
HyperAdaLoRA: Accelerating LoRA Rank Allocation
with Hypernetwork in Training

Anonymous ACL submission

Abstract001

Parameter-Efficient Fine-Tuning (PEFT), es-002
pecially Low-Rank Adaptation (LoRA), has003
emerged as a promising approach to fine-tuning004
large language models(LLMs) while reducing005
computational and memory overhead. How-006
ever, LoRA assumes a uniform rank r for each007
incremental matrix, not accounting for the vary-008
ing significance of weight matrices across dif-009
ferent modules and layers. AdaLoRA leverages010
Singular Value Decomposition (SVD) to param-011
eterize updates and employs pruning of singu-012
lar values to introduce dynamic rank alloca-013
tion, thereby enhancing adaptability. However,014
during the training process, it often encounters015
issues of slow convergence speed and high com-016
putational overhead. To address this issue, we017
propose HyperAdaLoRA, a novel framework018
that accelerates the convergence of AdaLoRA019
by leveraging a hypernetwork. Instead of di-020
rectly optimizing the components of Singu-021
lar Value Decomposition (P,Λ, Q), Hyper-022
AdaLoRA employs a hypernetwork based on023
attention mechanisms to dynamically generate024
these parameters. By pruning the outputs of the025
hypernetwork that generates the singular val-026
ues, dynamic rank allocation is achieved. Com-027
prehensive experiments on various datasets and028
models demonstrate that our method achieves029
faster convergence while maintaining accuracy.030

1 Introduction031

Parameter-efficient fine-tuning (PEFT) has032

emerged as a practical solution for adapting large033

language models (LLMs) to downstream tasks by034

updating a small subset of parameters, thereby035

reducing computational and memory overhead (Li036

and Liang, 2021; Lester et al., 2021; Zaken et al.,037

2022; Hu et al., 2022; Houlsby et al., 2019). A038

prominent PEFT method, Low-Rank Adaptation039

(LoRA) (Hu et al., 2022), is particularly notable040

for introducing trainable low-rank matrices041

into pre-trained weights during fine-tuning,042

reparameterizing weight updates as: 043

W = W (0) +∆W = W (0) +BA (1) 044

where W (0),∆W ∈ Rd1×d2 , A ∈ Rr×d2 and 045

B ∈ Rd1×r with r ≪ {d1, d2}. During fine-tuning, 046

only matrices B and A are updated, substantially 047

reducing the number of trainable parameters. How- 048

ever, LoRA assigns a uniform rank across all lay- 049

ers, neglecting the varying functional importance 050

of different components, potentially limiting per- 051

formance in deep or heterogeneous models (Hu 052

et al., 2023; Zhang et al., 2023a). 053

Dynamic rank allocation methods have been in- 054

troduced to tackle this challenge by adaptively as- 055

sign different ranks r to various modules or lay- 056

ers. There are three main strategies: 1) Singular 057

value decomposition (SVD) methods (Zhang et al., 058

2023b; Hu et al., 2023; Zhang et al., 2023a) de- 059

compose matrices into singular values and vectors, 060

effectively capturing key components. However, 061

the decomposition process is computationally inten- 062

sive, with a time complexity of O(n3), and requires 063

additional memory to store the singular values and 064

vectors. 2) Single-rank decomposition (SRD) meth- 065

ods (Mao et al., 2024; Zhang et al., 2024; Liu et al., 066

2024b) decompose matrices into rank-1 compo- 067

nents, enabling more granular rank allocation. De- 068

spite this flexibility, identifying and pruning rank-1 069

components necessitates multi-stage training, in- 070

creasing algorithmic complexity. The iterative se- 071

lection process can also introduce instability, par- 072

ticularly when essential components are mistakenly 073

pruned. 3) Rank sampling methods (Valipour et al., 074

2022) dynamically allocates ranks during training 075

by sampling from a range of ranks, offering post- 076

training flexibility. However, the stochastic nature 077

of this approach introduces gradient noise, poten- 078

tially destabilizing convergence. 079

Hypernetworks (Ha et al., 2016) is a meta-model 080

that generates parameters for a target network, de- 081

1



W
A

B

LoRA

W

P

Q

AdaLoRA

λ W

P

Q

HyperAdaLoRA

λ

HP

Hλ

HQ

Figure 1: Comparison of LoRA, AdaLoRA, and HyperAdaLoRA frameworks, with black solid lines representing
the forward process and green dashed lines indicating backpropagation (gradient flow). LoRA applies fixed-rank
low-rank adaptations (A,B). AdaLoRA introduces dynamic rank allocation via Singular Value Decomposition
(SVD) and singular value pruning (P, λ,Q). HyperAdaLoRA leverages a hypernetwork to dynamically generate
SVD components (HP , Hλ, HQ), accelerating convergence and enhancing computational efficiency.

coupling parameter generation from model archi-082

tecture. By producing task-specific parameters083

based on contextual inputs, hypernetworks enable084

dynamic adaptation without explicit iterative op-085

timization, capturing intricate parameter adapta-086

tion patterns in real-time. Hypernetworks facili-087

tate adaptive parameter optimization by modulat-088

ing both the update direction and magnitude in089

response to the current model state (Lorraine and090

Duvenaud, 2018). This dynamic modulation fos-091

ters efficient navigation through high-dimensional092

parameter spaces, accelerating convergence while093

maintaining model expressiveness (Kirsch et al.,094

2018; Shi et al., 2022).095

In this paper, we introduce HyperAdaLoRA, a096

novel framework that leverages hypernetworks (Ha097

et al., 2016) to achieve a significant improvement in098

convergence speed through parameter generation.099

Unlike traditional methods that directly train the in-100

cremental matrices P , Λ, and Q, HyperAdaLoRA101

employs task-specific hypernetworks to generate102

these matrices. Architecturally, our hypernetworks103

are based on a specific attention layer of BERT (De-104

vlin et al., 2019), which enables them to capture the105

complex dependencies among parameters. Specif-106

ically, each hypernetwork takes the current state107

of P , Λ, or Q as input and outputs their updated108

versions. Dynamic rank allocation is realized by109

pruning the output of the hypernetwork that gener-110

ates Λ. The training objective of HyperAdaLoRA111

is to minimize the discrepancy between the param-112

eters generated by the hypernetworks and the ideal113

parameters. Extensive experiments demonstrate114

that our method achieves faster convergence while115

maintaining accuracy. 116

The main contributions of our paper can be sum- 117

marized as follows: 118

• We introduce HyperAdaLoRA, a pioneer- 119

ing framework that utilizes hypernetworks 120

to achieve substantial acceleration in conver- 121

gence speed through advanced parameter gen- 122

eration. 123

• We employ attention based hypernetworks to 124

capture the complex dependencies among pa- 125

rameters and accurately perform parameter 126

updates during the training process. 127

• Extensive experiments demonstrate that our 128

method achieves faster convergence while 129

maintaining accuracy. 130

2 Related Work 131

2.1 SVD-based Dynamic Rank Allocation 132

SVD-Based methods parameterize LoRA’s low- 133

rank update matrix ∆W in a singular value de- 134

composition form (e.g. splitting into PΛQ) to dy- 135

namically adjust effective rank. The mathematical 136

representation is as follows: 137

W = W (0) +∆W = W (0) + PΛQ (2) 138

where P ∈ Rd1×r and Q ∈ Rr×d2 represent the 139

left/right singular vectors, and the diagonal matrix 140

Λ ∈ Rr×r contains the singular values {λi}1≤i≤r 141

with r ≪ min(d1, d2). For example, AdaLoRA 142

(Zhang et al., 2023b) prunes less important sin- 143

gular values based on a sensitivity-derived impor- 144

tance score during training. SaLoRA (Hu et al., 145

2



2023) adaptively adjusts the rank by identifying146

and suppressing less informative singular compo-147

nents, optimizing parameter efficiency across lay-148

ers. IncreLoRA (Zhang et al., 2023a) incrementally149

increases the rank during training, starting with a150

minimal rank and expanding as needed, balancing151

early training stability with later-stage expressive-152

ness. These methods effectively capture principal153

components but incur O(n3) complexity and sub-154

stantial memory overhead, impacting scalability155

and training stability, particularly with dynamic156

rank adjustment.157

2.2 SRD-based Dynamic Rank Allocation158

SRD-based methods decompose the LoRA update159

∆W =
∑r

i=1 uiv
T
i into a series of rank-1 ma-160

trices, where each component uivTi represents a161

distinct direction in the parameter space. This de-162

composition allows the model to assess and ad-163

just each rank-1 update independently. AutoLoRA164

(Zhang et al., 2024) uses a meta-learning scheme165

to determine which rank-1 slices to retain or prune,166

while ALoRA (Liu et al., 2024b) trains a ’super-167

network’ and reallocates ranks based on impor-168

tance. SoRA (Ding et al., 2023) applies sparsity169

penalties to zero out less impactful components,170

and DoRA (Liu et al., 2024a) adjusts only the di-171

rection component, assigning a learnable scalar for172

each weight. However, SRD methods face limi-173

tations such as increased algorithmic complexity174

from multi-stage training and additional optimiza-175

tion for rank-1 component selection. Abrupt prun-176

ing can destabilize training, while iterative selec-177

tion adds computational overhead and heightens178

sensitivity to hyperparameter tuning.179

2.3 Rank Sampling-based Dynamic Rank180

Allocation181

Rank-sampling methods treat the LoRA rank as182

a random variable during training. DyLoRA183

(Valipour et al., 2022) implements this by sam-184

pling a truncation level b ≤ R in each iteration,185

zeroing out the bottom R− b components and en-186

abling the model to operate across multiple ranks187

without retraining. This approach eliminates the188

need for exhaustive rank search while also serv-189

ing as a regularizer, concentrating key features in190

top components to potentially enhance generaliza-191

tion. However, training across multiple ranks can192

dilute performance at specific ranks compared to193

fixed-rank LoRA, and dynamic masking introduces194

slight computational overhead, potentially requir-195

ing additional training epochs to converge. 196

3 Method 197

3.1 Preliminary 198

Hypernetworks (Ha et al., 2016) are a type of neural 199

network architecture used to generate the weights 200

of another neural network (the target network). 201

This can be expressed using the following formula: 202

Θ = H(C; Φ) (3) 203

where Θ represents the weights of the target net- 204

work, H denotes the hypernetwork, C is the con- 205

text vector input to the hypernetwork and Φ corre- 206

sponds to the weights of the hypernetwork itself. 207

The input to the hypernetwork (Ha et al., 2016) 208

can be any information related to the target net- 209

work, such as the input data of the target network, 210

task requirements, or other contextual information. 211

By conditioning parameter generation on these in- 212

puts, the hypernetwork can dynamically generate 213

different parameters to adapt to different tasks or 214

environments. This approach mitigates the need for 215

learning a full set of parameters, thereby reducing 216

model complexity and promoting generalization. 217

In neural architecture search (NAS), hypernet- 218

works (Ha et al., 2016) can generate parameters 219

for multiple sub-networks, thereby efficiently ex- 220

ploring different network architectures. By simul- 221

taneously training the hypernetwork and the sub- 222

networks, the performance of a large number of 223

candidate architectures can be evaluated in a rela- 224

tively short time. This allows for the rapid screen- 225

ing of network structures with better convergence 226

performance. This efficient architecture explo- 227

ration method helps to find more optimal model 228

architectures, thereby accelerating the overall train- 229

ing and convergence process. 230

3.2 Hypernetworks Accelerate Convergence 231

To accelerate the convergence of AdaLoRA, we 232

propose a novel training strategy: employing a hy- 233

pernetwork to dynamically generate the PΛQ pa- 234

rameters during training, rather than relying on tra- 235

ditional backpropagation for their updates. Specifi- 236

cally, at the beginning of training, we initialize the 237

PΛQ parameters using a normal distribution. As 238

training progresses, the parameters of the hypernet- 239

work are continuously updated through backpropa- 240

gation, thereby optimizing the generation process 241

of the PΛQ parameters. In this process, the PΛQ 242

parameters serve merely as intermediate results, 243

3



with their ultimate goal being the optimized gener-244

ation via the hypernetwork to achieve faster conver-245

gence. The design of the hypernetwork is crucial246

to this strategy. It takes the parameters before the247

update as input and, after a series of complex com-248

putations and optimization operations, outputs the249

updated parameters. To conserve computational250

resources and memory usage, we employ the same251

hypernetwork for the same parameters across dif-252

ferent parameters. For example, we use a single253

hypernetwork to generate the updated values for254

the P parameters of all matrix weights. This de-255

sign not only improves resource efficiency but also256

ensures consistency and stability in parameter up-257

dates. In the i-th iteration, the update process of258

PΛQ can be specifically represented as follows:259

Pi+1 = HP (Pi; ΦP ) (4)260

Λi+1 = HΛ(Λi; ΦΛ) (5)261

Qi+1 = HQ(Qi; ΦQ) (6)262

where HP , HΛ, and HQ represent the hypernet-263

works used to update the parameters P , Λ, and Q,264

respectively. ΦP , ΦΛ, and ΦQ represent the pa-265

rameters of these hypernetworks. Pi, Λi, and Qi266

represent the parameters before the i-th iteration267

update, while Pi+1, Λi+1, and Qi+1 represent the268

parameters after the update.269

The process of a hypernetwork generating up-270

dated parameters by taking model parameters as271

input is essentially a dynamic parameter generation272

process. From a mathematical perspective, this can273

be likened to a nonlinear transformation within the274

parameter space, aimed at more efficiently approx-275

imating the optimal parameters. From the stand-276

point of optimization theory, such personalized up-277

dates can more effectively explore the parameter278

space to identify better solutions. Traditional opti-279

mization methods, such as gradient descent, follow280

fixed rules for parameter updates. In contrast, a281

hypernetwork can dynamically adjust the direction282

and magnitude of updates based on the current state283

of the parameters. This flexibility enables it to bet-284

ter adapt to complex loss landscapes and accelerate285

convergence. As a result, the hypernetwork can286

more precisely adjust the model’s state in each it-287

eration, thereby reducing the number of iterations288

required to achieve convergence.289

During the initial training phases, the hypernet-290

work designed for Λ generates a full-rank diagonal291

matrix. To facilitate adaptive budget allocation,292

we implement an iterative singular value pruning293

strategy based on magnitude thresholds. At each 294

interval ∆T , the k smallest singular values within 295

Λ are set to zero, effectively reducing the rank of 296

the incremental update ∆. Subsequently, the hy- 297

pernetworks adjust the patterns they generate to 298

compensate for the pruned dimensions through a 299

gradient-driven process of plasticity. 300

The loss function integrates task-specific objec- 301

tives with orthogonality regularization, formulated 302

as: 303

L = Ltask+γ(∥P⊤P −I∥2F +∥QQ⊤−I∥2F ) (7) 304

where γ > 0 denotes the regularization coefficient. 305

This formulation ensures that the generated matri- 306

ces P and Q approximate orthogonal transforma- 307

tions while maintaining compatibility with down- 308

stream tasks. 309

3.3 Attention Driven Parameter Interaction 310

We adopt a BERT layer as the architecture of the 311

hypernetwork and leverage the self-attention mech- 312

anism to capture the dependencies among parame- 313

ters. Specifically, the interaction between the query 314

and key in the attention mechanism mimics the 315

associations between elements in the parameter 316

matrix. This enables the hypernetwork to generate 317

context-aware updates that preserve the structural 318

patterns of the parameters. For any parameter pi, 319

its updated output takes into account all parameters 320

in the matrix, as shown in the following equation: 321

pi+1 =

N∑
j=1

Softmax

(
QiK

T
j√
d

)
Vj (8) 322

where pi+1 represents the updated value of parame- 323

ter pi, Qi is the query vector associated with pi, Kj 324

is the key vector associated with parameter pj , and 325

Vj is the value vector corresponding to parameter 326

pj . The total number of parameters in the matrix 327

is denoted by N , and d represents the dimensional- 328

ity of the query and key vectors. This formulation 329

allows the hypernetwork to dynamically compute 330

the updated value of pi by aggregating information 331

from all parameters in the matrix, capturing their 332

interdependencies and preserving the structural pat- 333

terns of the parameters. 334

4 Experiments 335

4.1 Experimental Setup 336

Benchmarks. We conduct a comprehensive evalu- 337

ation of our method, covering a wide range of tasks 338

4



Model Method Stanford Alpaca Magpie

BLEU-4 ROUGE-1 BLEU-4 ROUGE-1

LLaMA3.1-8B AdaLoRA 55.06 58.51 70.69 56.76
HyperAdaLoRA (ours) 55.10 58.48 70.73 56.78

Qwen2.5-7B AdaLoRA 6.79 20.17 56.21 49.43
HyperAdaLoRA (ours) 6.79 20.19 56.18 49.42

Table 1: Performance comparison between HyperAdaLoRA and AdaLoRA on NLG tasks using LLaMA3.1-8B and
Qwen2.5-7B as backbones. The reported metrics include BLEU-4 and ROUGE-1.

in both natural language understanding (NLU) and339

natural language generation (NLG). In the realm340

of natural language understanding, our method is341

tested on three challenging tasks from the GLUE342

benchmark (Wang, 2018): MNLI (Williams et al.,343

2017), RTE (Wang, 2018), and WNLI (Wang,344

2018). These tasks represent large scale entailment345

classification, small-scale binary entailment clas-346

sification, and coreference resolution presented in347

the form of binary entailment classification, respec-348

tively. In the natural language generation domain,349

we assess our method using three widely recog-350

nized datasets: Stanford Alpaca (Taori et al., 2023),351

Magpie-Pro-300K-Filtered (Xu et al., 2024), and352

OpenPlatypus (Lee et al., 2023). In the following353

text, we sometimes abbreviate Magpie-Pro-300K-354

Filtered as Magpie. These datasets focus on diverse355

instruction-following scenarios, designed to test the356

model’s ability to generate text that meets the spec-357

ified requirements.358

Models. We use two prominent pretrained359

language models for NLU: RoBERTa-base (Liu,360

2019), which is renowned for its strong perfor-361

mance across a wide range of NLU tasks, and362

DeBERTa-v3-base (He et al., 2021), an enhanced363

version that incorporates advanced pretraining364

techniques. For NLG, we employ two models:365

LLaMA3.1-8B (Grattafiori et al., 2024), a pow-366

erful 8 billion parameter model optimized for high-367

quality text generation, and Qwen2.5-7B (Yang368

et al., 2024), a model that demonstrates exceptional369

performance in various NLG tasks.370

Baseline. Our primary baseline for comparison371

is AdaLoRA (Zhang et al., 2023b). AdaLoRA uses372

PΛQ as trainable parameters that are dynamically373

updated during training. It allocates parameter bud-374

gets by parameterizing updates in an SVD form375

and prunes singular values based on importance376

scores during training.377

Implementation Details. Our experiments are378

conducted using the PyTorch framework (Paszke379

et al., 2019) and the Hugging Face Transformers380

library (Wolf, 2020), running on a cluster equipped 381

with NVIDIA A100 40GB GPUs. In our exper- 382

iments, we set the rank r to 3 and the orthogo- 383

nality regularization coefficient γ to 0.1. We use 384

the Adam optimizer (Kingma and Ba, 2014) with 385

a learning rate of 1 × 10−5 and a batch size of 386

64 for training. For the comparative experiments, 387

we keep the hyperparameters for the base model 388

fine-tuning consistent across different methods. We 389

use ROUGE-1 and BLEU-4 as the NLG evaluation 390

metrics. 391

4.2 NLG Task Results 392

Performance Comparison. We first compare the 393

final generation quality of HyperAdaLoRA and 394

AdaLoRA after fine-tuning the LLaMA3.1-8B and 395

Qwen2.5-7B models on the Stanford Alpaca and 396

Magpie datasets. The results are summarized in 397

Table 1 using BLEU-4 and ROUGE-1 scores. 398

The results in Table 1 indicate that Hyper- 399

AdaLoRA does not exhibit any performance degra- 400

dation compared to AdaLoRA. In most config- 401

urations, the scores of the two models are very 402

close, with HyperAdaLoRA occasionally show- 403

ing a slight edge. For example, on both datasets, 404

HyperAdaLoRA outperforms AdaLoRA in terms 405

of BLEU-4 for the LLaMA3.1-8B model and 406

ROUGE-1 for the Qwen2.5-7B model. This 407

demonstrates that the significant improvements in 408

convergence speed do not negatively affect the final 409

quality of the generated outputs. 410

Training Efficiency. We further evaluate the ef- 411

fectiveness of HyperAdaLoRA in NLG tasks. We 412

finetune the LLaMA3.1-8B and Qwen2.5-7B mod- 413

els on three instruction-following datasets: Stan- 414

ford Alpaca, Magpie-Pro-300K-Filtered, and Open- 415

Platypus. Table 3 presents a comparison of the 416

total training time. In all configurations, Hyper- 417

AdaLoRA achieves shorter training times than 418

AdaLoRA. This reduction is evident across datasets 419

of varying sizes, from the large Magpie to the 420

smaller Alpaca and OpenPlatypus datasets, consis- 421

5



(a) MNLI / RoBERTa-base (b) WNLI / RoBERTa-base (c) RTE / RoBERTa-base

(d) MNLI / DeBERTa-v3-base (e) WNLI / DeBERTa-v3-base (f) RTE / DeBERTa-v3-base

Figure 2: Comparison of training loss convergence between HyperAdaLoRA and AdaLoRA on natural language
understanding tasks. The rows correspond to three natural language understanding tasks: MNLI, RTE, and WNLI.
The columns represent two pretrained language models: RoBERTa-base and DeBERTa-v3-base.

tent with the accelerated convergence. For instance,422

when fine-tuning LLaMA3.1-8B on the Stanford423

Alpaca dataset, HyperAdaLoRA takes 7250 sec-424

onds, compared to 8125 seconds for AdaLoRA.425

Similarly, when fine-tuning Qwen2.5-7B on the426

large Magpie-Pro dataset, HyperAdaLoRA has a427

training time of 14250 seconds, while AdaLoRA re-428

quires 15000 seconds. This consistent time advan-429

tage highlights the efficiency gains brought by hy-430

pernetwork based parameter generation. By more431

rapidly reaching effective parameter states, Hyper-432

AdaLoRA significantly reduces the total training433

duration needed for adaptation to these NLG tasks.434

4.3 NLU Task Results435

We compare the convergence speed of Hyper-436

AdaLoRA (which employs a BERT layered hyper-437

network) with that of the baseline AdaLoRA. Fig-438

ure 2 illustrates the training loss curves of these two439

methods on the MNLI, RTE, and WNLI datasets,440

using RoBERTa-base and DeBERTa-v3-base as441

backbone models. Across all experimental set-442

tings, HyperAdaLoRA consistently converges sig-443

nificantly faster than AdaLoRA. The loss curves444

of HyperAdaLoRA drop more steeply in the early445

stages of training and reach a lower loss plateau446

earlier in the training process. For instance, on the447

RTE task with DeBERTa-v3-base, HyperAdaLoRA448

achieves a loss level comparable to the final loss of449

AdaLoRA hundreds of training steps earlier. This450

accelerated convergence highlights the effective- 451

ness of using a hypernetwork to generate param- 452

eter updates, enabling the model to adapt more 453

rapidly to the target task. Moreover, the conver- 454

gence curves of both methods reach the same con- 455

vergence point, confirming that our approach does 456

not sacrifice precision performance. This result is 457

robust across different base models and datasets, 458

indicating that the improved convergence speed is 459

a universal characteristic of the HyperAdaLoRA 460

framework. 461

4.4 Hyperparameter Impact Analysis 462

We investigate the sensitivity of HyperAdaLoRA’s 463

NLG performance to the orthogonality regulariza- 464

tion coefficient γ. We finetune LLaMA3.1-8B with 465

γ values set to {0.1, 0.15, 0.2}. As shown in Table 466

2, performance remains relatively stable across the 467

tested γ values. Although γ = 0.2 yields slightly 468

better results in this specific setup, the differences 469

are minimal. This indicates that HyperAdaLoRA is 470

robust to variations in this hyperparameter, thereby 471

simplifying its practical application. 472

4.5 Ablation Study 473

To demonstrate the contributions of our hypernet- 474

work design, we compare the performance of Hy- 475

perAdaLoRA with different hypernetwork architec- 476

tures (MLP, CNN, and BERT layer) when finetun- 477

ing DeBERTa-v3-base. Figure 3 shows the training 478

loss curves of these three variants on the MNLI, 479

6



(a) MNLI (b) WNLI (c) RTE

Figure 3: Comparison of training loss convergence for different HyperAdaLoRA hypernetwork architectures (MLP,
CNN, BERT layer) on the DeBERTa-v3-base model for NLU tasks. The analysis is conducted across three natural
language understanding tasks: MNLI, WNLI and RTE.

γ
Stanford Alpaca Magpie

BLEU-4 ROUGE-1 BLEU-4 ROUGE-1

0.10 55.10 58.48 70.73 56.76
0.15 55.06 58.42 70.70 56.68
0.20 55.12 58.30 70.72 56.78

Table 2: Performance of HyperAdaLoRA with dif-
ferent values of γ. We conduct experiments using
the LLaMA3.1-8B model on the Stanford Alpaca and
Magpie-Pro-300K-Filtered datasets, with evaluation
metrics including BLEU-4 and ROUGE-1.

RTE, and WNLI datasets. The results show that480

the choice of hypernetwork architecture affects481

the convergence speed. The BERT layer hyper-482

network achieves the fastest convergence across483

all three datasets. This indicates that the attention484

mechanism is particularly effective at capturing the485

complex interdependencies among the elements486

of the P , Λ, and Q matrices, thereby generating487

more efficient and targeted updates. In contrast,488

the MLP and CNN-based hypernetworks lag be-489

hind the BERT layer variant. The MLP, being the490

simplest architecture, shows the least acceleration,491

while the CNN provides intermediate results. This492

performance hierarchy is consistent with the repre-493

sentation capabilities of these architectures, further494

demonstrating the benefits of using complex mech-495

anisms like attention to generate parameters in this496

context.497

4.6 Efficiency Analysis498

We analyze the computational load of our method499

compared to AdaLoRA. Table 4 presents the GPU500

memory usage and per step training latency for501

both methods under different batch sizes. As shown502

in Table 4, HyperAdaLoRA exhibits a slight re-503

duction in memory usage compared to AdaLoRA.504

Additionally, HyperAdaLoRA consistently demon-505

strates lower training latency per step. Although the 506

per step reduction may appear modest, the faster 507

convergence rate demonstrated earlier leads to a 508

significantly shorter total training time to reach 509

the target performance level. Therefore, Hyper- 510

AdaLoRA achieves a notable improvement in train- 511

ing efficiency. 512

4.7 Case Study 513

Figure 4: Examples generated by RoBERTa-base and
DeBERTa-v3-base for the WNLI dataset.

Figure 5: Examples generated by RoBERTa-base and
DeBERTa-v3-base for the RTE dataset.

In Figure 4 and 5, we can see examples of 514

two different natural language understanding tasks: 515

WNLI and RTE. These examples demonstrate the 516

models’ capabilities in understanding and reason- 517

ing with textual information. In the first example, 518

7



Model Method Stanford Alpaca Magpie-Pro-300K-Filtered OpenPlatypus

LLaMA3.1-8B AdaLoRA 8125 19600 11900
HyperAdaLoRA (ours) 6650 15720 9750

Qwen2.5-7B AdaLoRA 4240 15000 6750
HyperAdaLoRA (ours) 3500 11000 5500

Table 3: Comparison of total training time (in seconds) for AdaLoRA and HyperAdaLoRA across natural language
generation tasks. Experiments are conducted using the LLaMA3.1-8B and Qwen2.5-7B models on the Stanford
Alpaca, Magpie-Pro-300K-Filtered, and OpenPlatypus datasets. HyperAdaLoRA consistently demonstrates lower
training times across these settings.

Batch Size AdaLoRA HyperAdaLoRA (ours)

Memory (MB) Latency (ms / step) Memory (MB) Latency (ms / step)

1 2758 123.16 2722 118.10
2 2798 132.60 2764 118.82
4 3232 149.38 3196 134.54
8 4115 189.39 4078 178.51
16 5906 284.33 5870 272.72
32 9600 486.16 9564 465.77
64 16566 882.55 16530 872.80

Table 4: Comparison of memory usage and training latency per step between AdaLoRA and HyperAdaLoRA across
various batch sizes. The experimental settings are consistent with the implementation details described above.

the premise from the WNLI dataset is "The man519

couldn’t lift his son because he was so weak." The520

hypothesis is "The man was so weak." The label521

is "Entailment," which means the hypothesis can522

be inferred from the premise, indicating that the523

premise supports the hypothesis. In the second ex-524

ample, the premise from the RTE dataset is "Dana525

Reeve, the widow of the actor Christopher Reeve,526

has died of lung cancer at age 44." The hypothesis527

is "Christopher Reeve had an accident." The label528

is "Not Entailment," meaning the hypothesis can-529

not be inferred from the premise, indicating that530

the premise does not support the hypothesis. These531

examples illustrate how models perform on differ-532

ent types of textual reasoning tasks when finetuned533

with our method. By fine-tuning RoBERTa-base534

and DeBERTa-v3-base models, we can enhance535

their performance on these tasks, thereby improv-536

ing their ability to understand and reason with tex-537

tual information. This is crucial in the field of538

natural language processing, as understanding and539

reasoning capabilities are key to building intelli-540

gent systems. With these methods, we can better541

address complex tasks such as question answering542

systems, conversational systems, and text summa-543

rization.544

5 Conclusion545

In this paper, we tackle the issue of slow conver-546

gence in AdaLoRA, an effective dynamic rank547

allocation method for PEFT. We propose Hyper- 548

AdaLoRA, a novel framework that leverages hy- 549

pernetworks to dynamically generate the SVD- 550

based parameters (P,Λ, Q) that are integral to 551

AdaLoRA. By adopting an attention-based hyper- 552

network architecture, HyperAdaLoRA is capable 553

of capturing intricate parameter dependencies and 554

producing targeted updates. This enables it to nav- 555

igate the optimization landscape more efficiently 556

compared to traditional AdaLoRA training meth- 557

ods. Extensive experiments conducted on various 558

datasets and models consistently show that Hy- 559

perAdaLoRA achieves significantly faster conver- 560

gence, reaching target loss levels much earlier than 561

standard AdaLoRA. This acceleration is achieved 562

while maintaining comparable end-task accuracy 563

and computational efficiency, with a slight reduc- 564

tion in training latency and a similar memory foot- 565

print. Furthermore, ablation studies reveal that 566

the attention-based hypernetwork architecture pro- 567

vides the most substantial convergence benefits 568

compared to simpler MLP or CNN designs. Future 569

work may include extending this hypernetwork- 570

based generation approach to other PEFT tech- 571

niques, exploring different hypernetwork architec- 572

tures, and evaluating the framework’s scalability on 573

even larger language models and a broader range 574

of downstream tasks. 575

8



Limitations576

In this paper, we conduct extensive experiments577

to evaluate the effectiveness of our hypernetwork-578

based training method in accelerating the training579

process across various tasks. While the results580

demonstrate significant speedup in most cases, the581

acceleration effect is less pronounced in certain582

tasks, suggesting the need for further refinement.583

Additionally, the robustness of our method un-584

der varying data distributions, particularly in low-585

resource and domain-specific datasets, remains un-586

derexplored. Future work will focus on optimizing587

the hypernetwork architecture to enhance its appli-588

cability across diverse task types.589

References590

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and591
Kristina Toutanova. 2019. Bert: Pre-training of deep592
bidirectional transformers for language understand-593
ing. In Proceedings of the 2019 conference of the594
North American chapter of the association for com-595
putational linguistics: human language technologies,596
volume 1 (long and short papers), pages 4171–4186.597

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen,598
Bowen Zhou, Zhiyuan Liu, and Maosong Sun. 2023.599
Sparse low-rank adaptation of pre-trained language600
models. arXiv preprint arXiv:2311.11696.601

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,602
Abhinav Pandey, Abhishek Kadian, Ahmad Al-603
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,604
Alex Vaughan, and 1 others. 2024. The llama 3 herd605
of models. arXiv preprint arXiv:2407.21783.606

David Ha, Andrew Dai, and Quoc V Le. 2016. Hyper-607
networks. arXiv preprint arXiv:1609.09106.608

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.609
Debertav3: Improving deberta using electra-style pre-610
training with gradient-disentangled embedding shar-611
ing (2021). URL https://arxiv. org/abs/2111.09543.612

N. Houlsby, A. Giurgiu, S. Jastrzebski, and 1 others.613
2019. Parameter-efficient transfer learning for nlp.614
Proceedings of the 2019 Conference on Empirical615
Methods in Natural Language Processing (EMNLP),616
2019:279–285.617

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan618
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,619
Weizhu Chen, and 1 others. 2022. Lora: Low-rank620
adaptation of large language models. ICLR, 1(2):3.621

Yahao Hu, Yifei Xie, Tianfeng Wang, Man Chen, and622
Zhisong Pan. 2023. Structure-aware low-rank adapta-623
tion for parameter-efficient fine-tuning. Mathematics,624
11(20):4317.625

Diederik P Kingma and Jimmy Ba. 2014. Adam: A 626
method for stochastic optimization. arXiv preprint 627
arXiv:1412.6980. 628

Louis Kirsch, Julius Kunze, and David Barber. 2018. 629
Modular networks: Learning to decompose neural 630
computation. Advances in neural information pro- 631
cessing systems, 31. 632

Ariel N. Lee, Cole J. Hunter, and Nataniel Ruiz. 2023. 633
Platypus: Quick, cheap, and powerful refinement of 634
llms. 635

B. Lester, R. Al-Rfou, and N. Constant. 2021. The 636
power of scale for parameter-efficient prompt tuning. 637
Proceedings of the 2021 Conference on Empirical 638
Methods in Natural Language Processing (EMNLP), 639
2021:3045–3061. 640

X. Li and P. Liang. 2021. Prefix-tuning: Optimizing 641
continuous prompts for generation tasks. Proceed- 642
ings of the 59th Annual Meeting of the Association for 643
Computational Linguistics (ACL), 2021:4582–4597. 644

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo 645
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting 646
Cheng, and Min-Hung Chen. 2024a. Dora: Weight- 647
decomposed low-rank adaptation. In Forty-first In- 648
ternational Conference on Machine Learning. 649

Yinhan Liu. 2019. Roberta: A robustly opti- 650
mized bert pretraining approach. arXiv preprint 651
arXiv:1907.11692, 364. 652

Zequan Liu, Jiawen Lyn, Wei Zhu, Xing Tian, and 653
Yvette Graham. 2024b. Alora: Allocating low-rank 654
adaptation for fine-tuning large language models. 655
arXiv preprint arXiv:2403.16187. 656

Jonathan Lorraine and David Duvenaud. 2018. Stochas- 657
tic hyperparameter optimization through hypernet- 658
works. arXiv preprint arXiv:1802.09419. 659

Yulong Mao, Kaiyu Huang, Changhao Guan, Ganglin 660
Bao, Fengran Mo, and Jinan Xu. 2024. Dora: En- 661
hancing parameter-efficient fine-tuning with dynamic 662
rank distribution. arXiv preprint arXiv:2405.17357. 663

Adam Paszke, Sam Gross, Francisco Massa, Adam 664
Lerer, James Bradbury, Gregory Chanan, Trevor 665
Killeen, Zeming Lin, Natalia Gimelshein, Luca 666
Antiga, and 1 others. 2019. Pytorch: An impera- 667
tive style, high-performance deep learning library. 668
Advances in neural information processing systems, 669
32. 670

Haoxiang Shi, Rongsheng Zhang, Jiaan Wang, Cen 671
Wang, Yinhe Zheng, and Tetsuya Sakai. 2022. Layer- 672
connect: Hypernetwork-assisted inter-layer connec- 673
tor to enhance parameter efficiency. In Proceedings 674
of the 29th International Conference on Computa- 675
tional Linguistics, pages 3120–3126. 676

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 677
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 678
and Tatsunori B. Hashimoto. 2023. Stanford alpaca: 679

9



An instruction-following llama model. https://680
github.com/tatsu-lab/stanford_alpaca.681

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan682
Kobyzev, and Ali Ghodsi. 2022. Dylora: Parameter683
efficient tuning of pre-trained models using dynamic684
search-free low-rank adaptation. arXiv preprint685
arXiv:2210.07558.686

Alex Wang. 2018. Glue: A multi-task benchmark and687
analysis platform for natural language understanding.688
arXiv preprint arXiv:1804.07461.689

Adina Williams, Nikita Nangia, and Samuel R Bow-690
man. 2017. A broad-coverage challenge corpus for691
sentence understanding through inference. arXiv692
preprint arXiv:1704.05426.693

Thomas Wolf. 2020. Transformers: State-of-the-694
art natural language processing. arXiv preprint695
arXiv:1910.03771.696

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yun-697
tian Deng, Radha Poovendran, Yejin Choi, and698
Bill Yuchen Lin. 2024. Magpie: Alignment data699
synthesis from scratch by prompting aligned llms700
with nothing. ArXiv, abs/2406.08464.701

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,702
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,703
Fei Huang, Haoran Wei, and 1 others. 2024. Qwen2.704
5 technical report. arXiv preprint arXiv:2412.15115.705

E. Zaken, Y. Goldberg, and S. Ravfogel. 2022. Bitfit:706
Simple parameter-efficient fine-tuning for transform-707
ers. Transactions of the Association for Computa-708
tional Linguistics (TACL), 10:1–16.709

Feiyu Zhang, Liangzhi Li, Junhao Chen, Zhouqiang710
Jiang, Bowen Wang, and Yiming Qian. 2023a. In-711
crelora: Incremental parameter allocation method712
for parameter-efficient fine-tuning. arXiv preprint713
arXiv:2308.12043.714

Qingru Zhang, Minshuo Chen, Alexander Bukharin,715
Nikos Karampatziakis, Pengcheng He, Yu Cheng,716
Weizhu Chen, and Tuo Zhao. 2023b. Adalora: Adap-717
tive budget allocation for parameter-efficient fine-718
tuning. arXiv preprint arXiv:2303.10512.719

Ruiyi Zhang, Rushi Qiang, Sai Ashish Somayajula, and720
Pengtao Xie. 2024. Autolora: Automatically tuning721
matrix ranks in low-rank adaptation based on meta722
learning. arXiv preprint arXiv:2403.09113.723

10

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://api.semanticscholar.org/CorpusID:270391432
https://api.semanticscholar.org/CorpusID:270391432
https://api.semanticscholar.org/CorpusID:270391432
https://api.semanticscholar.org/CorpusID:270391432
https://api.semanticscholar.org/CorpusID:270391432

	Introduction
	Related Work
	SVD-based Dynamic Rank Allocation
	SRD-based Dynamic Rank Allocation
	Rank Sampling-based Dynamic Rank Allocation

	Method
	Preliminary
	Hypernetworks Accelerate Convergence
	Attention Driven Parameter Interaction

	Experiments
	Experimental Setup
	NLG Task Results
	NLU Task Results
	Hyperparameter Impact Analysis
	Ablation Study
	Efficiency Analysis
	Case Study

	Conclusion

