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We prove effective density of random walks on homogeneous spaces, assuming that the underlying
measure is supported on matrices generating a dense subgroup and having algebraic entries. The
main novelty is an argument passing from high dimension to effective equidistribution in the setting
of random walks on homogeneous spaces, exploiting the spectral gap of the associated convolution
operator.

1 Introduction
The goal of this paper is to establish effective density of certain countably supported random walks on
homogeneous spaces of general simple Lie groups.

Let G be a connected simple Lie group, � < G a lattice and X = G/�. We consider the height function
ht : X → R≥1 on X as defined and discussed in Section 3.1. For the purposes of the introduction, we
mention that the height of a point x0 ∈ X measures how deep x0 is in any of the cusps of X. Moreover, if
X is compact, then ht ≡ 1. For any h > 0, we denote by X(h) the set of x ∈ X with ht(x) ≤ h.

For a subset S ⊂ G and x0 ∈ X, we define

diamr(X, S, x0) = min{� ≥ 0 : S�x0 is r-dense in X(r−1)},

where we say that the set S�x0 is r-dense in X(r−1) if for every y ∈ X(r−1) there is x ∈ S�x0 such that
dX(x, y) < r, for dX the metric on X defined in Section 2.

Our first result is an estimate of diamr(X, S, x0) under the assumption that S ⊂ G is a symmetric
subset (i.e., S = S−1) supported on matrices with algebraic entries and generating a dense subgroup. To
formulate our result, denote by g the Lie algebra of G and by Ad : G → GL(g) the adjoint representation.
For the asymptotic notation used, we refer to Section 2.2.

Theorem 1.1. Let G be a connected simple Lie group with finite center, � < G a lattice and X =
G/�. Let S ⊂ G be a symmetric set generating a dense subgroup of G. Assume further that there
is a basis of g such that Ad(S) consists of matrices with algebraic entries with respect to the
chosen basis of g. Then for x0 ∈ X and r > 0,

diamr(X, S, x0) ��,S log r−1 + log ht(x0), (1.1)

where the implied constant depends on � and S.
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Concrete examples of subsets S in G satisfying the assumptions of Theorem 1.1 can be constructed
by considering an Iwasawa decomposition of G = KAN or by choosing finitely many one parameter
unipotent subgroups that generate G.

We note that Theorem 1.1 is new even in the case G = SL2(R) and is not known to the authors for
any Zariski dense countable set S. On the other hand, for X = SLd(R)/SLd(Z) and certain S generating a
solvable subgroup of SLd(R) and arising from a rational iterated function system, Theorem 1.1 follows
for x0 = e� ∈ X from the recent effective equidistribution result of Khalil–Luethi [18]. Moreover, if X is
compact, then Theorem 1.1 follows from the quantitative density result on G as established in section
9 of [16].

The implied constant of (1.1) is complicated to compute and depends on the spectral gap (defined in
(2.2)), Diophantine properties, and further growth parameters of the set S. Nonetheless, the asymptotic
behaviour being logarithmic in r−1 is optimal.

For compact groups, Theorem 1.1 follows from the spectral gap result established by the Bourgain–
Gamburd method [10] as developed for general compact simple Lie groups by Benoist–de Saxcé [3].
With current techniques, it is necessary to assume that the entries of the matrices in S are algebraic.
Indeed, without this assumption, the corresponding result is not even known for compact groups. For
arbitrary sets S in compact groups that generate a dense subgroup, a poly-logarithmic rate for the r-
diameter of S follows from the Solovay–Kitaev algorithm. As was shown in [1] and [20], the Solovay–
Kitaev algorithm extends to non-compact perfect Lie groups groups, which leads to a poly-logarithmic
estimate of diamr(X, S, x0) for arbitrary finite subsets S ⊂ SLd(C) that generate a dense subgroup. The
exponent in the poly-logarithmic rate was improved in [7] and [21]. For all these examples, it is believed
that a logarithmic diameter bound holds.

Recall that a Zariski dense subgroup of G is either dense or discrete. In the case when � = 〈S〉 is
discrete, further difficulties arise as the orbit of �x0 may be finite. If � is moreover a lattice in G, the
density of the �x0 orbit in G/� can be understood by studying the �(G)(x0, e�)-orbit on the homogeneous
space G/� × G/�, where � : G → G × G is the diagonal embedding. For the latter case, if one assumes
G = SL2(R) and that � and � are arithmetic lattices, it appears that one may apply the recent results of
Lindenstrauss–Mohammadi [23] to deduce effective density of the � orbit at x0.

Let μ be a probability measure on G whose support is a finite symmetric subset generating a dense
subgroup. Then the recent result of Bénard [2], using the landmark measure classification theorem of
Benoist–Quint [5], implies that for all x0 ∈ X,

μ∗n ∗ δx0 → mX (1.2)

as n tends to infinity, for mX the Haar probability measure on X. Under the additional assumption that
Ad(supp(μ)) consists of matrices with algebraic entries with respect to a basis of g, Theorem 1.1 gives
an effective estimate of how dense the support of μ∗n ∗ δx0 is in X.

Let Z1, Z2, . . . be independent μ-distributed random variables on G. For x0 ∈ X denote by

Yn,x0 = Zn · · · Z1x0.

The sequence (Z1, Z2, . . .) is distributed according to the probability measure μ⊗N, yielding a probability
distribution of the random sequence (Yn,x0 )n≥1. A further result by [5] states that μ⊗N-almost surely the
orbit (Yn,x0 )n≥1 equidistributes, that is, for all f ∈ Cc(X),

lim
N→∞

1
N

N−1∑
n=0

f (Yn,x0 ) =
∫

f dmX. (1.3)

Our second result is an effective density theorem for the orbit (Yn,x0 )n≥1.

Theorem 1.2. Let G, �, X, and S be as in Theorem 1.1 and let μ be a probability measure on G
with support S. Then for A > 0 large enough depending on � and μ the following holds: for any
x0 ∈ X,

P[(Y1,x0 , . . . , Y�r−A�,x0
) is not r-dense in X(r−1)] ≤ ht(x0) · rα·A, (1.4)
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for r small enough in terms of �, μ and A and for α = α(�, μ) > 0 a constant depending on
� and μ. Moreover, μ⊗N-almost surely, the collection of points (Y1,x0 , . . . , Y�r−A�,x0

) is r-dense in
X(r−1) for r > 0 small enough depending on the sequence.

An r-dense subset of X(r−1) needs to contain at least O(r− dim G) many elements. Therefore by the
pigeonhole principle the constant A > 0 from (1.4) must satisfy A ≥ dim G. We furthermore point out
that Theorem 1.2 is a consequence of Theorem 1.1.

It is a well-known open problem to prove error rates for (1.2) and (1.3). While our methods only
suffice to establish the above discussed effective density theorems, we show, as stated in Theorem 1.5,
effective equidistribution on X with exponential error terms for sequences of measures of the form
μ∗n ∗ μ

∗β·n
D ∗ δx0 , where μD is a measure that satisfies sufficiently strong Diophantine properties and is

supported close enough to the identity in terms of μ. This is achieved by using the L2-flattening results
of [13] together with a novel argument passing from high dimension to effective equidistribution in the
setting of random walks on homogeneous spaces.

The difficulty in the latter argument is that a Fourier inversion formula on X is either not available
or involves complicated terms and, in contrast to compact groups, the spectral gap of μ appears not to
be useful in controlling the arising error terms. On the other hand, our method is related to the ideas by
Venkatesh [27, Section 3.1], which were recently used by Mohammadi–Lindenstrauss [23] to pass from
high dimension to effective equidistribution for unipotent actions. In our setting, for a given measure
μ on G and a sequence of measures νn on X, we show (Corollary 3.1), using the spectral gap of μ, that
the sequence μ∗n ∗ νn equidistributes effectively under the assumption that νn has dimension (see (2.1))
at least dim G − γ for γ = γ (μ) > 0 a constant depending on μ. This method is the main contribution of
this paper and allows us to deduce Theorem 1.5, upon which Theorem 1.1 relies.

The current techniques prevent us from proving effective equidistribution of μ∗n
D ∗ δx0 for a measure

μD satisfying sufficiently strong Diophantine properties, as we are presently not able to control γ (μD).
In [19], the second author introduced the notion of a (c1, c2, ε)-Diophantine measure in order to

conveniently capture the flattening results of [13]. We utilize the same definition in this paper and
refer to [19] for a discussion.

Definition 1.3. Let G be a connected Lie group, μD a probability measure on G, and let c1, c2, ε > 0.
A measure μD is called (c1, c2, ε)-Diophantine if

(1) μD is (c1 log 1
ε
, c2 log 1

ε
)-Diophantine, that is, for n large enough,

sup
H<G

μ∗n
D (Bεc1n (H)) ≤ εc2n,

where the supremum is taken over all connected closed subgroups.
(2) supp(μD) ⊂ Bε(e).

The employed flattening results for (c1, c2, ε)-Diophantine measures (Corollary 4.2 of [13] and stated
in Proposition 3.4 of Section 3) were initiated by Bourgain in his construction of a monotone expander
[8] (see also [12]) and of a finitely supported measure on SL2(R) with absolutely continuous Furstenberg
measure [9]. In [13], the flattening results are used to establish a local spectral gap and, among other
applications, to generalize Bourgain’s examples of monotone expanders. The second author [19] used
these results to prove a local limit theorem for G acting on its associated symmetric space for (c1, c2, ε)-
Diophantine measures, where ε is sufficiently small in terms of c1 and c2. We further mention that by [22]
and independently [19], these measures have absolutely continuous Furstenberg measure, generalizing
Bourgain’s example [9] to simple Lie groups.

We state a result from [13] showing that there is an abundant collection of examples of finitely
supported (c1, c2, ε)-Diophantine measures for arbitrarily small ε.

Theorem 1.4. (Theorem 3.1 of [13]) Let G be a connected simple Lie group with finite center. Let
� < G be a countable dense subgroup and assume Ad(�) consists of matrices with algebraic
entries with respect to a basis of g.

Then there exist c1, c2 > 0 such that for every ε0 > 0 there is 0 < ε < ε0 and a finitely supported
symmetric (c1, c2, ε)-Diophantine probability measure μD satisfying supp(μD) ⊂ � ∩ Bε(e).
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To state our effective equidistribution result, denote for a continuous function f on X by Lip(f ) the
Lipschitz constant of f defined in (2.6) and by Lip(X) the space of Lipschitz functions on X. The L∞-norm
on X is written as || · ||∞.

For a bounded operator T, the quantity ρ(T) is the spectral radius of T. Let πX be the Koopman
representation of X. We say that a probability measure μ on G has a spectral gap on X if

ρ(πX(μ)|L2
0(X)) = lim

n→∞
n

√
||πX(μ)|n

L2
0(X)

|| < 1,

that is, where || · || is the operator norm. It follows from Theorem C of [26] that if G is non-compact, then
a measure μ on G that is not supported on a closed amenable subgroup has a spectral gap on X (see
Lemma 3.8).

Theorem 1.5. Let G, � and X be as in Theorem 1.1. Let μ be a compactly supported probability
measure on G with a spectral gap on X and let c1, c2 > 0.

Then there are ε0 = ε0(μ, c1, c2) > 0 and θ = θ(μ) such that for every (c1, c2, ε)-Diophantine
probability measure μD with 0 < ε ≤ ε0 the following holds: there exists β = β(μ, ε) such
that for every bounded Lipschitz function f ∈ Lip(X), x0 ∈ X and n ≥ 1,∫

f (gx0) d(μ∗n ∗ μ
∗β·n
D )(g) =

∫
f dmX + O�,μ,μD ((Lip(f ) + ht(x0)||f ||∞)e−θn).

We emphasize that in the statement of Theorem 1.5 μ is an arbitrary measure with a spectral
gap on X and that ε0 depends on μ. In the outline of proofs in Section 2, it is exposed why this is
necessary. Moreover, for convenience, we use the convention to make no notational distinction between
the possibly non-integer number β · n and the closest integer to it. In addition, we mention that we can
give an explicit lower bound (see Theorem 3.9) for the decay rate θ = θ(μ), depending on the spectral
gap of μ and on the size of supp(μ).

All the previous results build on Theorem 1.5 as Theorem 1.1 follows from Theorem 1.4 and
Theorem 1.5 if G is non-compact.

Structure of paper
We give an outline of proofs and summarize the notation and constants used in Section 2. In Section 3.1,
we discuss the height function and quantitative non-divergence. Section 3 is devoted to Theorem 1.5
and in Section 4 we prove Theorem 1.1 and Theorem 1.2.

2 Outline and Notation
2.1 Outline of proofs
As Theorem 1.1 relies on Theorem 1.5, we describe the proof of Theorem 1.5 first. It comprises two steps
and for simplicity of this outline we assume that X is compact. First, we use the L2-flattening results by
[13] to show that after a small number of steps, the measure νn = μ∗n

D ∗ δx0 has high dimension. Indeed,
we will show in Proposition 3.3 that for any c1, c2, γ > 0, and every (c1, c2, ε)-Diophantine probability
measure μD for ε sufficiently small in terms of c1, c2, and γ it holds,

νn(BX
δ (x)) ≤ δdim G−γ (2.1)

for any δ > 0 small enough, x ∈ X and n � C′
0

log 1
δ

log 1
ε

, where C′
0 = C′

0(c1, c2, γ ). We refer to (2.1) as having

high dimension since mX(Bδ(x)) � δdim G and therefore νn behaves comparable to mX after only O(log 1
δ
)

many steps. The L2-flattening results of [13] imply (2.1) on G (see (3.7)) and we are able to pass from
high dimension on G to high dimension on X using that μD is supported close to the identity.

The second step is the main new contribution of this paper and amounts to deducing quantitative
equidistribution from high dimension (2.1). This step can be seen as an analogue of the Sarnak–Xue
trick [25], as used by [10], [11], [15] [3], or of the methods by Venkatesh [27, Section 3.1], as applied by
[23] and [24]. In our setting, we exploit the spectral gap of μ on X. Write

gap(μ) = − log ρ(πX(μ)|L2
0(X)) (2.2)
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such that for f1, f2 ∈ L2(X), and any 0 < c < gap(μ),

|〈πX(μ)nf1, f2〉 − 〈f1, 1〉〈1, f2〉| ≤ e−c·n||f1||2||f2||2 (2.3)

for sufficiently large n.
The proof of Theorem 1.5 proceeds by reducing to functions with

∫
f dmX = 0. We use the spectral gap

of μ to upgrade high dimension of νn = μ
∗β·n
D ∗ δx0 to effective equidistribution of μ∗n ∗ νn. We introduce

the additional parameter β in order to ensure that β · n � C′
0

log 1
δ

log 1
ε

. We then write

∫
f (gx0) d(μ∗n ∗ μ

∗β·n
D )(g) =

∫
πn

X(μ)f dνn.

In order to apply the spectral gap, one approximates the latter integral with the inner product

〈πX(μ)nf , hn,δ〉 =
∫

πX(μ)nf · hn,δ dmX for hn,δ(x) = νn(Bδ(x))

mG(Bδ)
.

In Section 3.3, it is shown that this approximation is possible up to an error of size

O(δ · Lip(πX(μ)nf )) = O(δ · eO(R(μ))n · Lip(f ))

for R(μ) = min{R > 0 : supp(μ) ⊆ BR}. We then use the spectral gap to bound |〈πX(μ)nf , hn,δ〉| ≤ e−cn · ||f ||2 ·
||hn,δ ||2 and finally high dimension (2.1) to show that ||hn,δ ||2 � δ−2γ . Choosing δ decaying appropriately
in n, Theorem 1.5 follows. A further difficulty is to show Theorem 1.5 also for non-compact X, which we
deal with results from section 3.1.

A careful analysis of the above error terms reveals that we need to set γ �� min(
gap(μ)

R(μ)
, 1). The latter

choice determines how small ε needs to be in order for (2.1) to hold. On the other hand, in [10], [11], and
[3], in order to deduce spectral gap from high dimension, it is necessary to be at dimension dim G − γ

for γ > 0 an absolute constant depending only on G. In our case, the measure μ determines γ > 0. This
difference prevents us currently from proving effective equidistribution of μ∗n

D ∗ δx0 , for ε small enough
in c1, c2 as this requires us to control the size of gap(μD).

All further results in this paper rely on Theorem 1.5. Indeed, Theorem 1.1 follows from Theorem 1.4
and Theorem 1.5. To explain the idea of the proof of Theorem 1.2, we fix y ∈ X and r > 0 and discuss
how to show that at least one of the points Y1,x0 , . . . , Y�r−A�,x0

is contained in Br(x) with high probability.
Note that by Theorem 1.1 for any x ∈ X and r > 0 there is g ∈ SO(log r−1) such that gx ∈ Br(y). This may be
used to show that for any x ∈ X,

P[Z�C log r−1� · · · Z1x ∈ Br(y)] ≥ rB (2.4)

for constants B, C > 0. To complete the proof, we consider the sequence

Y1,x0 , . . . , Y�r−A�,x0
.

We may split the rather long interval 1, . . . , �r−A� into short intervals of length C log r−1 resulting in
�r−A�

C log r−1 ≥ r−3A/4 many such intervals for r small enough. Applying (2.4) to each of these intervals, we can

bound the probability that none of the points Y1,x0 , . . . , Y�r−A�,x0
are contained in Br(x) by (1 − rB)r−3A/4 ≤

exp(−r−A/2) for r small enough and A large enough. In the compact case, this argument applies (see
Theorem 4.2). However, if X is non-compact, as we additionally are required to consider non-divergence,
we only arrive at the weaker bound (1.4).

2.2 Notation
Throughout this paper, G denotes a connected simple Lie group with finite center. We use the asymptotic
notation X � Y or X = O(Y) to denote that |X| ≤ CY for a constant C > 0. If the constant C depends on
additional parameters we add subscripts, unless the quantity depends on the fixed group G in which
case we omit additional subscripts for convenience. Moreover, X � Y denotes X � Y and Y � X.
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Denote by d : G × G → R≥0 a right invariant metric. For R > 0 and h ∈ G, write

BR(h) = {g ∈ G : d(g, h) < R}.

For x = e, we abbreviate BR = BR(e). Moreover, for any closed subset H ⊂ G, we define

BR(H) = {g ∈ G : d(g, H) < R},

where d(g, H) = infh∈H d(g, h).
Let mG be a Haar measure on G. Then as BR(x) = BR · x, it holds that mG(BR(x)) = mG(BR).
We fix a basis of g = Lie(G), inducing the associated euclidean norm || · || on g. For g ∈ G we define

‖g‖ := max
i,j

{| Ad(g)ij|, | Ad(g−1)ij|},

where Ad(g)ij and Ad(g−1)ij denote the matrix coefficients of Ad(g) and Ad(g−1) respectively with respect
to the basis we fixed. Note that

‖g−1‖ = ‖g‖, ‖g1g2‖ � ‖g1‖‖g2‖, ‖ Ad(g)‖op � ‖g‖ (2.5)

for any g, g1, g2 ∈ G, where ‖ Ad(g)‖op denotes the operator norm of the adjoint action of g with respect
to the chosen euclidean norm on g.

For a lattice � < G, write X = G/� with the endowed metric dX(x, y) = infλ∈� d(gxλ, gy) for gx, gy ∈ G
such that x = gx� and y = gy�. For R > 0 and x ∈ X we denote

BX
R (x) = {y ∈ X : dX(x, y) < R}.

For x ∈ X, we denote by inj(x) the maximal injectivity radius at x ∈ X, which is the supremum of r > 0
such that the map g �→ gx is an isometry from Br(id) to Br(x).

We say that a function f ∈ C(X) is Lipschitz if its Lipschitz constant

Lip(f ) = sup
x,y∈X,x �=y

|f (x) − f (y)|
dX(x, y)

(2.6)

is finite. We denote by Lip(X) ⊂ C(X) the space of Lipschitz functions on X.

2.3 Constants
For convenience, we list here the constants used in this paper. We denote by E1, E2, . . . constants
depending only on G and �:

(1) E1 is defined in Proposition 3.1 (1).
(2) E2 is defined in Proposition 3.1 (3).
(3) E3 is only used in the proof of Proposition 3.1.
(4) E4 is defined in Proposition 3.3.
(5) E5 is the constant depending only G such that mG(Br) � eE5r for all r > 0.
(6) E6 is the constant depending only G such that ||g|| � eE6R for all g ∈ BR.
(7) E7 is defined in Theorem 3.1.
(8) E8 := E−1

2 E1 is introduced in Lemma 3.10.

Denote by κ1, κ2, . . . further constants depending only on G and �:

(1) κ1 is defined in Proposition 3.1 (1).
(2) κ2 is defined in Proposition 3.1 (2).
(3) κ3 is only used in the proof of Proposition 3.1.

We often don’t introduce constants for quantities that depend on μ or further quantities, yet we do
so in the following cases:
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(1) ε0 = ε0(c1, c2, γ ) is from Theorem 1.5.
(2) C0 = C0(c1, c2, γ ) is from the proof of Theorem 3.9.
(3) ε′

0 = ε0(c1, c2, γ ) is from Proposition 3.3.
(4) C′

0 = C′
0(c1, c2, γ ) is from Proposition 3.3.

(5) ε′′
0 = ε0(c1, c2, γ ) is from Proposition 3.4.

(6) C′′
0 = C′

0(c1, c2, γ ) is from is from Proposition 3.4.
(7) gap(μ) = − log ||πX(μ)|L2

0(X)||.
(8) R(μ) = min{R > 0 : supp(μ) ⊆ BR}.

3 Proof of Theorem 1.5
The reader may recall the outline of the proof of Theorem 1.5 given in Section 2. We first discuss
quantitative non-divergence in Section 3.1. In Section 3.2, we show that νn = μ∗n

D ∗δx0 has high dimension
on X for a suitable constant β. This exploits flattening results on G and that μD is supported close to the
identity. Then, in Section 3.3, we use the spectral gap of μ to deduce effective equidistribution of μ∗n ∗νn,
assuming that μD has sufficiently strong Diophantine properties and is close enough to the identity in
terms of μ.

3.1 Quantitative non-divergence
We discuss the height function ht : X → R≥1 as mentioned in the introduction. If X is compact, we set
ht ≡ 1 and for the remainder of this section we assume that X is non-compact. For the purposes of
the later sections, we need to quantitatively control the recurrence to compact subsets. The following
proposition follows from constructions of ht by [17] and by [4] and [6].

Proposition 3.1. Let G be a semisimple Lie group, � < G a non-uniform irreducible lattice in G,
and X = G/�. There exists a proper continuous function ht : X → R≥1 such that the following
properties hold. All the constants in this proposition depend on G and �.

(1) There exist 0 < κ1 < 1 and E1 > 0 such that ht(x) ≥ E1 inj(x)−κ1 for any x ∈ X.
(2) There exists κ2 > 0 such that for all x ∈ X there is g ∈ G such that x = g� and ‖g‖ � ht(x)κ2 .
(3) (Log-Lipschitz condition) There exists E2 > 1 such that for any g ∈ BG

1 (e) and x ∈ X,

E−1
2 ht(x) ≤ ht(gx) ≤ E2 ht(x). (3.1)

(4) (Contraction Hypothesis) Suppose that μ is a compactly supported probability measure on G whose
support generates a Zariski-dense semigroup. Then there exists 0 < a = a(�, μ) < 1, b = b(�, μ) > 0,
and N = N(�, μ) ∈ N such that for any x ∈ X

∫
ht(gx) dμ∗N(g) ≤ a ht(x) + b. (3.2)

In particular, Proposition 3.1 gives the following quantitative non-divergence result, which is due to
[17, Lemma 3.1], yet we reconstruct the proof to make the dependence on the height explicit.

Lemma 3.2. Suppose that μ is a compactly supported probability measure on G whose support
generates a Zariski-dense semigroup. Then for any n ≥ 1, x ∈ X, and h > 0,

μ∗n({g ∈ G : ht(gx) ≥ h}) ��,μ h−1 · ht(x). (3.3)

Proof. Let 0 < a < 1, b > 0, and N ∈ N be as in (4) of Proposition 3.1. For any n ≥ 1, we may write n = qN+r
for some q ∈ Z≥0 and 0 ≤ r ≤ N − 1. By (3) of Proposition 3.1, there exists C1 = C1(�, μ) > 1 such that

C−1
1 ht(x) ≤ ht(gx) ≤ C1 ht(x)
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for any g ∈ ⋃N
�=1 supp(μ∗�). Thus

μ∗n({g ∈ G : ht(gx) ≥ h}) ≤ μ∗(qN)({g ∈ G : ht(gx) ≥ C−1
1 h}). (3.4)

On the other hand, after iterating (3.2) and summing the geometric series, we get

∫
ht(gx) dμ∗qN(g) ≤ aq ht(x) + (b + ab + · · · + aq−1b) ≤ ht(x) + b

1 − a
(3.5)

for any q ∈ N. It follows that

μ∗(qN)({g ∈ G : ht(gx) ≥ C−1
1 h}) ≤ (C−1

1 h)−1
∫

ht(gx) dμ∗qN(g)

≤ C1h−1(ht(x) + C2),

(3.6)

where C2 = b
1−a . Combining (3.4) and (3.6), we obtain (3.3) as ht ≥ 1. �

3.2 High dimension
In this section, we establish that (c1, c2, ε)-Diophantine measures have high dimension on X. We note
that for a fixed (c1, c2, ε)-Diophantine measure, we can only get to dimension close to dim G, yet not
arbitrarily close to dim G.

Proposition 3.3. (High Dimension) Let G be a connected simple Lie group with finite center and
let � < G be a lattice. Let γ , c1, c2 > 0. Then there exist ε′

0 = ε′
0(c1, c2, γ ) and C′

0 = C′
0(c1, c2, γ ) such

that every (c1, c2, ε)-Diophantine probability measure μD with 0 < ε ≤ ε′
0 satisfies the following.

For νn = μ∗n
D ∗ δx0 with x0 ∈ X and δ > 0 small enough,

νn(BX
δ (x)) ≤ ht(x)E4 δdim G−γ

for n � C′
0

log 1
δ

log 1
ε

, where E4 > 0 is a constant depending on G.

Proposition 3.3 uses the strong flattening results of [13]. To introduce notation, denote

Pδ = 1Bδ

mG(Bδ)

and observe that for any symmetric measure ν it holds that (ν ∗ Pδ)(g) = ν(Bδ (g−1))

mG(Bδ )
for any g ∈ G.

Proposition 3.4. (Flattening Lemma, follows from Corollary 4.2 of [13]) Let c1, c2 > 0. Then for
every γ > 0 there is ε′′

0 = ε′′
0(c1, c2, γ ) > 0 and C′′

0 = C′′
0(c1, c2, γ ) > 0 such that the following holds.

If ε ≤ ε′′
0 and μD is a symmetric and (c1, c2, ε)-Diophantine probability measure on G, then for δ > 0

small enough,

||μ∗n
D ∗ Pδ ||∞ ≤ δ−γ for any integer n ≥ C′′

0

log 1
δ

log 1
ε

. (3.7)

Proof. By Corollary 4.2 of [13], there exist ε1 = ε1(c1, c2, γ ) > 0 and D0 = D0(c1, c2, γ ) > 0 such that

||μ∗n
D ∗ Pδ ||2 ≤ δ−γ for any integer n ≥ D0

log 1
δ

log 1
ε

. (3.8)

for δ > 0 small enough provided that 0 < ε ≤ ε1 and μD is a symmetric and (c1, c2, ε)-Diophantine
probability measure on G.
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We now deduce the claimed L∞-estimate for μ∗n
D ∗ Pδ . To establish the latter, we notice that as in

Lemma 2.5 of [10] one shows that

Pδ � Pδ ∗ Pδ � P2δ ,

for absolute implied constants depending on G. Notice that as Pδ(g) = Pδ(g−1) for all g ∈ G and, as μD is
symmetric, it follows that (μ∗n

D ∗ Pδ)(g) = (Pδ ∗ μ∗n
D )(g−1). Therefore,

||μ∗2n
D ∗ Pδ ||∞ � ||μ∗2n

D ∗ Pδ ∗ Pδ ||∞ = ||μ∗n
D ∗ Pδ ∗ μ∗n

D ∗ Pδ ||∞ ≤ ||μ∗n
D ∗ Pδ ||22 ≤ δ−2γ ,

having applied Cauchy–Schwartz in the penultimate inequality. Replacing γ by γ /4, and choosing ε′′
0 and

C′′
0 suitably in terms of ε1 and D0, the claim follows using that for any two probability measures ν1, ν2 on

G it holds that ||ν1 ∗ ν2 ∗ Pδ ||∞ ≤ ||ν2 ∗ Pδ ||∞. �

Notice that (3.7) implies that μ∗n
D (Bδ(g)) � δdim G−γ for any g ∈ G and δ sufficiently small. The content

of Proposition 3.3 is therefore to show the same conclusion on X. This is achieved by exploiting that μD

is supported close to the identity.
We proceed with a few preliminary lemmas.

Lemma 3.5. Let g ∈ G and δ > 0 be small enough (in terms of G). Then for y ∈ G with ||y|| � δ−1,

yBδ(g) ⊂ B2||y||δ(yg), Bδ(yg) ⊂ yB2||y||δ(g).

Proof. As BR(g) = BR · g, it suffices to prove the claims for g = e. For the first claim, choose c > 0
sufficiently small such that for every element g ∈ Bc ⊂ G the exponential map has a unique preimage
and 1

2 || exp−1(g)|| ≤ d(g, e) ≤ 2|| exp−1(g)||. Choose δ < c and let h ∈ Bδ . Then there is a unique X ∈ g

with ||X|| ≤ 2δ such that h = exp(X) and moreover for any y ∈ G, it holds that yhy−1 = exp(Ad(y)X).
As ||Ad(y)X|| ≤ ||Ad(y)||op||X|| � ||y|| ||X||, it therefore holds for ||y|| � δ−1 that ||Ad(y)X|| < c and hence
d(yh, y) = d(yhy−1, e) ≤ 2||Ad(y)X|| ≤ 2||y||δ, showing the first claim. The second claim follows form the
first since y−1Bδ(yg) ⊂ B2||y||δ(y−1yg) = B2||y||δ(g). �

Lemma 3.6. Let � < G be a lattice. Then for any g, h ∈ G,

|BR ∩ g�h| �� ‖g‖O(1)mG(BR).

Proof. As a lattice is discrete, by Lemma 3.5 we may choose c �� ‖g‖−1 such that for every λ ∈ � it holds
that Bc(gλh) ∩ g�h = {gλh}. Therefore,

|BR ∩ g�h| = mG(BR ∩ Bc(g�h))

mG(Bc)
�� ‖g‖O(1)mG(BR). �

Proposition 3.7. (High Dimension of Left and Right Translates of Lattice Neighbourhood) Let � be
a lattice in G. Let c1, c2, γ > 0. Then there are ε′

0 = ε′
0(c1, c2, γ ) and C′

0 = C′
0(c1, c2, γ ) > 0 such that

the following holds.
Let μD be a (c1, c2, ε)-Diophantine measure for 0 < ε ≤ ε′

0. Then for δ small enough, it holds for all
x, y ∈ G,

μ∗n
D (Bδ(y�x)) �� ‖y‖O(1)δdim G−γ

for n � C′
0

log 1
δ

log 1
ε

.

Proof. To prove the claim we first show for all x, y ∈ G that

μ∗n
D (Bδ(y�x)) ≤

∫
1B2δ (y�x)(g)(μ∗n

D ∗ Pδ)(g−1) dmG(g).
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Indeed, using that (μ∗n
D ∗ Pδ)(g) = μ∗n

D (Bδ (g−1))

mG(Bδ )
, it suffices to show that

mG(Bδ)μ
∗n
D (Bδ(y�x)) ≤

∫
1B2δ (y�x)(g)μ∗n

D (Bδ(g)) dmG(g).

We compute

mG(Bδ)μ
∗n
D (Bδ(y�x)) =

∫
mG(Bδ(h))1Bδ (y�x)(h) dμ∗n

D (h)

=
∫ ∫

1Bδ (h)(g)1Bδ (y�x)(h) dmG(g)dμ∗n
D (h)

=
∫ ∫

1Bδ (g)(h)1Bδ (y�x)(h) dμ∗n
D (h)dmG(g)

≤
∫ ∫

1Bδ (g)(h)1B2δ (y�x)(g) dμ∗n
D (h)dmG(g)

=
∫

1B2δ (y�x)(g)μ∗n
D (Bδ(g)) dmG(g),

using Fubini’s Theorem and in the penultimate line that for fixed g, it holds that 1Bδ (g)(h)1Bδ (y�x)(h) ≤
1Bδ (g)(h)1B2δ (y�x)(g) as for h ∈ Bδ(g) ∩ Bδ(y�x) it holds that g ∈ B2δ(y�x).

Denote by ε′′
0(c1, c2, γ

2 ) and C′′
0(c1, c2, γ

2 ) > 0 the constants from Proposition 3.4. Since G is simple, there
exists a constant E5 > 0 only depending on G such that mG(Br) � eE5r for all r > 0. Let C′

0 = C′
0(c1, c2, γ ) :=

C′′
0(c1, c2, γ

2 ) and ε′
0(c1, c2, γ ) := min

(
ε′′

0(c1, c2, γ

2 ), γ

4C′′
0E5

, e−1
)
. Employing Proposition 3.4 for 0 < ε ≤ ε′

0, δ

small enough and n � C′
0

log 1
δ

log 1
ε

, we estimate

μ∗n
D (Bδ(y�x)) ≤

∫
1B2δ (y�x)(g)(μ∗n

D ∗ Pδ)(g−1) dmG(g)

≤ δ− γ

2

∫
B2nε

1B2δ (y�x) dmG(g)

= δ− γ

2 mG(B2nε ∩ B2δ(e) · y�x).

Therefore, by Lemma 3.6,

μ∗n
D (Bδ(y�x)) ≤ δ− γ

2 mG(B2δ(e))|B2nε ∩ y�x|
�� δdim G− γ

2 ‖y‖O(1)mG(B2nε)

�� δdim G− γ

2 ‖y‖O(1)e2E5nε .

For any 0 < ε ≤ ε′
0, we have 2C′

0E5ε

log 1
ε

≤ γ

2 , hence

μ∗n
D (Bδ(y�x)) �� δdim G− γ

2 ‖y‖O(1)δ
− 2C′

0E5ε

log 1
ε �� ‖y‖E4 δdim G−γ

for E4 > 0 an absolute constant depending only on G. �

It is straightforward to deduce Proposition 3.3 from Proposition 3.7

Proof of Proposition 3.3. By Proposition 3.1, we may choose g0 ∈ G and gx ∈ G such that x0 = g0�

and x = gx� with ‖gx‖ � ht(x)κ2 . We notice that if gx0 ∈ BX
δ (x) then gg0 ∈ Bδ(gx�), or equivalently

g ∈ Bδ(gx�g−1
0 ). Therefore by Proposition 3.7, for n � C′

0
log 1

δ

log 1
ε

and δ small enough,

νn(BX
δ (x)) ≤ μ∗n

D (Bδ(gx�g−1
0 )) �� ht(x)O(1)δdim G−γ .
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Upon replacing γ by γ /2 and choosing δ sufficiently small, we can remove the implied absolute constant
in the last inequality and conclude the proof. �

3.3 Proof of Theorem 1.5
In this section, we show how to deduce quantitative equidistribution under the assumption that νn has
a high dimension.

Recall that we say that μ has a spectral gap on X if

gap(μ) = − log ρ
(
πX(μ)|L2

0(X)

)
> 0

and notice that for f1, f2 ∈ L2(X) and 0 < c < gap(μ),

|〈πX(μ)nf1, f2〉 − 〈f1, 1〉〈1, f2〉| ≤ e−c·n‖f1‖2‖f2‖2 (3.9)

for sufficiently large n. We use in this section that gap(μ) > 0 for a large class of measures.

Lemma 3.8. (follows from Theorem C of [26]) Let G be a non-compact connected simple Lie group
with finite center, let � < G be a lattice, and denote by πX the Koopman representation on
X = G/�. Let μ be a probability measure that is not supported on a closed amenable subgroup.
Then μ has a spectral gap on X.

Proof. To apply Theorem C of [26], it suffices to show that the trivial representation 1G is not weakly
contained in πX|L2

0(X). Recall that there is m ≥ 1 such that πX|⊗m
L2

0(X)
is weakly contained in the left regular

representation λG. If 1G ≺ πX|L2
0(X), it would therefore follow that 1G = 1⊗m

G ≺ λG, which is a contradiction
since G is non-amenable. �

For a compactly supported probability measure μ on G, write

R(μ) := min{R > 0 : supp(μ) ⊆ BR}.

Denote by E6 > 0 the constant depending only G such that ‖g‖ � eE6R for all g ∈ BR. As supp(μ∗n) ⊂ BR(μ)n

for n ≥ 1, it follows that ‖g‖ ≤ eE6R(μ)n for any n ≥ 1 and g ∈ supp(μ∗n).
We are now in a suitable position to prove Theorem 1.5. For convenience we restate Theorem 1.5 with

the addition of the below bound on θ .

Theorem 3.9. (Theorem 1.5) Let G, �, and X be as in Theorem 1.1. Let μ be a compactly supported
probability measure on G with a spectral gap on X.

Then there are ε0 = ε0(μ, c1, c2) > 0 and θ = θ(μ) such that for every (c1, c2, ε)-Diophantine
probability measure μD with 0 < ε ≤ ε0 the following holds: there exists β = β(μ, ε) such
that for every bounded Lipschitz function f ∈ Lip(X), x0 ∈ X and n ≥ 1,

∫
f (gx0) d(μ∗n ∗ μ

∗β·n
D )(g) =

∫
f dmX + O�,μ,μD

(
(Lip(f ) + ht(x0)‖f‖∞

)
e−θn).

Moreover, one may choose θ ≥ E7 min(R(μ), gap(μ)), where E7 is a constant depending only on
G and �.

In order to apply (3.9), we next prove that we can compare
∫

f dνn with a suitable inner product.

Lemma 3.10. Let μD be a probability measure on G with Zariski dense support. Let x0 ∈ X and
νn = μ∗n

D ∗ δx0 . For δ > 0, 0 < η < 1, and n ∈ N, let hn,δ,η : X → R≥0 be the function defined by

hn,δ,η(x) := 1
mG(Bδ)

νn(BX
δ (x))1{ht≤E1δ−κ1η}(x). (3.10)
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Then for any f ∈ Lip(X) and δ > 0 small enough,

∫
X

f · 1{ht≤E8δ−κ1η} dνn =
∫

X
f (x)hn,δ,η(x) dmX(x)

+ O�,μD (δ · Lip(f ) + ht(x0)δ
κ1η‖f‖∞), (3.11)

where E8 := E−1
2 E1.

Proof. Note that if ht(x) ≤ E1δ
−κ1η then inj(x) ≥ δη ≥ 2δ by (1) of Proposition 3.1 for δ small enough in

terms of η. Therefore, using Fubini’s Theorem,

∫
X

f (y)hn,δ,η(y) dmX(y)

= 1
mG(Bδ)

∫
X

∫
X

f (y)1BX
δ (y)(x)1{ht≤E1δ−κ1η}(y) dνn(x)dmX(y)

=
∫

X

(
1

mG(Bδ)

∫
Bδ

f (gx)1{ht≤E1δ−κ1η}(gx) dmG(g)

)
dνn(x).

For convenience, write

Aδ,η(x) = 1
mG(Bδ)

∫
Bδ

f (gx)1{ht≤E1δ−κ1η}(gx) dmG(g).

If ht(x) ≤ E8δ
−κ1η, then ht(gx) ≤ E1δ

−κ1η for any g ∈ Bδ by (3) of Proposition 3.1. We thus have for x with
ht(x) ≤ E8δ

−κ1η,

f (gx)1{ht≤E1δ−κ1η}(gx) = f (x)1{ht≤E8δ−κ1η}(x) + O(δ · Lip(f )),

implying

∫
{ht≤E8δ−κ1η}

Aδ,η(x) dνn(x) =
∫

X
f · 1{ht≤E8δ−κ1η}dνn(x) + O(δ · Lip(f )). (3.12)

On the other hand, as ||Aδ,η||∞ ≤ ||f ||∞, by Lemma 3.2,

∫
{ht>E8δ−κ1η}

Aδ,η(x) dνn(x) ≤ νn({x ∈ X : ht(x) > E8δ
−κ1η})‖f‖∞

��,μD ht(x0)δ
κ1η‖f‖∞. (3.13)

Combining (3.12) and (3.13), we get (3.11). �

Proof of Theorem 3.9. Upon replacing f by f − ∫
f dmX it suffices to show the claim for a bounded

Lipschitz function f ∈ Lip(X) satisfying
∫

f dmX = 0 and therefore it suffices to show

∣∣∣∣
∫

f (gx0) d(μ∗n ∗ μ
∗β·n
D )(g)

∣∣∣∣ ��,μD (Lip(f ) + ht(x0)||f ||∞)e−θn,

where β is a parameter that will be determined below and for convenience we make no notational
distinction between possibly non-integer number β · n and the closest integer to it.
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Denote F = πX(μ)nf and νn = μ
∗β·n
D ∗ δx0 such that

∣∣∣∣
∫

f (gx0) d(μ∗n ∗ μ
∗β·n
D )(g)

∣∣∣∣ =
∣∣∣∣
∫

F dνn

∣∣∣∣. (3.14)

Set

γ = min
(

gap(μ)

16E6R(μ)
,

E4κ1

2

)
. (3.15)

Then by Lemma 3.2 it holds that

∫
F dνn =

∫
F1{ht≤E8δ

− γ
E4 } dνn +

∫
F1{ht>E8δ

− γ
E4 } dνn

=
∫

F1{ht≤E8δ
− γ

E4 } dνn + O�,μD (ht(x0)δ
γ

E4 ‖F‖∞).

(3.16)

Let η = γ

E4κ1
so that 0 < η ≤ 1

2 and γ

E4
= κ1η. By Lemma 3.10 and (3.16) we have

∫
F dνn =

∫
X

F(x)hn,δ,η(x) dmX(x) + O�,μD (δ · Lip(F) + ht(x0)δ
γ

E4 ‖F‖∞).

Recall that supp(μ) ⊂ BR(μ). Then for some absolute constant E6 > 0,

Lip(F) ≤
(

sup
g∈supp(μ∗n)

‖g‖
)

Lip(f ) ≤ eE6R(μ)n Lip(f ), ‖F‖∞ ≤ ‖f‖∞.

Hence,

∫
F dνn =

∫
X

F(x)hn,δ,η(x) dmX(x) + O�,μD (δeE6R(μ)nLip(f ) + ht(x0)δ
γ

E4 ‖f‖∞). (3.17)

Let ε′
0(c1, c2, γ ) and C′

0(c1, c2, γ ) be the constants from Proposition 3.3. We write C0 = C0(c1, c2, γ ) =
C′

0(c1, c2, γ ) and

ε0(c1, c2, γ ) := min(ε′
0(c1, c2, γ ), e−2E6C0R(μ)).

Let μD be a (c1, c2, ε)-Diophantine probability measure with ε ≤ ε0(c1, c2, γ ) and set

β = β(μ, ε) = 2C0E6R(μ)

log 1
ε

.

Then we claim that for n � 1
2E6R(μ)

log 1
δ

it holds that ‖hn,δ,η‖2 � δ−2γ . Indeed, with this choice of n it holds
that

β · n � C0
log 1

δ

log 1
ε

and hence by Proposition 3.3, for all x ∈ X,

νn(BX
δ (x)) ≤ ht(x)E4 δdim G−γ as β · n � C0

log 1
δ

log 1
ε

.

Therefore ||hn,δ,η||∞ � δ−2γ for n � 1
2E6R(μ)

log 1
δ
, hence

‖hn,δ,η‖2
2 ≤ ‖hn,δ,η‖2

L∞ � δ−4γ .
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Applying (3.9) with f1 = f and f2 = hn,δ,η,∣∣∣∣
∫

X
F(x)hn,δ,η(x) dmX(x)

∣∣∣∣ =
∣∣∣∣
∫

X
(πX(μ)nf )(x)hn,δ,η(x) dmX(x)

∣∣∣∣
� e−gap(μ)·n/2‖f‖2‖hn,δ,η‖2

� e−gap(μ)·n/2δ−2γ ‖f‖2

(3.18)

for n sufficiently large.
Combining (3.14), (3.17), and (3.18),

∣∣∣∣
∫

f d(μ∗n ∗ νn)

∣∣∣∣ =
∣∣∣∣
∫

F dνn

∣∣∣∣
��,μD δeE6R(μ)nLip(f ) + ht(x0)δ

γ

E4 ‖f‖∞ + e−gap(μ)·n/2δ−2γ ‖f‖2. (3.19)

Choosing δ = e−2E6R(μ)n and as γ = min
(

gap(μ)

16E6R(μ)
, E4κ1

2

)
, we can bound (3.19) by

≤ e−E6R(μ)nLip(f ) + h(x0)e
− min(

gap(μ)

4E4
,E6κ1R(μ))n||f ||∞ + e− gap(μ)

4 n||f ||2

for sufficiently large n. Therefore setting

θ = min
(

E6R(μ), E6κ1R(μ),
gap(μ)

4E4
,

gap(μ)

4

)
≥ E7 min(R(μ), gap(μ))

for E7 an absolute constant depending on G and � we conclude

∣∣∣∣
∫

f (gx0) d(μ∗n ∗ μ
∗β·n
D )(g)

∣∣∣∣ ��,μD e−θn(Lip(f ) + ht(x0)||f ||∞). (3.20)

for n large enough in terms of of E6 and R(μ) and therefore δ small enough. Thus to get a bound holding
for all n, the implied constant additionally depends on μ. �

We furthermore mention the following corollary of our method concerning quantitative equidistri-
bution of μ∗n ∗ δx0 . We note that the assumption (3.21) is satisfied by [3] for compact simple Lie groups
and μ a symmetric measure supported on finitely many matrices with algebraic entries and generating
a dense subgroup. For the latter case, we mention that the Lipschitz norm appears in (3.22) instead of
the Sobolev norm, as is common in the literature.

Corollary 3.1. Let G, � and X be as in Theorem 1.1. Let μ be a compactly supported probability
measure on G with a spectral gap on X, let x0 ∈ X, and denote νn = μ∗n ∗ δx0 .

Then there exists γ = γ (μ) such that the following holds. Assume there exists constants C0, E4 > 0
such that for any δ > 0 small enough, x ∈ X, and n � C0 log 1

δ

νn(BX
δ (x)) ≤ ht(x)E4 δdim G−γ . (3.21)

Then there exists θ = θ(μ) such that for every bounded Lipschitz function f ∈ Lip(X) and n ≥ 1,∫
f (gx0) dμ∗n(g) =

∫
f dmX + O�,μ,C0,E4 ((Lip(f ) + ht(x0)||f ||∞)e−θn). (3.22)

Proof. The proof is similar to the one of Theorem 3.9. Indeed, we write n = m+n0 for m = α·n and n0 = β ·n
with α, β > 0 fixed constants to be determined and satisfying α+β = 1. For a bounded Lipschitz function
f ∈ L2

0(X) denote F = πX(μ)mf and then
∫

f (gx0) dμ∗n(g) = ∫
F(x) dνn0 (x). One then proceeds as in the proof
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of (3.19) to deduce that | ∫ F dνn0 | can be bounded for any γ > 0, for which (3.21) holds, by

��,μ δeE6R(μ)mLip(f ) + ht(x0)δ
γ

E4 ||f ||∞ + e−gap(μ)·m/2δ−2γ ||f ||2, (3.23)

assuming that n0 � C0 log 1
δ
.

We proceed with choosing a suitable γ . Indeed if δ = e−An for A > 0 a constant to be chosen, then
(3.23) is bounded by

��,μ eE6R(μ)m−AnLip(f ) + ht(x0)e
−A γ

E4
n||f ||∞ + e2γ An−gap(μ)·m/2||f ||2 (3.24)

assuming that βn = n0 � A · C0 · n or equivalently 1 � A·C0
β

.

Therefore, in order for (3.24) to decay as claimed in (3.22), we require 1 � A·C0
β

as well as

E6R(μ)m − An < 0 and 2γ An − gap(μ)m/2 < 0,

which is equivalent to

E6R(μ)

A
<

n
m

= 1
α

<
gap(μ)

4γ A
and 1 � A · C0

β
.

Choosing γ , α and A suitably the claim follows. Indeed, we may choose the parameter γ as in the proof
of Theorem 3.9 as

γ = min
(

gap(μ)

16E6R(μ)
,

E4κ1

2

)
.

Further we choose α > 0 small enough such that α
1−α

<
E6R(μ)

C0
and finally A = 2E6R(μ)α. With these

choices, (3.22) holds for a suitable θ . �

4 Proof of Theorem 1.1 and Theorem 1.2
4.1 Proof of Theorem 1.1
By [14], a dense subgroup of G contains a finitely generated dense subgroup, so we may assume that S is
a finite set. Let μ be the uniform probability measure on the finite symmetric set S ⊂ G. We distinguish
the case when G is compact and non-compact. If G is compact, then by [3], (3.21) is satisfied and hence
(3.22) holds. For compact G, the latter straightforwardly implies the conclusion of Theorem 1.1.

We assume for the remainder of the proof that G is non-compact. By Lemma 3.8, since μ generates
a dense subgroup of G and since G is non-amenable, μ has a spectral gap on X. Let c1, c2 > 0 be the
constants from Theorem 1.4 for � = 〈S〉, and let ε0 = ε0(μ, c1, c2) and θ = θ(μ) be as in Theorem 1.5.
By Theorem 1.4, there exists a finitely supported symmetric (c1, c2, ε)-Diophantine probability measure
μD with 0 < ε ≤ ε0 satisfying supp(μD) ⊂ � ∩ Bε(e). Let β = β(μ, ε) be the constant from Theorem 1.5.
Since μD is finitely supported and its support is contained in �, there exists an integer k0 ∈ N such that
supp(μ

∗β

D ) ⊆ supp(μ∗k0 ) = Sk0 .
By Theorem 1.5, for any f ∈ Lip(X) and n ≥ 1,

∫
f d(μ∗n ∗ μ

∗β·n
D ∗ δx0 ) =

∫
f dmX + O�,μ((Lip(f ) + ht(x0)||f ||∞)e−θn). (4.1)

Using (1) of Proposition 3.1, for r sufficiently small, inj(y) > r
2
κ1 for y ∈ X(r−1). Recall 0 < κ1 < 1 and

let us write r1 = r
2
κ1 for simplicity. For each y ∈ X(r−1), we may choose a bounded Lipschitz function

fr,y ∈ Lip(X) such that 1B 1
2 r1

(y) ≤ fr,y ≤ 1Br1 (y), Lip(fr,y) � r−1
1 , and

∫
fr,y dmX � rdim G

1 , where the implied

constants only depend on G. Choose

n =
⌈

4 dim G
κ1θ

(log r−1 + log ht(x0))

⌉
,
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then the error term in (4.1) is bounded by

O�,μ((Lip(f ) + ht(x0)||f ||∞)e−θn) ��,μ (r−1
1 + ht(x0))e−θn ��,μ r2 dim G−1

1 .

It follows that ∫
fr,y d(μ∗n ∗ μ

∗β·n
D ∗ δx0 ) � rdim G

1 + O�,μ(r2 dim G−1
1 ) > 0

for sufficiently small r depending on � and μ. Therefore for any y ∈ X(r−1) there exists x ∈ supp(fr,y) ⊂
Br(y) with

x ∈ supp(μ∗n ∗ μ
∗β·n
D ∗ δx0 ) ⊆ supp(μ∗(k0+1)n ∗ δx0 ) = Sn(k0+1)x0,

hence we conclude that for r sufficiently small depending on � and μ,

diamr(X, S, x0) ≤ 4 dim G
κ1θ

(k0 + 1)(log r−1 + log ht(x0)).

The proof of Theorem 1.1 is complete.

4.2 Proof of Theorem 1.2
For any given r > 0 we may choose a maximal r-separated subset � of {ht ≤ r−1}. Let � = {x1, . . . , x|�|}.
Note that |�| � r− dim G and X(r−1) is covered by the balls BX

r (x1), . . . , BX
r (x|�|).

Throughout the proof we fix a constant A ≥ 2 dim G. By Theorem 1.1, there is a constant C depending
on � and S such that for N = �C log r−2A� and any y ∈ X(r−2A) there is h(y, N, i) ∈ SN such that h(y, N, i)y ∈
Br(xi). We use here that y ∈ X(r−2A) and therefore the contribution of the height of y in Theorem 1.1 is
at most of size log r−2A.

We claim for any y ∈ X(r−2A),

μ∗N(h(y, N, i)) ≥ rB (4.2)

for B = B(�, μ, A) a constant depending on �, μ and A. Indeed, if S is finite, then if every atom of μ has
mass at least 0 < ρ < 1, it follows that μ∗N(h(y, N, i)) ≥ ρN|S|−N ≥ rB for B = 4 · A · C log(

|S|
ρ

). If S is not
finite, then it must be countable as Ad(supp(μ)) has algebraic entries. Therefore, again by [14], there is
a finite S′ ⊂ S with μ(S′) ≥ 1

2 and such that S′ generates a dense subgroup of G. (4.2) then follows by
applying the above argument to S′.

For x0 ∈ X and k ∈ N denote by Pk,i the set of elements (g1, . . . , gkN) ∈ Supp(μ⊗kN) such that the set
{gj · · · g1x0 : 1 ≤ j ≤ kN} does not intersect BX

r (xi).

Lemma 4.1. Let A ≥ 2 dim G and let 1 ≤ i ≤ |�|. For r small enough in terms of � and μ the
following holds. If μ⊗kN(Pk,i) ≥ ht(x0) · rA+dim G for some k ≥ 1, then

μ⊗(k+1)N(Pk+1,i) ≤ (
1 − rB/2

)
μ⊗kN(Pk,i).

Proof. Let Qk be the set of elements (g1, . . . , gkN) ∈ Supp(μ⊗kN) such that

gkN · · · g1x0 /∈ X(r−(A+2 dim G)).

By Lemma 3.2,

μ⊗kN(Qk) = μ∗kN({g ∈ G : ht(gx0) ≥ r−(A+2 dim G)})
��,μ rA+2 dim G ht(x0).

If (g1, . . . , gkN) ∈ Supp(μ⊗kN) \ Qk, then writing y = gkN · · · g1x0, there exists h(y, N, i) ∈ SN such that
h(y, N, i)gkN · · · g1x0 ∈ BX

r (xi). It follows that

μ⊗(k+1)N(Pk+1,i) ≤ μ⊗kN(Pk,i) − μ⊗kN(Pk,i \ Qk) inf
y∈X(r−2A)

μ∗N(h(y, N, i))

≤ μ⊗kN(Pk,i) − rBμ⊗kN(Pk,i \ Qk).
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Since we assume μ⊗kN(Pk,i) ≥ ht(x0)rA+dim G, choosing r sufficiently small in terms of μ,

μ⊗kN(Pk,i \ Qk) ≥ μ⊗kN(Pk,i) − μ⊗kN(Qk) ≥ 1
2

μ⊗kN(Pk,i),

showing the claim. �

Proof of Theorem 1.2. Let A ≥ 2 dim G and let Mr = �16r−D·A� for D a constant to be chosen sufficiently
large depending on � and μ. Since log(1−x) ≤ −x/4 (for x small enough), we have for sufficiently small r,

Mr log
(

1 − 1
2

rB
)

≤ − 1
8

rBMr ≤ −r−A ≤ −r−A/2 + dim G · log r,

choosing D sufficiently large such that B − DA ≤ −A. Notice that we may choose D to only depend on �

and μ.
Hence

(
1 − 1

2 rB
)Mr ≤ exp(−r−A/2)rdim G. Iterating Lemma 4.1, we deduce that

μ⊗MrN(PMr ,i) ≤ ht(x0) · rA+dim G

for any 1 ≤ i ≤ |�|. Let E := ⋃|�|
i=1 PMr ,i. Then we have

μ⊗MrN(E) ≤ ht(x0) · rA+dim G · |�| � ht(x0) · rA,

and for any (g1, · · · , gMrN) ∈ Supp(μ⊗MrN) \ E and 1 ≤ i ≤ |�| there exists 1 ≤ j(i) ≤ MrN such that
gj(i) · · · g1x0 ∈ BX

r (xi), that is, the set {gj · · · g1x0 : 1 ≤ j ≤ MrN} is r-dense in X(r−1). The proof of (1.4) is
complete as MrN ≤ r−2·D·A for r small enough in terms of �, μ and A upon replacing A by A

2·D and thus
setting α = 1

2·D . With this replacement, for the above argument to apply we require that A
2D ≥ 2 dim G.

To pass from (1.4) to an almost sure statement about the orbit (Yn,x0 )n≥1 we apply the Borel-Cantelli
Lemma for A > 0 large enough. Indeed, for n > 0 write rn = n− 1

A and consider the set

Fn = {(g1, g2, . . .) ∈ GN : gn · · · g1x0 is not rn-dense in X(r−1
n )}.

Then
∑

n≥1 P[Fn] < ∞ for A large enough and hence by the Borel-Cantelli Lemma the claim follows. �

We note that in the cocompact case, we can improve the error rate in Theorem 1.2 to an exponen-
tial one.

Theorem 4.2. Let G, �, X, and S be as in Theorem 1.1 and let μ be a probability measure on G with
support S. Assume that X is compact. Then for A > 0 large enough depending on � and μ the
following holds: for any x0 ∈ X,

P[(Y1,x0 , . . . , Y�r−A�,x0
) is not r-dense in X(r−1)] ≤ ht(x0) · exp(−r−α·A), (4.3)

for r small enough in terms of �, μ and A and for α = α(�, μ) > 0 a constant depending on �

and μ.

Proof. The proof is as the one of Theorem 1.2 without requiring to deal with quantitative non-
divergence. Indeed, we may drop the lower bound on μ⊗kN(Pk,i) in Lemma 4.1 and proceed otherwise
as in the proof of Theorem 1.2. �
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