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Abstract

Parameter-Efficient Fine-Tuning (PEFT), es-
pecially Low-Rank Adaptation (LoRA), has
emerged as a promising approach to fine-tuning
large language models(LLMs) while reducing
computational and memory overhead. How-
ever, LORA assumes a uniform rank r for each
incremental matrix, not accounting for the vary-
ing significance of weight matrices across dif-
ferent modules and layers. AdaL.oRA leverages
Singular Value Decomposition (SVD) to param-
eterize updates and employs pruning of singu-
lar values to introduce dynamic rank alloca-
tion, thereby enhancing adaptability. However,
during the training process, it often encounters
issues of slow convergence speed and high com-
putational overhead. To address this issue, we
propose HyperAdaLLoRA, a novel framework
that accelerates the convergence of AdaLoRA
by leveraging a hypernetwork. Instead of di-
rectly optimizing the components of Singu-
lar Value Decomposition (P, A,Q), Hyper-
AdalLLoRA employs a hypernetwork based on
attention mechanisms to dynamically generate
these parameters. By pruning the outputs of the
hypernetwork that generates the singular val-
ues, dynamic rank allocation is achieved. Com-
prehensive experiments on various datasets and
models demonstrate that our method achieves
faster convergence while maintaining accuracy.

1 Introduction

Parameter-efficient fine-tuning (PEFT) has
emerged as a practical solution for adapting large
language models (LLMs) to downstream tasks by
updating a small subset of parameters, thereby
reducing computational and memory overhead (Li
and Liang, 2021; Lester et al., 2021; Zaken et al.,
2022; Hu et al., 2022; Houlsby et al., 2019). A
prominent PEFT method, Low-Rank Adaptation
(LoRA) (Hu et al., 2022), is particularly notable
for introducing trainable low-rank matrices
into pre-trained weights during fine-tuning,

reparameterizing weight updates as:
W=wO+Aw=wO® +BA (1)

where WO AW € Réxd2 4 ¢ Rr>d2 apd
B € R4XT withr < {dy, d2}. During fine-tuning,
only matrices B and A are updated, substantially
reducing the number of trainable parameters. How-
ever, LORA assigns a uniform rank across all lay-
ers, neglecting the varying functional importance
of different components, potentially limiting per-
formance in deep or heterogeneous models (Hu
et al., 2023; Zhang et al., 2023a).

Dynamic rank allocation methods have been in-
troduced to tackle this challenge by adaptively as-
sign different ranks r to various modules or lay-
ers. There are three main strategies: 1) Singular
value decomposition (SVD) methods (Zhang et al.,
2023b; Hu et al., 2023; Zhang et al., 2023a) de-
compose matrices into singular values and vectors,
effectively capturing key components. However,
the decomposition process is computationally inten-
sive, with a time complexity of O(n?), and requires
additional memory to store the singular values and
vectors. 2) Single-rank decomposition (SRD) meth-
ods (Mao et al., 2024; Zhang et al., 2024; Liu et al.,
2024b) decompose matrices into rank-1 compo-
nents, enabling more granular rank allocation. De-
spite this flexibility, identifying and pruning rank-1
components necessitates multi-stage training, in-
creasing algorithmic complexity. The iterative se-
lection process can also introduce instability, par-
ticularly when essential components are mistakenly
pruned. 3) Rank sampling methods (Valipour et al.,
2022) dynamically allocates ranks during training
by sampling from a range of ranks, offering post-
training flexibility. However, the stochastic nature
of this approach introduces gradient noise, poten-
tially destabilizing convergence.

Hypernetworks (Ha et al., 2016) is a meta-model
that generates parameters for a target network, de-
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Figure 1: Comparison of LoRA, AdaLoRA, and HyperAdaLoRA frameworks, with black solid lines representing
the forward process and green dashed lines indicating backpropagation (gradient flow). LoRA applies fixed-rank
low-rank adaptations (A, B). AdaLoRA introduces dynamic rank allocation via Singular Value Decomposition
(SVD) and singular value pruning (P, \, Q). HyperAdaLLoRA leverages a hypernetwork to dynamically generate
SVD components (Hp, Hy, Hg), accelerating convergence and enhancing computational efficiency.

coupling parameter generation from model archi-
tecture. By producing task-specific parameters
based on contextual inputs, hypernetworks enable
dynamic adaptation without explicit iterative op-
timization, capturing intricate parameter adapta-
tion patterns in real-time. Hypernetworks facili-
tate adaptive parameter optimization by modulat-
ing both the update direction and magnitude in
response to the current model state (Lorraine and
Duvenaud, 2018). This dynamic modulation fos-
ters efficient navigation through high-dimensional
parameter spaces, accelerating convergence while
maintaining model expressiveness (Kirsch et al.,
2018; Shi et al., 2022).

In this paper, we introduce HyperAdalLoRA, a
novel framework that leverages hypernetworks (Ha
etal., 2016) to achieve a significant improvement in
convergence speed through parameter generation.
Unlike traditional methods that directly train the in-
cremental matrices P, A, and ), HyperAdaLoRA
employs task-specific hypernetworks to generate
these matrices. Architecturally, our hypernetworks
are based on a specific attention layer of BERT (De-
vlin et al., 2019), which enables them to capture the
complex dependencies among parameters. Specif-
ically, each hypernetwork takes the current state
of P, A, or @) as input and outputs their updated
versions. Dynamic rank allocation is realized by
pruning the output of the hypernetwork that gener-
ates A. The training objective of HyperAdaLoRA
is to minimize the discrepancy between the param-
eters generated by the hypernetworks and the ideal
parameters. Extensive experiments demonstrate
that our method achieves faster convergence while

maintaining accuracy.
The main contributions of our paper can be sum-
marized as follows:

* We introduce HyperAdaLoRA, a pioneer-
ing framework that utilizes hypernetworks
to achieve substantial acceleration in conver-
gence speed through advanced parameter gen-
eration.

* We employ attention based hypernetworks to
capture the complex dependencies among pa-
rameters and accurately perform parameter
updates during the training process.

» Extensive experiments demonstrate that our
method achieves faster convergence while
maintaining accuracy.

2 Related Work

2.1 SVD-based Dynamic Rank Allocation

SVD-Based methods parameterize LoRA’s low-
rank update matrix AW in a singular value de-
composition form (e.g. splitting into PAQ) to dy-
namically adjust effective rank. The mathematical
representation is as follows:

W=wO AW =wO + PAQ (2)

where P € R*"*" and Q € R"*% represent the
left/right singular vectors, and the diagonal matrix
A € R™" contains the singular values {\; }1<i<,
with 7 < min(d;, ds). For example, AdaLoRA
(Zhang et al., 2023b) prunes less important sin-
gular values based on a sensitivity-derived impor-
tance score during training. SalLoRA (Hu et al.,



2023) adaptively adjusts the rank by identifying
and suppressing less informative singular compo-
nents, optimizing parameter efficiency across lay-
ers. IncreLoRA (Zhang et al., 2023a) incrementally
increases the rank during training, starting with a
minimal rank and expanding as needed, balancing
early training stability with later-stage expressive-
ness. These methods effectively capture principal
components but incur O(n?) complexity and sub-
stantial memory overhead, impacting scalability
and training stability, particularly with dynamic
rank adjustment.

2.2 SRD-based Dynamic Rank Allocation

SRD-based methods decompose the LoRA update
AW = Y7, u;v] into a series of rank-1 ma-
trices, where each component uiviT represents a
distinct direction in the parameter space. This de-
composition allows the model to assess and ad-
just each rank-1 update independently. AutoLoRA
(Zhang et al., 2024) uses a meta-learning scheme
to determine which rank-1 slices to retain or prune,
while ALoRA (Liu et al., 2024b) trains a ’super-
network’ and reallocates ranks based on impor-
tance. SORA (Ding et al., 2023) applies sparsity
penalties to zero out less impactful components,
and DoRA (Liu et al., 2024a) adjusts only the di-
rection component, assigning a learnable scalar for
each weight. However, SRD methods face limi-
tations such as increased algorithmic complexity
from multi-stage training and additional optimiza-
tion for rank-1 component selection. Abrupt prun-
ing can destabilize training, while iterative selec-
tion adds computational overhead and heightens
sensitivity to hyperparameter tuning.

2.3 Rank Sampling-based Dynamic Rank
Allocation

Rank-sampling methods treat the LoRA rank as
a random variable during training. DyLoRA
(Valipour et al., 2022) implements this by sam-
pling a truncation level b < R in each iteration,
zeroing out the bottom R — b components and en-
abling the model to operate across multiple ranks
without retraining. This approach eliminates the
need for exhaustive rank search while also serv-
ing as a regularizer, concentrating key features in
top components to potentially enhance generaliza-
tion. However, training across multiple ranks can
dilute performance at specific ranks compared to
fixed-rank LoRA, and dynamic masking introduces
slight computational overhead, potentially requir-

ing additional training epochs to converge.

3 Method

3.1 Preliminary

Hypernetworks (Ha et al., 2016) are a type of neural
network architecture used to generate the weights
of another neural network (the target network).
This can be expressed using the following formula:

© = H(C; ®) 3)

where © represents the weights of the target net-
work, H denotes the hypernetwork, C' is the con-
text vector input to the hypernetwork and & corre-
sponds to the weights of the hypernetwork itself.

The input to the hypernetwork (Ha et al., 2016)
can be any information related to the target net-
work, such as the input data of the target network,
task requirements, or other contextual information.
By conditioning parameter generation on these in-
puts, the hypernetwork can dynamically generate
different parameters to adapt to different tasks or
environments. This approach mitigates the need for
learning a full set of parameters, thereby reducing
model complexity and promoting generalization.

In neural architecture search (NAS), hypernet-
works (Ha et al., 2016) can generate parameters
for multiple sub-networks, thereby efficiently ex-
ploring different network architectures. By simul-
taneously training the hypernetwork and the sub-
networks, the performance of a large number of
candidate architectures can be evaluated in a rela-
tively short time. This allows for the rapid screen-
ing of network structures with better convergence
performance. This efficient architecture explo-
ration method helps to find more optimal model
architectures, thereby accelerating the overall train-
ing and convergence process.

3.2 Hypernetworks Accelerate Convergence

To accelerate the convergence of AdaLoRA, we
propose a novel training strategy: employing a hy-
pernetwork to dynamically generate the PA(Q) pa-
rameters during training, rather than relying on tra-
ditional backpropagation for their updates. Specifi-
cally, at the beginning of training, we initialize the
PAQ parameters using a normal distribution. As
training progresses, the parameters of the hypernet-
work are continuously updated through backpropa-
gation, thereby optimizing the generation process
of the PA() parameters. In this process, the PAQ)
parameters serve merely as intermediate results,



with their ultimate goal being the optimized gener-
ation via the hypernetwork to achieve faster conver-
gence. The design of the hypernetwork is crucial
to this strategy. It takes the parameters before the
update as input and, after a series of complex com-
putations and optimization operations, outputs the
updated parameters. To conserve computational
resources and memory usage, we employ the same
hypernetwork for the same parameters across dif-
ferent parameters. For example, we use a single
hypernetwork to generate the updated values for
the P parameters of all matrix weights. This de-
sign not only improves resource efficiency but also
ensures consistency and stability in parameter up-
dates. In the i-th iteration, the update process of
PAQ can be specifically represented as follows:

Piy1 =Hp(P;;Pp) 4)
Aip1 = Ha(Ai; o) &)
Qit1 = Ho(Qi; 2q) (6)

where ‘Hp, Ha, and Hq represent the hypernet-
works used to update the parameters P, A, and @,
respectively. ®p, ®5, and ¢ represent the pa-
rameters of these hypernetworks. P;, A;, and Q;
represent the parameters before the i-th iteration
update, while P;y1, A;+1, and Q; 41 represent the
parameters after the update.

The process of a hypernetwork generating up-
dated parameters by taking model parameters as
input is essentially a dynamic parameter generation
process. From a mathematical perspective, this can
be likened to a nonlinear transformation within the
parameter space, aimed at more efficiently approx-
imating the optimal parameters. From the stand-
point of optimization theory, such personalized up-
dates can more effectively explore the parameter
space to identify better solutions. Traditional opti-
mization methods, such as gradient descent, follow
fixed rules for parameter updates. In contrast, a
hypernetwork can dynamically adjust the direction
and magnitude of updates based on the current state
of the parameters. This flexibility enables it to bet-
ter adapt to complex loss landscapes and accelerate
convergence. As a result, the hypernetwork can
more precisely adjust the model’s state in each it-
eration, thereby reducing the number of iterations
required to achieve convergence.

During the initial training phases, the hypernet-
work designed for A generates a full-rank diagonal
matrix. To facilitate adaptive budget allocation,
we implement an iterative singular value pruning

strategy based on magnitude thresholds. At each
interval AT, the k smallest singular values within
A are set to zero, effectively reducing the rank of
the incremental update A. Subsequently, the hy-
pernetworks adjust the patterns they generate to
compensate for the pruned dimensions through a
gradient-driven process of plasticity.

The loss function integrates task-specific objec-
tives with orthogonality regularization, formulated
as:

L= Lok +y(|PTP-I3+]1QQT —I|F) (7)

where v > 0 denotes the regularization coefficient.
This formulation ensures that the generated matri-
ces P and () approximate orthogonal transforma-
tions while maintaining compatibility with down-
stream tasks.

3.3 Attention Driven Parameter Interaction

We adopt a BERT layer as the architecture of the
hypernetwork and leverage the self-attention mech-
anism to capture the dependencies among parame-
ters. Specifically, the interaction between the query
and key in the attention mechanism mimics the
associations between elements in the parameter
matrix. This enables the hypernetwork to generate
context-aware updates that preserve the structural
patterns of the parameters. For any parameter p;,
its updated output takes into account all parameters
in the matrix, as shown in the following equation:

Dit1 = Z Softmax (Q\/gj ) V; (8)

Jj=1

where p; 41 represents the updated value of parame-
ter p;, (); is the query vector associated with p;, K
is the key vector associated with parameter p;, and
Vj is the value vector corresponding to parameter
p;. The total number of parameters in the matrix
is denoted by NV, and d represents the dimensional-
ity of the query and key vectors. This formulation
allows the hypernetwork to dynamically compute
the updated value of p; by aggregating information
from all parameters in the matrix, capturing their
interdependencies and preserving the structural pat-
terns of the parameters.

4 Experiments

4.1 Experimental Setup

Benchmarks. We conduct a comprehensive evalu-
ation of our method, covering a wide range of tasks



Model Method Stanford Alpaca Magpie
BLEU4 ROUGE-1 BLEU-4 ROUGE-1
AdaLLoRA 55.06 58.51 70.69 56.76
LLaMA3.1-8B HyperAdalLoRA (ours) 55.10 58.48 70.73 56.78
Qwen2.5-7B AdaLoRA 6.79 20.17 56.21 49.43
’ HyperAdaLLoRA (ours) 6.79 20.19 56.18 49.42

Table 1: Performance comparison between HyperAdaLLoRA and AdalLoRA on NLG tasks using LLaMA3.1-8B and
Qwen2.5-7B as backbones. The reported metrics include BLEU-4 and ROUGE-1.

in both natural language understanding (NLU) and
natural language generation (NLG). In the realm
of natural language understanding, our method is
tested on three challenging tasks from the GLUE
benchmark (Wang, 2018): MNLI (Williams et al.,
2017), RTE (Wang, 2018), and WNLI (Wang,
2018). These tasks represent large scale entailment
classification, small-scale binary entailment clas-
sification, and coreference resolution presented in
the form of binary entailment classification, respec-
tively. In the natural language generation domain,
we assess our method using three widely recog-
nized datasets: Stanford Alpaca (Taori et al., 2023),
Magpie-Pro-300K-Filtered (Xu et al., 2024), and
OpenPlatypus (Lee et al., 2023). In the following
text, we sometimes abbreviate Magpie-Pro-300K-
Filtered as Magpie. These datasets focus on diverse
instruction-following scenarios, designed to test the
model’s ability to generate text that meets the spec-
ified requirements.

Models. We use two prominent pretrained
language models for NLU: RoBERTa-base (Liu,
2019), which is renowned for its strong perfor-
mance across a wide range of NLU tasks, and
DeBERTa-v3-base (He et al., 2021), an enhanced
version that incorporates advanced pretraining
techniques. For NLG, we employ two models:
LLaMA3.1-8B (Grattafiori et al., 2024), a pow-
erful 8 billion parameter model optimized for high-
quality text generation, and Qwen2.5-7B (Yang
et al., 2024), a model that demonstrates exceptional
performance in various NLG tasks.

Baseline. Our primary baseline for comparison
is AdaLoRA (Zhang et al., 2023b). AdaLoRA uses
PAQ as trainable parameters that are dynamically
updated during training. It allocates parameter bud-
gets by parameterizing updates in an SVD form
and prunes singular values based on importance
scores during training.

Implementation Details. Our experiments are
conducted using the PyTorch framework (Paszke
et al., 2019) and the Hugging Face Transformers

library (Wolf, 2020), running on a cluster equipped
with NVIDIA A100 40GB GPUs. In our exper-
iments, we set the rank 7 to 3 and the orthogo-
nality regularization coefficient y to 0.1. We use
the Adam optimizer (Kingma and Ba, 2014) with
a learning rate of 1 x 107> and a batch size of
64 for training. For the comparative experiments,
we keep the hyperparameters for the base model
fine-tuning consistent across different methods. We
use ROUGE-1 and BLEU-4 as the NLG evaluation
metrics.

4.2 NLG Task Results

Performance Comparison. We first compare the
final generation quality of HyperAdalLoRA and
AdalL.oRA after fine-tuning the LLaMA3.1-8B and
Qwen2.5-7B models on the Stanford Alpaca and
Magpie datasets. The results are summarized in
Table 1 using BLEU-4 and ROUGE-1 scores.

The results in Table 1 indicate that Hyper-
AdaLoRA does not exhibit any performance degra-
dation compared to AdaLoRA. In most config-
urations, the scores of the two models are very
close, with HyperAdaLoRA occasionally show-
ing a slight edge. For example, on both datasets,
HyperAdaLoRA outperforms AdaLoRA in terms
of BLEU-4 for the LLaMA3.1-8B model and
ROUGE-1 for the Qwen2.5-7B model. This
demonstrates that the significant improvements in
convergence speed do not negatively affect the final
quality of the generated outputs.

Training Efficiency. We further evaluate the ef-
fectiveness of HyperAdalLoRA in NLG tasks. We
finetune the LLaMA3.1-8B and Qwen2.5-7B mod-
els on three instruction-following datasets: Stan-
ford Alpaca, Magpie-Pro-300K-Filtered, and Open-
Platypus. Table 3 presents a comparison of the
total training time. In all configurations, Hyper-
AdalLoRA achieves shorter training times than
AdaL.oRA. This reduction is evident across datasets
of varying sizes, from the large Magpie to the
smaller Alpaca and OpenPlatypus datasets, consis-
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Figure 2: Comparison of training loss convergence between HyperAdaLoRA and AdalLoRA on natural language
understanding tasks. The rows correspond to three natural language understanding tasks: MNLI, RTE, and WNLI.
The columns represent two pretrained language models: RoOBERTa-base and DeBERTa-v3-base.

tent with the accelerated convergence. For instance,
when fine-tuning LLaMA3.1-8B on the Stanford
Alpaca dataset, HyperAdalLoRA takes 7250 sec-
onds, compared to 8125 seconds for AdalLoRA.
Similarly, when fine-tuning Qwen2.5-7B on the
large Magpie-Pro dataset, HyperAdaLoRA has a
training time of 14250 seconds, while AdaLLoRA re-
quires 15000 seconds. This consistent time advan-
tage highlights the efficiency gains brought by hy-
pernetwork based parameter generation. By more
rapidly reaching effective parameter states, Hyper-
AdalLoRA significantly reduces the total training
duration needed for adaptation to these NLG tasks.

4.3 NLU Task Results

We compare the convergence speed of Hyper-
AdalL.oRA (which employs a BERT layered hyper-
network) with that of the baseline AdaLoRA. Fig-
ure 2 illustrates the training loss curves of these two
methods on the MNLI, RTE, and WNLI datasets,
using RoBERTa-base and DeBERTa-v3-base as
backbone models. Across all experimental set-
tings, HyperAdaLLoRA consistently converges sig-
nificantly faster than AdalLoRA. The loss curves
of HyperAdaLLoRA drop more steeply in the early
stages of training and reach a lower loss plateau
earlier in the training process. For instance, on the
RTE task with DeBERTa-v3-base, HyperAdaLoRA
achieves a loss level comparable to the final loss of
AdalLoRA hundreds of training steps earlier. This

accelerated convergence highlights the effective-
ness of using a hypernetwork to generate param-
eter updates, enabling the model to adapt more
rapidly to the target task. Moreover, the conver-
gence curves of both methods reach the same con-
vergence point, confirming that our approach does
not sacrifice precision performance. This result is
robust across different base models and datasets,
indicating that the improved convergence speed is
a universal characteristic of the HyperAdaLoRA
framework.

4.4 Hyperparameter Impact Analysis

We investigate the sensitivity of HyperAdalLLoRA’s
NLG performance to the orthogonality regulariza-
tion coefficient v. We finetune LLaMA3.1-8B with
~y values set to {0.1,0.15,0.2}. As shown in Table
2, performance remains relatively stable across the
tested y values. Although v = 0.2 yields slightly
better results in this specific setup, the differences
are minimal. This indicates that HyperAdaLLoRA is
robust to variations in this hyperparameter, thereby
simplifying its practical application.

4.5 Ablation Study

To demonstrate the contributions of our hypernet-
work design, we compare the performance of Hy-
perAdaLoRA with different hypernetwork architec-
tures (MLP, CNN, and BERT layer) when finetun-
ing DeBERTa-v3-base. Figure 3 shows the training
loss curves of these three variants on the MNLI,
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Figure 3: Comparison of training loss convergence for different HyperAdaLoRA hypernetwork architectures (MLP,
CNN, BERT layer) on the DeBERTa-v3-base model for NLU tasks. The analysis is conducted across three natural

language understanding tasks: MNLI, WNLI and RTE.

Stanford Alpaca Magpie
BLEU-4 ROUGE-1 BLEU-4 ROUGE-1
0.10 55.10 58.48 70.73 56.76
0.15 55.06 58.42 70.70 56.68
0.20 55.12 58.30 70.72 56.78

Table 2: Performance of HyperAdaLoRA with dif-
ferent values of 7. We conduct experiments using
the LLaMA3.1-8B model on the Stanford Alpaca and
Magpie-Pro-300K-Filtered datasets, with evaluation
metrics including BLEU-4 and ROUGE-1.

RTE, and WNLI datasets. The results show that
the choice of hypernetwork architecture affects
the convergence speed. The BERT layer hyper-
network achieves the fastest convergence across
all three datasets. This indicates that the attention
mechanism is particularly effective at capturing the
complex interdependencies among the elements
of the P, A, and () matrices, thereby generating
more efficient and targeted updates. In contrast,
the MLP and CNN-based hypernetworks lag be-
hind the BERT layer variant. The MLP, being the
simplest architecture, shows the least acceleration,
while the CNN provides intermediate results. This
performance hierarchy is consistent with the repre-
sentation capabilities of these architectures, further
demonstrating the benefits of using complex mech-
anisms like attention to generate parameters in this
context.

4.6 Efficiency Analysis

We analyze the computational load of our method
compared to AdaLoRA. Table 4 presents the GPU
memory usage and per step training latency for
both methods under different batch sizes. As shown
in Table 4, HyperAdaLLoRA exhibits a slight re-
duction in memory usage compared to AdaLoRA.
Additionally, HyperAdaLLoRA consistently demon-

strates lower training latency per step. Although the
per step reduction may appear modest, the faster
convergence rate demonstrated earlier leads to a
significantly shorter total training time to reach
the target performance level. Therefore, Hyper-
AdalL.oRA achieves a notable improvement in train-
ing efficiency.

4.7 Case Study

‘WNLI Example

Premise: The man couldn't lift his son because he
was so weak.

Hypothesis: The man was so weak.

Prediction: Entailment

Figure 4: Examples generated by RoBERTa-base and
DeBERTa-v3-base for the WNLI dataset.

RTE Example

Premise: Dana Reeve, the widow of the actor
Christopher Reeve, has died of lung cancer at age 44.

Hypothesis: Christopher Reeve had an accident.

Prediction: Not Entailment

Figure 5: Examples generated by RoBERTa-base and
DeBERTa-v3-base for the RTE dataset.

In Figure 4 and 5, we can see examples of
two different natural language understanding tasks:
WNLI and RTE. These examples demonstrate the
models’ capabilities in understanding and reason-
ing with textual information. In the first example,



Model Method Stanford Alpaca Magpie-Pro-300K-Filtered = OpenPlatypus

AdaLoRA 8125 19600 11900
LLaMA3.1-8B gy A daT oR A (0UES) 6650 15720 9750
Qwen2.5.78 AdaLoRA 4240 15000 6750
’ HyperAdalLoRA (ours) 3500 11000 5500

Table 3: Comparison of total training time (in seconds) for AdaLoRA and HyperAdaLLoRA across natural language
generation tasks. Experiments are conducted using the LLaMA3.1-8B and Qwen2.5-7B models on the Stanford
Alpaca, Magpie-Pro-300K-Filtered, and OpenPlatypus datasets. HyperAdaLoRA consistently demonstrates lower

training times across these settings.

Batch Size AdaLoRA HyperAdaLoRA (ours)
Memory (MB) Latency (ms/step) Memory (MB) Latency (ms / step)

1 2758 123.16 2722 118.10

2 2798 132.60 2764 118.82

4 3232 149.38 3196 134.54

8 4115 189.39 4078 178.51

16 5906 284.33 5870 272.72

32 9600 486.16 9564 465.77

64 16566 882.55 16530 872.80

Table 4: Comparison of memory usage and training latency per step between AdaLoRA and HyperAdalLoRA across
various batch sizes. The experimental settings are consistent with the implementation details described above.

the premise from the WNLI dataset is "The man
couldn’t lift his son because he was so weak." The
hypothesis is "The man was so weak." The label
is "Entailment," which means the hypothesis can
be inferred from the premise, indicating that the
premise supports the hypothesis. In the second ex-
ample, the premise from the RTE dataset is "Dana
Reeve, the widow of the actor Christopher Reeve,
has died of lung cancer at age 44." The hypothesis
is "Christopher Reeve had an accident." The label
is "Not Entailment,"” meaning the hypothesis can-
not be inferred from the premise, indicating that
the premise does not support the hypothesis. These
examples illustrate how models perform on differ-
ent types of textual reasoning tasks when finetuned
with our method. By fine-tuning RoBERTa-base
and DeBERTa-v3-base models, we can enhance
their performance on these tasks, thereby improv-
ing their ability to understand and reason with tex-
tual information. This is crucial in the field of
natural language processing, as understanding and
reasoning capabilities are key to building intelli-
gent systems. With these methods, we can better
address complex tasks such as question answering
systems, conversational systems, and text summa-
rization.

5 Conclusion

In this paper, we tackle the issue of slow conver-
gence in AdaLoRA, an effective dynamic rank

allocation method for PEFT. We propose Hyper-
AdalLoRA, a novel framework that leverages hy-
pernetworks to dynamically generate the SVD-
based parameters (P, A, Q) that are integral to
AdalLoRA. By adopting an attention-based hyper-
network architecture, HyperAdaLLoRA is capable
of capturing intricate parameter dependencies and
producing targeted updates. This enables it to nav-
igate the optimization landscape more efficiently
compared to traditional AdalLoRA training meth-
ods. Extensive experiments conducted on various
datasets and models consistently show that Hy-
perAdaloRA achieves significantly faster conver-
gence, reaching target loss levels much earlier than
standard AdaLoRA. This acceleration is achieved
while maintaining comparable end-task accuracy
and computational efficiency, with a slight reduc-
tion in training latency and a similar memory foot-
print. Furthermore, ablation studies reveal that
the attention-based hypernetwork architecture pro-
vides the most substantial convergence benefits
compared to simpler MLP or CNN designs. Future
work may include extending this hypernetwork-
based generation approach to other PEFT tech-
niques, exploring different hypernetwork architec-
tures, and evaluating the framework’s scalability on
even larger language models and a broader range
of downstream tasks.



Limitations

In this paper, we conduct extensive experiments
to evaluate the effectiveness of our hypernetwork-
based training method in accelerating the training
process across various tasks. While the results
demonstrate significant speedup in most cases, the
acceleration effect is less pronounced in certain
tasks, suggesting the need for further refinement.
Additionally, the robustness of our method un-
der varying data distributions, particularly in low-
resource and domain-specific datasets, remains un-
derexplored. Future work will focus on optimizing
the hypernetwork architecture to enhance its appli-
cability across diverse task types.
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