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Abstract

Neural text generation models are likely to suf-001
fer from the low-diversity problem. Various002
decoding strategies and training-based methods003
have been proposed to promote diversity only004
by exploiting contextual features, but rarely do005
they consider incorporating syntactic structure006
clues. In this work, we propose using linguistic007
annotation, i.e., part-of-speech (POS), to guide008
the text generation. In detail, we introduce POS009
Guided Softmax to explicitly model two poste-010
rior probabilities: (i) next-POS, and (ii) next-011
token from the vocabulary of the target POS. A012
POS Guided Sampling strategy is further pro-013
posed to address the low-diversity problem by014
enriching the diversity of POS. Extensive exper-015
iments and human evaluations demonstrate that,016
compared with existing state-of-the-art meth-017
ods, our POS Guided Softmax and Sampling018
(POSG) can generate more diverse text while019
maintaining comparable quality.020

1 Introduction021

Maximum likelihood estimation (MLE) is a stan-022

dard approach to training a neural text generation023

model, e.g. Transformer (Vaswani et al., 2017), to024

generate human-like text. However, existing gen-025

eration systems often suffer from the low-diversity026

problem (Holtzman et al., 2020; Welleck et al.,027

2020), which leads to generating dull and repetitive028

text. This problem unavoidably affects the overall029

quality of the generations.030

We conclude that the low-diversity problem is031

mainly manifested in two aspects: form and content032

(Fu et al., 2020; Holtzman et al., 2020; Tevet and033

Berant, 2021). As shown Table 1, the low form034

diversity can be reflected in repeating some words,035

using similar lexicon and syntax, and more. The036

low content diversity can be expressed as a single037

and dull content with nothing different.038

Several feasible fixes have been proposed, such039

as post-hoc sampling strategies including tempera-040

ture (Caccia et al., 2020), top-k (Fan et al., 2018),041

and nucleus sampling (Holtzman et al., 2020). Re- 042

cently, some works suggest that it is the maximiz- 043

ing likelihood itself that should account for the low- 044

diversity problem (Holtzman et al., 2020; Welleck 045

et al., 2020). Holtzman et al. (2020) think that MLE 046

can not adequately capture the rich diversity and ex- 047

pression in human language. Choi et al. (2020) ar- 048

gue that the imbalanced token distribution inherent 049

in natural language even worsens the low-diversity 050

problem. Based on these analysis, many training- 051

based methods have been proposed. Welleck et al. 052

(2020) propose the unlikelihood training to penal- 053

ize repetition with auxiliary losses. Jiang et al. 054

(2019) propose to utilize dynamically scaling losses 055

conditioned on the token frequency in the training 056

phase. Choi et al. (2020) factorize the probability 057

distribution and design an elaborate token cluster 058

algorithm for a balanced training. 059

Though those encouraging progress has been 060

made, we argue that current training-based meth- 061

ods only take plain contextual features to promote 062

diversity, rarely considering incorporating syntac- 063

tic structure clues. For example, when humans are 064

writing articles, it is natural to predetermine the 065

part-of-speech (POS) before giving the next token. 066

Existing studies have verified that incorporating 067

POS can improve the translation quality in neural 068

machine translation (NMT) (Sennrich and Haddow, 069

2016a; Yang et al., 2021). Intuitively, since the vo- 070

cabularies of different POS vary a lot, the diversity 071

of POS will certainly lead to the diversity of text. 072

Unfortunately, we observe that existing methods 073

with no consideration of the inner POS structure 074

fail to learn the diversity of POS in human language 075

(shown in Table 3). 076

All these factors motivate us to address the low- 077

diversity problem with the guidance of POS. Thus, 078

in this work, we first present the POS Guided Soft- 079

max (Figure 1), building upon a hybrid decoder 080

that predicts two posterior probabilities: (i) next- 081

POS, and (ii) next-token from the vocabulary of 082
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Context: The NK 2nd Division , concentrated in the Sinban-ni area west of the river , had , in effect , attacked straight east
across the river and was trying to seize the two avenues of advance into Changnyong.
Text 1: They were joined by the 27th Battalion, US 24th Infantry Regiment, the 27th Regiment, and the 27th Regiment. The US
24th Infantry Division, under the command of Major General John R. Dempsey, was ordered to charge the US 24th Infantry
Division, and capture it from the west.
Text 2: The NK 2nd Division, which had been involved in the assault, was forced to withdraw from the area north of the river.
The NK 3rd Division, which had been fighting in the area since the beginning of the battle, was moved to the south. The NK 2nd
Division, which had been fighting in the area since the start of the battle, had been pushed back to the south.
Text 3: The 2nd Division had been moving north from Alcester’s position on the road, but were not expecting another attack. In
the immediate aftermath of the attack, to keep the 2nd Division in reserve, which had been preparing for an attack on Hill 131.
Along with the 3rd Battalion of the US 2nd Infantry Regiment, attacked Hill 129 at Pakchon on the way to Beaulieu.

Table 1: Examples of low-diversity generated text, given context from the Wikitext-103 dataset (Merity et al., 2017).
Text 1 has a poor form diversity due to many useless repeating words (highlighted in blue). Text 2 keeps talking
about only one single content, with similar lexicon and syntax (highlighted in orange), indicating low diversity in
both terms of form and content. Though Text 3 has various syntactical and lexical forms with no repetition, all the
content of it is about the “attacks”, which means low content diversity. Text 1 is sampled from MLE, Text 2 from
F2-Softmax (Choi et al., 2020), and Text 3 from FACE (Jiang et al., 2019) (Section 5.1).

the target POS. Our work shows that, following the083

POS clue, our model can gain a deeper insight into084

text’s syntactic structure. Thereafter, we propose085

a POS Guided Sampling to improve the diversity086

of generated text lexically and syntactically while087

maintaining comparable quality.088

To sum up, the contributions of our work are089

three-fold. (i) We introduce a novel POS Guided090

Softmax, incorporating POS tags as the observed091

discrete decisions to improve text generation. (ii)092

Based on POS Guided Softmax, POS Guided Sam-093

pling is proposed to promote text diversity effec-094

tively without degrading quality. (iii) We conduct095

extensive experiments on language modeling and096

paraphrase generation. Experimental results and097

human evaluation show that our model can easily098

adapt to different downstream tasks and generate099

text with high diversity as well as quality.100

2 Related Works101

2.1 Diversity-promoting Methods102

In order to tackle the low-diversity problem, prior103

studies either introduce a decoding-based method104

or a training-based method.105

Decoding-based Methods. Although greedy106

search and beam search are well known decod-107

ing strategies for neural text generation, Holtzman108

et al. (2020) have shown that these methods always109

generate generic, repetitive, and awkward words.110

Kulikov et al. (2018) and Vijayakumar et al. (2018)111

have proposed several variants of beam search as112

alternatives. Recently, stochastic decoding meth-113

ods have been widely used, and some studies pro-114

pose to sample from a truncated and renormalized115

Softmax distribution. Top-k sampling (Fan et al.,116

2018) only samples from the top-k most probable 117

tokens. Nucleus sampling (Holtzman et al., 2020) 118

only samples from the smallest set whose cumu- 119

lative probability is at least α. However, those 120

decoding-based methods are lack of controllabil- 121

ity. Combined with above methods, our POSG 122

can further promote diversity using POS as a more 123

controllable clue. 124

Training-based Methods. As a standard approach 125

to training a neural text generation model, MLE has 126

been proved to be defective. Choi et al. (2020) have 127

shown that MLE may mislead the model because 128

of the imbalanced token distribution. Thus, they 129

design a greedy approach MefMax and factorize 130

Softmax to ensure a balanced training according 131

to the word frequency. FACE (Jiang et al., 2019) 132

utilizes the target word frequency to modify the 133

cross-entropy loss with a frequency-based weight 134

factor. Welleck et al. (2020) introduce an unlikeli- 135

hood loss to implicitly reduce the frequent tokens 136

and potential repeats. Other approaches, such as 137

negative training (He and Glass, 2020), reinforce- 138

ment learning (Shirai et al., 2020), and imitation 139

learning (Zhou and Lampouras, 2020), have re- 140

cently been applied to promote the diversity during 141

the training phase. All above training-based meth- 142

ods only learn from plain contextual features, while 143

ignoring other linguistic features. Our focus is on 144

leveraging POS features to guide both phases of 145

training and decoding. 146

2.2 POS in Text Generation 147

Previous works, which leverage POS for text gen- 148

eration, can be summarized as follows: 149

POS in Encoding. A branch of previous works 150

(He et al., 2019; Sennrich and Haddow, 2016b; 151
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Wray et al., 2019) explore to adopt POS on the152

encoding side to help language understanding and153

generation. Sennrich and Haddow (2016b) con-154

catenate the embeddings of POS tags with sentence155

features to improve the translation quality. For the156

image caption generation, He et al. (2019) use POS157

tags to control the fusion of the image features and158

the related word embeddings. Wray et al. (2019)159

enrich the encoding with POS of the accompanying160

captions for cross-modal search tasks.161

POS in Decoding. The second line of studies162

directly model the POS structure during decod-163

ing. Su et al. (2018) introduce a hierarchical de-164

coder that relies on teacher forcing to learn differ-165

ent POS patterns on different layers. Deshpande166

et al. (2019) use POS tag sequences as summaries167

to implicitly drive image caption generation. Yang168

et al. (2019) treat POS tags as latent variables in169

NMT and optimize the model by Expectation Max-170

imization (EM). Yang et al. (2021) employ POS se-171

quences to constrain the non-autoregressive gener-172

ation (NAG) modes to alleviate the multi-modality173

problem. However, all the previous studies only174

focus on a single specific task and leverage POS as175

hidden decoding features (Deshpande et al., 2019;176

Yang et al., 2019), teacher forcing techniques (Su177

et al., 2018; Bugliarello and Elliott, 2021) or NAG178

plannings (Yang et al., 2021) in order to improve179

the generic quality of generated texts, while our180

proposed methods regard POS tags as observed181

sequential variables and directly model the POS182

distribution during both phases of training and de-183

coding with the goal of improving text diversity.184

To our best knowledge, we are the first to intro-185

duce an explicit POS-guided generation method186

as a generic way to promote text diversity while187

maintaining quality.188

3 Language Modeling189

The goal of language models is to assign a probabil-190

ity to text (i.e. word sequence) x = [x1, . . . , xT ],191

where each xt in the sequence is a token from a vo-192

cabulary V , i.e., xt ∈ V , and T ∈ N. We train the193

language models to learn a distribution pθ (x) with194

the goal to fit the ground-truth distribution p⋆ (x)195

for all x. Specifically, when the language model is196

a neural network, θ is regarded as the model param-197

eters of the neural network, and we can factorize198

pθ (x) as pθ (x) = ΠT
t=1pθ (xt | x<t). The conven-199

tional approach for learning the language model200

parameters θ is to maximize the log-likelihood by201

minimizing: 202

LMLE (θ) =−
T∑

t=1

log pθ (xt | x<t) ,

pθ (xt | x<t) =
exph⊤

t−1wxt∑
x∈V exph⊤

t−1wx
,

(1) 203

where ht−1 is a hidden state of the context x<t, and 204

wxt is the output embedding vector for xt ∈ V . 205

4 Methodology 206

POSG is designed to exploit syntactic structure, i.e., 207

POS tags for text generation in both the training 208

and decoding phases. Specifically, giving text se- 209

quence x = [x1, . . . , xT ], we first use off-the-shelf 210

POS tagger (Manning et al., 2014) to annotate cor- 211

responding POS sequence ρ = [ρ1, . . . , ρT ], where 212

each ρt is a POS tag from the POS vocabulary P , 213

i.e., ρt ∈ P , and T ∈ N. We define all the tokens 214

whose POS is ρ as a vocabulary Vρ, where Vρ ⊂ V . 215

4.1 POS Guided Softmax 216

Figure 1 illustrates the core idea of our POS Guided 217

Softmax. Given a context, there exists various 218

choices for the next POS, which can be modeled 219

as the next POS distribution. For the context “no 220

one knows”, the next possible POS includes WH- 221

pronoun (WP), preposition (IN), etc. For example, 222

if WP is predicted as the next POS, the model will 223

decode the next token from the WP vocabulary 224

(VWP) with the token distribution of WP. Conse- 225

quently, the complete sequence can be “no one 226

knows what will happen”. For another case, if IN 227

is predicted as the next POS, the next token will 228

be decoded from VIN with the corresponding token 229

distribution. Then, the sequence may end up say- 230

ing “no one knows until it finally happens”. This 231

example also shows that the different choices of 232

POS at each time step can result in vastly different 233

generated text, thus promoting text diversity. 234

Following the core idea, we assume that the de- 235

coding process can be divided into two stages: for 236

each time t, a POS tag ρt is predicted first, and then 237

the model decodes next-token xt from Vρt . There- 238

fore, the joint conditional probability of xt and its 239

corresponding POS tag ρt is formulated as: 240

pθ (xt, ρt | x<t) = pθ1 (ρt | x<t)× pθ2 (xt | ρt,x<t) ,
(2) 241

where pθ1 (ρt | x<t) is the next-POS probability 242

and pθ2 (xt | ρt,x<t) is the next-token probability 243

conditioned on ρt. These probabilities are defined 244
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no one knows
Next POS

(1) POS distribution
NNJJDT WP

…
IN PRP

WP 
Vocabulary：

how   what   where
who   why …

IN 
Vocabulary：

about  before  expect
during  until  …

(2) Token distribution of  IN
expectbeforeabout

…

untilduring

Next Token

… …

Vocabulary × #POS Distribution × #POS

…

(2) Token distribution of WP
wherewhathow

…

whywho

Figure 1: Illustration of POS Guided Softmax. The decoding process is decomposed into two stages: first predicts
the next-POS distribution, and then decodes the next-token distribution from the vocabulary of the previously
predicted POS. Since there exist some tokens with more than one POS, the final next-token distribution is the sum
of all the POS’s token distributions.

empirically by applying a linear output embedding245

on ht−1 and then a Softmax function respectively:246

pθ1 (ρt | x<t) =
exph⊤

t−1oρt

Σρ∈P exph⊤
t−1oρ

,

pθ2 (xt | ρt,x<t) =


exph⊤

t−1wxt

Σx∈Vρt
exph⊤

t−1wx
, if xt ∈ Vρt

0, otherwise
,

(3)247

where oρt and wxt are the output embeddings248

for ρt ∈ P and xt ∈ Vρt , respectively. In249

this way, we regard POS tags as observed se-250

quential variables, which also contributes to the251

model interpretability and controllability. Then,252

the final next-token distribution can be formulated253

as: pθ (xt | x<t) =
∑

ρt∈P pθ (xt, ρt | x<t) . Note254

that some tokens may have more than one POS, and255

pθ (xt, ρt | x<t) = 0 for xt /∈ Vρt . Since the num-256

ber of POS in a specific language family is fixed,257

there is no problem of insufficient exploration in258

variables’ space.259

As mentioned before, we think of POS tags as260

observed sequential variables and extend the train-261

ing text set with annotated POS sequences, so we262

define the POS guided training objective as follows:263

264

LPOS-Guided (θ) =−
T∑

t=1

[
log pθ1 (ρt | x<t)

+ log pθ2 (xt | ρt,x<t)
]
.

(4)265

4.2 POS Guided Sampling266

We propose POS Guided Sampling based on POS267

Guided Softmax. Consistent with POS Guided268

Softmax, the key idea is to divide the whole sam- 269

pling sample process into two stages: POS sam- 270

pling and token sampling. In POS sampling, we 271

first sample a POS, and then in token sampling, we 272

use the sampled POS to control the sampling of 273

tokens. Note that arbitrary sampling strategies can 274

be adopted to both the POS sampling and token 275

sampling. Here, we take top-k sampling for POS 276

sampling, and nucleus sampling for token sampling 277

as an example, and then we can formulate our POS 278

Guided Sampling as follows: 279

p′θ (xt | x<t) =
∑
ρt∈P

[
p′θ1 (ρt | x<t)× p′θ2 (xt | ρt,x<t)

]
,

p′θ1 (ρt | x<t) =

{
pθ1 (ρt|x<t)

Zθ1
, if ρt ∈ P ′

0, otherwise
,

p′θ2 (xt | ρt,x<t) =

{
pθ2 (xt|ρt,x<t)

Zθ2
, if xt ∈ V ′

ρt

0, otherwise
,

Zθ1 =
∑
ρ∈P′

pθ1 (ρ | x<t) ,

Zθ2 =
∑

x∈V′
ρt

pθ2 (x | ρt,x<t) ,

(5) 280

where P ′ ⊂ P is a POS set containing top-k most 281

probable POS tags, and V ′
ρt ⊂ Vρt is the small- 282

est token set such that
∑

x∈V ′
ρt
pθ2 (x | ρt,x<t) ≥ 283

α(token). k(POS) and α(token) (0 < α(token) ≤ 1) are 284

the hyperparameters for the sampling of POS and 285

token, respectively. For other sampling strategies 286

used in POS sampling and token sampling, POS 287

Guided Sampling can be similarly defined. 288
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5 Experiments289

We systematically evaluate our proposed methods290

on language modeling task (Section 5.2) and para-291

phrase generation task (Section 5.3).292

5.1 Experimental Setup293

Model Architecture Since our proposed meth-294

ods are architecture agnostic, we implement POS295

Guided Softmax on the Transformer (Vaswani et al.,296

2017), a widely used architecture for neural text297

generation. Details of the experimental setup for298

each task are shown in Appendix A.299

Baseline Models We compare our POS Guided300

Softmax and Sampling (POSG) with the follow-301

ing baselines: (i) Maximum likelihood estima-302

tion (MLE), a standard approach for neural text303

generation. (ii) Frequency-Aware Cross-Entropy304

(FACE) (Jiang et al., 2019) dynamically weights305

the cross-entropy losses conditioned on the token306

frequency. (iii) Frequency Factorization Softmax307

(F2-Softmax) (Jiang et al., 2019) factorizes the308

standard Softmax based on the token frequency.309

(iv) Unlikelihood training (UL) (Welleck et al.,310

2020) is to enhance the log-likelihood loss with an311

unlikelihood loss that penalizes the generation of re-312

peated tokens. (v) We further implement two task-313

specific baselines: Mixture of Softmaxes (MoS)314

(Yang et al., 2018) for language modeling, Syntax315

Guided Controlled Paraphraser (SGCP) (Kumar316

et al., 2020) for paraphrase generation. Note that317

decoding-based methods, including top-k and nu-318

cleus sampling, can be directly compared to POSG,319

when they are applied to MLE. The details will be320

described in the sections of Generation Details.321

5.2 Language Modeling322

Dataset We performed experiments on the323

Wikitext-1031 dataset (Merity et al., 2017) for lan-324

guage modeling. In order to train our POS Guided325

Softmax, we need the corresponding POS tags. We326

use the Stanford CoreNLP’s POS tagger (Manning327

et al., 2014) to annotate words in Wikitext-103 with328

XPOS2 tags (Hornby et al., 2017). In our imple-329

mentation, there are 45 different POS tags in total.330

Generation Details We conduct the text comple-331

tion task to evaluate models on the test set. Specif-332

ically, for each sample, we truncate 50 tokens as333

1https://s3.amazonaws.com/research.
metamind.io/wikitext/wikitext-103-v1.zip

2The XPOS tags are language-specific part-of-speech tags
from the Universal Dependency Treebanks.

the prefix, and then guide model to decode follow- 334

ing 100 tokens as the continuation from the given 335

prefix. Finally, there are 1536 prefixes in the test 336

set. We use stochastic decoding to generate text. 337

Note that all the baselines have only one sampling 338

stage, i.e., token sampling, while our POSG has an 339

additional POS sampling. To reach a good trade- 340

off between quality and diversity, we adopt nucleus 341

sampling with α(token) = 0.5 for token sampling 342

(for all models including our POSG and baselines). 343

For our POSG, we adopt top-k sampling in POS 344

sampling, since the size of the POS vocabulary P is 345

much smaller than the total token vocabulary. We 346

then conduct a grid search to find the k(POS) whose 347

generated continuations have the smallest reverse 348

language model score (Semeniuta et al., 2018) on 349

the validation set. k(POS) is finally set to 20. Some 350

generated cases are shown in Appendix D. 351

Metrics Following Choi et al. (2020), we evalu- 352

ate the generated text with two sets of metrics: (i) 353

Diversity: We use Self-BLEU (Zhu et al., 2018) 354

which is calculated by computing BLEU (Papineni 355

et al., 2002) of each generated text with all other 356

generations as references. We also compute the 357

generated continuations’ unique tokens (Uniq), dis- 358

tinct n-gram (Distinct-n). We also use repetition 359

(Rep) (Holtzman et al., 2020), the percentage of 360

continuations ending with a repetition loop, to 361

evaluate text diversity. (ii) Quality: We measure 362

the perplexity (PPL) (Mnih and Teh, 2012), KL- 363

Divergence (KLD) (Kullback, 1997) on unigram 364

distributions, and MS-Jaccard (Montahaei et al., 365

2019) on n-gram. All of above metrics are calcu- 366

lated between the generated continuations as hy- 367

potheses and the ground truths as references. 368

Automatic evaluation Table 2 shows the auto- 369

matic evaluation results comparing different mod- 370

els on the language modeling task. In terms of 371

Self-BLEU4, Rep, and Distinct-n, our POSG per- 372

forms much better than all the baselines, indicating 373

that our proposed model can generate diverse text 374

effectively. The FACE also performs well, and it 375

achieves the best in Uniq. However, by checking 376

the outputs (Table 13 in Appendix D), we find that 377

FACE produces more incoherent text that is hard 378

to understand. 379

Since training-based methods including ours 380

make a trade-off between the text diversity and 381

the likelihood of ground truth, MLE gets the lowest 382

PPL. However, the optimal or second best results of 383

quality metrics confirm that POSG can still main- 384
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Models Self-BLEU4 ↓ Rep ↓ Uniq ↑ Distinct ↑
PPL ↓ KLD ↓ MS-Jaccard ↑

n=1 n=2 n=3 n=1 n=2 n=3
MLE 46.9 1.86 11.7k 50.2 77.2 86.2 32.7 1.34 56.9 38.2 25.4
FACE 34.2 1.56 14.9k 60.0 85.1 90.6 36.1 1.18 58.6 37.6 24.0
F2-Softmax 51.5 4.09 10.8k 42.4 65.3 75.2 35.0 1.58 51.5 33.7 22.4
UL 42.4 0.240 12.8k 61.2 87.8 93.3 37.0 1.20 61.2 40.4 26.2
MoS 55.3 3.99 8.40k 48.2 74.3 83.0 38.2 1.48 56.9 38.1 25.4
POSG 34.1 0.000 13.8k 60.2 88.8 94.3 34.4 1.17 62.2 40.7 25.9

Table 2: Automatic evaluation results for different models on the language modeling task. Numbers n ∈ {1, 2, 3} in
the column heads under Distinct and MS-Jaccard refer to n-gram. (Bold: the best; Underline: the second best).

Models
Distinct ↑

1-P 1-G 2-P 2-G 3-P 3-G
MLE 16.0 39.2 38.5 61.0 54.7 70.8
FACE 17.8 49.8 46.6 73.0 65.4 80.8
F2-Softmax 16.4 41.1 39.3 63.8 55.8 74.0
UL 18.0 51.7 46.5 76.8 66.3 85.2
MoS 16.4 41.1 40.0 63.8 56.5 72.9
POSG 19.9 56.2 58.1 85.3 80.6 92.3
Human 21.7 67.7 61.8 93.0 83.8 95.9
PPMCC 0.988 0.986 0.986

Table 3: Results of distinct n-gram and n-POS with
corresponding Pearson product-moment correlation co-
efficient (PPMCC). n-P and n-G where n ∈ {1, 2, 3}
are abbreviated notations for n-POS and n-gram.

tain comparable generation quality.385

We further conduct a correlation test to verify386

that the text diversity is closely correlated with the387

POS diversity. We first annotate all the generated388

text with the POS tagger, and define a n-POS to389

be contiguous n POS tags from the annotated POS390

tag sequence. Then, we can describe the degree of391

POS diversity by calculating the proportion of the392

distinct n-POS. Table 3 presents results of distinct393

n-gram and n-POS with corresponding Pearson394

product-moment correlation coefficient. In terms395

of distinct n-POS, POSG also surpasses all the396

baselines. This demonstrates that our proposed397

model can substantially promote the POS diversity.398

Moreover, the Pearson correlations between dis-399

tinct n-POS and n-gram are extremely high, which400

indicates that the high POS diversity indeed leads401

to the high text diversity.402

Human evaluation For the language modeling403

task, following Tevet and Berant (2021) we ran-404

domly sample 100 generated continuations from405

each model. Each of them is scored between 1 to406

5 (5 is the best), by five workers to evaluate the407

overall Diversity (Div.) and Quality (Qua.). The408

results of the human evaluation on language mod-409

Models Div. ↑ Qua. ↑
MLE 2.86⋆ 3.10
FACE 3.32⋆ 3.18
F2-Softmax 2.35⋆ 2.80⋆

UL 3.36⋆ 3.20
MoS 2.79⋆ 3.06⋆

POSG 3.45 3.17

Table 4: Human evaluation on language modeling. ⋆

denotes statistical significance compared with POSG
(Mann-Whitney u-test, p < 0.1).

eling are shown in Table 4. It can be seen that our 410

POSG significantly outperforms all other baselines 411

in diversity, and performs relatively well in quality. 412

5.3 Paraphrase Generation 413

Dataset We use the the ParaNMT-50M3 dataset 414

(Wieting and Gimpel, 2018) for paraphrase gen- 415

eration. For better training, we follow Goyal and 416

Durrett (2020) to filter this dataset, and finially get 417

1.6 million paraphrase pairs with both high quality 418

and diversity. We also use Stanford CoreNLP to 419

tokenize the text and get corresponding POS tags. 420

Generation Details We conduct the standard 421

sequence-to-sequence paraphrase generation for 422

testing. Note that, during inference, SGCP needs a 423

corresponding exemplar sentence to paraphrase the 424

input sentence, while our model does not. So, for 425

a fair comparison, we prune the exemplar tree to 426

the height max(3, Hmax − 4) to reduce the impact 427

from exemplar sentence, where Hmax is the height 428

of the full constituency tree of the exemplar sen- 429

tence. We use the test set provided in the work of 430

SGCP4 that contains 800 paraphrase pairs and cor- 431

respond exemplar sentences for inference. For fair 432

comparison, we closely follow Kumar et al. (2020) 433

3https://drive.google.com/file/d/
1rbF3daJjCsa1-fu2GANeJd2FBXos1ugD/view

4https://github.com/malllabiisc/SGCP
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Models Self-WER↑ Self-BLEU4↓ Distinct↑
BERTScore↑ BLEU4↑ ROUGE↑

n=1 n=2 n=3 1 2 L
MLE 74.2 25.1 78.4 82.8 78.5 47.4 9.81 38.1 16.9 38.8
FACE 73.0 25.0 78.9 83.6 79.6 48.1 10.1 38.7 17.2 39.1
F2-Softmax 76.4 28.0 78.2 83.0 79.5 53.9 11.4 41.1 19.5 42.8
UL 77.2 21.2 80.1 85.3 80.9 36.0 7.59 30.6 13.3 30.3
SGCP 83.0 28.6 81.9 82.6 77.7 47.9 9.91 41.3 17.7 41.1
POSG 89.7 19.6 82.1 85.3 81.8 48.3 9.79 40.3 17.1 39.4

Table 5: Automatic evaluation results for different models on the paraphrase generation task. Numbers n ∈ {1, 2, 3}
in the column heads under Distinct refer to n-gram. (Bold: the best; Underline: the second best).

Models
Div. ↑

Flu. ↑ Rel. ↑
Lex. Syn.

MLE 2.92 2.65⋆ 3.34⋆ 3.09⋆

FACE 2.91 2.58⋆ 3.60 3.35
F2-Softmax 2.77⋆ 2.57⋆ 3.59 3.38
UL 3.00 2.68⋆ 3.37⋆ 3.17⋆

SGCP 2.74⋆ 2.67⋆ 3.50 3.21⋆

POSG 3.02 2.79 3.58 3.35

Table 6: Human evaluation on paraphrase generation.
⋆ denotes statistical significance compared with POSG
(Mann-Whitney u-test, p < 0.1).

to generate paraphrase using beam search for all434

the models with beam size 10. For the sampling435

hyperparameter in POS sampling, we also conduct436

a grid search, and k(POS) is finally set to 5. Some437

generated cases are shown in Appendix D.438

Metrics We also evaluate the generated para-439

phrases with two sets of metrics, (i) Diversity: To440

assess how different the generated paraphrases are441

compared to the original sentences, we calculate442

BLEU and Word Error Rate (WER) (Goyal and443

Durrett, 2020) between generated paraphrases and444

input sentences. We denote them as Self-BLEU445

(see Appendix A.3 for the difference with the Self-446

BLEU in language modeling) and Self-WER, re-447

spectively. We also compute the generated para-448

phrases’ distinct n-gram (Distinct-n) to evaluate449

text diversity. (ii) Quality: we calculate BLEU450

score on n-gram to evaluate the closeness of the451

generated paraphrases to references. Besides, we452

use the BERTScore (Zhang et al., 2020) to mea-453

sure the semantic consistency between generated454

paraphrases and input sentences. We also com-455

pute ROUGE-1,2,L between the generated and the456

reference to evaluate the generation quality.457

Automatic evaluation The experimental results458

on the paraphrase generation task are shown in Ta-459

ble 5. Our proposed model outperforms other base-460

7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5
BLEU4

28
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Figure 2: Quality-diversity trade-off for different mod-
els on paraphrase generation. The x-axis measures
BLEU4 for quality, and the y-axis measures negative
Self-BLEU4 for diversity. Both are the bigger the better.

lines on all the diversity metrics. In terms of qual- 461

ity metrics, our POSG performs better than MLE, 462

FACE, and UL, while the best model in quality, i.e., 463

F2-Softmax performs badly in diversity. Moreover, 464

compared with other syntax-guided models, i.e., 465

SGCP, our model performs much better in diversity 466

and has a comparable performance in quality. This 467

further confirms that our model can effectively pro- 468

mote text diversity without the help of exemplars. 469

To make a more intuitive comparison, we fur- 470

ther apply stochastic decoding for different models, 471

and tune the sampling hyperparameters to gener- 472

ate different sets of paraphrases. Then, we cal- 473

culate BLEU4 and Self-BLEU4 scores for these 474

sets, and draw the quality-diversity trade-off in Fig- 475

ure 2. Clearly, POSG surpasses all the baselines 476

with a significant gap. These results confirm that 477

our model can produce equally high-quality text 478

that is more diverse, and vice versa. 479

Human Evaluation We also conduct a human 480

evaluation for the generated paraphrases. 100 ex- 481

amples are randomly sampled from each models’ 482

outputs, respectively. Each of them are evaluated 483

by five workers from the following four aspects: 484
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Models Self-BLEU4 ↓ Rep ↓ Uniq ↑ Distinct ↑
PPL ↓ KLD ↓ MS-Jaccard ↑

n=1 n=2 n=3 n=1 n=2 n=3
POSG 34.1 0.000 13.8k 60.2 88.8 94.3 34.4 1.17 62.2 40.7 25.9
w/o POSG-Sampling 40.6 0.841 13.1k 55.2 83.0 90.6 34.4 1.29 56.9 37.5 24.5
MLE 46.9 1.86 11.7k 50.2 77.2 86.2 32.7 1.34 56.9 38.2 25.4

Table 7: Results of ablation study on the language modeling task. Note that PPL measures the ability of the model
to generate fluent text, which is not affected by the sampling strategy.

Models Self-WER↑ Self-BLEU4↓ Distinct↑
BERTScore↑ BLEU4↑ ROUGE↑

n=1 n=2 n=3 1 2 L
POSG 89.7 19.6 82.1 85.3 81.8 48.3 9.79 40.3 17.1 39.4
w/o POSG-Sampling 87.6 24.1 78.0 80.5 78.5 52.6 11.1 40.9 19.7 42.4
MLE 74.2 25.1 78.4 82.8 78.5 47.4 9.81 38.1 16.9 38.8

Table 8: Results of ablation study on the paraphrase generation task.

Adjective Adjs. per
Self-BLEU4↓ BLEU4↑

Probability Sentence
×0.1 0.43 20.2 9.47
×1 0.66 19.6 9.79
×10 1.04 18.7 9.45

Table 9: Results of controllability analysis on the para-
phrase generation task. “×n” means that we manually
multiply the probability of “Adjective” by n.

Lexical Diversity (LeD.), and Syntactical Diver-485

sity (SyD.), Fluency (Flu.), Relevance (Rel.). All486

these aspects are scored between 1 to 5, the higher487

the better. As shown in Table 6, the results of the488

human evaluation are strongly consistent with the489

automatic evaluation. Compared with MLE, UL490

and SGCP, POSG substantially improves the gen-491

eration quality, and it only has a tiny gap from492

the best model in fluency and relevance scores.493

Meanwhile, POSG has the best scores in diversity,494

which further verifies that our proposed methods495

can generate more lexically and syntactically di-496

verse paraphrases. The detailed questionnaire, the497

inter-annotator agreement, and other details are498

shown in Appendix E.499

5.4 Ablation Study500

We perform ablation studies to reveal the effect of501

POS Guided Softmax and POS Guided Sampling.502

As shown in Table 7 and Table 8, compared with503

MLE, POS Guided Softmax (without POS Guided504

Sampling) can improve text quality for both the505

tasks. Moreover, POS Guided Sampling can dra-506

matically promote text diversity for both the tasks.507

These results confirm the effectiveness of both the508

components.509

6 Analysis 510

6.1 Interpretability 511

Compared with one-stage sampling such as top-k 512

sampling, POSG will lead to the entropy increasing 513

of a language model’s distribution, and thus lead 514

to more diverse outputs (see Appendix B for the 515

proof, Appendix C.1 for experimental results). 516

6.2 Controllability 517

Our proposed POSG first samples a POS, and then 518

samples a token from the vocabulary of the pre- 519

viously predicted POS. Therefore, we can control 520

the POS sampling stage by forcing the probability 521

of some specific POS to be higher or lower. For 522

example, on the paraphrase generation task, we 523

can multiply the probability of “Adjective” (“JJ”) 524

and renormalize by dividing by the sum, aiming at 525

generating more descriptive style paraphrases. 526

The results are shown in Table 9. These results 527

confirm that by leveraging POS as an observed 528

and controllable clue, the generated text can be 529

successfully modulated with negligible effect on 530

quality and diversity (see Appendix C.2 for cases). 531

7 Conclusion 532

In this paper, we have introduced POS Guided Soft- 533

max and Sampling, simple but effective methods 534

to address the low-diversity problem in text gen- 535

eration. POSG guides models to capture contex- 536

tual and syntactical information by leveraging POS 537

as an observed and controllable clue in both the 538

training and decoding phases. Experimental re- 539

sults and human evaluation on language modeling 540

and paraphrase generation have demonstrated the 541

effectiveness of our methods. 542
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A Experimental Setup731

A.1 Dataset732

The dataset statistics of Wikitext-103 and733

ParaNMT-50M are reported in Table 10 and Ta-734

ble 11, respectively.735

Since ParaNMT-50M is generated by back-736

translation, the dataset has provided translation737

scores to measure the quality of back-translation,738

that a low translation score means semantically in-739

consistent, while a high translation score usually740

accompanies low diversity. Therefore, we only741

keep the paraphrase pairs whose translation scores742

are between 0.7 and 0.8. Moreover, for better train-743

ing, we remove the sentences that are less than 10744

tokens. Finally, we get a filtered dataset containing745

1.6 million paraphrase pairs with both high quality746

and diversity.747

For language modeling, we use the original set-748

tings of Wikitext-103 dataset for training, valida-749

tion, and test set splitting. For paraphrase gen-750

eration, we use the filtered training, validation751

set of ParaNMT-50M, and the test set provided752

in the work of SGCP. It is worth to mention that753

Wikitext-103 is under the CC BY-SA 3.0 license,754

and ParaNMT-50M is under the CC-BY license.755

Train Valid Test
#Articles 28,475 60 60
#Tokens 103,227,021 217,646 245,569

Table 10: Statistics of Wikitext-103.

Train Valid Test
#Sentence 1,640,709 3,000 800

Table 11: Statistics of ParaNMT-50M.

A.2 Architectures and Hyperparamters756

For the language modeling task, we use a 12-layer757

Transformer Decoder with 8 attention heads, em-758

bedding dimension 512, and projection dimension759

2048. For the paraphrase generation task, we use a760

6-layer Transformer Encoder and Decoder with the761

same other settings. All the algorithms are imple-762

mented in Pytorch and trained on a machine with763

8 NVIDIA GTX 2080Ti GPUs for 10 epochs with764

the hyperparameters reported in Table 12.765

We choose the architecture settings and batch766

sizes according to the GPU memory constraint.767

Hyperparameters Wikitext-103 ParaNMT-50M
Vocabulary size 267,735 100,000
Batch size 12 96
Learning rate 0.0001 0.0001
Finetuning LR 0.00001 0.00001
Finetuning step 1500 1500
Gradient clipping 0.25 0.25
Weight decay 0.001 0.001
Droupout 0.1 0.1
Optimizer Adam Adam

-β1 0.9 0.9
-β2 0.999 0.999
-ϵ 1e-8 1e-8

Table 12: Hyperparameter settings for different datasets.

Note that we use FACE-OPR among the four vari- 768

ants of FACE, and we train it in the way of fine- 769

tuning with corresponding fineturning LR and fine- 770

turning step. Additionally, we use 7 mixture com- 771

ponents in MoS. 772

A.3 Metrics 773

Note that, the calculations of Self-BLEU are dif- 774

ferent for language modeling and paraphrase gen- 775

eration. This is because the typical definitions of 776

Self-BLEU for these two different task are indeed 777

different. For language modeling, Self-BLEU (Zhu 778

et al., 2018) is a metric to evaluate the inner diver- 779

sity of the generated data, while for paraphrase gen- 780

eration, Self-BLEU (Cao and Wan, 2020) is used 781

to evaluate the degree to which the generated para- 782

phrases are different from the original sentence. 783

B Proof 784

We prove that our POS Guided Softmax and Sam- 785

pling can certainly generate more diverse text than 786

the one-stage sampling, top-k sampling as an ex- 787

ample. 788

In information theory, the entropy of a ran- 789

dom variable is the average level of “informa- 790

tion”, “surprise” in the variable’s possible out- 791

comes. Therefore, we can use the entropy of a 792

language model’s distribution p(x) to measure its 793

diversity. We denote the entropy of p(x) as H(p): 794

H(p) = −
∑

x∈V p(x) log p(x). The increase of 795

H(p) means the increase of diversity. 796

For example, compared with greedy search, 797

diversity-promoting sampling methods, such 798

as top-k sampling can increases H(p) from 799

−p(xmax) log p(xmax) to −
∑

x∈Vk

p(x)
Zk

log p(x)
Zk

, 800

where xmax is the token with the max probabil- 801

ity, Vk is the set of top-k most probable tokens, 802

Zk =
∑

x∈Vk
p(x), and obviously xmax ∈ Vk. 803

11



Prefix: Below them, North Koreans continued crossing the river and moving supplies forward to their combat units, some of
them already several miles eastward. The North Koreans quickly discovered Task Force Manchu group. They first attacked it at
14:00 that afternoon, and were repulsed
MLE: by the North Koreans. On the morning of September 8, the North Korean forces launched a surprise attack on the high
ground west of the Kum River. At 16:30, the North Korean force launched a massive attack on the North Korean force, but the
initial attack was not successful. The North Korean offensive was halted by the remnants of the North Korean forces
FACE: by heavy machine-gun fire. In the early morning hours of 8 September, North Korean troops were alerted to attack on
the perimeter. On 9 September, a force of 20,000 men led by Lieutenant Colonel Robert E. telluride began to attack the North
Korean lines, suffering little damage. By 14:00 on 9 September, North Korean forces had crossed the Naktong River just before
midnight.
F2-Softmax: by the North Koreans. The North Koreans were ordered to withdraw to the rear of the North Koreans. They
then launched a frontal attack on the south side of the river. The North Koreans then launched a frontal attack on the North
Korean right flank. The North Korean right flank was soon overrun by the North Koreans. The North Koreans were subsequently
repulsed by the North Koreans,
UL: by North Korean fire, which forced the North Koreans to retreat. A further assault by the 1st U.S. Infantry Regiment
followed in the afternoon, and after seven hours of fighting, the 2nd U.S. Infantry Regiment broke off the attack and retreated
across the river. The survivors of the Battle of tellers managed to escape to a new bridge. Task Force presaged, but by 20:00 the
North Koreans were completely surrounded by North Korean troops.
MoS: by the 9th Infantry Regiment. At 17 : 00, the North Koreans took the road from the Korean border to the north, and began
firing on the northern flank of the North Korean forces. The North Koreans then withdrew to the northern flank of the Korean
army, where they advanced into the river and quickly attacked the North Koreans. At 16 : 00, the North Koreans began firing on
the North Koreans, and a number of North Korean soldiers, including the 5th Cavalry Regiment, attacked the North Koreans.
POSG: by the North Koreans, beginning their advance south of Osan on 18 September. By nightfall on 24 September, Ho Chi
Minh had secured its flank, while the South Koreans had captured the town of Phong on the west of Taejon. The North Koreans
had retreated to Pyongtaek, and in the afternoon of 22 September two North Koreans were killed there, leaving behind the town
to the survivors.

Table 13: Examples of language modeling on Wikitext-103 dataset. Repeating text is highlighted in blue, dull text
with single context is highlighted in orange, and incoherent text is highlighted in red.

Now, we prove that our POSG with two sam-804

pling stages can lead to the entropy increasing,805

compared with one-stage top-k sampling as an ex-806

ample.807

For one-stage top-k sampling,808

H (p)(top-k) = −
∑
x∈Vk

p(x)

Zk
log

p(x)

Zk

= −
∑
x∈Vk

∑
ρ∈P p(x, ρ)

Zk
log

∑
ρ∈P p(x, ρ)

Zk

= − log |P| −
∑
x∈Vk

∑
ρ∈P p(x, ρ)

Zk
log

∑
ρ∈P p(x, ρ)

Zk × |P|
(6)809

According to the Log sum inequality, it follows:810

H(p)(top-k) ≥ − log |P| −
∑
x∈Vk

∑
ρ∈P

p(x, ρ)

Zk
log

p(x, ρ)

Zk

= − log |P| −
∑
ρ∈P

∑
x∈Vk

p(x, ρ)

Zk
log

p(x, ρ)

Zk

(7)811

Since p(x, ρ) = 0 for x /∈ Vρ, it follows:812

H(p)(top-k) ≥ − log |P| −
∑
ρ∈P

∑
x∈Vk,ρ

p(x, ρ)

Zk
log

p(x, ρ)

Zk

(8)813

where Vk,ρ = {x ∈ Vk | ρ ∈ POS(x)}, POS(x)814

is the set of all POS tags of token x. Thus, Vk,ρ ⊆815

Vk.816

For our POSG with two sampling stages, 817

H(p)(POS) = −
∑
x∈V

∑
ρ∈P

p′(x, ρ) log
∑
ρ∈P

p′(x, ρ)

= −
∑
x∈V

∑
ρ∈P

p′(ρ)p′(x | ρ) log
∑
ρ∈P

p′(ρ)p′(x | ρ)
(9) 818

where p′(x, ρ) is defined in Equation 2, p′(ρ) 819

and p′(x | ρ) are defined in Equation 5. Again, 820

according to the Log sum inequality, it follows: 821

H(p)(POS) ≥ − log |P|

−
∑
x∈V

∑
ρ∈P

p′(ρ)p′(x | ρ) log p′(ρ)p′(x | ρ) (10) 822

For the sake of briefness and fairness, we assume 823

that our POSG adopts pure sampling in the first 824

sampling stage (POS Sampling), and adopts top-k 825

sampling with the same k in the second sampling 826

stage (Token Sampling). So, p′(ρ) = p(ρ) for 827

ρ ∈ P , while 828

p′(x | ρ) =


p(x|ρ)
Z2

, if x ∈ Vρ,k

0, otherwise
, Z2 =

∑
x∈Vρ,k

p(x)

Note that, in our paper, we denote all the tokens 829

whose POS is ρ as a vocabulary Vρ, and here, Vρ,k 830
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Models Self-WER↑ Self-BLEU4↓ Distinct↑
BERTScore↑ BLEU4↑ ROUGE↑

n=1 n=2 n=3 1 2 L
top-k 100.8 13.6 86.9 88.9 83.7 39.4 6.49 33.5 12.1 32.3
POSG 102.1 13.6 86.9 88.2 83.4 43.3 7.71 36.4 14.1 34.9
∆ +1.3 +0.0 +0.0 -0.7 -0.3 +3.9 +1.22 +2.9 +2.0 +2.6

Table 14: Results of POSG and one-stage sampling (we use top-k sampling here) on the paraphrase generation task.
Note that we tune the sampling hyper-parameters of both methods to reach the same level of diversity, and then
compare the text quality.

Source: this is going to make good economic sense for the
city .
Reference: that it would be good for the city in a certain
economic sense .
MLE: this will be an economic sense for the entire city .
FACE: this will create a good economic point in the city .
F2-Softmax: this will make sense of economic sense for
the city .
UL: this will be considerable economic considerations for
the city ’s going to be able to economic point of the city .
SGCP: this will make economic sense for the city .
POSG: it is what makes good economic sense to the city .

Table 15: Examples of paraphrase generation on
ParaNMT-50M.

is the set of top-k most probable tokens in Vρ. Thus,831

Vρ,k ⊆ Vρ. Then, it follows:832

H(p)(POS) ≥ − log |P|

−
∑
x∈V

∑
ρ∈P

p(ρ)p′(x | ρ) log p(ρ)p′(x | ρ)

= − log |P| −
∑
ρ∈P

∑
x∈Vρ,k

p(ρ)
p(x | ρ)

Z2
log p(ρ)

p(x | ρ)
Z2

= − log |P| −
∑
ρ∈P

∑
x∈Vρ,k

p(x, ρ)

Z2
log

p(x, ρ)

Z2

(11)833

Since Vk,ρ ⊆ Vρ,k and we use the same setting834

of k, i.e., Z2 ≈ Zk, we can finally conclude from835

Equation 8 and Equation 11 that the lower bound836

of H(p)(POS) is greater than or equal to the lower837

bound of H(p)(top-k). When compared with other838

one-stage sampling strategies, this conclusion still839

holds, and can be proved in a similar way. Conse-840

quently, this will account for the effectiveness of841

our methods.842

C Additional Analysis843

C.1 Compared with One-stage Sampling844

We further conduct an analysis to test whether845

the traditional one-stage sampling can achieve the846

same level of diversity by increasing the random-847

ness, e.g. using larger k in top-k sampling. On848

Input Sentence: he (PRP) was (VBD) smiling (VBG) , clearly
(RB) delighted (JJ)

×0.1 he (PRP) was (VBD) smiling (VBG) , and (CC)
he (PRP) was (VBD) clearly (RB) pleased (VBN)
with (IN) joy (NN)

×1 he (PRP) was (VBD) smiling (VBG) and (CC) ap-
parently (RB) delighted (JJ) with (IN) joy (NN)
in (IN) his (PRP$) face (NN)

×10 he (PRP) was (VBD) still (RB) smiling (VBG)
and (CC) delighted (JJ) with (IN) apparent (JJ)
joy (NN) in (IN) his (PRP$) face (NN)

Table 16: Examples of controllability analysis on the
paraphrase generation task.

the paraphrase generation task, we tune the sam- 849

pling hyper-parameters in top-k sampling and our 850

POSG to reach the same level of diversity, and 851

then compare the text quality. The results are 852

shown in Table 14. In this experiment, POSG 853

adopts top-k sampling with k(POS) = 5 in POS 854

sampling, k(token) = 500 in token sampling, while 855

MLE adopts top-k sampling with k = 1000. Obvi- 856

ously, our POSG significantly outperforms top-k 857

sampling on MLE in terms of quality metrics, while 858

performing equally well in diversity. Therefore, we 859

can conclude that, by increasing the randomness, 860

the traditional one-stage sampling on MLE can 861

finally achieve the same level of diversity as our 862

POSG, but the quality of the generated text will 863

seriously deteriorate. This further confirms the ad- 864

vantage of our methods over prior works. 865

C.2 Controllability Analysis Example 866

An example of the controllability analysis is pro- 867

vided in Table 16. When we control the probability 868

of adjective increasing during the POS sampling 869

stage, the generated paraphrase will contain corre- 870

spondingly more adjectives. 871

D Case Study 872

Table 13 provides examples of text completion pro- 873

duced by our model and other baselines. It can 874

be observed that MLE, F2-Softmax, and MoS suf- 875
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Div. Qua.
Krippendorff’s α 0.57 0.40

Table 17: Agreement analysis for annotators labels on
the language modeling task.

Models
Div.

Flu. Rel.
Lex. Syn.

Krippendorff’s α 0.54 0.37 0.71 0.63

Table 18: Agreement analysis for annotators labels on
the paraphrase generation task.

fer from a severe repetition problem, and they also876

generate many similar sentences about a single con-877

tent. Due to the low-diversity problem, MoS even878

generates some illogical text, such as “the North879

Koreans began firing on the North Koreans”. FACE880

produces a large amount of incoherent text, making881

the text somewhat hard to read. UL and our POSG882

alleviate those problems, while our model performs883

relatively better.884

Additionally, examples of paraphrase generation885

are shown in Table 15. We observe that almost886

all models can generate high-quality paraphrases887

with well-preserved semantic meanings, while our888

POSG exhibits more syntactic diversity than other889

baselines.890

E Human Evaluation891

We post the human evaluation questionnaire, as892

shown in Table 19 and Table 20, and then recruit893

five workers with sufficient high English skills. We894

pay each worker 60 US dollars, and let them com-895

plete the evaluation within a week.896

For both tasks, workers are given 100 randomly897

sampled inputs, and corresponding outputs from898

each model. Then, they need to score those out-899

puts according to the description in the question-900

naire. The term “diversity” in language modeling901

is typically regarded as a property of the collective902

outputs of a system, but it is really difficult for a903

human to remember such a large scale of outputs904

and give an overall score for a system. So we make905

a compromise that we asked the worker to rate906

the diversity of individual outputs, and intuitively907

the more diverse individual outputs are, the more908

diverse the system is.909

We employ the Krippendorff’s alpha for the inter-910

annotator agreement analysis. As shown in Ta-911

ble 17 and Table 18, all the results are fair agree- 912

ment (0.2 ≤ κ ≤ 0.4) or moderate agreement 913

(0.4 ≤ κ ≤ 0.6). 914

F Impact Statement 915

Our work has developed generic generation meth- 916

ods to promote text diversity while maintaining 917

comparable quality. Therefore, despite the con- 918

tributes to better text generation, our proposed 919

methods may be used to generate more human- 920

like fake text. But the impacts are more apparent 921

when considering deployed applications, while our 922

proposed methods as the methodologies can not 923

have any direct negative societal impacts. More- 924

over, all the datasets we used in our work are 925

open source datasets. Wikitext-103 was extracted 926

from Wikipedia, and ParaNMT-50M was created 927

by the back-translation. Therefore, the data we 928

used would not contain personally identifiable in- 929

formation or offensive content. 930
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The goal of this review is to evaluate the quality and diversity of generated texts. In this review, you will read an excerpt from
Wikipedia with first 50 words as prefixes, and its corresponding 100-word continuations. You should rate the continuations
between 1 - 5 in two ways:
(1) Diversity. The overall diversity of text can be evaluated from form (How to say it?) and content (What to say?). (1 = The
continuation is always repeating some words, its sentences share the similar forms syntactically and lexically, and its content
is dull; 5 = The continuation seldom repeats words, its sentences have various syntactical and lexical forms, and it contains
different things related to the prefix)
(2) Quality. The overall quality of text can be evaluated in many different aspects, such as fluency, readability, coherence, and
so on. (1 = The continuation is incoherent, difficult to understand, not related to the prefix, and has many syntactically and
semantically errors; 5 = The continuation is coherent, easy to understand, related to the prefix, and grammatically correct)
You should score between 1 - 5, where 5 is best and 1 is worst. You can consider and make a final decision by comparing
different continuations of the same prefix. These prefixes and continuations have been preprocessed by separating punctuation,
and splitting conjunctions. And because of length constraints, they may be truncated in the middle of the text. Please ignore
these when evaluating and do not allow them to affect your judgments.
For example, if you are given the following prefix and continuations:
Prefix: Infantry fought a series of hard battles . Simultaneously it had to send combat patrols to its rear to clear infiltrating North
Koreans from Changnyong and from its supply road . On the morning of September 1 the 1st and 2nd Regiments of the NK 9th
Division , in their. . .
Continuation 1: Score: Diversity 3, Quality 3
second action around 380 yards <unk> 290 m <unk> from .395 , were assigned to the 7th Division. Meanwhile , the 2nd
Regiment of the 27th Infantry , which had been sent out of Murmansk in late October , had moved to iconoclasts Pass . It was
the first major US unit to advance across the mountains to the west , but it was not successful . On the morning of September 2 ,
the Eighth Army’s 2nd Battalion , 5th Cavalry Regiment was moved into a position about 10 miles <unk> 16 km <unk> from
Highton .
Continuation 2: Score: Diversity 1, Quality 5
reserve , were positioned to engage the North Korean troops . The 3rd Regiment of the NK 10th Division was to attack the North
Korean forces . The 1st Regiment of the NK 12th Division was to attack the North Koreans from the north and east of the 2nd
Division , and the 1st Regiment of the NK 15th Division was to attack the North Koreans from the south . The 1st Regiment of
the NK 12th Division was to attack the North Koreans from the south . The 1st Regiment of the NK 15th Division was to attack
the
Continuation 3: Score: Diversity 1, Quality 1
position north of Wonju , were repeatedly pushed back by the ROK 3rd Division . At 08 : 00 am the units of the 1st Battalion
attempted to attack . Kim of the 1st and 2nd Battalions attacked the 3rd and 3rd Battalions of the 2nd Battalion of the 3rd
Battalion of the 3rd Battalions of the 1st Battalion of the 2nd Battalion of 2nd Battalion , 7th Marines on North , 7th Marines on
Hill 60 . Task Force 51 and 9th Marines attacked Sangju ’s 1st Battalion of the 3rd Battalion of the 2nd Battalion , 1st Platoons
Continuation 4: Score: Diversity 4, Quality 3
“ Series B ” Company , carried out three assaults on the Pusan on 29 September against three resistance groups that included the
blacksmiths , truck commanders , and air support . They then conducted three raids into a line south of psalmody by the 2nd
Battalion , 3rd Field Artillery Regiment . At the same time , units from the 3rd Infantry Division and the 3rd Marine Division
advanced on all four sides of the road , while infantry units of the 2nd Infantry Division advanced on the northern slope . The 5th
Marine Corps , in particular
Analysis: As for diversity, Continuation 1 gives various details about the “hard battles”, and is of high diversity in the text form.
But all the content of it is about the deployment of armies, which means low content diversity. Therefore, Continuation 1 gets
3 points in Diversity. Since there are some words difficult to understand (highlighted in red), Continuation 1 gets 3 points in
Quality.
Continuation 2 keeps talking about only one single content, that is “some Regiment attacks the North Koreans from somewhere”
(highlighted in orange). Although it is fluent, relevant, and gets high scores in Quality, Continuation 2 will receive the lowest
score in Diversity due to its dull content.
Continuation 3 contains many useless repeating text (highlighted in blue), which makes the continuation incoherent and hard to
understand, so it gets the lowest score in both Quality and Diversity.
Continuation 4 also states from many different aspects of the “hard battles”, but compared to continuation 1, it is not that diverse
(That’s why comparing different continuations can help to make a decision). Therefore, it gets 4 points in Diversity. In the
meantime, high diversity of it also leads to some strange words in the text, and affects the overall quality. So, Continuation 4 can
only get a mediocre score in Quality.

Table 19: Human evaluation questionnaire for language modeling.
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The goal of this review is to evaluate the quality and diversity of text paraphrase dataset. In this review,
you will be given an original sentence, and its corresponding paraphrases. You should rate the paraphrases
between 1 - 5 in four ways:
(1) Lexical Diversity: how lexically diverse are the generated sentences?
(2) Syntactical Diversity: how syntactically diverse are the generated sentences?
(3) Fluency: how fluent are the generated paraphrases?
(4) Relevance: how semantically consistent are between generated paraphrases and the input sentences?
You should score between 1 - 5, where 5 is best and 1 is worst. You can consider and make a final
decision by comparing different paraphrases of the same original sentence. These sentences have been
preprocessed by converting all letters to lowercase, separating punctuation, and splitting conjunctions.
Please ignore this when evaluating and do not allow it to affect your judgments.
For example, if you are given the following original sentence and paraphrases:
Original sentence: by adopting rules that regulate the information about the foods and their nutritional
value appearing on the label , the consumers will be able to make informed and meaningful choices .
Paraphrase 1: Score: Lexical Diversity 5, Syntactical Diversity 5, Fluency 3, Relevance 5
the rules will be able to adapt food and their nutritional values listed on the labelling of consumers will be
able to be able to make informed and they are appropriate assessment .
Paraphrase 2: Score: Lexical Diversity 1, Syntactical Diversity 2, Fluency 1, Relevance 2
by adopting rules governing the information about food and relevance of foods and nutritional value of
nutrition value that regulate the labelling , so that consumers .
Paraphrase 3: Score: Lexical Diversity 4, Syntactical Diversity 5, Fluency 1, Relevance 2
consumers can adopt rules to provide informed and nutrition value of the food and their nutritional values
listed on the labelling , consumers will be able to enable consumers .
Paraphrase 4: Score: Lexical Diversity 1, Syntactical Diversity 1, Fluency 1, Relevance 1
by adopting rules that regulates the rule of food and their nutritional value of food and their nutritional
value of their nutritional value to the consumer protection , consumers .
Analysis: Although there are also some strange words in Paraphrase 1, we can still capture the main
meaning of it. Therefore, Paraphrase 1 can get a mediocre score in Fluency and a high score in Relevance.
On the other hand, Paraphrase 1 has many lexical edits and turns the original sentence into two parallel
sentences, so it can full marks in both terms of Lexical and Syntactical Diversity.
Paraphrase 2 is not really finished and repeats some words in the text (highlighted in blue), so it gets the
lowest scores in Relevance and Fluency. Meanwhile, except for some incorrect word order transpositions,
Paraphrase 2 is very similar to the original sentence. Therefore, it receives low scores in Lexical and
Syntactical Diversity.
Obviously, Paraphrase 3 changes a lot lexically and syntactically. However, it is incoherent, difficult to
understand (highlighted in red), so Paraphrase 3 scores high for Lexical and Syntactical Diversity and low
for Fluency and Relevance.
Paraphrase 4 is a nonsensical text, which is not really finished and keeps repeating itself. Therefore, it
gets the lowest scores from all aspects.

Table 20: Human evaluation questionnaire for paraphrase generation.
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