[Li] —E[Lita] = 5[p— 200+ w1 = NL2P]E[|2* — 2*71?) — (1 + p)n*As
+[1 =y = puBy = DIPE[[|Ga* 1 +oF|?] 35
+ (1= )1+ )2y = 1) — 26]E[[| Gz + v¥||?].
By the third line of (3) in Definition 2.1 and utilizing again (2), we have

A < (1= p)Aj_1 + CL?E[||lz* — 2*=1)2] + CL2E[|ja*1 — 2%=2|12].
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Rearranging this inequality, we get

Ap < (58) (Akor = &) + CE[E[llaA = ob72)%] — B[|* — 24P
+@%L—mxfkln}

Substituting this inequality into (35), we can show that

P
+ [ =y = pBy = DIPE[|| G2 + oF|?]

+ (L= [(1+p)(2y = Dn — 2-]E[[|Gz* + o*|]?]

_ Lzﬂzi(lw) [E[”xk—l — g2)2] — E[||a* — xk_1H2H
_ 772(1+x;)(1*p) (A1 — A).

E[£k] = E[£is] 2 31— 201+ p)y(1 = 5) L2 — 2EECE0CEO gk — gh=t 2

Rearranging this inequality and using & from (21), we obtain (32). O
Now, we are ready to prove our second main result, Theorem 4.1 in the main text.

Proof of Theorem 4.1. Since we fix v € (3,1) and p := we have p > Oand 1 + p = . Let us denote by

-~ FY_ 1 ’
M = 472 + 147—77 . Cipc as in Theorem 4.1. Then, (32) reduces to

Bley] ~ E[6in] 2 SRRl - ot

(36)
+2(1 = ) [ X2 — K]E[[|Ga + o7,

Let us choose 7 > 0 such that M — K >0and1— M- L*p? > 0. These two conditions lead to Efg;i){; <n< L\}M

as stated in Theorem 4.1. However this condition holds if L?k2 < % This condition is equivalent to Lx < ¢ as our
y(2y=1)
By-1)VM’

Averaging (36) from k = 0 to K and noting that E [£},] > 0 for all k > 0, we get

condition in Theorem 4.1, where § :=

(3v—1)-E[&o]
2(1=y)[v(2v=1)n—(By=1)x]n(K+1)’
2(3y—1)-E[&o]

(1-7)(K+1) °

K
71 Lo E[1G2* + "]

1-ML _
(ML) S SB[k — 2h1)2)

IN

IA

Finally, since v 7! = 272 = 2%, we have A_; = A,. However, since 53 = (1—7)Gx" = SY, we get Ay = Hgg -S| =

0. Using these relations, p € [0, 1] and v < 1, we can show that

E[[l2° +9m(Ga® + v0) — 2*||?] + L= A

2E ||z — 2*[]?] + 2v*n°E[||Ga® + o°||? ] 3?"1)pA0
2E [[|l2° — 2*[]?] + 2v*n*E[||Ga° + v°||?].

E[&]

IN

Substituting this upper bound into the above two estimates, we get two lines of (12). O

Finally, we prove Corollaries 4.2 and 4.3 in the main text. Unlike Corollaries 3.2 and 3.3 where we fix vy := %, here we state
these corollaries for any value of y € (%, 1).

Proof of Corollary 4.2. For the SVRG estimator (L-SVRG), we have p := B € (0,1], C = M, C’ =

2 bp
2’72(2—177?13), and Ag = 0 due to (17) and 2° = z=! = wY In this case, we have A := C =
4(1+72)(2_3g:”2(3+272)p2 < 8(;:;’ ) and thus M in Theorem 3.1 reduces to M := 442 + 47 A <442 + 32(1+’* )
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Suppose that bp? < 1. Since A < 8(%;2) and M = 442 + %A < 492 4+ 329(147%) o HYBH1+7) 1 we choose

(I-mbp*> =  (1-7)bp?
N = ﬁ, then we have n > 2L\/V71(;1ﬁp772) = o\éEP with o := P e Vi;W, then it satisfies (3(';7 1)1) <n< \/ﬁ in
Theorem 4.1, provided that Lx < 4. Note that using n > ”—\égp in (12) of Theorem 4.1 we obtain the bound (13).
Now, from the first line of (12), to guarantee ﬁ ZkK o E [IIGz* + v¥||?] < €%, we need to impose (K+1) < €2, where
R2 = ||2° — 2*||* + +2n?(|G2° + v°||2. Since n > a\pr, the last condition holds if we choose K := {I‘ i QRQJ, where
r=2359.

Finally, at each iteration k, (VFRBS) requires 3 mini-batches of size b, and occasionally compute the full Gw*, leading to
the cost of np + 3b per iteration. Thus the total complexity is

2 2 pH2
To = K(np +3b) = " Ralrpdsh) _ TL R (g 5y,

bp ' p?

4T'n

2/3 1/3 2 /312 Re .
If we choose b := |n / Jandp:=n" /3 then bp*=1land 7. = ——= 2. For the SVRG estimator (L-SVRG), one

. . . . . 2/312R2
needs to compute Gw?, which requires n evaluations of G;. Hence, the total evaluations of G; is Tz, = n + L%J.
Moreover, at each iteration, we need one evaluation of J.,r. Therefore, the total evaluations of J,,r is T = K =
L2R? L2R2
Lr.bp252J:LF' €2 J [

Proof of Corollary 4.3. Since we use the SAGA estimator (SAGA), we have p := % € (0,1], C := %W,

and C := % In this case, since b > 1, we get A := C:;C % + 4(1+72)(Tg§b)(2n+b) <24 W. Hence,
M in Theorem 3.1 reduces to
g2 4 A (2+y—?) | 329(14y%)n?

Mim ot < B sy
Suppose that 1 < b < n2/3. Then, we can show that M < [4V(2+A’,Y %) + 32W(1ny7 )] w = 47%?%@572) = Uzba, where
o= 2\/(101%7172). Hence, if we choose 1 := LW then we get n > "b . Note that using n > "b in (12) of

Y(10+7+T7
Theorem 4.1 we obtain the bound (14).
For i := L\lﬁ > "ZSL/Z, from the first line of (12), to guarantee S o E [IIGz* + v¥|?] < €2, we need to impose
2

% < €%, where R3 := |20 — 2*||2 + v2?||G° + ¢°||%. Since n > 2} °”% the last condition holds if we choose

K= LF . Lbﬁizl J, where I := %'

Finally, at each iteration k, (VFRBS) requires 3 mini-batches of size b, leading to the cost of 3b per iteration. Thus the total
complexity is

T = 30K = | Lt

STL22n2/
If we choose b := |n?/3], then T, = L‘SFLZS#J For the SAGA estimator (SAGA), one needs to compute Gw", which

L3FL2R§n2/3J

requires n evaluations of GG;. We conclude that (VFRBS) requires 7, :=n + evaluations of G;. Moreover,

LR

since each iteration, it requires one evaluation of J,, 7, we need T := K = LF J evaluations of J., 7. O]

Remark D.2. For the SVRG estimator, if we choose v = %, then we have ¢ := 0.0702. Hence, we have n > %.

However, if we choose v := 0.55, then n > %. If we choose b = Ln2/3J and p = n~1/3_ then the latter lower
bound becomes 7 > %.

For the SAGA estimator, if we choose v = 2, then we have o := 0.0753. Hence, we get ) > W

~ := 0.55, then > %. If we choose b = [n%/®], then the latter lower bound becomes n > %1271,

. However, if we set

Note that these lower bounds of 7) can be further improved by refining the related parameters in Lemma D.1, and carefully
choosing p in the proof of Theorem 4.1.
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E. Details of Experiments and Additional Experiments
Due to space limit, we do not provide the details of experiments in Section 5. In this Supp. Doc., we provide the details
of our implementation and experiments. We also add more examples to illustrate our algorithms and compare them with

existing methods. All algorithms are implemented in Python, and all the experiments are run on a MacBookPro. 2.8GHz
Quad-Core Intel Core 17, 16Gb Memory.

E.1. Synthetic WGAN Example

We modify the synthetic example in (Daskalakis et al., 2018) built up on WGAN from (Arjovsky et al., 2017) as our first
example. Suppose that the generator is a simple additive model Gy(z) = 6 + z with the noise input z generated from a
normal distribution A (0, I), and the discriminator is also a linear function Dg(w) = (K3, w) for a given matrix K, where
0 € RP* and § € RP?, and K € RP**P2 ig a given matrix. The goal of the generator is to find a true distribution § = 6*,
leading to the following loss:

L(0,5) := Eunor 1y (KB, w)] = Eepron (KB, 0+ 2)].

Suppose that we have n samples for both w and z leading to the following bilinear minimax problem:

n

int sup {£(6,5) = f(0) + > [(KB,wi — 2~ 6)] — 9(8)}. 37)

OERPL gcRpo P

Here, we add two convex functions f(6) and g(3) to possibly handle constraints or regularizers associated with 6 and /3,
respectively.

If we define 2 := [0, 8] € RP1¥P2, Go = [VoL(0,8), —VsL(0,B8)] = —[KB, 237" | K (w; — 2z — 0)],and T :=
[0f(6),Dg(B)], then the optimality condition of this minimax problem becomes 0 € Gz + Tz, which is a special case of
(NI) with Gz being linear. The model (37) is different from the one in (Daskalakis et al., 2018) at two points:

* It involves a linear operator K, making it more general than (Daskalakis et al., 2018).
* It has two additional terms f and g, making it broader to also cover constraints or non-smooth regularizers.

In our experiments below, we consider two cases:

¢ Case 1 (Unconstrained setting). We assume that § € RP* and 5 € RP2,
* Case 2 (Constrained setting). Assume that 6 and /3 stays in an £-ball of radius 7 > 0, leading to f(0) := 6_ ,jr1 ()
and g(8) := [_r,,jr= (), the indicator of the £ -balls.

E.1.1. THE UNCONSTRAINED CASE
(a) Algorithms. We implement three variants of (VFR) to solve (37).

¢ The first variant is using a double-loop SVRG strategy (called VFR-svrg), where the full operator Gw?® at a snapshot
point w* is computed at the beginning of each epoch s. Then, we perform |n/b| iterations k to update z* using (VFR),
where b is the mini-batch size. Finally, we set the next snapshot point w*t! := z¥*1 after finishing the inner loop.

* The second variant is called a loopless one, LVFR-svrg, where we implement exactly the same scheme (VFR) as in
this paper and using the Loopless-SVRG estimator.

¢ The third variant is VFR-saga, where we use the SAGA estimator in (VFR).

We also compare our methods with the deterministic optimistic gradient (OG) in (Daskalakis et al., 2018), the variance-
reduced FRBS (VFRBS) in (Alacaoglu et al., 2023), and the variance-reduced extragradient (VEG) in (Alacaoglu & Malitsky,
2022).

(b) Input data. For (NE), we generate a vector §* from the standard normal distribution as our true mean in R?*. Then, we
generate i.i.d. samples w; and z; from normal distribution A (6*,T) and A/(0, 1), respectively for ¢ = 1,2, --- ,n in RP
and RP2, respectively. We perform two expertiments: Experiment 1 with n = 5000 and p; = p2 = 100, and Experiment 2
with n = 10000 and p; = p2 = 200. For each experiment, we run 10 times up to 100 epochs, corresponding to 10 problem
instances, using the same setting, but different input data (wj, z;), and then compute the mean of the relative operator norm
||Gz*||/||G2°||. This mean is then plotted.

(c) Parameters. For the optimistic gradient algorithm (0G), we choose its learning rate 7) := %, where L is the Lipschitz

constant of GG, though its theoretical learning rate is much smaller. For our methods in (VFR), if n = 5000, and we choose

b := |0.5n%/3| = 146, and the probability p := nf/s = 0.1170, then 7 := L\}M = 21905 However, due to the under
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estimation of M, we instead use a larger learning rate 7 := i for all three variants, and choose a mini-batch of size
b := |0.5n%/3], and a probability p := —'5 for the loopless SVRG variant.

For the forward-reflected-backward splitting method with variance reduction (VERBS) in (Alacaoglu et al., 2023), we choose
its learning rate n := % VIZP) g suggested by (Alacaoglu et al., 2023). However, we still choose the probability
pP= ﬁ and the mini-batch size b = |0.5n%/3| as our methods. These values are much larger the ones suggested in

(Alacaoglu et al., 2023), typically p = (’)(l/n).

For the variance reduction extragradient method (VEG) in (Alacaoglu & Malitsky, 2022), we choose its learning rate
n = @ for o := 1 — p from the paper. However, again, we also choose p := ﬁ and b = L0.5n2/3j in this
method, which is the same as ours, though their theoretical results suggest smaller values of p (e.g., p = %). Note that if
n = 5000, then the batch size b := 150 and the probability p := 0.062, but if n = 10000, then b = 239 and p = 0.0479.

(d) Experiments for ' = I. We perform two experiments: Experiment 1 with (n, p) = (5000, 200) and Experiment 2
with (n,p) = (10000, 400) as discussed above. We run each experiment with 10 problem instances and compute the mean
of the relative residual norm ||Gx*|| /||Gz°||. The results of this test are plotted in Figure 4.

Experiment 1: n = 5000 and p = 200 Experiment 2: n = 10000 and p = 400

,_‘
S
E)

L

-

S °© =
[} (=]
S © 2

L

H
3
IS

H
i
s

Relative operator norm ||Gz*||/||Ga°||
Relative operator norm ||Gz*||/||Ga°||

—e- 0G —- N
10-10 4 =*= VFR-svrg \\ 10-10 4 =*= VFR-svrg ‘\\

=—4— LVFR-svrg —4— LVFR-svrg ~
10712 4 —m- VFR-saga 107" 1 —m - VFR-saga

VFRBS VFRBS

10-14 10-14 4

== VEG e - == \EG

T T T T T T T T T T T T

0 20 40 60 80 100 0 20 40 60 80 100

Number of epochs Number of epochs

Figure 4: Performance of 6 algorithms to solve (37) on 2 experiments when K = I.

For these particular experiments, our methods highly outperform OG, VFRBS, and VEG. It shows that VFR-svrg is the
best overall, while LVFR-saga and VFR-svrg have a similar performance in both experiments. Both the competitors:
VFRBS and VEG do not perform well in this test and they are much slower than ours and also OG. This is perhaps due to a
small learning rate of VFRBS although we choose the same mini-batch size b and the same probability p as ours.

(e) Experiments for K # . Now, we test these 6 algorithms for the case K # I in our extended model (37), where K
is generated randomly from the standard normal distribution. Then, we normalize K as K/||K]|| to get a unit Lipschitz
constant L = 1.

Again, we use the same configuration as in Figure 4 and also run our experiments on 10 problems and report the mean
results. We perform two experiments: Experiment 1 with n = 5000 and p; = ps = p = 100, and Experiment 2 with
n = 10000 and p; = p2 = p = 200. The results are reported in Figure 5.

We still observe that our algorithms work well and outperform their competitors. However, after 100 epochs, these methods
can only reach a 10~2 accuracy level for an approximate solution.

E.1.2. THE UNCONSTRAINED CASE — VARYING b AND p

We can certainly tune the parameters to make our competitors (VFRBS) and (VEG) work better. However, such parameter
configurations are far from satisfying the conditions of their theoretical results. For example, if we set p = %, then both
VFRBS and VEG work better. In particular, if n = 5000, then we get p = % = 0.28, which is several times larger than its

suggested value p = + =2 x 107%.

Let us further experiment other choices of parameters (i.e. the mini-batch size b and the probability p of flipping a coin) to
observe the performance of these algorithms.

(a) Larger b. Figure 6 reveals the performance of these algorithms when we increase the mini-batch size b to a larger value
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b = [0.1n], while keeping the probability p = — unchanged.

Experiment 1: n = 5000 and p = 200
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Experiment 2: n = 10000 and p = 400
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Figure 5: Performance of 6 algorithms to solve (37) on 2 experiments when K # L.
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Experiment 2: n = 10000 and p = 400
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Figure 6: Performance of 6 algorithms for a large b = |0.1n| and a unchanged p = nll/s .

Note that for n = 5000, we have b = 500 and p = 0.058, and for n = 10000, we have b = 1000 and p = 0.046. With
these large mini-batches, our algorithms still outperform other methods, while VFRBS and VEG are significantly slowed
down. The double-loop variant of (VFR) with SVRG performs best, while LVFR-svrg and VFR-saga have a similar
performance.

(b) Medium b and larger p. Next, we set b to a medium size of b = |0.05n] (corresponding to b = 250 for n = 5000 and
b = 500 for n = 10000) and increase p = # (corresponding to p = 0.119 for n = 5000 and p = 0.1 for n = 10000).
Then, the results are shown in Figure 7.
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Then, we observe that LVFR-svrg and VER-saga superiorly outperform the others. The performance of the double-loop
VEFR-svrq is still similar to the previous tests since it is not affected by p. In addition, VEG is now comparable with OG,
but VEFRBS remains the slowest one.

(c) Large b and small p. To see the effect of p on our competitors: VFRBS and VEG, as suggested by their theory, we
decrease ptop = ﬁ (corresponding to p = 0.014 for n = 5000 and p = 0.01 for n = 10000) and still set b = |0.1n],
and the results are plotted in Figure 8.
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Figure 8: Performance of 6 algorithms for a large b = |0.1n| and a small p = #

As we can observed from Figure 8, our methods highly outperform VERBS and VEG, suggesting that these competitors
require a larger probability to select the snap-shot point w”* for full-batch evaluation. This is certainly not suggested in their
theoretical results.

E.1.3. THE CONSTRAINED CASE

Next, we choose f(6) = 6_y,jp1 (#) and g(B) := [, j»= (B) as the indicators of the /.-balls of radius r = 5, respectively.
In this case, we implement three variants of (VFRBS): the double-loop (VFR-svrg), the loopless (LVEFR-svrg), and the
SAGA (VFR-saga) variants to solve (NI) and compare against 3 algorithms as in the unconstrained case. Using the same
data generating procedure as in the unconstrained case, we obtain the results as shown in Figure 9 when K = 1.

Experiment 1: n = 5000 and p = 200 Experiment 2: n = 10000 and p = 400
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Figure 9: Comparison of 6 algorithms to solve constrained instances of (37) on 2 experiments when K = I (The average of
10 runs).

We see that the two SVRG variants of our (VFRBS): VFR-svrg and LVFR-svrg, as well as our VFR-saga variant
remain working well compared to other methods. They superiorly outperform the three competitors.

Finally, we test our methods and their competitors for the case K # I as we done in Figure 5. Our results are plotted in
Figure 10, where we observe a similar behavior as in Figure 5.
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Experiment 1: n = 5000 and p = 200 Experiment 2: n = 10000 and p = 400
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Figure 10: Comparison of 6 algorithms to solve constrained instances of (37) on 2 experiments when K # I (The average
of 10 runs).

E.2. Nonconvex-Nonconcave Quadratic Minimax Problems
We recall the nonconvex-nonconcave quadratic minimax optimization problem (15) in this subsection:

min max {L’(u,v) = o(u) +

n
wERP1 vERP2

[u” Aju +u" Liv —v" Biv + b u — ¢/ v] — w(v)}, (38)
1

1
n <

7

where A; € RP1*Pt and B; € RP2*P2 are symmetric matrices, L; € RP1*P2_ p; € RP1, ¢; € RP2, and ¢ = 6Ap1 and
¥ = da,, are the indicator of standard simplexes in RP* and RP2, respectively.

Let us first define « := [u, v] € R? as the concatenation of the primal and dual variables « and v, where p := p; + po. Next,
we define

Gir=Gx+g;:= + = , and T := 7
—L; B; v C; —L;,u+ Bv+ ¢ oY
A L, b; . . .
Then, we denote G; := ,and g; = . Clearly, G;(-) is an affine mapping from R? to R?, but G; is
—L; B; Ci

nonsymmitric. Let Gz == 13" G = (237 Gz + 13" g = Gz +g, where G := 13" G and
g = % > i—1 8- Then, the optimality condition of (38) becomes 0 € Gz + T'z, which is exactly in the form (NI). Clearly,
if A; and/or B; are not positive semidefinite, then (38) possibly covers nonconvex-nonconcave minimax optimization
instances.

E.2.1. THE UNCONSTRAINED CASE
We consider the case ¢ = 0 and 1) = 0, leading to an unconstrained setting of (38), i.e. 7' = 0 as considered in (15) of the
main text. Hence, the optimality condition of (38) reduces to Gz = 0, which is of the form (NE).

(a) How to generate data? To run our experiments, we generate synthetic data as follows. First, we fix the dimensions p;
and p- and the number of components n. We generate A; = Q,»DZQZT for a given orthonormal matrix (); and a diagonal
matrix D; = diag(D},---, DP"), where its elements are generated from standard normal distribution and clipped its
negative entries as maX{D{ ,e}forj=1,--- pjand € := —0.1. This choice of A; guarantees that A; is symmetric, but
possibly not positive semidefinite. The matrix B; is also generated by the same way. The pay-off matrix L; is an p; X po
matrix, which is also generated from the standard normal distribution for all ¢ € [n]. The vectors b; and c; are generated
from the standard normal distribution for ¢ € [n]. With this data generating procedure, G is not symmetric and possibly not
positive semidefinite.

(b) Algorithms. We again test 6 algorithms: two variants (double-loop SVRG - VFR-svrqg) and (loopless SVRG —
LVFR-svrg) of (VFR), our (VFR) with SAGA estimator (VFR-saga), VFRBS from (Alacaoglu et al., 2023), VEG from
(Alacaoglu & Malitsky, 2022), and OG (the standard optimistic gradient method), e.g., from (Daskalakis et al., 2018).
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(c) The details of Subsection 5.1 in Section 5. First, we provide the details of Subsection 5.1 in Section 5. The purpose of
this example is to verify our theoretical results stated in Corollaries 3.2 and 3.3.

For the SVRG estimator, let us first choose v := 0.75, b := LnQ/ 3J, and p := ﬁ as suggested by Corollary 3.2. Then,
we can directly compute 1) := 3=, where A ;= S25C=3pLt 11250% and M = 2.375 + LLA. Clearly, if n = 5000, then

n = 0146153 Alternatively, if n = 10000, then 1) = 2148934 These learning rates are used in our experiments plotted in
Figure 1.

Similarly, for the SAGA estimator, we also choose v := 0.75 and b := LnQ/ 3|. In this case, by Corollary 3.3, we can also

directly compute 7 := L\}M' If n = 5000, then n = %. Alternatively, if n = 10000, then n = %. These

learning rates are used in VFR-saga.

Note that since the theoretical value of p in VFRBS and VEG is too small, we instead choose p := ﬁ and also b := |n?/3|
as in our methods. Then, we compute the learning rate 7 of these methods based on the formula given in (Alacaoglu et al.,
2023) for VFRBS and (Alacaoglu & Malitsky, 2022) for VEG, respectively.

(d) Results for a different set of parameters. Unlike Subsection 5.1 in the main text, we choose the parameters for
these algorithms as in Subsection E.1. The 6 algorithms are run on 2 experiments. The first experiment is with n = 5000
and p; = po = 50, while the second one is with n = 10000 and p; = p, = 100. These experiments are run 10 times,
corresponding to 10 problem instances, and the average results are reported in Figure 11 in terms of the relative operator
norm ||Gz*||/||Gx°|| against the number of epochs.

Experiment 1: n = 5000 and p = 100 Experiment 2: n = 10000 and p = 200
1071 A 10-1
1073 4 1073 +
1075 1075
1077 1 1077 4
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Figure 11: The performance of 6 algorithms to solve the unconstrained case of (38) on 2 experiments (The average of 10

runs).

Clearly, under this configuration, both SVRG variants of our methods work well and significantly outperform other
competitors. The loopless SVRG variant (VFR-svrg) of (VFR) seems to work best, while our VFR-saga has a similar
performance as VEG. We also see that VERBS has a similar performance as OG.

To improve the performance of these competitors, especially, VFRBS and VEG, one can tune their parameters as in
Subsection E.1, where the probability p of updating the snapshot point w* is increased. However, with such a choice of p,
its value is often greater or equal to 0.5, making these methods to be closed to deterministic variants. Hence, their theoretical
complexity bounds are no longer improved over the deterministic counterparts.

E.2.2. THE CONSTRAINED CASE
We conduct two more experiments for the constrained case of (38) as in the main text when u € A,, and v € A,,,, where

A, :={ueRE: P, w; = 1} is the standard simplex in R”.

We run 6 algorithms for solving the constrained case of (38) using the same parameters as Subsection 5.1, but with larger
problems. We report the relative norm of the FBS residual ||G,z*||/||G,2°|| against the number of epochs. The results are
revealed in Figure 12 for two datasets (p,n) = (500, 5000) and (p, n) = (300, 10000).

With these two additional experiments, both SVRG variants of our method (VFRBS) again work well and significantly
outperform other competitors. The loopless SVRG variant (VER-svrg) of (VFRBS) tends to work best, while our
VFR-saga has a relatively similar performance as VEG. We also see that VERBS has a similar performance trend as OG,
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Experiment 1: n = 5000 and p = 500 Experiment 2: n = 10000 and p = 300
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Figure 12: The performance of 6 algorithms to solve the constrained case of (38) on 2 experiments (The average of 10 runs).

but works better.

E.3. The /,-Regularized Logistic Regression with Ambiguous Features
This Supp. Doc. provides the details of Subsection 5.2 in Section 5 in the main text.

(a) Model. We consider a standard regularized logistic regression model associated with a given dataset {(X;, y;)}¥,,
where X; is an i.i.d. sample of a feature vector and y; € {0, 1} is the associated label of X Unfortunately, X, is ambi guous,
i.e. it belongs to one of m possible examples { X;;}7 ;. Since we do not know X, to evaluate the loss, we consider the
worst-case loss f;(w) := maxi<j<m £((Xsj, W), yi) computed from m examples, where £(7, s) := log(1 + exp(7)) — s7
is the standard logistic loss.

Using the fact that max;<j<m £;(-) = max.ea,, Z;"Zl zjl;(-), where A,, is the standard simplex in R™, we can model
this regularized logistic regression into the following minimax problem:

. N m
min max { £(w,2) = % SIS 20Xy w). ) + mR(w) — 6a,,(2) ], (39)
where £(7, s) :=log(1 + exp(7)) — s7 is the standard logistic loss, R(w) := ||w]|; is an ¢;-norm regularizer, 7 > 0 is a

regularization parameter, and d , is the indicator of A,, that handles the constraint z € A,,. This problem is exactly the
one stated in (16) of the main text.

First, let us denote x := [w; z] € RP as the concatenation of w and z with p = d + m, and

iy 2l (X, w), yi) Xij

—(( X1, w), y; OR
Gix = ((Xan, w), i) and Tz := TOR(w)
Ce 66Am (2)

_£(<sz7 w>7 yl)

where ¢'(1,8) = %S()T) — 5. Then, the optimality condition of (39) can be written as (NI): 0 € Gz + Tz, where

Gz :=1%" Gz

(b) Input data. We test our algorithms and their competitors on two real datasets: a9a (134 features and 3561 samples)
and w8a (311 features and 45546 samples) downloaded from LIBSVM (Chang & Lin, 2011). For a given nominal dataset
{(X i Yi) Y, we first normalize the feature vector X, such that its column norm is one, and then add a column of all ones
to address the bias term. To generate ambiguous features, we take the nominal feature vector X; and add a random noise
generated from a normal distribution of zero mean and variance of o = 0.5. In our test, we choose 7 := 1072 and m := 10
for all the experiments.

(c) Algorithms. As before, we implement 3 variants of our method (VFRBS): VFR-svrg, LVFR-svrg, and VFR-saga
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to solve (39). We also compare them with OG, VFRBS, and VEG. We choose 2 := 0.5 - ones(p) in all experiments. We
run all the algorithms for 100 epochs and report the relative FBS residual norm ||G,,z*| /||G,2° || against the epochs.

(d) Parameters. Since it is very difficult to estimate the Lipschitz constant L of G, we are unable to set a correct learning
rate 7 in the underlying algorithms. We instead compute an estimation L := || X ||, and then set  := %, by tuning w for
each algorithm. More specifically, after tuning, we obtain the following configuration.

¢ For the three variants of (VFRBS): VFR-svrg, LVFR-svrg, and VFR-saga, we set ) = % for a%9a andn = %
for w8a.

* For 0G, we setn) = % for a9a and 77 = 120 for w8a.

 For VFRBS, we choose 7 = % V1=P) for 292 and ) = 95(1_27L VI=P) for w8a.

 For VEG, we selectn = % V129 for a9a and n = BvI=« VLI_O‘ for w8a with « := 1 — p.

We still choose the mini-batch size b and the probability p of updating the snapshot point w” in SVRG variants as
b=0.5n%/3]| and p = n~'/3, respectively for all the algorithms.

We conduct two more experiments using the well-known MNIST dataset (n = 70000 and p = 780) where we want to
classify the even and odd numbers into two different classes, respectively. We use the same parameter selection as in the
experiment with the a9a dataset. In the first experiment, we choose m = 10 and the variance of noise ¢ = 0.5. In the
second experiment, we choose m = 20 and the variance of noise o = 0.25. We only run 5 algorithms and leave out the
VFRBS method since we have not managed to find the parameters that make it work stably. The result of this experiment is
shown in Figure 13.

The MNIST Dataset: (n, p, m) = (70000, 791, 10) The MNIST Dataset: (n, p, m) = (70000, 801, 20)
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Figure 13: Comparison of 6 algorithms to solve (16) on the real dataset: MNIST.

We can see from Figure 13 again that three variants VFR-svrg, LVFR-svrg, and VFR-saga have similar performance
and are much better than their two competitors. Here, VEG is better than OG, but both methods are slower than ours.
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