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Abstract

Automatic code generation is crucial in mod-001
ern software development, yet large language002
models struggle with real-world challenges003
like code versioning and multi-API invocation.004
Existing approaches, including direct genera-005
tion and retrieval-augmented methods, often006
fail to ensure precise API usage. This pa-007
per introduces a simple yet effective two-step008
framework: rough code generation or retrieval009
followed by fine code editing. Experiments010
on VersiCode and BigCodeBench show sig-011
nificant performance gains in version-specific012
code completion and function-level program-013
ming. These results demonstrate the frame-014
work’s practicality in enhancing LLM-based015
code generation systems.016

1 Introduction and Related Work017

As software development becomes increasingly018

complex, automatic code generation has emerged019

as a critical research area in software engineer-020

ing.In recent years, LLMs have shown impressive021

performance in benchmarks like HumanEval(Chen022

et al., 2021), generating code from natural language023

instructions. However, real-world tasks, involving024

code versioning and multi-API invocation, pose025

greater challenges. Direct LLM-based generation026

often fails to meet production-level requirements,027

revealing limitations in traditional approaches.028

Existing research falls into two categories:029

LLMs relying solely on internal knowledge and030

those augmented with retrieval. Early efforts, such031

as Codex (Chen et al., 2021) and GPT-3 (Brown032

et al., 2020), focused on direct code generation,033

while later models like RECODE (Anugrah Hayati034

et al., 2018) and REDCODER (Lewis et al., 2020)035

leveraged retrieval-based techniques. However,036

both approaches also face challenges in ensuring037

accurate API calls for specific library versions(Wu038

et al., 2024) and multi-API invocation(Zhuo et al.,039

2024). Beyond these approaches, structured reason- 040

ing has shown potential: Chain of Thought prompt- 041

ing (Wei et al., 2022) improves performance by 042

breaking tasks into steps, while ReAct (Yao et al., 043

2023) refines outputs through API or database 044

queries. This raises a fundamental question: Can 045

increasing inference steps improve API invocation 046

accuracy in code generation? What concrete bene- 047

fits could this provide, such as mitigating specific 048

failure cases, and what inherent limitations might 049

still require alternative strategies? 050

In this paper, we propose a simple yet effective 051

two-step reasoning framework to explore the above 052

questions, which adapts based on the availability of 053

external knowledge. When external knowledge is 054

not available, the framework first generates a rough 055

code structure, which is then refined in the second 056

step to meet specific coding standards. When exter- 057

nal knowledge is available, the process begins with 058

retrieving a rough code template from an external 059

knowledge base, followed by knowledge-enhanced 060

fine-grained code generation. Despite its simplicity, 061

our results demonstrate that this framework signifi- 062

cantly improves API usage and overall code quality. 063

We summarize our main contributions: 064

• We investigate the two-step reasoning framework 065

for API generation using only internal model 066

knowledge, providing insights into LLMs’ rea- 067

soning behavior per inference. 068

• We extend this framework to retrieval-augmented 069

generation, integrating rough code retrieval to 070

enhance API accuracy when external knowledge 071

is available. 072

• Experiments on VersiCode and BigCodeBench 073

demonstrate improved API invocation precision 074

and version control, offering guidance on opti- 075

mizing reasoning steps and encouraging further 076

exploration in multi-agent AI for software engi- 077

neering. 078

1



Figure 1: The figure illustrates the two-step framework. The upper section, Code Generation without External
Information, involves two steps: (1) Rough Code Generation (Crough), and (2) Fine Code Editing (Cfine). The lower
section, Code Generation with External Information, introduces Rough Code Retrieval, fetching relevant
knowledge fragments (V ) via similarity search, followed by Information-Enhanced Fine Code Generation,
which refines the code with retrieved knowledge for improved quality and context-awareness.

2 Two Steps to Precision079

In this section, we elaborate on how we decompose080

the one-step reasoning framework used for direct081

code generation into a two-step reasoning frame-082

work. This approach applies to two scenarios: (1)083

the model generates code using only its memory084

and (2) it incorporates external information. Figure085

1 illustrates the detailed flow in both cases.086

The model is formulated as an end-to-end func-087

tion f : X 7→ Y , where the input space X consists088

of three primary components: Missing code frag-089

ments Cm, representing incomplete code snippets090

with placeholders for API calls that require com-091

pletion; Library requirements Rl, specifying the092

necessary software libraries from which appropri-093

ate APIs should be selected to fulfill the task; and094

Version constraints Vc, ensuring compatibility with095

specific API versions.096

2.1 Code Generation without External097

Knowledge098

We decompose the process into two steps: rough099

code generation and fine code editing.100

Rough Code Generation. The first step gener-101

ates an initial code draft with API calls. Given the102

missing code fragments Cm and library require-103

ments Rl, the model produces a rough code snippet104

Cr = f(Cm, Rl). The rough code Cr produced105

in this step meets structural requirements but may106

contain API errors, version mismatches, or other 107

inconsistencies. 108

Fine Code Editing. The second step refines the 109

rough code to ensure correct API usage and ver- 110

sion compliance. Given the rough code Cr, li- 111

brary requirements Rl, and version constraints 112

Vc, the model generates the final output Cf = 113

f(Cr, Rl, Vc). The fine-tuned code Cf incorpo- 114

rates the necessary modifications, improving API 115

correctness and compatibility with deployment 116

standards. 117

2.2 Code Generation with External 118

Knowledge 119

In retrieval-augmented generation (RAG), natural 120

language queries often misalign with source code, 121

leading to retrieved information that negatively im- 122

pacts performance. We try to solve this problem 123

through two-step reasoning. The process is also 124

divided into two distinct steps: rough code retrieval 125

and knowledge-enhanced fine code generation. 126

Rough Code Retrieval. To address alignment is- 127

sues, we retrieve code snippets from an external 128

knowledge base using a code-based query instead 129

of relying on natural language. The process starts 130

by generating rough code Cr, which is used as a 131

query to retrieve relevant knowledge fragments via 132

similarity search (Lewis et al., 2020). The retrieval 133
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token_level line_level block_level

Model
PASS@1 CDC@1 PASS@1 CDC@1 PASS@1 CDC@1

one-step two-step one-step two-step one-step two-step one-step two-step one-step two-step one-step two-step
DeepSeek-7B 23.24 27.59 28.57 33.33 21.57 23.39 21.29 25.77 0 0.14 0 0.14
CodeGemma-7B 25.07 31.09 32.21 39.50 12.75 16.95 15.13 22.27 0 0 0.14 0.56
Deepseek-coder 54.62 55.46 71.43 72.27 24.37 42.02 21.85 37.82 2.52 15.97 4.20 23.53
llama-3-70b 46.08 47.49 54.06 56.72 30.95 31.65 28.43 29.41 14.15 14.29 22.55 22.69
Qwen2-72B 49.15 52.24 60.78 62.60 32.77 40.33 31.09 34.31 16.8 18.20 28.29 29.41
GPT-4o 60.36 62.04 75.21 77.17 28.29 42.85 25.91 42.30 16.66 24.23 22.83 29.55

Table 1: The Pass@1 and CDC@1 results of different LLMs without knowledge base support on VersiCode.

token_level line_level block_level

Model
PASS@1 CDC@1 PASS@1 CDC@1 PASS@1 CDC@1

one-step two-step one-step two-step one-step two-step one-step two-step one-step two-step one-step two-step
DeepSeek-7B 6.02 15.27 6.02 16.80 5.74 7.14 6.02 9.10 0 0.14 0 0
CodeGemma-7B 3.22 10.22 3.22 13.03 3.08 5.32 2.80 6.44 0 0 0 0
Deepseek-coder 39.50 40.34 48.74 48.74 23.53 24.37 18.49 21.85 1.68 1.68 1.68 1.68
llama-3-70b 14.84 22.68 14.01 22.55 14.99 17.65 13.87 15.69 4.20 5.46 7.70 8.60
Qwen2-72B 23.94 24.65 23.80 28.01 30.67 32.07 28.29 32.91 7.56 11.34 17.51 18.35
GPT-4o 43.13 44.95 47.47 52.38 37.11 37.81 37.25 38.51 9.66 9.94 9.66 12.46

Table 2: The Pass@1 and CDC@1 results of different LLMs with knowledge support on VersiCode.

Model
PASS@1

one-step two-step
DeepSeek-7B 37.50 39.33
Llama-3-70b 45.71 51.65
Qwen-72B 52.64 53.96
DeepSeek-coder 58.40 59.40
GPT-4o 68.30 69.93

Table 3: The Pass@1 results of different LLMs on
BigCodeBench.

process can be expressed as:134

V = argmax
vi

Sim(Cr, ki), (1)135

where ki represents the code fragments in the136

knowledge base, and V denotes the most relevant137

retrieved fragment based on the similarity measure.138

Knowledge-Enhanced Fine Code Generation.139

The second step refines the rough code by inte-140

grating external knowledge. Given the rough code141

Cr, library requirements Rl, version constraints142

Vc, and the retrieved knowledge fragment V , the143

model generates a fine-tuned code snippet, i.e.,144

Cf = f(Cr, Rl, Vc, V ). The fine-tuned code Cf145

leverages external information to improve API146

correctness and ensure better compatibility with147

production-level requirements.148

In both scenarios, the two-step framework gen-149

erates rough code and refines it to meet more gran-150

ular criteria. In the first scenario, the model relies151

solely on its internal memory. In the second, ex-152

ternal knowledge is retrieved and incorporated to153

improve the handling of complex dependencies.154

See Appendix A for details on the prompts we use.155

3 Experiment 156

We perform extensive experiments to answer three 157

key research questions: RQ1: What makes the 158

two-step framework effective for LLM-based code 159

generation without external knowledge, and how 160

does it compare to single-step approaches? RQ2: 161

How does the two-step framework address mis- 162

alignment in RAG, and when does it fall short? 163

RQ3: How well does two-step inference improve 164

function-level code generation with multiple API 165

calls, considering efficiency, correctness, and ro- 166

bustness? 167

3.1 Experimental Setup 168

Evaluation Datasets: We conduct experiments 169

on two different types of code generation tasks, 170

namely VersiCode (Wu et al., 2024) and Big- 171

CodeBench (Zhuo et al., 2024). 172

Knowledge Base: We build a structured knowl- 173

edge base for retrieval-augmented code genera- 174

tion. Using automated scripts, we crawl Python 175

libraries from PyPI and GitHub, extract source 176

code across versions, and store metadata includ- 177

ing library name, version, file paths, and code in 178

JSON format for efficient retrieval. Each entry con- 179

tains multiple API definitions, function signatures, 180

and usage patterns specific to each library version. 181

Evaluation Metrics:We use Pass@k(Chen et al., 182

2021) and Critical Diff Check (CDC@k)(Wu et al., 183

2024) as evaluation metrics over task granularities. 184

Baseline: We compare two-step reasoning with 185

one-step generation in scenarios without external 186
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knowledge. For retrieval-based generation, we eval-187

uate rough code retrieval against traditional natural188

language-based retrieval.189

See Appendix C for detailed experimental setup.190

3.2 Results and Analysis191

API invocation and versioning are critical in192

software development, yet LLMs struggle with193

versioning and concurrent API calls. Our exper-194

iments (Table 1) show that even GPT-4, the best195

performer, scored only 60.36 Pass@1 on token-196

level tasks, dropping by 32.07 and 43.7 points at197

line and block levels, highlighting these challenges.198

To Answer RQ1: The two-step reasoning frame-199

work significantly improves LLM performance on200

VersiCode. As shown in Table 1, CodeGemma-7B201

achieved a 6.02 increase in Pass@1 and 7.29 in202

CDC@1, with other models improving by 0.84 →203

3.45 (Pass@1) and 0.84 → 4.76 (CDC@1) at the204

token level. For more complex tasks, the benefits205

were even greater. DeepSeek-Coder saw a 17.65206

increase in Pass@1 and 15.97 in CDC@1 at the207

line level, with other models improving by 0.7 →208

15.6 (Pass@1) and 0.98 → 16.39 (CDC@1). At the209

block level, DeepSeek-Coder and GPT-4 showed210

the largest gains (13.45 and 7.57 in Pass@1, 19.33211

and 6.72 in CDC@1), while smaller models had212

minimal impact due to lower baselines. The frame-213

work enhances accuracy at all levels, with stronger214

models benefiting more in high-level tasks.215

To Answer RQ2: Table 2 shows that natural216

language-based retrieval significantly hinders per-217

formance, introducing irrelevant context. For exam-218

ple, GPT-4o’s Pass@1 drops to 47.47 with retrieval,219

compared to 75.21 for direct generation. The two-220

step framework effectively mitigates this misalign-221

ment, improving model performance across all222

levels. DeepSeek-7B gains +9.25 Pass@1 and223

+10.78 CDC@1 at the token level, while Qwen224

sees a +1.4 Pass@1 and +4.62 CDC@1 boost at225

the line level. Block-level gains are smaller, re-226

flecting the increased difficulty of refining com-227

plete code. By aligning retrieved information with228

task requirements, two-step reasoning enhances229

retrieval-augmented generation, ensuring more ac-230

curate and contextually relevant API usage.231

To Answer RQ3: We evaluate the two-step reason-232

ing framework for function-level code generation233

on BigCodeBench. Table 3 shows that two-step rea-234

soning consistently improves function-level code235

generation across all models. Correctness is signif-236

icantly enhanced, with models like GPT-4o (68.30237

→ 69.93) and Llama-3-70B (45.71 → 51.65) ben- 238

efiting the most. The improvements are robust 239

across varying API complexities, ensuring better 240

API sequencing and parameter usage. Larger and 241

better-performing models gain more from two-step 242

inference, indicating a trade-off between efficiency 243

and effectiveness. While additional refinement in- 244

creases computational cost, it ensures more reli- 245

able and adaptable API usage, making it a practi- 246

cal approach for complex function generation. 247

3.3 Discussion 248

While the two-step framework significantly im- 249

proves API invocation accuracy, it has limita- 250

tions. First, errors in the initial rough code (e.g., 251

structural mismatches) may propagate to refine- 252

ment, particularly in block-level tasks where gains 253

were smaller (Table 1, line/block-level CDC@1). 254

Second, performance depends on well-structured 255

API knowledge—unstructured retrieval introduces 256

noise, as seen in RAG misalignment (Table 2: GPT- 257

4 Pass@1 dropped to 47.47 vs. 75.21 in direct gen- 258

eration). Integrating version-specific knowledge 259

graphs (modeling API evolution) or pretraining on 260

API documentation may mitigate the limitations. 261

The framework’s simplicity positions it as a 262

meta-structure for multi-agent systems. For ex- 263

ample, specialized agents could handle retrieval, 264

generation, and refinement, enabling scalable han- 265

dling of complex dependencies (e.g., cross-library 266

integration). This aligns with findings in Big- 267

CodeBench (Table 3: two-step improved Pass@1 268

by up to 5.94), suggesting adaptability for collab- 269

orative, domain-specific workflows. Future work 270

could explore hierarchical agent architectures for 271

real-time API evolution and error recovery. 272

4 Conclusion 273

We introduced a two-step reasoning framework that 274

enhances API invocation accuracy and version con- 275

trol by separating rough code generation (or re- 276

trieval) from fine code editing. Experiments on 277

VersiCode and BigCodeBench confirm its effective- 278

ness, particularly benefiting larger models. While 279

the framework improves correctness, limitations re- 280

main—structural errors can propagate, and unstruc- 281

tured retrieval may introduce noise. Future work 282

should integrate version-aware knowledge graphs 283

and explore hierarchical multi-agent architectures 284

for dynamic retrieval, generation, and refinement. 285
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5 Limitation286

While our two-step reasoning framework improves287

API invocation accuracy, it has several limitations.288

First, the framework is constrained by data limi-289

tations, as its evaluation relies on benchmarks like290

VersiCode and BigCodeBench, which primarily291

assess block-level code generation. However, real-292

world software development involves project-level293

tasks with cross-file dependencies and long-range294

API interactions, which these benchmarks do not295

fully capture. To better assess industrial applicabil-296

ity, future work should explore more challenging297

datasets featuring larger-scale, multi-file, and cross-298

library programming tasks.299

Second, while the two-step reasoning approach300

improves API accuracy, its gains remain moderate.301

It mitigates some errors but does not fully resolve302

issues in API selection, version mismatches, or303

complex multi-API interactions. Further improve-304

ments require integrating richer external knowl-305

edge, such as API knowledge graphs, dynamic306

code retrieval, execution-based verification, and307

multimodal data, to enhance code refinement and308

correctness validation.309
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A Prompt391

We introduce prompt template for VersiCode and392

Bigcodebench which show in figure2,3,4,5,6 re-393

spectively.394

B Similarity index experimental results395

We used three other metrics to measure the similar-396

ity between the generated code and the groundtruth,397

respectively ISM@K, PM@K, EM@K.398

Identifier Sequence Match (ISM@k) and Pre-399

fix Match (PM@k)(Agrawal et al., 2023) (for low-400

level generation): These two metrics measure how401

well the generated sequence matches the ground402

truth. In block-level generation, we calculate the403

average performance of each row, and each in-404

stance generates n = 6 independent samples. Ex-405

act Match (EM@k): Regular expression matching406

is used to determine whether the generated code407

uses the specified API. The calculation method of408

EM@k is the same as Pass@k (n = 6, k = 1).409

The detailed results can be seen in Table 4,5410

C Setups411

Evaluation Metrics:VersiCode evaluates large lan-412

guage models on version-specific code completion413

(VSCC), focusing on the dynamic nature of library414

updates and the ability to handle changing API re-415

quirements, and BigCodeBench evaluates LLMs416

on complex programming tasks requiring multiple417

function invocations, including various domains418

like data analysis and web development, with mul-419

tiple test cases for each task.420

Evaluation Metrics:Pass@k(Chen et al., 2021):421

Evaluates model performance by generating n ≥ k422

correct samples (n = 6, k = 1) through executable423

testing. Critical Diff Check (CDC@k)(Wu et al.,424

2024): Focuses on the difference between gener-425

ated code and the reference answer, unlike tradi-426

tional code similarity.427

Baseline: We compare two-step reasoning with428

one-step generation in scenarios without external429

knowledge. For retrieval-based generation, we430

evaluate rough code retrieval against traditional431

natural language-based retrieval. Experiments are432

conducted on DeepSeek-Coder (Daya Guo, 2024),433

CodeGemma (CodeGemma Team et al., 2024),434

Llama-3 (Dubey et al., 2024), Qwen (Yang et al.,435

2024), and GPT-4o to assess performance across436

diverse model architectures.437
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You are a Python programming expert. Your task is to analyze a code snippet and infer the 
content masked by <mask>. Here are your instructions:
1. You will receive:
   - A Python library name and its version, which is relevant to the content masked by <mask>
   - A code snippet with one or more <mask> markers
2. Each <mask> in the snippet represents the same masked content.
3. Based on the provided library and its version, infer the specific token that <mask> is hiding.
4. Provide your response as follows:
   - Give only one answer, regardless of how many <mask> appear
   - Include only the inferred content
   - Wrap your answer with ```python and```to denote it as a code block
   - Omit any explanations or extra information
The Python library with its version and the code snippet are provided below:
Library and Version:
{task_description}
Code Snippet:
{masked_code}
Your response:

Figure 2: Rough Code Generation Prompt for Versicode

You are a Python programming expert. Your task is to analyze a code snippet and infer the 
content masked by <token_mask>. Here are your instructions:
1. You will receive: 
   - A Python library name and its version, which is relevant to the content masked by 
<token_mask>
   - A code snippet with one or more <token_mask> markers
2. Each <token_mask> in the snippet represents the same masked content.
3. Based on the provided library and its version, infer the specific token that <token_mask> is 
hiding.
4. Provide your response as follows:
   - Give only one answer, regardless of how many <token_mask> appear
   - Include only the inferred content
   - Wrap your answer with ```python and ``` to denote it as a code block
   - Omit any explanations or extra information
The Python library with its version and the code snippet are provided below:
Library and Version:
{dependency_version}
Code Snippet:
{masked_code}
In the first stage of reasoning, we have generated some possible answers as follows:
{first_step_answer}
Please substitute the answer generated in the first step into the code snippet and determine 
whether it is correct. If it is wrong, please regenerate it. If it is correct, please keep the output 
unchanged.
Your response:

Figure 3: Fine Code Editing Prompt for Versicode
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You are a professional Python engineer. Your task is to write Python code that implements a 
specific function based on the provided library and version. Here are your instructions:
1. You will receive:
   - The name and version of the library relevant to the code
   - A code snippet with a <type_mask> where you need to infer the missing code
2. Based on the library information, write the Python code that fills the <type_mask> and 
implements the feature.
3. Provide your response as follows:
   - Return only the code that fills the <type_mask> and implements the function
   - Enclose your code with ```python and ``` to denote it as a Python code block
   - Omit any explanations or extra information
The library information and partially masked code snippet are provided below:
Library and Version:
{dependency_version}
Code Snippet:
{masked_code}
Here I found the most relevant source code of the same version dependency, I hope that will 
be helpful:
{source_code}
Your Response:

Figure 4: Information-Enhanced Fine Code Generation Prompt for Versicode

token_level line_level block_level

Model
EM@1 EM@1 ISM@1 PM@1 EM@1 ISM@1 PM@1

one-step two-step one-step two-step one-step two-step one-step two-step one-step two-step one-step two-step one-step two-step
DeepSeek-7B 28.57 33.33 56.86 66.17 44.31 49.80 35.89 37.10 23.67 40.56 23.60 38.85 15.04 20.25
CodeGemma-7B 32.21 39.50 46.08 54.20 34.19 42.17 23.05 30.06 8.54 29.41 8.48 29.08 5.12 14.58
Deepseek-chat 71.43 72.27 77.31 78.15 39.49 57.98 45.35 59.04 41.18 66.39 13.44 63.02 20.18 48.81
llama-3-70b 54.06 56.72 65.97 66.39 50.47 50.90 46.29 46.67 61.06 61.34 61.01 61.34 36.10 36.35
Qwen2-72B 60.78 62.60 71.28 71.42 52.80 52.94 52.01 55.53 64.28 65.68 63.66 64.26 42.96 43.65
GPT-4o 75.21 77.17 77.17 78.85 41.87 58.68 46.58 58.72 67.92 68.20 55.88 66.80 48.90 50.59

Table 4: The EM@1, ISM@1 and PM@1 results of different LLMs without knowledge base support on VersiCode.

token_level line_level block_level

Model
EM@1 EM@1 ISM@1 PM@1 EM@1 ISM@1 PM@1

one-step two-step one-step two-step one-step two-step one-step two-step one-step two-step one-step two-step one-step two-step
DeepSeek-7B 6.02 16.80 15.55 26.61 11.06 16.30 8.45 12.85 6.16 6.16 6.16 6.16 2.73 2.73
CodeGemma-7B 3.22 13.03 9.66 19.47 7.35 11.70 4.68 7.74 7.98 17.93 7.93 17.80 4.55 9.70
Deepseek-chat 48.74 48.74 69.75 72.27 31.09 35.30 39.37 41.70 35.29 36.97 10.92 13.45 18.44 19.06
llama-3-70b 14.84 22.68 64.99 66.53 31.37 31.65 33.65 34.26 39.78 40.19 12.26 13.16 17.32 19.80
Qwen2-72B 23.80 28.01 72.12 75.07 51.94 54.03 49.12 52.87 54.06 55.32 42.50 47.55 27.42 30.97
GPT-4o 47.47 52.38 76.61 79.55 56.86 58.90 54.27 57.11 65.54 66.25 52.60 52.94 46.69 46.83

Table 5: The EM@1, ISM@1 and PM@1 results of different LLMs with knowledge base support on VersiCode.
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You are a professional Python engineer. Your task is to write Python code that implements a 
specific function based on the provided task description and requirements. Here are your 
instructions:
1. You will receive:
   - A detailed description of the function to be implemented
   - A list of required libraries or packages to be used in the implementation
   - Information about the expected input arguments and return type
   - An example output to validate the implementation
2. Based on the provided information:
   - Write the Python code that satisfies the task description and requirements.
   - Ensure that the code includes proper imports for the specified libraries.
   - Adhere to the specified input and output formats.
3. Provide your response as follows:
   - Return the complete Python function implementation.
   - Enclose your code with ```python and ``` to denote it as a Python code block.
   - Omit any explanations or extra information.
The task description, requirements, and examples are provided below:
Task Description:
{task_description}
Requirements:
{requirements}
Example:
{example}
Your response:

Figure 5: Rough Code Generation Prompt for Bigcodebench
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You are a professional Python engineer. Your task is to write Python code that implements a 
specific function based on the provided description and library requirements. Here are your 
instructions:
1. You will receive:
   - A detailed description of the task to be implemented
   - Some code references which may contain errors
   - The required libraries or packages for the task
2. Based on the task description and the provided information:
   - Ensure the correctness of the generated Python code.
   - Pay special attention to the following:
     * Whether the required libraries or packages are imported correctly.
     * Whether the return value type matches the task requirements.
     * Whether the libraries or packages are used correctly in the implementation.
3. Provide your response as follows:
   - Return the correct Python implementation for the described task.
   - Enclose your code with ```python and ``` to denote it as a Python code block.
   - Omit any explanations or extra information.
The task description, code references, and library requirements are provided below:
Task Description:
{task_description}
Code References:
{code_references}
Library Requirements:
{library_requirements}
Your response:

Figure 6: Fine Code Editing Prompt for Bigcodebench
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