Two Steps to Precision:
Enhancing Reliable API Invocation in Code Generation

Anonymous ACL submission

Abstract

Automatic code generation is crucial in mod-
ern software development, yet large language
models struggle with real-world challenges
like code versioning and multi-API invocation.
Existing approaches, including direct genera-
tion and retrieval-augmented methods, often
fail to ensure precise API usage. This pa-
per introduces a simple yet effective two-step
framework: rough code generation or retrieval
followed by fine code editing. Experiments
on VersiCode and BigCodeBench show sig-
nificant performance gains in version-specific
code completion and function-level program-
ming. These results demonstrate the frame-
work’s practicality in enhancing LLM-based
code generation systems.

1 Introduction and Related Work

As software development becomes increasingly
complex, automatic code generation has emerged
as a critical research area in software engineer-
ing.In recent years, LLMs have shown impressive
performance in benchmarks like HumanEval(Chen
etal., 2021), generating code from natural language
instructions. However, real-world tasks, involving
code versioning and multi-API invocation, pose
greater challenges. Direct LLM-based generation
often fails to meet production-level requirements,
revealing limitations in traditional approaches.
Existing research falls into two categories:
LLMs relying solely on internal knowledge and
those augmented with retrieval. Early efforts, such
as Codex (Chen et al., 2021) and GPT-3 (Brown
et al., 2020), focused on direct code generation,
while later models like RECODE (Anugrah Hayati
et al., 2018) and REDCODER (Lewis et al., 2020)
leveraged retrieval-based techniques. However,
both approaches also face challenges in ensuring
accurate API calls for specific library versions(Wu
et al., 2024) and multi-API invocation(Zhuo et al.,

2024). Beyond these approaches, structured reason-
ing has shown potential: Chain of Thought prompt-
ing (Wei et al., 2022) improves performance by
breaking tasks into steps, while ReAct (Yao et al.,
2023) refines outputs through API or database
queries. This raises a fundamental question: Can
increasing inference steps improve API invocation
accuracy in code generation? What concrete bene-
fits could this provide, such as mitigating specific
failure cases, and what inherent limitations might
still require alternative strategies?

In this paper, we propose a simple yet effective
two-step reasoning framework to explore the above
questions, which adapts based on the availability of
external knowledge. When external knowledge is
not available, the framework first generates a rough
code structure, which is then refined in the second
step to meet specific coding standards. When exter-
nal knowledge is available, the process begins with
retrieving a rough code template from an external
knowledge base, followed by knowledge-enhanced
fine-grained code generation. Despite its simplicity,
our results demonstrate that this framework signifi-
cantly improves API usage and overall code quality.
We summarize our main contributions:

* We investigate the two-step reasoning framework
for API generation using only internal model
knowledge, providing insights into LLMs’ rea-
soning behavior per inference.

* We extend this framework to retrieval-augmented
generation, integrating rough code retrieval to
enhance API accuracy when external knowledge
is available.

» Experiments on VersiCode and BigCodeBench
demonstrate improved API invocation precision
and version control, offering guidance on opti-
mizing reasoning steps and encouraging further
exploration in multi-agent Al for software engi-
neering.

(—
input L .
P b Output of Completion 7~
Library Version: torch==1.4 Direct
o . Generation Token-Level:
Functionality Description: _ createResolutionCallback
This code prints the callback result .
for "foo" with a parameter of 1. = - Output of Completion R
- Rough Code Output of Completion P P 14
def bar(): Generation Fine Code Editing
cb = <token_mask>(1) Token-Level: . Token-Level:
print(cb("foo")) _createResolutionCallback createResolutionCallbackFromFrame
(. N
~ Unrelated information x I
(direct Output of Completion 20
retreive # Copyright 2022 The L
input 1 HuggingFace Team. All rights Direct Generation Token-Level: init_weights
Knowledge | reserved.\n#\n# Licensed ...
Library Version: accelerate==0.8.0) \
Functionality Description: be Related information o
This code prints the callback result Rough Code Output of Completion rough code __version__ = "0.8.0"
for "foo" with a parameter of 1. Generation Token-Level: init_weights retriive from .big_modeling import cpu_offload,
— Kknowledge | disk_offload, init_empty_weights
def task_function(......) -> nn.Module: \& load_checkpoint_and_dispatch
with <token_mask>(): Related G J
model = nn.Sequential(......) ela 5{ n om:a |on”
return model —-version__= 0‘_8'0_ 21 -
from .big_modeling import cpu_offload, I I — Output of Completion S
i init_empt: eights
Knowledge | disk-offload, nit_empty_welg Fine Code Generation - .
load_checkpoint_and_dispatch Token-Level: init_empty_weights

Figure 1: The figure illustrates the two-step framework. The upper section, Code Generation without External
Information, involves two steps: (1) Rough Code Generation (Cougn), and (2) Fine Code Editing (Ciine). The lower
section, Code Generation with External Information, introduces Rough Code Retrieval, fetching relevant
knowledge fragments (V') via similarity search, followed by Information-Enhanced Fine Code Generation,
which refines the code with retrieved knowledge for improved quality and context-awareness.

2 Two Steps to Precision

In this section, we elaborate on how we decompose
the one-step reasoning framework used for direct
code generation into a two-step reasoning frame-
work. This approach applies to two scenarios: (1)
the model generates code using only its memory
and (2) it incorporates external information. Figure
1 illustrates the detailed flow in both cases.

The model is formulated as an end-to-end func-
tion f : X — Y, where the input space X consists
of three primary components: Missing code frag-
ments C,, representing incomplete code snippets
with placeholders for API calls that require com-
pletion; Library requirements R;, specifying the
necessary software libraries from which appropri-
ate APIs should be selected to fulfill the task; and
Version constraints V., ensuring compatibility with
specific API versions.

2.1 Code Generation without External
Knowledge

We decompose the process into two steps: rough
code generation and fine code editing.

Rough Code Generation. The first step gener-
ates an initial code draft with API calls. Given the
missing code fragments C,, and library require-
ments R, the model produces a rough code snippet
Cy = f(Cn, R;). The rough code C, produced
in this step meets structural requirements but may

contain API errors, version mismatches, or other
inconsistencies.

Fine Code Editing. The second step refines the
rough code to ensure correct API usage and ver-
sion compliance. Given the rough code C,, li-
brary requirements [?;, and version constraints
Ve, the model generates the final output C'y
f(Cr, Ry, Ve). The fine-tuned code C'y incorpo-
rates the necessary modifications, improving API
correctness and compatibility with deployment
standards.

2.2 Code Generation with External
Knowledge

In retrieval-augmented generation (RAG), natural
language queries often misalign with source code,
leading to retrieved information that negatively im-
pacts performance. We try to solve this problem
through two-step reasoning. The process is also
divided into two distinct steps: rough code retrieval
and knowledge-enhanced fine code generation.

Rough Code Retrieval. To address alignment is-
sues, we retrieve code snippets from an external
knowledge base using a code-based query instead
of relying on natural language. The process starts
by generating rough code C;, which is used as a
query to retrieve relevant knowledge fragments via
similarity search (Lewis et al., 2020). The retrieval

token_level line_level block_level
Model PASS@1 CDhC@1 PASS@1 CDC@1 PASS@1 CDhC@1

one-step two-step one-step two-step one-step two-step one-step two-step one-step two-step one-step two-step
DeepSeck-7B 23.24 27.59 28.57 33.33 21.57 23.39 21.29 25.77 0 0.14 0 0.14
CodeGemma-7B 25.07 31.09 32.21 39.50 12.75 16.95 15.13 22.27 0 0 0.14 0.56
Deepseek-coder 54.62 55.46 71.43 72.27 24.37 42.02 21.85 37.82 2.52 15.97 4.20 23.53
1lama-3-70b 46.08 47.49 54.06 56.72 30.95 31.65 28.43 29.41 14.15 14.29 22.55 22.69
Qwen2-72B 49.15 52.24 60.78 62.60 32.77 40.33 31.09 34.31 16.8 18.20 28.29 29.41
GPT-40 60.36 62.04 75.21 77.17 28.29 42.85 2591 42.30 16.66 24.23 22.83 29.55

Table 1: The Pass@1 and CDC@1 results of different LLMs without knowledge base support on VersiCode.

token_level line_level block_level
Model PASS@1 CDhC@1 PASS@1 CDC@1 PASS@1 CDhC@1

one-step two-step one-step two-step one-step two-step one-step two-step one-step two-step one-step two-step
DeepSeek-7B 6.02 15.27 6.02 16.80 5.74 7.14 6.02 9.10 0 0.14 0 0
CodeGemma-7B 3.22 10.22 3.22 13.03 3.08 5.32 2.80 6.44 0 0 0 0
Deepseek-coder 39.50 40.34 48.74 48.74 23.53 24.37 18.49 21.85 1.68 1.68 1.68 1.68
1lama-3-70b 14.84 22.68 14.01 22.55 14.99 17.65 13.87 15.69 4.20 5.46 7.70 8.60
Qwen2-72B 23.94 24.65 23.80 28.01 30.67 32.07 28.29 3291 7.56 11.34 17.51 18.35
GPT-40 43.13 44.95 47.47 52.38 37.11 37.81 37.25 38.51 9.66 9.94 9.66 12.46

Table 2: The Pass@1 and CDC@1 results of different LLMs with knowledge support on VersiCode.

Model PASS@1
one-step two-step
DeepSeek-7B 37.50 39.33
Llama-3-70b 45.71 51.65
Qwen-72B 52.64 53.96
DeepSeek-coder 58.40 59.40
GPT-40 68.30 69.93

Table 3: The Pass@1 results of different LLMs on
BigCodeBench.

process can be expressed as:

V = argmax Sim(C}, k;), (D

v;
where k; represents the code fragments in the
knowledge base, and V' denotes the most relevant
retrieved fragment based on the similarity measure.
Knowledge-Enhanced Fine Code Generation.
The second step refines the rough code by inte-
grating external knowledge. Given the rough code
C,, library requirements R;, version constraints
V., and the retrieved knowledge fragment V, the
model generates a fine-tuned code snippet, i.e.,
Cy = f(Cr, Ry, Ve, V). The fine-tuned code C'y
leverages external information to improve API
correctness and ensure better compatibility with
production-level requirements.

In both scenarios, the two-step framework gen-
erates rough code and refines it to meet more gran-
ular criteria. In the first scenario, the model relies
solely on its internal memory. In the second, ex-
ternal knowledge is retrieved and incorporated to
improve the handling of complex dependencies.
See Appendix A for details on the prompts we use.

3 Experiment

We perform extensive experiments to answer three
key research questions: RQI: What makes the
two-step framework effective for LLM-based code
generation without external knowledge, and how
does it compare to single-step approaches? RQ?2:
How does the two-step framework address mis-
alignment in RAG, and when does it fall short?
RQ3: How well does two-step inference improve
function-level code generation with multiple API
calls, considering efficiency, correctness, and ro-
bustness?

3.1 Experimental Setup

Evaluation Datasets: We conduct experiments
on two different types of code generation tasks,
namely VersiCode (Wu et al.,, 2024) and Big-
CodeBench (Zhuo et al., 2024).

Knowledge Base: We build a structured knowl-
edge base for retrieval-augmented code genera-
tion. Using automated scripts, we crawl Python
libraries from PyPI and GitHub, extract source
code across versions, and store metadata includ-
ing library name, version, file paths, and code in
JSON format for efficient retrieval. Each entry con-
tains multiple API definitions, function signatures,
and usage patterns specific to each library version.
Evaluation Metrics:We use Pass@k(Chen et al.,
2021) and Critical Diff Check (CDC@k)(Wu et al.,
2024) as evaluation metrics over task granularities.
Baseline: We compare two-step reasoning with
one-step generation in scenarios without external

knowledge. For retrieval-based generation, we eval-
uate rough code retrieval against traditional natural
language-based retrieval.

See Appendix C for detailed experimental setup.

3.2 Results and Analysis

API invocation and versioning are critical in
software development, yet LLMs struggle with
versioning and concurrent API calls. Our exper-
iments (Table 1) show that even GPT-4, the best
performer, scored only 60.36 Pass@1 on token-
level tasks, dropping by 32.07 and 43.7 points at
line and block levels, highlighting these challenges.
To Answer RQ1: The two-step reasoning frame-
work significantly improves LLM performance on
VersiCode. As shown in Table 1, CodeGemma-7B
achieved a 6.02 increase in Pass@1 and 7.29 in
CDC@]1, with other models improving by 0.84 —
3.45 (Pass@1) and 0.84 — 4.76 (CDC@1) at the
token level. For more complex tasks, the benefits
were even greater. DeepSeek-Coder saw a 17.65
increase in Pass@1 and 15.97 in CDC@1 at the
line level, with other models improving by 0.7 —
15.6 (Pass@1) and 0.98 — 16.39 (CDC@1). At the
block level, DeepSeek-Coder and GPT-4 showed
the largest gains (13.45 and 7.57 in Pass@1, 19.33
and 6.72 in CDC@1), while smaller models had
minimal impact due to lower baselines. The frame-
work enhances accuracy at all levels, with stronger
models benefiting more in high-level tasks.

To Answer RQ2: Table 2 shows that natural
language-based retrieval significantly hinders per-
formance, introducing irrelevant context. For exam-
ple, GPT-40’s Pass@1 drops to 47.47 with retrieval,
compared to 75.21 for direct generation. The two-
step framework effectively mitigates this misalign-
ment, improving model performance across all
levels. DeepSeek-7B gains +9.25 Pass@1 and
+10.78 CDC@1 at the token level, while Qwen
sees a +1.4 Pass@1 and +4.62 CDC@1 boost at
the line level. Block-level gains are smaller, re-
flecting the increased difficulty of refining com-
plete code. By aligning retrieved information with
task requirements, two-step reasoning enhances
retrieval-augmented generation, ensuring more ac-
curate and contextually relevant API usage.

To Answer RQ3: We evaluate the two-step reason-
ing framework for function-level code generation
on BigCodeBench. Table 3 shows that two-step rea-
soning consistently improves function-level code
generation across all models. Correctness is signif-
icantly enhanced, with models like GPT-40 (68.30

— 69.93) and Llama-3-70B (45.71 — 51.65) ben-
efiting the most. The improvements are robust
across varying API complexities, ensuring better
API sequencing and parameter usage. Larger and
better-performing models gain more from two-step
inference, indicating a trade-off between efficiency
and effectiveness. While additional refinement in-
creases computational cost, it ensures more reli-
able and adaptable API usage, making it a practi-
cal approach for complex function generation.

3.3 Discussion

While the two-step framework significantly im-
proves API invocation accuracy, it has limita-
tions. First, errors in the initial rough code (e.g.,
structural mismatches) may propagate to refine-
ment, particularly in block-level tasks where gains
were smaller (Table 1, line/block-level CDC@1).
Second, performance depends on well-structured
API knowledge—unstructured retrieval introduces
noise, as seen in RAG misalignment (Table 2: GPT-
4 Pass@1 dropped to 47.47 vs. 75.21 in direct gen-
eration). Integrating version-specific knowledge
graphs (modeling API evolution) or pretraining on
API documentation may mitigate the limitations.

The framework’s simplicity positions it as a
meta-structure for multi-agent systems. For ex-
ample, specialized agents could handle retrieval,
generation, and refinement, enabling scalable han-
dling of complex dependencies (e.g., cross-library
integration). This aligns with findings in Big-
CodeBench (Table 3: two-step improved Pass@1
by up to 5.94), suggesting adaptability for collab-
orative, domain-specific workflows. Future work
could explore hierarchical agent architectures for
real-time API evolution and error recovery.

4 Conclusion

We introduced a two-step reasoning framework that
enhances API invocation accuracy and version con-
trol by separating rough code generation (or re-
trieval) from fine code editing. Experiments on
VersiCode and BigCodeBench confirm its effective-
ness, particularly benefiting larger models. While
the framework improves correctness, limitations re-
main—structural errors can propagate, and unstruc-
tured retrieval may introduce noise. Future work
should integrate version-aware knowledge graphs
and explore hierarchical multi-agent architectures
for dynamic retrieval, generation, and refinement.

5 Limitation

While our two-step reasoning framework improves
API invocation accuracy, it has several limitations.

First, the framework is constrained by data limi-
tations, as its evaluation relies on benchmarks like
VersiCode and BigCodeBench, which primarily
assess block-level code generation. However, real-
world software development involves project-level
tasks with cross-file dependencies and long-range
API interactions, which these benchmarks do not
fully capture. To better assess industrial applicabil-
ity, future work should explore more challenging
datasets featuring larger-scale, multi-file, and cross-
library programming tasks.

Second, while the two-step reasoning approach
improves API accuracy, its gains remain moderate.
It mitigates some errors but does not fully resolve
issues in API selection, version mismatches, or
complex multi-API interactions. Further improve-
ments require integrating richer external knowl-
edge, such as API knowledge graphs, dynamic
code retrieval, execution-based verification, and
multimodal data, to enhance code refinement and
correctness validation.

References

Lakshya A Agrawal, Aditya Kanade, Navin Goyal, Shu-
vendu K. Lahiri, and Sriram K. Rajamani. 2023.
Guiding Language Models of Code with Global Con-
text using Monitors. CoRR, abs/2306.10763.

Shirley Anugrah Hayati, Raphael Olivier, Pravalika Av-
varu, Pengcheng Yin, Anthony Tomasic, and Graham
Neubig. 2018. Retrieval-based neural code gener-
ation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
Brussels, Belgium, October 31 - November 4, 2018,
pages 925-930. Association for Computational Lin-
guistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In Advances in Neural Information Pro-
cessing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Brock-
man, et al. 2021. Evaluating large language models
trained on code. CoRR, abs/2107.03374.

CodeGemma Team, Heri Zhao, Jeffrey Hui, Joshua
Howland, Nam Nguyen, Siqi Zuo, Andrea Hu,

Christopher A. Choquette-Choo, Jingyue Shen, Joe
Kelley, Kshitij Bansal, et al. 2024. Codegemma:
Open code models based on gemma. CoRR,
abs/2406.11409.

Dejian Yang Zhenda Xie Kai Dong Wentao Zhang
Guanting Chen Xiao Bi Y. Wu Y.K. Li Fuli Luo
Yingfei Xiong Wenfeng Liang Daya Guo, Qihao Zhu.
2024. Deepseek-coder: When the large language
model meets programming - the rise of code intelli-
gence. CoRR, arXiv:2401.14196.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, and others. 2024. The llama 3
herd of models. CoRR, abs/2407.21783.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih,
Tim Rocktischel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In Advances in Neu-
ral Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. In Advances in
Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Sys-
tems 2022, NeurlPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022.

Tongtong Wu, Weigang Wu, Xingyu Wang, Kang Xu,
Suyu Ma, Bo Jiang, Ping Yang, Zhenchang Xing,
Yuan-Fang Li, and Gholamreza Haffari. 2024. Versi-
code: Towards version-controllable code generation.
CoRR, abs/2406.07411.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, , et al. 2024. Qwen2
technical report. CoRR, abs/2407.10671.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R. Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han
Hu, Wenhao Yu, Ratnadira Widyasari, Imam Nur
Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul,
et al. 2024. BigCodeBench: Benchmarking Code
Generation with Diverse Function Calls and Complex
Instructions. CoRR, abs/2406.15877.

https://doi.org/10.48550/ARXIV.2306.10763
https://doi.org/10.48550/ARXIV.2306.10763
https://doi.org/10.48550/ARXIV.2306.10763
https://doi.org/10.18653/V1/D18-1111
https://doi.org/10.18653/V1/D18-1111
https://doi.org/10.18653/V1/D18-1111
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.48550/ARXIV.2406.11409
https://doi.org/10.48550/ARXIV.2406.11409
https://doi.org/10.48550/ARXIV.2406.11409
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.48550/ARXIV.2407.21783
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2406.07411
https://doi.org/10.48550/ARXIV.2406.07411
https://doi.org/10.48550/ARXIV.2406.07411
https://doi.org/10.48550/ARXIV.2407.10671
https://doi.org/10.48550/ARXIV.2407.10671
https://doi.org/10.48550/ARXIV.2407.10671
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877

A Prompt

We introduce prompt template for VersiCode and
Bigcodebench which show in figure2,3,4,5,6 re-
spectively.

B Similarity index experimental results

We used three other metrics to measure the similar-
ity between the generated code and the groundtruth,
respectively ISM@K, PM@K, EM@K.

Identifier Sequence Match (ISM@k) and Pre-
fix Match (PM@k)(Agrawal et al., 2023) (for low-
level generation): These two metrics measure how
well the generated sequence matches the ground
truth. In block-level generation, we calculate the
average performance of each row, and each in-
stance generates n = 6 independent samples. Ex-
act Match (EM @k): Regular expression matching
is used to determine whether the generated code
uses the specified API. The calculation method of
EM @k is the same as Pass@k (n = 6, kK = 1).

The detailed results can be seen in Table 4,5

C Setups

Evaluation Metrics: VersiCode evaluates large lan-
guage models on version-specific code completion
(VSCO), focusing on the dynamic nature of library
updates and the ability to handle changing API re-
quirements, and BigCodeBench evaluates LLMs
on complex programming tasks requiring multiple
function invocations, including various domains
like data analysis and web development, with mul-
tiple test cases for each task.

Evaluation Metrics:Pass@k(Chen et al., 2021):
Evaluates model performance by generating n > k
correct samples (n = 6, k = 1) through executable
testing. Critical Diff Check (CDC@k)(Wu et al.,
2024): Focuses on the difference between gener-
ated code and the reference answer, unlike tradi-
tional code similarity.

Baseline: We compare two-step reasoning with
one-step generation in scenarios without external
knowledge. For retrieval-based generation, we
evaluate rough code retrieval against traditional
natural language-based retrieval. Experiments are
conducted on DeepSeek-Coder (Daya Guo, 2024),
CodeGemma (CodeGemma Team et al., 2024),
Llama-3 (Dubey et al., 2024), Qwen (Yang et al.,
2024), and GPT-40 to assess performance across
diverse model architectures.

You are a Python programming expert. Your task is to analyze a code snippet and infer the
content masked by <mask>. Here are your instructions:
1. You will receive:
- A Python library name and its version, which is relevant to the content masked by <mask>
- A code snippet with one or more <mask> markers
2. Each <mask> in the snippet represents the same masked content.
3. Based on the provided library and its version, infer the specific token that <mask> is hiding.
4. Provide your response as follows:
- Give only one answer, regardless of how many <mask> appear
- Include only the inferred content
- Wrap your answer with ““python and" "to denote it as a code block
- Omit any explanations or extra information
The Python library with its version and the code snippet are provided below:
Library and Version:
{task_description}
Code Snippet:
{masked_code}
Your response:

Figure 2: Rough Code Generation Prompt for Versicode

You are a Python programming expert. Your task is to analyze a code snippet and infer the
content masked by <token_mask>. Here are your instructions:
1. You will receive:

- A Python library name and its version, which is relevant to the content masked by
<token_mask>

- A code snippet with one or more <token_mask> markers
2. Each <token_mask> in the snippet represents the same masked content.
3. Based on the provided library and its version, infer the specific token that <token_mask> is
hiding.
4. Provide your response as follows:

- Give only one answer, regardless of how many <token_mask> appear

- Include only the inferred content

- Wrap your answer with ““python and " to denote it as a code block

- Omit any explanations or extra information
The Python library with its version and the code snippet are provided below:
Library and Version:
{dependency_version}
Code Snippet:
{masked_code}
In the first stage of reasoning, we have generated some possible answers as follows:
{first_step_answer}
Please substitute the answer generated in the first step into the code snippet and determine
whether it is correct. If it is wrong, please regenerate it. If it is correct, please keep the output
unchanged.
Your response:

Figure 3: Fine Code Editing Prompt for Versicode

You are a professional Python engineer. Your task is to write Python code that implements a
specific function based on the provided library and version. Here are your instructions:
1. You will receive:
- The name and version of the library relevant to the code
- A code snippet with a <type_mask> where you need to infer the missing code
2. Based on the library information, write the Python code that fills the <type_mask> and
implements the feature.
3. Provide your response as follows:
- Return only the code that fills the <type_mask> and implements the function
- Enclose your code with ““python and " to denote it as a Python code block
- Omit any explanations or extra information
The library information and partially masked code snippet are provided below:
Library and Version:
{dependency_version}
Code Snippet:
{masked_code}
Here | found the most relevant source code of the same version dependency, | hope that will
be helpful:
{source_code}
Your Response:

Figure 4: Information-Enhanced Fine Code Generation Prompt for Versicode

token_level line_level block_level
Model EM@]1 EM@1 ISM@1 PM@1 EM@1 ISM@1 PM@1

one-step two-step one-step two-step one-step two-step one-step two-step one-step two-step one-step two-step one-step two-step
DeepSeek-7B 28.57 33.33 56.86 66.17 4431 49.80 35.89 37.10 23.67 40.56 23.60 38.85 15.04 20.25
CodeGemma-7B 3221 39.50 46.08 54.20 34.19 42.17 23.05 30.06 8.54 29.41 8.48 29.08 5.12 14.58
Deepseek-chat 71.43 72.27 77.31 78.15 39.49 57.98 45.35 59.04 41.18 66.39 13.44 63.02 20.18 48.81
llama-3-70b 54.06 56.72 65.97 66.39 50.47 50.90 46.29 46.67 61.06 61.34 61.01 61.34 36.10 36.35
Qwen2-72B 60.78 62.60 71.28 71.42 52.80 52.94 52.01 55.53 64.28 65.68 63.66 64.26 42.96 43.65
GPT-40 75.21 77.17 77.17 78.85 41.87 58.68 46.58 58.72 67.92 68.20 55.88 66.80 48.90 50.59

Table 4: The EM@1, ISM@1 and PM@1 results of different LLMs without knowledge base support on VersiCode.

token_level line_level block_level
Model EM@1 EM@1 ISM@1 PM@1 EM@1 ISM@1 PM@1

one-step two-step one-step two-step one-step two-step one-step two-step one-step two-step one-step two-step one-step two-step
DeepSeek-7B 6.02 16.80 15.55 26.61 11.06 16.30 8.45 12.85 6.16 6.16 6.16 6.16 2.73 2.73
CodeGemma-7B 3.22 13.03 9.66 19.47 7.35 11.70 4.68 774 7.98 17.93 7.93 17.80 4.55 9.70
Deepseek-chat 48.74 48.74 69.75 72.27 31.09 35.30 39.37 41.70 35.29 36.97 10.92 13.45 18.44 19.06
llama-3-70b 14.84 22.68 64.99 66.53 31.37 31.65 33.65 34.26 39.78 40.19 12.26 13.16 17.32 19.80
Qwen2-72B 23.80 28.01 72.12 75.07 51.94 54.03 49.12 52.87 54.06 55.32 42.50 47.55 27.42 30.97
GPT-40 47.47 52.38 76.61 79.55 56.86 58.90 54.27 57.11 65.54 66.25 52.60 52.94 46.69 46.83

Table 5: The EM@1, ISM@1 and PM @1 results of different LLMs with knowledge base support on VersiCode.

You are a professional Python engineer. Your task is to write Python code that implements a
specific function based on the provided task description and requirements. Here are your
instructions:
1. You will receive:
- A detailed description of the function to be implemented
- A list of required libraries or packages to be used in the implementation
- Information about the expected input arguments and return type
- An example output to validate the implementation
2. Based on the provided information:
- Write the Python code that satisfies the task description and requirements.
- Ensure that the code includes proper imports for the specified libraries.
- Adhere to the specified input and output formats.
3. Provide your response as follows:
- Return the complete Python function implementation.
- Enclose your code with ““python and " to denote it as a Python code block.
- Omit any explanations or extra information.
The task description, requirements, and examples are provided below:
Task Description:
{task_description}
Requirements:
{requirements}
Example:
{example}
Your response:

Figure 5: Rough Code Generation Prompt for Bigcodebench

You are a professional Python engineer. Your task is to write Python code that implements a
specific function based on the provided description and library requirements. Here are your
instructions:
1. You will receive:
- A detailed description of the task to be implemented
- Some code references which may contain errors
- The required libraries or packages for the task
2. Based on the task description and the provided information:
- Ensure the correctness of the generated Python code.
- Pay special attention to the following:
* Whether the required libraries or packages are imported correctly.
* Whether the return value type matches the task requirements.
* Whether the libraries or packages are used correctly in the implementation.
3. Provide your response as follows:
- Return the correct Python implementation for the described task.
- Enclose your code with “~““python and " to denote it as a Python code block.
- Omit any explanations or extra information.
The task description, code references, and library requirements are provided below:
Task Description:
{task_description}
Code References:
{code_references}
Library Requirements:
{library_requirements}
Your response:

Figure 6: Fine Code Editing Prompt for Bigcodebench

10

	Introduction and Related Work
	Two Steps to Precision
	Code Generation without External Knowledge
	Code Generation with External Knowledge

	Experiment
	Experimental Setup
	Results and Analysis
	Discussion

	Conclusion
	Limitation
	Prompt
	Similarity index experimental results
	Setups

