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Abstract

We analyze the generalization properties of batch reinforcement learning (batch RL)
with value function approximation from an information-theoretic perspective. We
derive generalization bounds for batch RL using (conditional) mutual information.
In addition, we demonstrate how to establish a connection between certain structural
assumptions on the value function space and conditional mutual information. As
a by-product, we derive a high-probability generalization bound via conditional
mutual information, which was left open in [SZ20] and may be of independent
interest.

1 Introduction

Generalization is a fundamental concept in statistical machine learning. It measures how well to
learning system performs on unseen data after being trained on a finite dataset. Effective generalization
ensures that the learning approach captures the essential patterns in the data. Generalization in
supervised learning has been studied for several decades. However, in reinforcement learning (RL),
agnostic learning is generally infeasible and realizability is not a sufficient condition for efficient
learning. Consequently, the study of generalization in RL poses more challenges.

In this work, we focus on batch reinforcement learning (batch RL), a branch of reinforcement learning
where the agent learns a policy from a fixed dataset of previously collected experiences. This setting
is favorable when online interaction is expensive, dangerous, or impractical. Batch RL, despite being
a special case of supervised learning, still presents distinct challenges due to the complex temporal
structures inherent in the data.

Originating from the work of [RZ16, XR17], an information-theoretic framework has been developed
to bound the generalization error of learning algorithms using the mutual information between the
input dataset and the output hypothesis. This methodology formalizes the intuition that overfitted
learning algorithms are less likely to generalize effectively. Unlike traditional approaches such as VC-
dimension and Rademacher complexity, this information-theoretic framework offers the significant
advantage of capturing all dependencies on the data distribution, hypothesis space, and learning
algorithm. Given that reinforcement learning is a learning paradigm in which all the aforementioned
aspects differ significantly from those in supervised learning, we believe this novel approach will
provide us with more profound insights.

2 Preliminaries

2.1 Batch Reinforcement Learning with Function Approximation

An episodic Markov decision process (MDP) is defined by M(S,A,P, r,H). We use ∆(X ) to
denote the set of the probability distribution over the set X . M(S,A,P, r,H) is specified by a finite
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state space S, a finite action space A, transition functions Ph : S × A → ∆(S) at step h ∈ [H],
reward function rh : S ×A → R at step h, and H the number of steps in each episode. We assume
the reward is bounded, i.e. rh(s, a) ∈ [0, 1]1, ∀(s, a, h).
Let π = {πh : S → ∆(A)}h∈[H] where πh(· | s) is the action distribution for policy π at state s and
step h. Given a policy π, the value function V π

h : S → R at step h is defined as

V π
h (s) := Eπ

[
H∑

h′=h

rh′(sh′ , ah′)

∣∣∣∣∣sh = s

]
.

The action-value function Qπ
h : S ×A → R at step h is defined as

Qπ
h(s, a) := Eπ

[
H∑

h′=h

rh′(sh′ , ah′)

∣∣∣∣∣sh = s, ah = a

]
.

The Bellman operators T π
h and T ∗

h project functions forward by one step through the dynamics:

(T π
h )(s, a) = rh(s, a) + Es′∼Ph(·|s,a)[Ea′∼π(·|s′)[Q(s′, a′)]],

(T ∗
h )(s, a) = rh(s, a) + Es′∼Ph(·|s,a)

[
max
a′

Q(s′, a′)
]
.

Now, we denote the dataset Z = {(s, a, r, s′, h)} where (s, a) ∼ µh, r ∼ rh(s, a), and s′ ∼
Ph(·|s, a) for a fixed h. We also denote D = D1×· · ·×DH where (s, a, r, s′, h) ∼ Dh. We consider
batch RL with value function approximation. The learner is given a function class F = F1×· · ·×FH

to approximate the optimal Q-value function. Denote f = (f1, · · · , fH) ∈ F . Since no reward is
collected in the (H + 1)th step, we set fH+1 = 0. For each f ∈ F , define πf = {πfh}Hh=1 where

πfh(a|s) = 1

[
a = argmax

a′
fh(s, a

′)

]
. Next, we introduce the Bellman error and its empirical

version.

Definition 2.1 (Bellman error). Under data distribution µ, we define the Bellman error of function
f = (f1, · · · , fH) as

E(f) := 1

H

H∑
h=1

∥fh − T ⋆
h fh+1∥2µh

. (1)

Definition 2.2 (Mean squared empirical Bellman error (MSBE)). Given a dataset Z ∼ D, we define
the Mean squared empirical Bellman error (MSBE) of function f = (f1, · · · , fH) as

L(f, Z) =
1

H

H∑
h=1

1

n

∑
(s,a,r,s′,h)∈Zh

(fh(s, a)− r − Vfh+1
(s′))2

where Vfh+1
(s) := maxa∈A fh+1(s, a).

For convenience, we denote ℓ(fh, Zh) =
1
n

∑
(s,a,r,s′,h)∈Zh

(fh(s, a)− r − Vfh+1
(s′))2.

Bellman error is used in RL as a surrogate loss function to minimize the difference between the
estimated value function and the true value function under a policy. The Bellman error serves as
a proxy for the optimality gap, which is the difference between the current value function and the
optimal value function. Under the concentrability assumption, minimizing the Bellman error is able
to reduce the optimality gap.

Lemma 2.3 (Bellman error to value suboptimality [DJL21]). If there exists a constant C such that
for any policy π

sup
(s,a,h)∈S×A×[H]

dPπ
h

dµh
(s, a) ≤ C

then for any f ∈ F , we have

V ∗
1 (s1)− V

πf

1 (s1) ≤ 2H
√
C · E(f).

1For rewards in [Rmin, Rmax] simply rescale these bounds.
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We note that L(f, Z) is a biased estimate of E(f). A common solution is to use the double sampling
method, where for each state and action in the sample, at least two next states are generated [SB99,
ASM08, DJL21], and define the unbiased MSBE to be

LDS(f, Z̃) =
1

nH

∑
(s,a,r,s′,s̃′,h)∈Z̃

[(
fh(s, a)− r − Vfh+1

(s′)
)2 − 1

2

(
Vfh+1

(s′)− Vfh+1
(s̃′)
)2]

.

Note that L(f, Z) ∈ [0, 4H2], LDS(f, Z̃) ∈ [−2H2, 4H2], and double sampling does not increase
the sample size, except that it requires an additional generated s̃′ ∼ Ph(·|s, a). Therefore, the results
presented in this paper can be easily extended to the double sampling setting.

2.2 Generalization Bounds

Definition 2.4 (Expected generalization bounds). Given a dataset Z ∼ D, and an algorithm A,
let L(A(Z), Z) denotes the training loss and let L(A(Z),D) denotes the true loss. The expected
generalization error is defined as

|EZ∼D[L(A(Z), Z)− L(A(Z),D)]| .

Definition 2.5 (High-probability generalization bounds). Given a dataset Z ∼ D, and an algorithm
A, let L(A(Z), Z) denotes the training loss and let L(A(Z),D) denotes the true loss. Given a
failure probability δ and an error tolerance η, the high-probability generalization error is defined as

P(|L(A(Z), Z)− L(A(Z),D)| ≥ η) ≤ δ.

2.3 Mutual Information

We first define the KL-divergence of two distributions.
Definition 2.6 (KL-Divergence). Let P,Q be two distributions over the space Ω and suppose P is
absolutely continuous with respect to Q. The Kullback–Leibler (KL) divergence from Q to P is

D(P∥Q) = EX∼PX

[
log

PX

QX

]
,

where PX and QX denote the probability mass/density functions of P and Q on X , respectively.

Based on KL-divergence, we can define mutual information and conditional mutual information as
follows.
Definition 2.7. Let X , Y , and Z be arbitrary random variables, and let DKL denote the Kullback–
Leibler (KL) divergence. The mutual information between X and Y is defined as:

I(X;Y ) := DKL(PX,Y ∥PX ⊗ PY ).

The conditional mutual information is defined as:

I(X;Y |Z) := EZ [DKL(PX,Y |Z∥PX|Z ⊗ PY |Z)].

Next, we introduce Rényi’s α-Divergence, which is a generalization of KL-divergence. Rényi’s
α-Divergence has found many applications, such as hypothesis testing, differential privacy, several
statistical inference and coding problems [Ver15, VEH14, Csi95, Mir17].
Definition 2.8 (Rényi’s α-Divergence). Let (Ω,F ,P), (Ω,F ,Q) be two probability spaces. Let
α > 0 be a positive real different from 1. Consider a measure µ such that P ≪ µ and Q ≪ µ (such a
measure always exists, e.g., µ = (P +Q)/2) and denote with p, q the densities of P,Q with respect
to µ. The α–Divergence of P from Q is defined as follows:

Dα(P∥Q) =
1

α− 1
log

∫
pαq1−α dµ.

Note that the above definition is independent of the chosen measure µ. With the definition of Rényi’s
α-Divergence, we are ready to state the definitions of α-mutual information and α-conditional mutual
information.
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Definition 2.9 (α-mutual information). Let X,Y be two random variables jointly distributed ac-
cording to PXY . Let QY be any probability measure over Y . For α > 0, the α-mutual information
between X and Y is defined as:

Iα(X;Y ) = min
QY

Dα(PXY ∥PX ⊗QY ).

Definition 2.10 (Conditional α-mutual information). Let X,Y, Z be three random variables jointly
distributed according to PXY Z . Let QY |Z be any probability measure over Y|Z . For α > 0, a
conditional α-mutual information of order α between X and Y given Z is defined as:

IY |Z
α (X;Y |Z) = min

QY |Z
Dα(PXY Z∥PX|Z ⊗QY |Z ⊗ PZ).

3 Information-Theoretic Generalization Bounds for Batch RL

We now provide expected and high-probability generalization bounds for batch RL. The generalization
bounds are derived from mutual information between the training data and the learned hypothesis.
Since mutual information bounds consider the data, algorithm, and hypothesis space comprehensively,
they support the design of efficient learning algorithms and fine-grained theoretical analysis.

Theorem 3.1. Given a dataset Z ∼ Dn consists of nH samples, for any batch RL algorithm A with
output A(Z) = f = (f1, · · · , fH) ∈ F , the expected generalization error for the mean squared
empirical Bellman error (MSBE) loss is upper bounded by

|EZ∼D[L(A(Z), Z)− L(A(Z),D)]| ≤

√
2H2

∑H
h=1 I(fh;Zh)

n
.

The above result suggests that reducing the mutual information between the dataset Zh and the
learned function fh at each step h can improve generalization performance. Note that when the
input domain is infinite, mutual information can become unbounded. To address this limitation,
an approach based on conditional mutual information was introduced [SZ20]. CMI bounds not
only address the issue by normalizing the information content of each data point, but also establish
connections with various other generalization concepts, as we will discuss in the next section. We
now present a generalization bound using conditional mutual information.

Definition 3.2. Let Z ∼ D2n consist of 2n samples drawn independently from D. Let U ∈ {0, 1}n
be uniformly random and independent from Z and the randomness of A. Define ZU ∈ Z such that
(ZU )i is the (2i− Ui)

th sample in Z – that is, ZU is the subset of Z indexed by U . The conditional
mutual information of A with respect to D is defined as I(A(ZU );U |Z).
Theorem 3.3. Let U ∈ {0, 1}n be uniformly random. Given a dataset Z ∼ D2n consists of 2nH
samples, for any batch RL algorithm A with output A(ZU ) = f = (f1, · · · , fH) ∈ F , the expected
generalization error for the mean squared empirical Bellman error (MSBE) loss is upper bounded by

|EZ∼D[L(A(ZU ), ZU )− L(A(ZU ),D)]| ≤

√
2H2

∑H
h=1 I(fh;U |Zh)

n
.

Note that our setting is identical to that in [DJL21], i.e. batch RL with value function approximation

for episodic MDPs. They established a bound of the order Õ
(
H2
√

1
n +

∑H
h=1 R(Fh)

)
where

R(Fh) represents the Rademacher complexity of the function space Fh. In contrast, our result yields

an error bound of the order O
(
H

√∑H
h=1 I(fh;Zh)

n

)
. As demonstrated in the subsequent section,

under structural assumptions like a finite pseudo-dimension or effective dimension d, this bound can

be refined to Õ
(
H2
√

d
n

)
.

Next, we proceed to derive the high-probability version of these generalization bounds using α-mutual
information.
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Theorem 3.4. Given a dataset Z ∼ Dn consists of nH samples, for any batch RL algorithm A with
output A(Z) = f = (f1, · · · , fH) ∈ F , if

n ≥ 2H4

ε2

(
Iα(A(Z);Z) + log 2 +

α

α− 1
log

(
1

δ

))
,

then the generalization error for the mean squared empirical Bellman error (MSBE) loss is upper
bounded by

|L(A(Z), Z)− L(A(Z),D)| ≤ ε

with probability at least 1− δ.

Recall that conditional mutual information is defined as an expectation over the KL divergence. Thus,
all prior works using the CMI framework have only provided bounds on the expected generalization
error. We wish to establish generalization bounds with high-probability guarantees similar to Theorem
3.4. In the appendix, we prove the desired result using conditional α-mutual information, which
directly implies the following theorem.
Theorem 3.5. Let U ∈ {0, 1}n be uniformly random. Given a dataset Z ∼ D2n consists of 2nH
samples, for any batch RL algorithm A with output A(ZU ) = f = (f1, · · · , fH) ∈ F , if

n ≥ 8H4

ε2

(
max
h

Ifh|Zh
α (fh;U |Zh) + log 2 +

α

α− 1
log

(
H

δ

))
.

then the generalization error for the mean squared empirical Bellman error (MSBE) loss is upper
bounded by

|L(A(ZU ), ZU )− L(A(ZU ),D)| ≤ ε

with probability at least 1− δ.

4 Value Functions under Structural Assumptions

Due to the challenges stemming from large state-action spaces, long horizons, and the temporal
nature of data, there is increasing interest in identifying structural assumptions for RL with value
function approximation. These works include but not limited to Bellman rank [JKA+17], Witness
rank [SJK+19], and Eluder dimension [WSY20]. These structural conditions aim to develop a unified
theory of generalization in RL. In this section, we demonstrate that if a function class satisfies certain
structural conditions reflecting a manageable complexity, the mutual information can be effectively
upper bounded.
Definition 4.1 (Covering number). The covering number of a function class F = F1 × · · · × FH

under metric ρ(f, g) = maxh ∥fh − gh∥∞, denoted as N (F , ε), is the minimum integer n such that
there exists a subset Fε ⊆ F with |Fε| = n, and for any f ∈ F , there exists g ∈ Fε such that
ρ(x, y) ≤ ε.
Theorem 4.2. Suppose the function class F has a covering number of N (F , ε). Let U ∈ {0, 1}n be
uniformly random. Given a dataset Z consists of 2nH samples, for any batch RL algorithm A with
output A(ZU ) = f = (f1, · · · , fH) ∈ F , the expected generalization error for the mean squared
empirical Bellman error (MSBE) loss is upper bounded by

|EZ∼D[L(A(ZU ), ZU )− L(A(ZU ),D)]| ≤
√

2H3 log(|N (F , ε)|)
n

+ 8εH + 2ε2.

Structural assumptions on the function space typically entail a finite covering number. Next, we
consider the simplest case: the pseudo-dimension. The pseudo-dimension is a complexity measure of
real-valued function classes, analogous to the VC dimension used for binary classification. Although
the value function space may be infinite, it remains learnable if it has a finite pseudo-dimension. We
also discuss the effective dimension in the appendix.
Definition 4.3 (VC-Dimension). Given hypothesis class H ⊆ X → {0, 1}, its VC-dimension
VCdim(H) is defined as the maximal cardinality of a set X = {x1, . . . , x|X|} ⊆ X that sat-
isfies |HX | = 2|X| (or X is shattered by H), where HX is the restriction of H to X , namely
{(h(x1), . . . , h(x|X|)) : h ∈ H}.
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Definition 4.4 (Pseudo dimension [Hau92]). Suppose X is a feature space. Given hypothesis class
H ⊆ X → R, its pseudo dimension Pdim(H) is defined as Pdim(H) = VCdim(H+), where
H+ = {(x, ξ) 7→ 1[h(x) > ξ] : h ∈ H} ⊆ X × R → {0, 1}}.

Lemma 4.5 (Bounding covering number by pseudo dimension [Hau95]). Given hypothesis class
H ⊆ X → R with Pdim(H) ≤ d, we have

logN (H, ε) ≤ O(d log(1/ε)).

Corollary 4.6. Suppose the function class Fh ⊂ F has a finite pseudo dimension Pdim(Fh) = d.
For any batch RL algorithm with n training samples, the expected generalization error for the mean
squared empirical Bellman error (MSBE) loss is upper bounded by Õ(H2

√
d/n).

Proof. Since Pdim(Fh) = d and F = F1 × · · · × FH , we have logN (F , ε) ≤ O(dH log(1/ε)).

The claim follows from Theorem 4.2 by setting ε = H
√

d
n .

A prior study on finite sample guarantees for minimizing the Bellman error, using pseudo-dimension,
demonstrated a sample complexity with a dependence of Õ(d2) [ASM08]. In contrast, our sample
complexity exhibits a dependence of Õ(d) on the pseudo-dimension.

We showed that when a function class contains infinitely many elements, a finite covering number can
be used to upper bound the generalization error. Just as the VC-dimension imposes a finite cardinality,
various concepts in real-valued function classes, such as pseudo-dimension and effective dimension,
result in a finite covering number, thereby ensuring efficient learning.

5 Discussion

In this paper, we analyzed the generalization property of batch reinforcement learning within the
framework of information theory. We derived generalization bounds using both conditional and
unconditional mutual information. Besides, we demonstrated how to leverage the structure of the
function space to guarantee generalization. Due to the merits of the information-theoretic approach,
there are several appealing future research directions.

The first interesting avenue is to extend the results to the online setting. It is noteworthy that in
on-policy learning, the inputs (e.g. the reward and the next state), are influenced by the output (e.g. the
policy or the model), which highlights a significant disparity compared to off-policy and supervised
learning. In supervised learning, a small mutual information between the input and the output
indicates that the model is not overfitting. In on-policy learning, analyzing the mutual information
between the input and the output can be more complicated and insightful. For example, in model-
based reinforcement learning, where the model is a part of the output, a small mutual information
might indicate that the learned model focuses more on the goal of maximizing the cumulative reward
rather than solely capturing the transition dynamics. How to learn an effective model beyond merely
fitting the transition is the central theme in decision-aware model-based reinforcement learning
[WLM+23, FBN17, Far18, Aba20, JFZL19, JLS+22, WZS+23].

As in the supervised learning setting, where various algorithms such as Stochastic Gradient De-
scent (SGD) [NDHR21] and Stochastic Gradient Langevin Dynamics (SGLD) have been studied
[NHD+19], a promising future direction is to analyze information-theoretic generalization bounds
for specific reinforcement learning algorithms such as stochastic policy gradient methods.

In addition, the information-theoretic approach has the potential to unify various concepts related to
generalization, such as differential privacy and stability [SZ20, HDMR21]. It would be interesting to
explore how these notions in reinforcement learning can be leveraged to guarantee generalization.

Analyzing generalization for reinforcement learning is inherently more challenging than in supervised
learning [DKWY19, WAS21, WWK21]. Therefore, we hope that the information-theoretic approach
will provide more insights into understanding the generalization of reinforcement learning.
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A Paradigm of Batch RL under the Episodic MDP Setting
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H=1· · ·

f1 = Q1 f2 = Q2 f3 = Q3 fH = QH

πf1 πf2 πf3 πfH
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VfH+1

= 0

ℓ1 ℓ2 · · · ℓH

D = (D1, · · · ,DH)

f = (f1, · · · , fH)

Z = (Z1, · · · , ZH)

π = (πf1 , · · · , πfH )

L = 1
H

∑
h ℓh

Figure 1: Directed graph representing the training process in Batch RL under episodic MDP.

B Related Work

Batch reinforcement learning A body of literature focuses on finite sample guarantees for batch
reinforcement learning with function approximation [MS08, FGMS08, ZLKB20, LGM12, FGSM16,
LVY19]. Common assumptions in batch RL, such as concentrability, realizability, and completeness,
have also been examined in more recent studies [CJ19, WFK20, XJ21]. The most relevant work to
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ours [DJL21] investigates the generalization performance of batch RL under the same setting using
Rademacher complexities.

Structural conditions for efficient RL Analogous to complexity measures in supervised learning,
several structural conditions have been studied to enable efficient reinforcement learning, including
Bellman rank [JKA+17], Witness rank [SJK+19], Eluder dimension [WSY20], Bellman Eluder
dimension [JLM21], and more [ZLKB20, DKL+21, FKQR21]. Identifying structural conditions and
classifying RL problems clarifies the limits of what can be learned and guides the design of efficient
algorithms.

Information-theoretic study of generalization The information-theoretic approach was initially
introduced by [RZ16, XR17] and subsequently refined to derive tighter bounds [AAV18, HKGKS20].
Besides, various other information-theoretic bounds have been proposed, leveraging concepts
such as conditional mutual information [SZ20], f -divergence [EGI21], the Wasserstein distance
[LJ18, WDSFC19], and more [ATR21, AMTR24]. Some studies have focused on analyzing specific
algorithms [PJL18, NHD+19, HNK+20, HRVSG21, NDHR21, WGC23] while others have exam-
ined particular settings such as deep learning [HYG24], iterative semi-supervised learning [HHT21],
and meta-learning [JS21, CSM21]. There are also works attempting to provide a unified framework
for generalization from an information-theoretic perspective [HDMR21, CR23, Ala20].

C Generalization Bounds via Mutual Information

Mutual information bounds provide a direct link between the generalization error and the amount
of information shared between the training data and the learned hypothesis. This offers a clear
information-theoretic understanding of how overfitting can be controlled by reducing the dependency
on the training data. Mutual information bounds are applicable to a wide range of learning algo-
rithms and settings, including those with unbounded loss functions and complex hypothesis spaces.
Moreover, the use of mutual information can simplify the analysis of generalization compared to
traditional methods, particularly in cases where those traditional measures are difficult to compute.

Theorem C.1 ([XR17]). Let D be a distribution on Z. Let A : Z → W be a randomized algorithm.
Let ℓ : W×Z → R be a loss function which is σ-subgaussian with respect to Z. Let L : W×Z → R
be the empirical risk. Then

|EZ∼D[L(A(Z), Z)− L(A(Z),D)]| ≤
√

2σ2

n
I(A(Z);Z).

The above theorem provides a bound on the expected generalization error. High-probability general-
ization bounds can be obtained using the α-mutual information. Note that the α-mutual information
shares many properties with standard mutual information.

Proposition C.2 ([Ver15]). For discrete random variables X and Y , the following holds:

(i) Data Processing Inequality: given α > 0, Iα(X,Z) ≤ min{Iα(X,Y ), Iα(Y,Z)} if the
markov chain X − Y − Z holds.

(ii) Iα(X;Y ) is non-decreasing in α.

(iii) Iα(X,Y ) ≤ min{log |X|, log |Y |}.

(iv) Iα(X,Y ) ≥ 0 with equality iff X and Y are independent.

Theorem C.3 ([EGI21]). Let D be a distribution on Z. Let A : Z → W be a randomized algorithm.
Let ℓ : W×Z → R be a loss function which is σ-subgaussian with respect to Z. Let L : W×Z → R
be the empirical risk. Given η, δ ∈ (0, 1) and fix α ≥ 1, if the number of samples n satisfies

n ≥ 2σ2

η2

(
Iα(A(Z);Z) + log 2 +

α

α− 1
log

(
1

δ

))
.

then we have
P (|L(A(Z), Z)− L(A(Z),D)| ≤ η) ≥ 1− δ.
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The mutual information bound can be infinite in some cases and thus be vacuous. To address this,
the conditional mutual information (CMI) approach was introduced. CMI bounds normalize the
information content for each data point, preventing the problem of infinite information content,
particularly in continuous data distributions. This makes CMI a more robust and applicable method
in scenarios where mutual information would otherwise be unbounded.
Theorem C.4 ([SZ20]). Let D be a distribution on Z. Let A : Z → W be a randomized algorithm.
Let L : W × Z → R be a function such that |L(w, z1)− L(w, z2)| ≤ ∆(z1, z2) for all z1, z2 ∈ Z
and w ∈ W given ∆ : Z2 → R. Let U ∈ {0, 1}n be uniformly random. Then

|EZ∼D[L(A(ZU ), ZU )− L(A(ZU ),D)]| ≤
√

2Ez1,z2 [∆(z1, z2)2]

n
I(A(ZU );U |Z).

Another advantage of the CMI bounds is that they can be derived from various concepts such as
VC-dimension, compression schemes, stability, and differential privacy, offering a unified framework
for generalization analysis. However, because CMI is defined as an expectation, i.e. I(X;Y |Z) :=
EZ [DKL(PX,Y |Z∥PX|Z ⊗ PY |Z)], the above theorem does not provide a high-probability bound.
Modifying this framework to ensure high-probability guarantees was left as future work in [SZ20].
In the following, we use conditional α-mutual information to address this issue.
Theorem C.5. Let U ∈ {0, 1}n be uniformly random. Given a dataset Z ∼ D2n consists of 2n
samples. Let A : ZU → W be a randomized algorithm. Let ℓ : W×Z → R be a loss function which
is σ-subgaussian with respect to Z. Let L : W × ZU → R be the empirical risk. Given η, δ ∈ (0, 1)
and fix α ≥ 1, if the number of samples n satisfies

n ≥ 2σ2

η2

(
IA(ZU )|Z
α (A(ZU );U |Z) + log 2 +

α

α− 1
log

(
1

δ

))
then we have

P (|L(A(ZU ), ZU )− L(A(ZU ),D)| ≤ η) ≥ 1− δ.

Proof. See Appendix E.

D Effective Dimension

In this section, we introduce another complexity measure known as the effective dimension
[DKL+21], which has a similar covering number to the pseudo-dimension. The effective dimension
quantifies how the function class responds to data, indicating the minimum number of samples
required to learn effectively.
Definition D.1 (ε-effective dimension of a set [DKL+21]). The ε-effective dimension of a set X is
the minimum integer deff(X , ε) = n such that

sup
x1,...,xn∈X

1

n
log det

(
I +

1

ε2

n∑
i=1

xix
⊤
i

)
≤ e−1.

Definition D.2 (ε-effective dimension of a function class [DKL+21]). Given a function class F
defined on X , its ε-effective dimension deff(F , ε) = n is the minimum integer n such that there exists
a separable Hilbert space H and a mapping ϕ : X → H so that

• for every f ∈ F there exists θf ∈ BH(1) satisfying f(x) = ⟨θf , ϕ(x)⟩H for all x ∈ X ,

• deff(ϕ(X ), ε) = n where ϕ(X ) = {ϕ(x) : x ∈ X}.
Definition D.3 (Kernel MDPs [JLM21]). In a kernel MDP of effective dimension d, for each step
h ∈ [H], there exist feature mappings ϕh : S × A → H and ψh : S → H where H is a separable
Hilbert space, so that the transition measure can be represented as the inner product of features, i.e.,

Ph(s
′ | s, a) = ⟨ϕh(s, a), ψh(s

′)⟩H.
Besides, the reward function is linear in ϕ, i.e.,

rh(s, a) = ⟨ϕh(s, a), θrh⟩H
for some θrh ∈ H. Here, ϕ is known to the learner while ψ and θrh are unknown. Moreover, a kernel
MDP satisfies the following regularization conditions: for all h
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• ∥θrh∥H ≤ 1 and ∥ϕh(s, a)∥H ≤ 1 for all s, a.

•
∥∥∑

s∈S V(s)ψh(s)
∥∥
H ≤ 1 for any function V : S → [0, 1].

• dimeff(Xh, ε) ≤ d for all h, where Xh = {ϕh(s, a) : (s, a) ∈ S ×A}.

Kernel MDPs are extensions of the traditional MDPs where the transition dynamics and rewards are
represented in a Reproducing Kernel Hilbert Space (RKHS). In this setup, the value functions or
Q-functions are approximated using kernel methods, allowing the model to capture more complex
dependencies in the data compared to linear models. To learn kernel MDPs, it is necessary to construct
a function class F .
Lemma D.4 (Bounding covering number by effective dimension [JLM21]). Let M be a kernel MDP
of effective dimension d, then

logN (F , ε) ≤ O(Hd log(1 + dH/ε)).

Corollary D.5. Suppose the function class F has a finite effective dimension d. For any batch RL
algorithm with n training samples, the expected generalization error for the mean squared empirical
Bellman error (MSBE) loss is upper bounded by Õ(H2

√
d/n).

E Proof of Theorem C.5

Theorem E.1 (Theorem C.5 restated). Let U ∈ {0, 1}n be uniformly random. Given a dataset
Z ∼ D2n consists of 2n samples. Let A : ZU → W be a randomized algorithm. Let ℓ : W×Z → R
be a loss function which is σ-subgaussian with respect to Z. Let L : W × ZU → R be the empirical
risk. Given η, δ ∈ (0, 1) and fix α ≥ 1, if the number of samples n satisfies

n ≥ 2σ2

η2

(
IA(ZU )|Z
α (A(ZU );U |Z) + log 2 +

α

α− 1
log

(
1

δ

))
then we have

P (|L(A(ZU ), ZU )− L(A(ZU ),D)| ≤ η) ≥ 1− δ.

Proof. Let (X ×Y ×Z,F ,PXY Z) be a probability space, and let Q(X|Z) be the set of conditional
probability measures QX|Z such that PXY Z ≪ PZQX|ZPY |Z . Given E ∈ F and z ∈ Z, x ∈ X ,
let Ez,x = {y ∈ Y : (x, y, z) ∈ E}. We first prove that for a fixed α ≥ 1,

PXY Z(E) ≤ EZ

[
ess supQX|Z∈Q(X|Z) PY |Z(EZ,X)

]α−1
α

exp

(
α− 1

α
IX|Z
α (X;Y |Z)

)
. (2)

Using the Radon-Nikodym derivative of PXY Z with respect to the product measure PZQX|ZPY |Z ,
we have

PXY Z(E) = EPZQX|ZPY |Z

[
dPXY Z

dPZQX|ZPY |Z
IE
]

where IE is the indicator function of the eventE. Next, we introduce three sets of exponents α′′, α′, α
and γ′′, γ′, γ, such that

1

α′′ +
1

γ′′
=

1

α′ +
1

γ′
=

1

α
+

1

γ
= 1.

By applying Hölder’s inequality three times to separate the different components of the expectation,
we derive

EPZQX|ZPY |Z

[
dPXY Z

dPZQX|ZPY |Z
IE
]

≤ E
1

α′′
PZ

[
E

α′′
α′
QX|Z

[
E

α
α′
QY |Z

[(
dPXY Z

dPZQX|ZPY |Z

)α]]]
E

1
γ′′

PZ

[
E

γ′′
γ′

QX|Z

[
E

γ′
γ

PY |Z
[Iγ

E ]

]]
.

By setting α′′ = α and α′ = 1,

E
1

α′′
PZ

[
E

α′′
α′
QX|Z

[
E

α
α′
QY |Z

[(
dPXY Z

dPZQX|ZPY |Z

)α]]]
≤ exp

(
α− 1

α
IX|Z
α (X;Y |Z)

)
.
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Since α′ = 1 and 1
α′ +

1
γ′ = 1, we have γ′ → ∞. As γ′ → ∞, E

γ′′
γ′

QX|Z

[
E

γ′
γ

PY |Z
[Iγ

E ]

]
tends to the

essential supremum

ess supQX|Z∈Q(X|Z) PY |Z(EZ,X).

As 1
γ′′ =

α−1
α , we have

E
1

γ′′

PZ

[
E

γ′′
γ′

QX|Z

[
E

γ′
γ

PY |Z
[Iγ

E ]

]]
≤ EZ

[
ess supQX|Z∈Q(X|Z) PY |Z(EZ,X)

]α−1
α

.

Thus, eq. (2) holds by combining all the inequalities.

Now, let X = A(ZU ) and Y = U . Consider the event

E = {(X,Y, Z) : |L(X,ZY )− EY [L(X,D)]| ≥ η} ,

where L(X,ZY ) denotes the empirical risk defined as the average of n loss functions, and each loss
function is σ-subgaussian. We can express EZ,X , the fibers of E with respect to Z and X , as

EZ,X = {Y : |L(X,ZY )− EY [L(X,D)]| ≥ η} .

For any fixed Z and X , the random variable Y remains independent of Z and X under any QX|Z ∈
Q(X|Z). Now, by Hoeffding’s inequality, for every X and Z,

PY (EZ,X) ≤ 2 exp

(
−nη2

2σ2

)
. (3)

Therefore, from eq. (2) and eq. (3),

P(E) ≤ 2 exp

(
α− 1

α
· −nη

2

2σ2

)
exp

(
α− 1

α
IA(ZU )|Z
α (A(ZU );U |Z)

)
= 2 exp

(
α− 1

α

(
IA(ZU )|Z
α (A(ZU );U |Z)− −nη2

2σ2

))
.

Lastly, by setting

n ≥ 2σ2

η2

(
IA(ZU )|Z
α (A(ZU );U |Z) + log 2 +

α

α− 1
log

(
1

δ

))
we obtain the desired conclusion.

F Proof of Theorem 3.1

Theorem F.1 (Theorem 3.1 restated). Given a dataset Z ∼ Dn consists of nH samples, for any
batch RL algorithm A with output A(Z) = f = (f1, · · · , fH) ∈ F , the expected generalization
error for the mean squared empirical Bellman error (MSBE) loss is upper bounded by

|EZ∼D[L(A(Z), Z)− L(A(Z),D)]| ≤

√
2H2

∑H
h=1 I(fh;Zh)

n
.

Proof. We first recall the Donsker–Varadhan variational representation ([BLM13]) of the KL-
divergence between any two probability measures π and ρ on a common measurable space (Ω,F)

DKL(π∥ρ) = sup
F

{∫
Ω

F dπ − log

∫
Ω

eF dρ

}
where the supremum is over all measurable functions F : Ω → R such that eF ∈ L1(ρ).

Let be Z = Z1 ∪ · · · ∪ ZH be a dataset where Zh = {(s, a, r, s′, h)} ∼ Dh. Let A(Z) = f =

(f1, · · · , fH) ∈ F be the output of some batch RL algorithm A. Let f̃h and Z̃h be the independent
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copies of fh and Zh. Let

L(f, Z) =
1

H

H∑
h=1

ℓ(fh, Zh)

=
1

H

H∑
h=1

1

n

∑
(s,a,r,s′,h)∈Zh

(fh(s, a)− r − Vfh+1
(s′))2.

Now, we have

I(fh;Zh) = DKL(Pfh,Zh
∥Pfh ⊗ PZh

)

= sup
g

{
Efh,Zh

[g(fh, Zh)]− logEf̃h,Z̃h
[eg(f̃h,Z̃h)]

}
(Donsker–Varadhan variational representation)

≥ λEfh,Zh
[ℓ(fh, Zh)]− logEf̃h,Z̃h

[eλℓ(f̃h,Z̃h)]. (∀λ ∈ R)

Since ℓ(fh, Zh) =
1
n

∑
(s,a,r,s′,h)∈Zh

(fh(s, a)− r−Vfh+1
(s′))2 and (fh(s, a)− r−Vfh+1

(s′))2 ∈
[0, 4H2] for any h, it follows that

logEf̃h,Z̃h
[e

λ(ℓ(f̃h,Z̃h)−Ef̃h,Z̃h
[ℓ(f̃h,Z̃h)])] ≤ 2λ2H4

n
.

Thus, we obtain

I(fh;Zh) ≥ λ
(
Efh,Zh

[ℓ(fh, Zh)]− Ef̃h,Z̃h
[ℓ(f̃h, Z̃h)])]

)
− 2λ2H4

n

⇒ I(fh;Zh)

λ
+

2λ2H4

n
≥ Efh,Zh

[ℓ(fh, Zh)]− Ef̃h,Z̃h
[ℓ(f̃h, Z̃h)])].

By optimizing the above inequality over λ > 0 and λ < 0, respectively, we derive

−H2

√
2I(fh;Zh)

n
≤ Efh,Zh

[ℓ(fh, Zh)]− Ef̃h,Z̃h
[ℓ(f̃h, Z̃h)])] ≤ H2

√
2I(fh;Zh)

n
,

and thus, ∣∣∣Efh,Zh
[ℓ(fh, Zh)]− Ef̃h,Z̃h

[ℓ(f̃h, Z̃h)])]
∣∣∣ ≤ H2

√
2I(fh;Zh)

n
. (4)

Finally, we observe that

|EZ∼D[L(A(Z), Z)− L(A(Z),D)]| =

∣∣∣∣∣EZ∼D

[
1

H

H∑
h=1

ℓ(fh, Zh)− EZ∼D

[
1

H

H∑
h=1

ℓ(fh, Zh)

]]∣∣∣∣∣
=

∣∣∣∣∣ 1H
H∑

h=1

EZh∼Dh
[ℓ(fh, Zh)− EZh∼Dh

[ℓ(fh, Zh)]]

∣∣∣∣∣
=

1

H

H∑
h=1

∣∣∣Efh,Zh
[ℓ(fh, Zh)]− Ef̃h,Z̃h

[ℓ(f̃h, Z̃h)])]
∣∣∣

≤ 1

H

H∑
h=1

H2

√
2I(fh;Zh)

n
(eq. (4))

=

√
2H2

∑H
h=1 I(fh;Zh)

n
.
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G Proof of Theorem 3.3

Theorem G.1 (Theorem 3.3 restated). Let U ∈ {0, 1}n be uniformly random. Given a dataset
Z ∼ D2n consists of 2nH samples, for any batch RL algorithm A with output A(ZU ) = f =
(f1, · · · , fH) ∈ F , the expected generalization error for the mean squared empirical Bellman error
(MSBE) loss is upper bounded by

|EZ∼D[L(A(ZU ), ZU )− L(A(ZU ),D)]| ≤

√
2H2

∑H
h=1 I(fh;U |Zh)

n
.

Proof. Let U ∈ {0, 1}n be uniformly random. Let be Z = Z1 ∪ · · · ∪ ZH be a dataset where each
Zh = {(s, a, r, s′, h)} ∼ Dh consists of 2n samples. Define ZU = (Z1)U ∪ · · · ∪ (ZH)U . Let
A(ZU ) = f = (f1, · · · , fH) ∈ F be the output of some batch RL algorithm A. Let f̄h = A(ZŪ )h,
Z̃h = (Zh)U and Z̄h = (Zh)Ū . Note that Zh = Z̃h ∪ Z̄h. We define the disintegrated mutual
information

IZ(X;Y ) := DKL(PX,Y |Z∥PXPY |Z).

Note that I(X;Y |Z) = EZ [I
Z(X;Y )]. The rest of the proof is analogous to Theorem 3.1. We have

IZh(fh; Z̃h|Zh) = DKL(Pfh,Z̃h|Zh
∥Pfh|Zh

⊗ PZ̃h|Zh
)

= sup
g

{
Efh,Z̃h|Zh

[g(fh, Z̃h)]− logEf̄h,Z̄h|Zh
[eg(f̄h,Z̄h)]

}
(Donsker–Varadhan variational representation)

≥ λEfh,Z̃h|Zh
[ℓ(fh, Z̃h)]− logEf̄h,Z̄h|Zh

[eλℓ(f̄h,Z̄h)]. (∀λ ∈ R)

Since ℓ(fh, Zh) =
1
n

∑
(s,a,r,s′,h)∈Zh

(fh(s, a)− r−Vfh+1
(s′))2 and (fh(s, a)− r−Vfh+1

(s′))2 ∈
[0, 4H2] for any h, it follows that

logEf̄h,Z̄h|Zh
[eλ(ℓ(f̄h,Z̄h)−Ef̄h,Z̄h|Zh

[ℓ(f̄h,Z̄h)])] ≤ 2λ2H4

n
.

Thus, we obtain

IZh(fh; Z̃h|Zh) ≥ λ
(
Efh,Z̃h|Zh

[ℓ(fh, Z̃h)]− Ef̄h,Z̄h|Zh
[ℓ(f̄h, Z̄h)])]

)
− 2λ2H4

n

⇒ IZh(fh; Z̃h|Zh)

λ
+

2λ2H4

n
≥ Efh,Z̃h|Zh

[ℓ(fh, Z̃h)]− Ef̄h,Z̄h|Zh
[ℓ(f̄h, Z̄h)])].

By optimizing the above inequality over λ > 0 and λ < 0, respectively, we derive

−H2

√
2IZh(fh; Z̃h|Zh)

n
≤ Efh,Z̃h|Zh

[ℓ(fh, Z̃h)]− Ef̄h,Z̄h|Zh
[ℓ(f̄h, Z̄h)])] ≤ H2

√
2IZh(fh; Z̃h|Zh)

n
,

and thus,

∣∣∣Efh,Z̃h|Zh
[ℓ(fh, Z̃h)]− Ef̄h,Z̄h|Zh

[ℓ(f̄h, Z̄h)])]
∣∣∣ ≤ H2

√
2IZh(fh; Z̃h|Zh)

n
. (5)
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Finally, we conclude that

|EZ∼D[L(A(ZU ), ZU )− L(A(ZU ),D)]| =

∣∣∣∣∣EZ∼D

[
1

H

H∑
h=1

ℓ(fh, Z̃h)− EZ∼D

[
1

H

H∑
h=1

ℓ(fh, Z̃h)

]]∣∣∣∣∣
=

∣∣∣∣∣ 1H
H∑

h=1

EZh∼Dh

[
ℓ(fh, Z̃)− EZh∼Dh

[
ℓ(fh, Z̃)

]]∣∣∣∣∣
≤ 1

H

H∑
h=1

∣∣∣EZh∼Dh

[
Ef̄h,Z̄h|Zh

[ℓ(f̄h, Z̄h)])]− Efh,Z̃h|Zh
[ℓ(fh, Z̃h)])]

]∣∣∣
≤ 1

H

H∑
h=1

H2EZh∼Dh

√2IZh(fh; Z̃h|Zh)

n

 (eq. (5))

≤ 1

H

H∑
h=1

H2

√
2EZh∼Dh

[IZh(fh; Z̃h|Zh)]

n

=

√
2H2

∑H
h=1 I(fh; Z̃h|Zh)

n

=

√
2H2

∑H
h=1 I(fh;U |Zh)

n
.

H Proof of Theorem 3.4

Theorem H.1 (Theorem 3.4 restated). Given a dataset Z ∼ Dn consists of nH samples, for any
batch RL algorithm A with output A(Z) = f = (f1, · · · , fH) ∈ F , if

n ≥ 8H4

ε2

(
max
h

Iα(fh;Zh) + log 2 +
α

α− 1
log

(
H

δ

))
.

then the generalization error for the mean squared empirical Bellman error (MSBE) loss is upper
bounded by

|L(A(Z), Z)− L(A(Z),D)| ≤ ε

with probability at least 1− δ.

Proof. Let be Z = Z1 ∪ · · · ∪ ZH be a dataset where Zh = {(s, a, r, s′, h)} ∼ Dh. Let A(Z) =
f = (f1, · · · , fH) ∈ F be the output of some batch RL algorithm A. Let

L(f, Z) =
1

H

H∑
h=1

ℓ(fh, Zh)

=
1

H

H∑
h=1

1

n

∑
(s,a,r,s′,h)∈Zh

(fh(s, a)− r − Vfh+1
(s′))2.

Since ℓ(f, Z) ∈ [0, 4H2] for every f , it is 2H2-sub-Gaussian. By Theorem C.3, we have

|ℓ(fh, Zh)− EZh∼Dh
[ℓ(fh, Zh)]| ≤ ε

with probability at least 1− δ′ for

n ≥ 8H4

ε2

(
Iα(fh;Zh) + log 2 +

α

α− 1
log

(
1

δ′

))
.
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Since we have n samples at each h ∈ [H], we require

n ≥ 8H4

ε2

(
max
h

Iα(fh;Zh) + log 2 +
α

α− 1
log

(
1

δ′

))
.

The claim now follows by the union bound by setting δ′ = δ/H .

I Proof of Theorem 3.5

Theorem I.1 (Theorem 3.5 restated). Let U ∈ {0, 1}n be uniformly random. Given a dataset
Z ∼ D2n consists of 2nH samples, for any batch RL algorithm A with output A(ZU ) = f =
(f1, · · · , fH) ∈ F , if

n ≥ 8H4

ε2

(
max
h

Ifh|Zh
α (fh;U |Zh) + log 2 +

α

α− 1
log

(
H

δ

))
.

then the generalization error for the mean squared empirical Bellman error (MSBE) loss is upper
bounded by

|L(A(ZU ), ZU )− L(A(ZU ),D)| ≤ ε

with probability at least 1− δ.

Proof. By substituting Theorem C.3 with Theorem C.5 in the proof of Theorem 3.4, the proof is
thereby obtained.

J Proof of Theorem 4.2

Lemma J.1. For discrete random variables X,Y and Z, we have I(X;Y |Z) ≤ log |X|.

Proof. Denote H(X | Z) the conditional entropy of X given Z.

I(X;Y |Z) = H(X|Z)−H(X|Y,Z)
≤ H(X|Z) (H(X|Y,Z) ≥ 0)
= Ez[H(X|Z = z)]

≤ Ez[log |X|]
= log |X|.

Theorem J.2 (Theorem 4.2 restated). Suppose the function class F has a covering number of
N (F , ε). Let U ∈ {0, 1}n be uniformly random. Given a dataset Z consists of 2nH samples, for any
batch RL algorithm A with output A(ZU ) = f = (f1, · · · , fH) ∈ F , the expected generalization
error for the mean squared empirical Bellman error (MSBE) loss is upper bounded by

|EZ∼D[L(A(ZU ), ZU )− L(A(ZU ),D)]| ≤
√

2H3 log(|N (F , ε)|)
n

+ 8εH + 2ε2.

Proof. Let Z̃h = (Zh)U . We first define an oracle algorithm Ao capable of outputting a function
Ao(ZU ) = f∗ = (f∗1 , . . . , f

∗
H) such that

ρ(f, f∗) ≤ ε.

18



Note that Ao is only used for theoretical analysis. Observe that

L(A(ZU ), ZU ) =
1

H

H∑
h=1

1

n

∑
(s,a,r,s′,h)∈Z̃h

(fh(s, a)− r − Vfh+1
(s′))2

=
1

H

H∑
h=1

1

n

∑
(s,a,r,s′,h)∈Z̃h

(fh(s, a)− f∗h(s, a) + f∗h(s, a)− r − Vfh+1
(s′))2

= ε2 +
1

H

H∑
h=1

1

n

∑
(s,a,r,s′,h)∈Z̃h

(f∗h(s, a)− r − Vfh+1
(s′))2

+ 2ε
1

H

H∑
h=1

1

n

∑
(s,a,r,s′,h)∈Z̃h

(f∗h(s, a)− r − Vfh+1
(s′))

≤ ε2 + L(Ao(ZU ), ZU ) + 4εH.

Thus,

L(A(ZU ), ZU )− L(Ao(ZU ), ZU ) ≤ 4εH + ε2.

Bounding |L(A(ZU ),D)− L(Ao(ZU ),D)| is similar. Now we have

L(A(ZU ), ZU )− L(A(ZU ),D) = L(A(ZU ), ZU )− L(Ao(ZU ), ZU ) + L(Ao(ZU ), ZU )

− L(Ao(ZU ),D) + L(Ao(ZU ),D)− L(A(ZU ),D).

Since |L(A(ZU ), ZU )− L(Ao(ZU ), ZU )| ≤ ε and |L(A(ZU ),D)− L(Ao(ZU ),D)| ≤ ε, we have

L(A(ZU ), ZU )− L(A(ZU ),D) ≤ L(Ao(ZU ), ZU )− L(Ao(ZU ),D) + 8εH + 2ε2.

By Theorem 3.3,

|EZ∼D[L(Ao(ZU ), ZU )− L(Ao(ZU ),D)]| ≤

√
2H2

∑H
h=1 I(f

∗
h ;U |Zh)

n

≤

√
2H2

∑H
h=1 log(|Fε|)
n

(Lemma J.1)

=

√
2H3 log(|Fε|)

n

=

√
2H3 log(|N (F , ε)|)

n
.

Therefore,

|EZ∼D[L(A(ZU ), ZU )− L(A(ZU ),D)]| ≤
√

2H3 log(|N (F , ε)|)
n

+ 8εH + 2ε2.
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