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ABSTRACT

Multi-source domain adaptation (MSDA) addresses the challenge of learning a
label prediction function for an unlabeled target domain by leveraging both the
labeled data from multiple source domains and the unlabeled data from the tar-
get domain. Conventional MSDA approaches often rely on covariate shift or
conditional shift paradigms, which assume a consistent label distribution across
domains. However, this assumption proves limiting in practical scenarios where
label distributions do vary across domains, diminishing its applicability in real-
world settings. For example, animals from different regions exhibit diverse char-
acteristics due to varying diets and genetics.
Motivated by this, we propose a novel paradigm called latent covariate shift
(LCS), which introduces significantly greater variability and adaptability across
domains. Notably, it provides a theoretical assurance for recovering the latent
cause of the label variable, which we refer to as the latent content variable. Within
this new paradigm, we present an intricate causal generative model by introducing
latent noises across domains, along with a latent content variable and a latent style
variable to achieve more nuanced rendering of observational data. We demon-
strate that the latent content variable can be identified up to block identifiability
due to its versatile yet distinct causal structure. We anchor our theoretical insights
into a novel MSDA method, which learns the label distribution conditioned on the
identifiable latent content variable, thereby accommodating more substantial dis-
tribution shifts. The proposed approach showcases exceptional performance and
efficacy on both simulated and real-world datasets.

1 INTRODUCTION

Multi-source domain adaptation (MSDA) aims to utilize labeled data from multiple source domains
and unlabeled data from the target domain, to learn a model to predict well in the target domain.
Formally, denoting the input as x (e.g., an image), y as labels in both source and target domains,
and u as the domain index, during MSDA training, we have labeled source domain input-output
pairs, (xS ,yS), drawn from source domain distributions pu=u1(x,y), ..., pu=um(x,y), ...1 Note
that the distribution pu(x,y) may vary across domains. Additionally, we observe some unlabeled
target domain input data, xT , sampled from the target domain distribution puT (x,y).

The success of MSDA hinges on two crucial elements: variability in the distribution pu(x,y),
determining the extent to which it may differ across domains, and the imperative of invariability
in a certain portion of the same distribution to ensure effective adaptation to the target domain.
Neglecting to robustly capture this invariability, often necessitating a theoretical guarantee, hampers
adaptability and performance in the target domain. Our approach comprehensively addresses both
these elements, which will be elaborated upon in subsequent sections.

MSDA can be broadly classified into two primary strands: Covariate Shift (Huang et al., 2006;
Bickel et al., 2007; Sugiyama et al., 2007; Wen et al., 2014) and Conditional Shift (Zhang et al.,
2013; 2015; Schölkopf et al., 2012; Stojanov et al., 2021; Peng et al., 2019). In the early stages
of MSDA research, MSDA methods focus on the first research strand Covariate Shift as depicted

1To simplify our notation without introducing unnecessary complexity, we employ the notation
pu=um(x,y) to denote p(x,y|u = um), and express u = um as U = um with the aim of clarity.
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(a) Covariate Shift (b) Conditional Shift (c) Latent Covariate Shift

Figure 1: The illustration of three different paradigms for MSDA. Covariate Shift: pu(x) changes across
domains, while pu(y|x) is invariant across domains. Conditional Shift: pu(y) is invariant, while pu(x|y)
changes across domains. Latent Covariate Shift: pu(zc) changes across domains while pu(y|zc) is invariant.

by Figure 1(a). It assumes that pu(x) changes across domains, while the conditional distribution
pu(y|x) remains invariant across domains. However, this assumption does not always hold in prac-
tical applications, such as image classification. For example, the assumption of invariant pu(y|x)
implies that pu(y) should change as pu(x) changes. Yet, we can easily manipulate style information
(e.g., hue, view) in images to alter pu(x) while keeping pu(y) unchanged, which clearly contradicts
the assumption. In contrast, most recent works delve into the Conditional Shift as depicted by Fig-
ure 1(b). It assumes that the conditional pu(x|y) changes while pu(y) remains invariant across
domains (Zhang et al., 2013; 2015; Schölkopf et al., 2012; Stojanov et al., 2021; Peng et al., 2019).
Consequently, it has spurred a popular class of methods focused on learning invariant representations
across domains to target the latent content variable zc in Figure 1(b) (Ganin et al., 2016; Zhao et al.,
2018; Saito et al., 2018; Mancini et al., 2018; Yang et al., 2020; Wang et al., 2020; Li et al., 2021;
Kong et al., 2022). However, the label distribution pu(y) can undergo changes across domains in
many real-world scenarios (Tachet des Combes et al., 2020; Lipton et al., 2018; Zhang et al., 2013),
and enforcing invariant representations can degenerate the performance (Zhao et al., 2019).

In many real-world applications, the label distribution pu(y) exhibits variation across different do-
mains. For instance, diverse geographical locations entail distinct species sets and/or distributions.
This characteristic is well-illustrated by a recent, meticulously annotated dataset focused on study-
ing visual generalization across various locations (Beery et al., 2018). Their findings illuminate that
the species distribution presents a long-tailed pattern at each location, with each locale featuring a
distinct and unique distribution 2. Label distribution shifts can also be corroborated through analy-
sis on the WILDS benchmark dataset, which investigates shifts in distributions within untamed and
unregulated environments (Koh et al., 2021). This study uncovers pronounced disparities in label
distributions between Africa and other regions 3. These distinctions encompass a notable decrease
in recreational facilities and a marked rise in single-unit residential properties.

To enhance both critical elements of MSDA, namely variability and invariability, we introduce a
novel paradigm termed Latent Covariate Shift (LCS), as depicted in Figure 1(c). Unlike previous
paradigms, LCS introduces a latent content variable zc as the common cause of x and y. The dis-
tinction between LCS and previous paradigms is detailed in Section 2. In essence, LCS allows for
the flexibility for pu(zc), pu(x), pu(y) and pu(x|zc) to vary across domains (greater variability).
Simultaneously, its inherent causal structure guarantees that pu(y|zc) remains invariant irrespective
of the domain (invariability with assurance). This allowance for distributional shifts imparts versa-
tility and applicability to a wide array of real-world problems, while the stability of pu(y|zc) stands
as the pivotal factor contributing to exceptional performance across domains.

Within this new paradigm, we present an intricate latent causal generative model, by introducing
the latent style variable zs in conjunction with zc, as illustrated in Figure 2(a). We delve into an
extensive analysis of the identifiability within our proposed causal model, affirming that the latent
content variable zc can be established up to block identifiability4 through rigorous theoretical ex-
amination. Since zs and the label become independent given zc, it is no need to recover zc. The
identifiability on zc provides a solid foundation for algorithmic designs with robust theoretical as-
surances. Subsequently, we translate these findings into a novel method that learns an invariant
conditional distribution pu(y|zc), known as independent causal mechanism, for MSDA. Leveraging
the guaranteed identifiability of zc, our proposed method ensures principled generalization to the tar-
get domain. Empirical evaluation on both synthetic and real-world data showcases the effectiveness
of our approach, outperforming state-of-the-art methods.

2For a comprehensive depiction of these distributions, please refer to Figure 4 in Beery et al. (2018). Addi-
tionally, the APPENDIX offers an analogous representation, as shown in Figure 6 for completeness.

3For a thorough comparison of distributions, refer to Figures 24 and 27 in Koh et al. (2021).
4There exists an invertible function between the recovered zc and the true one (Von Kügelgen et al., 2021).
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2 RELATED WORK

Learning invariant representations. Due to the limitations of covariate shift, particularly in the
context of image data, most current research on domain adaptation primarily revolves around ad-
dressing conditional shift. This approach focuses on learning invariant representations across do-
mains, a concept explored in works such as Ganin et al. (2016); Zhao et al. (2018); Saito et al.
(2018); Mancini et al. (2018); Yang et al. (2020); Wang et al. (2020); Li et al. (2021); Wang et al.
(2022b); Zhao et al. (2021). These invariant representations are typically obtained by applying ap-
propriate linear or nonlinear transformations to the input data. The central challenge in these meth-
ods lies in enforcing the invariance of the learned representations. Various techniques are employed
to achieve this, such as maximum classifier discrepancy (Saito et al., 2018), domain discriminator
for adversarial training (Ganin et al., 2016; Zhao et al., 2018; 2021), moment matching (Peng et al.,
2019), and relation alignment loss (Wang et al., 2020). However, all these methods assume label
distribution invariance across domains. Consequently, when label distributions vary across domains,
these methods may perform well only in the overlapping regions of label distributions across differ-
ent domains, encountering challenges in areas where distributions do not overlap. To overcome this,
recent progress focuses on learning invariant representations conditional on the label across domains
(Gong et al., 2016; Ghifary et al., 2016; Tachet des Combes et al., 2020). One of the challenges in
these methods is that the labels in the target domain are unavailable. Moreover, these methods do
not guarantee that the learned representations align consistently with the true relevant information.

Learning invariant conditional distribution pu(y|zc). The investigation of learning invariant con-
ditional distributions, specifically pu(y|zc), for domain adaptation has seen limited attention com-
pared to the extensive emphasis on learning invariant representations (Kull & Flach, 2014; Bouvier
et al., 2019). What sets our proposed method apart from these two works is its causal approach,
providing identifiability for the true latent content zc. This serves as a theoretical guarantee for
capturing invariability, addressing the second key element of MSDA. It ensures that the learned
pu(y|zc) in our work can generalize to the target domain in a principled manner. In addition, certain
studies explore the identification of pu(y|zc) by employing a proxy variable, as demonstrated by
(Alabdulmohsin et al., 2023). The challenge of these studies lies in devising an efficient proxy vari-
able. In contrast, although the work do not need such proxy variable, it is worth noting that our work
may necessitate stronger assumptions for identifying latent zc, compared with proxy based meth-
ods. Additionally, our Latent Causal Structure (LCS) allows for more flexibility in accommodating
variability, addressing the first key element of MSDA. Besides, in the context of out-of-distribution
generalization, some recent works have explored the learning of invariant conditional distributions
pu(y|zc) (Arjovsky et al., 2019; Sun et al., 2021; Liu et al., 2021; Lu et al., 2021). For exam-
ple, Arjovsky et al. (2019) impose learning the optimal invariant predictor across domains, while
the proposed method directly explores conditional invariance by the proposed latent causal model.
Moreover, some recent works design specific causal models tailored to different application sce-
narios from a causal perspective. For example, Liu et al. (2021) mainly focus on a single source
domain, while the proposed method considers multiple source domains. The work by Sun et al.
(2021) explores the scenarios where a confounder to model the causal relationship between latent
content variables and style variables, while the proposed method considers the scenarios in which
latent style variable is caused by content variable. The work in (Lu et al., 2021) focuses on the
setting where label variable is treated as a variable causing the other latent variables, while in our
scenarios label variable has no child nodes.

Causality for Domain Generalization A strong connection between causality and generalization
has been established in the literature (Peters et al., 2016). Building upon this insight, current research
has leveraged causality to introduce novel methods across various applications, including domain
generalization (Mahajan et al., 2021; Christiansen et al., 2021; Wang et al., 2022a), text classification
(Veitch et al., 2021), and Out-of-Distribution Generalization (Ahuja et al., 2021). Among these
applications, domain generalization is closely related to our problem setting. However, it involves
scenarios where the input data in the target domain cannot be directly observed. The lack of access
to the input data makes obtaining identifiability results challenging, and is left for future work.
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(a) The proposed causal model (b) An equivalent graph structure

Figure 2: (a) The proposed latent causal model, which splits latent noise variables n into two disjoint
parts, nc and ns. (b) An equivalent graph structure, which can generate the same observed data x
as obtained by (a), resulting in a non-identifiability result.

3 THE PROPOSED LATENT CAUSAL MODEL FOR LCS

LCS is a new paradigm in MSDA, enriching the field with elevated variability and versatility. Within
this innovative framework, we’re presented with an opportunity to delve into more intricate models.
This section is dedicated to presenting a refined causal model, tailored to this paradigm.

Drawing inspiration from the world of artistic representation, we integrate a latent style variable,
working in tandem with the latent content variable. Consider the profound contrast between the
drawing styles employed in a close-up portrayal of a human figure and those used to depict a vast,
distant mountain vista. This stark divergence vividly underscores how the underlying content intri-
cately molds the expressive nuances in artistic representation.

Fundamentally, the latent content exerts direct influence over the available styles. To account for
this, we introduce a latent style variable, seamlessly integrated as a direct descendant of the latent
content variable, as depicted in Figure 2(a). Concurrently, the observed domain variable u serves
as an indicator of the specific domain from which the data is sourced. This domain variable gives
rise to two distinct groups of latent noise variables: latent content noise, denoted as nc, and latent
style noise, denoted as ns. Analogous to exogenous variables in causal systems, these elements play
pivotal roles in shaping both the latent content variable zc and the latent style variable zs.

This model stands out in terms of versatility and applicability across a wide range of real-world
scenarios, surpassing the capabilities of models in previous paradigms including covariate shift and
conditional shift. This is because it accommodates variations in pu(zc), pu(x) and pu(x|zc) across
domains. Moreover, it provides a theoretically established guarantee of invariability for pu(y|zc)
independent of the domain (see Sections 4 and 5). This pivotal property facilitates the model’s
ability to generalize predictions across a diverse array of domains. To parameterize it, we make the
assumption that n follows an exponential family distribution given u, and we describe the generation
of z and x as follows:

p(T,⌘)(n|u) =
Ỳ

i=1

1

Zi(u)
exp[

2X

j=1

(Ti,j(ni)⌘i,j(u))], (1)

zc = gc(nc), zs = gs2(gs1(zc) + ns), (2)
x = f(zc, zs) + ". (3)

In Eq. 1, Zi(u) represents the normalizing constant, Ti,j(ni) stands as the sufficient statistic for ni,
and ` denotes the number of latent noises. The natural parameter ⌘i,j(u) is dependent on the domain
variable u. To establish a coherent connection between these latent noise variables n and the latent
variables z, we employ post-nonlinear models, as defined in Eq. 2, where gc and gs2 are invertible
functions. This concept of post-nonlinear models (Zhang & Hyvarinen, 2012) represents a general-
ized form of additive noise models (Hoyer et al., 2008), which find widespread use across various
domains. Furthermore, our proposed model incorporates two fundamental causal assumptions that
serve to underscore its novelty and distinctiveness within the field of latent causal modeling.

zc causes y: Prior research has often considered the causal relationship between x and y as y ! x
(Gong et al., 2016; Stojanov et al., 2019; Li et al., 2018). In contrast, our approach employs zc ! y.
Note that these two cases are not contradictory, as they pertain to different interpretations of the
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labels y representing distinct physical meanings. To clarify this distinction, let us denote the label
in the first case as ŷ (i.e., ŷ ! x) to distinguish it from y in the second case (i.e., zc ! y). In the
first case, consider the generative process for images: a label, ŷ, is initially sampled, followed by
the determination of content information based on this label, and finally, the generation of an image.
This sequence aligns with reasonable assumptions in real-world applications. In our proposed latent
causal model, we introduce nc to play a role similar to ŷ and establish a causal connection with
the content variable zc. In the second case, zc ! y represents the process where experts extract
content information from provided images and subsequently assign appropriate labels based on their
domain knowledge. This assumption has been adopted by recent works (Mahajan et al., 2021; Liu
et al., 2021; Sun et al., 2021). Notably, both of these distinct labels, ŷ and y, have been concurrently
considered in Mahajan et al. (2021). In summary, these two causal models, ŷ ! x and zc ! y,
capture different aspects of the generative process and are not inherently contradictory, reflecting
varying perspectives on the relationship between labels and data generation.

zc causes zs: As discussed earlier, the underlying content directly molds the styles. Therefore,
we adopt the causal relationship where zc serves as the cause of zs. This can be interpreted as the
essence of the object, zc, being the primary factor from which a latent style variable, zs, emerges to
ultimately render the observation x. This is aligned with previous works in domain adaptation field
(Gong et al., 2016; Stojanov et al., 2019; Mahajan et al., 2021), as well as with recent advancements
in self-supervised learning (Von Kügelgen et al., 2021; Daunhawer et al., 2023).

4 IDENTIFIABILITY ANALYSIS

In this section, we provide an identifiability analysis for the proposed latent causal model in section
3. We commence by illustrating that attaining complete identifiability for the proposed causal model
proves unattainable without the imposition of stronger assumptions. This assertion is substantiated
by the construction of an alternative solution that deviates from the true latent causal variables, yet
yields the same observational data. Following this, we move forward to affirm that achieving partial
identifiability of the latent content variables, denoted as zc, up to block identifiability is within reach.
This level of identifiability already provides a solid foundation for guiding algorithm designs with
robust theoretical guarantees, while maintaining the necessary flexibility for adaptation. Indeed,
we can see that zc serves as a common cause for both y and zs, illustrating a typical scenario of
spurious correlation between y and zs. Once zc is successfully recovered, it alone contains ample
information to make accurate predictions about the label. Given zc, the label and the latent style
become independent. Consequently, it is unnecessary and potentially counterproductive to recover
the latent style variable for label prediction, when the latent content has already been retrieved.

4.1 COMPLETE IDENTIFIABILITY: THE NON-IDENTIFIABILITY RESULT

Given the proposed causal model, one of the fundamental problems is whether we can uniquely
recover the latent variables, i.e., identifiability. We show that achieving complete identifiability of
the proposed latent causal model remains a challenging endeavor, as follows:

Proposition 4.1 Suppose that the latent causal variables z and the observed variable x follow the
latent causal models defined in Eq. 1-3, given observational data distribution p(y,x|u), there exists
an alternative solution, which can yield exactly the same observational distribution, resulting in
non-identifiablity, without further assumptions.

Proof sketch The proof of proposition 4.1 can be done by proving that we can always construct
another alternative solution to generate the same observation, leading to the non-identifiability result.
The alternative solution can be constructed by removing the edge from zc to zs as depicted by Figure
2(b), i.e., z0c = zc = gc(nc), z0s = ns, and the mixing mapping from z0 to x is a composition
function, e.g., f � f 0 where f 0(z0) = [z0c,gs2(gs1(z0c) + z0s)].

Intuition The non-identifiability result above is because we can not determine which path is the
correct path corresponding to the net effect of nc on x; i.e.., both nc ! zc ! zs ! x in Figure 2(a)
and nc ! zc ! x in Figure 2(b) can generate the same observational data x. This problem often
appears in latent causal discovery and seriously hinders the identifiability of latent causal models.
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4.2 PARTIAL IDENTIFIABILITY: IDENTIFYING zc

While the above result in proposition 4.1 shows that achieving complete identifiability may pose
challenges, for the specific context of domain adaptation, our primary interest lies in the identifia-
bility of zc, rather than the latent style variable zs. This focus is justified by the fact that the label y
is solely caused by zc. In fact, we have established the following partial identifiability result:

Proposition 4.2 Suppose latent causal variables z and the observed variable x follow the genera-
tive models defined in Eq. 1- Eq. 3. Assume the following holds:

(i) The set {x 2 X|'"(x) = 0} has measure zero (i.e., has at the most countable number of
elements), where '" is the characteristic function of the density p".

(ii) The function f in Eq. 3 is bijective.

(iii) There exist 2`+ 1 distinct points u0,u1, ...,u2` such that the matrix
L = (⌘(u = u1)� ⌘(u = u0), ...,⌘(u = u2`)� ⌘(u = u0)) (4)

of size 2`⇥ 2` is invertible where ⌘(u) = [⌘i,j(u)]i,j ,

then the recovered latent content variables ẑc, which are learned by matching the true marginal data
distribution p(x|u) and by using the dependence between nS

c and yS conditional on u, are related
to the true latent causal variables zc by the following relationship: zc = h(ẑc), where h denotes an
invertible mapping.
Remark 4.3 With access to label y in source domains, and the identified zc in those domains,
it becomes possible to accurately estimate the parameters of the conditional distribution p(y|zc).
This allows for a robust modeling of the relationship between the latent content variables zc and
the corresponding labels y in the source domains. Then since zc in target domain is also identified,
and leveraging the invariance of p(y|zc), the learned conditional distribution p(y|zc) theoretically
be generalized to the target domain. This generalization is grounded in the notion that the causal
relationship between zc and y remains consistent across domains.
Proof sketch The proof of Proposition 4.2 can be outlined as follows: Given that the mapping
from n to z is invertible, and in consideration of assumptions (i)-(iii), we can leverage results from
nonlinear ICA (Hyvarinen et al., 2019; Khemakhem et al., 2020; Sorrenson et al., 2020). This
implies that n can be identified up to permutation and scaling, i.e., n = Pn̂+ c, where n̂ represents
the recovered latent noise variables. Furthermore, the graph structure depicted in Figure 2(a) implies
that yS is dependent on nS

c but independent of nS
s , given u. This insight enables us to eliminate the

permutation indeterminacy, thus allowing us to identify nc. Ultimately, since the mapping from nc

to zc is invertible as defined in Eq. 2, we can conclude the proof.

Intuition We note that all three assumptions align with standard practices in the nonlinear ICA
literature (Hyvarinen et al., 2019; Khemakhem et al., 2020). This alignment is possible because
nonlinear ICA and latent causal models naturally converge through the independence of compo-
nents in the nonlinear ICA domain and the independence among exogenous variables in causal
systems. However, there exists a crucial distinction: while nonlinear ICA seeks to identify indepen-
dent latent variables, our objective in this context is to pinpoint the latent content variable within a
causal system that allows for causal relationships among latent variables. This inherently renders
the task more challenging. Fortunately, this discrepancy can be reconciled through two pivotal con-
ditions: 1) the mapping from n to z is made invertible by constraining the function class, as defined
in Eq. 2. 2) The conditional independence between nS

s and yS , given u, as depicted in the graph
structure shown in Figure 2(a). This condition effectively eliminates the permutation indeterminacy
typically encountered in nonlinear ICA. Furthermore, Proposition 4.2 establishes the existence of an
invertible transformation between the recovered ẑc and the true latent content variable zc. Impor-
tantly, this invertible transformation has no bearing on domain adaptation tasks, as it indicates that
ẑc encapsulates all and only the information pertaining to zc.

5 LEARNING INDEPENDENT CAUSAL MECHANISM pu(y|zc) FOR MSDA

The identifiability of zc provides a principled foundation to ensure that we can effectively learn the
independent causal mechanism pu(y|zc) across diverse domains. This, in turn, facilitates robust
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generalization to the target domain. Additionally, given the invertible mapping between nc and zc
as outlined in Eq. 2, the task of learning pu(y|zc) can be equivalently reformulated as the task
of learning pu(y|nc). This alternative formulation remains consistent and invariant across various
domains, as illustrated in Figure 2(a).

As elucidated in Proposition 4.2, the learned latent content variables ẑc are obtained by aligning
with the true marginal data distribution p(x|u). Consequently, it logically follows that the acquired
latent noise variables n̂c should also be obtained through a matching of the marginal distribution.
To fulfill this objective, our proposed method harnesses the framework of a Variational Autoencoder
(Kingma & Welling, 2013) to learn the recovered latent noise. Specifically, we employ a Gaussian
prior distribution for nc and ns as follows:

pu(n) = pu(nc)pu(ns) = N
�
µnc(u),⌃nc(u)

�
N
�
µns(u),⌃ns(u)

�
, (5)

where µ and ⌃ denote the mean and variance, respectively. Both µ and ⌃ depend on the domain
variable u and can be implemented with multi-layer perceptrons. The proposed Gaussian prior Eq.
5 gives rise to the following variational posterior:

qu(n|x) = qu(nc|x)qu(ns|x) = N
�
µ0

nc(u,x),⌃
0
nc(u,x)

�
N
�
µ0

ns(u,x),⌃
0
ns(u,x)

�
, (6)

where µ0 and ⌃0 denote the mean and variance of the posterior, respectively. Combining the varia-
tional posterior with the Gaussian prior, we can derive the following evidence lower bound:

LELBO = Equ(n|x)
�
pu(x)

�
� �DKL

�
qu(n|x)||pu(n)

�
, (7)

where DKL denotes the Kullback–Leibler divergence. We here empirically use a hyperparameter
�, motivated by Higgins et al. (2017); Kim & Mnih (2018); Chen et al. (2018), to enhance the
independence among ni, considering a common challenge encountered in real-world applications
where the availability of source domains is often limited. By maximizing the Evidence Lower Bound
(ELBO) as expressed in Eq. 7, we can effectively recover ni up to scaling and permutation. To
address the permutation indeterminacy, as shown in proposition 4.2, we can evaluate the dependence
between yS and nS

i to identify which ni correspond to nS
c . In the implementation, we use the

variational low bounder of mutual information as proposed in Alemi et al. (2016) to quantify the
dependence as follows:

LMI = Equ(nS
c |x)

�
log p(yS |nS

c )
�
. (8)

This loss function serves to maximize the mutual information between nS
c and yS in source do-

mains. Notably, this maximization also signifies an amplification of the information flow within the
causal relationship from nS

c for yS . This alignment between information flow and mutual informa-
tion arises from the independence among ni, conditioned on u, which is a structural characteristic
inherent in the graph representation of our proposed causal model. To promote information flow in
the target domain, we can also maximize the mutual information between ŷT (representing the esti-
mated label in the target domain) and nT

c . This is achieved by minimizing the following conditional
entropy term:

LENT = �Equ(nT
c |x)

⇣X

ŷT

p(ŷT |nT
c ) log p(ŷ

T |nT
c )

⌘
, (9)

where ŷT denotes the estimated label in the target domain. It is interesting to note that this regu-
larization approach has been empirically utilized in previous works to make label predictions more
deterministic (Wang et al., 2020; Li et al., 2021). However, our perspective on it differs as we
consider it from a causal standpoint. As a result, we arrive at the final loss function:

maxLMI + �LELBO + �LENT, (10)
where � and � are hyper-parameters that trade off the three loss functions.

6 EXPERIMENTS

Synthetic Data We conduct experiments on synthetic data to verify our theoretical results and the
ability of the proposed method to adapt to a new domain. Details of synthetic data can be found
in Appendix A.2. In the implementation, we use the first 4 segments as source domains, and the
last segment as the target domain. Figure 3(a) shows the true and recovered distributions of nc. The
proposed iLCC-LCS obtains the mean correlation coefficient (MCC) of 0.96 between the original nc

and the recovered one. Due to the invariant conditional distribution p(y|nc), even with the change
of p(nc) as shown in Figure 3(a), the learned p(y|nc) can generalize to target segment in a principle
way as depicted by the Figure 3(b).
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(a) Recovered nc (b) Predicted y on the target segment

Figure 3: The Result on Synthetic Data.

Table 1: Ablation study on resampled PACS data (DKL = 0.7), and TerraIncognita.

Methods Accuracy on resampled PACS data(DKL = 0.7) Accuracy on TerraIncognita

!Art !Cartoon !Photo !Sketch Average !L28 !L43 !L46 !L7 Average

iLCC-LCS with � = 1 90.2 ± 0.5 73.4 ± 0.8 95.7 ± 0.4 82.7 ± 0.7 85.5 56.3 ± 4.3 61.5 ± 0.7 45.2 ± 0.3 80.1 ± 0.6 60.8
iLCC-LCS with � = 0 81.1 ± 1.5 70.0 ± 1.6 92.0 ± 0.5 59.6 ± 0.7 75.7 54.8 ± 1.4 58.9 ± 1.8 46.8 ± 1.4 73.1 ± 0.6 58.4
iLCC-LCS 90.7 ± 0.3 74.2 ± 0.7 95.8 ± 0.3 83.0 ± 2.2 86.0 64.3 ± 3.4 63.1 ± 1.6 44.7 ± 0.4 80.8 ± 0.4 63.2

Resampled PACS data: There exist datasets, such as PACS (Li et al., 2017) and Office-Home
(Venkateswara et al., 2017), commonly used for evaluating MSDA under previous paradigms. These
datasets exhibit very limited changes in label distribution across domains. For instance, in the PACS
dataset, the KL divergence of label distributions between any two domains is exceedingly small, ap-
proximately DKL ⇡ 0.1. Consequently, these datasets are well-suited for evaluating models in the
setting of conditional shift, where label distributions remain consistent across domains, as illustrated
in Figure 1(b). In order to render the PACS dataset more suitable for assessing the adaptability of
MSDA algorithms to more challenging and realistic scenarios characterized by significant label dis-
tribution shifts, we apply a filtering process. This involves random sampling from the original PACS
dataset to obtain a predefined label distribution. As a result, we generate three new datasets: PACS
(DKL = 0.3), PACS (DKL = 0.5), and PACS (DKL = 0.7). Here, DKL = 0.3, 0.5, 0.7 indicates
that the KL divergence of label distributions between any two distinct domains is approximately 0.3,
0.5, 0.7. Further elaboration on the label distribution across domains can be found in Appendix A.1.

Terra Incognita data: We further evaluate the proposed iLCC-LCS on Terra Incognita dataset
proposed in (Beery et al., 2018) used for evaluation for domain generalization. In this dataset, the
label distribution is long-tailed at each domain, and each domain has a different label distribution,
hence it naturally has significant label distribution shifts, ideal for the challenging scenarios that
LCS describes. We select four domains from the original data, L28, L43, L46, and L7, which share
the same seven categories: bird, bobcat, empty, opossum, rabbit, raccoon, and skunk. Here ’L28’
denotes that the image data is collected from location 28. More detailed label distribution across
domains can be found in Appendix A.1.

Baselines We compare the proposed method with state-of-the-art methods to verify its effective-
ness. Particularly, we compare the proposed methods with empirical risk minimization (ERM),
MCDA (Saito et al., 2018), M3DA (Peng et al., 2019), LtC-MSDA (Wang et al., 2020), T-SVDNet
(Li et al., 2021), IRM (Arjovsky et al., 2019), IWCDAN (Tachet des Combes et al., 2020) and
LaCIM (Sun et al., 2021). In these methods, MCDA, M3DA, LtC-MSDA and T-SVDNet learn
invariant representations for MSDA, while IRM, IWCDAN and LaCIM are tailored for label dis-
tribution shifts. Details of implementation, including network architectures and hyper-parameter
settings, are in APPENDIX A.3. All the methods above are averaged over 3 runs.

Ablation studies Table 1 displays the results of our ablation studies conducted on PACS (DKL =
0.3) and TerraIncognita, respectively. Notably, we observe a significant improvement in perfor-
mance (approximately 10% and 5%, respectively) for the proposed method on both datasets when
employing entropy regularization (as per Eq. 9). This finding aligns with previous research (Wang
et al., 2020; Li et al., 2021), which has also underscored the importance of entropy regularization
(Eq. 9). From the viewpoint of the proposed causal model, entropy regularization essentially en-
courages causal influence between y and nc, as elaborated upon in Section 5. Furthermore, the
hyperparameter � plays a pivotal role in enhancing performance by enforcing independence among
the latent variables ni.
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Resampled PACS
(DKL = 0.3)

Resampled PACS
(DKL = 0.5)

Resampled PACS
(DKL = 0.7)

Figure 4: Classification results on resampled PACS data.

Table 2: Classification results on TerraIncognita.

Methods Accuracy

!L28 !L43 !L46 !L7 Average

ERM 54.1 ± 2.8 62.3 ± 0.7 44.7 ± 0.9 74.5 ± 2.6 58.9
MCDA ((Saito et al., 2018)) 54.9 ± 4.1 61.2 ± 1.2 42.7 ± 0.3 64.8 ± 8.1 55.9
M3SDA (Peng et al., 2019) 62.3 ± 1.4 62.7 ± 0.4 41.3 ± 0.3 57.4 ± 0.9 55.9
LtC-MSDA (Wang et al., 2020) 51.9 ± 5.7 54.6 ± 1.3 45.7 ± 1.0 69.1 ± 0.3 55.3
T-SVDNet (Li et al., 2021) 58.2 ± 1.7 61.9 ± 0.3 45.6 ± 2.0 68.2 ± 1.1 58.5
IRM (Arjovsky et al., 2019) 57.5 ± 1.7 60.7± 0.3 42.4 ± 0.6 74.1 ± 1.6 58.7
IWCDAN (Tachet des Combes et al., 2020) 58.1 ± 1.8 59.3 ± 1.9 43.8± 1.5 58.9 ± 3.8 55.0
LaCIM (Sun et al., 2021) 58.2 ± 3.3 59.8 ± 1.6 46.3 ± 1.1 70.8 ± 1.0 58.8
iLCC-LCS(Ours) 64.3 ± 3.4 63.1 ± 1.6 44.7 ± 0.4 80.8 ± 0.4 63.2

Results Due to limited space, the results by different methods on the resampled PACS are pre-
sented in Figure 4. Detailed results can be found in Tables 3-5 in Appendix A.4. We can observe
that as the increase of KL divergence of label distribution, the performances of MCDA, M3DA, LtC-
MSDA and T-SVDNet, which are based on learning invariant representations, gradually degenerate.
In the case where the KL divergence is about 0.7, the performances of these methods are worse than
traditional ERM. Compared with IRM, IWCDAN and LaCIM, specifically designed for label distri-
bution shifts, the proposed iLCC-LCS obtains the best performance, due to our theoretical guarantee
for identifying the latent causal content variable, resulting in a principled way to guarantee adap-
tation to the target domain. Table 2 depicts the results by different methods on challenging Terra
Incognit. The proposed iLCC-LCS achieves a significant performance gain on the challenging task
!L7. Among the methods considered, the proposed proposed iLCC-LCS stands out as the only one
that outperforms ERM. This superiority is especially pronounced due to the substantial variation
in label distribution across domains (see in APPENDIX A.3 for details of label distribution). In
cases where the label distribution changes significantly, traditional approaches may lead to the de-
velopment of uninformative features, making them less effective for domain adaptation. In contrast,
the proposed method excels at capturing and adapting to these label distribution changes, enabling
accurate predictions even under such dynamic conditions.

7 CONCLUSION

The key for domain adaptation is to understand how the joint distribution of features and label
changes across domains. Previous works usually assume covariate shift or conditional shift to inter-
pret the change of the joint distribution, which may be restricted in some real applications that label
distribution shifts. Hence, this work considers a new and milder assumption, latent covariate shift.
Specifically, we propose a latent causal model to precisely formulate the generative process of input
features and labels. We show that the latent content variable in the proposed latent causal model can
be identified up to scaling. This inspires a new method to learn the invariant label distribution con-
ditional on the latent causal variable, resulting in a principled way to guarantee adaptation to target
domains. Experiments demonstrate the theoretical results and the efficacy of the proposed method,
compared with state-of-the-art methods across various data sets.
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Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In Proceedings of
the European conference on computer vision (ECCV), pp. 456–473, 2018.

Steffen Bickel, Michael Brückner, and Tobias Scheffer. Discriminative learning for differing training
and test distributions. In Proceedings of the 24th international conference on Machine learning,
pp. 81–88, 2007.
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A APPENDIX

A.1 DATA DETAILS

We resample the original PACS dataset, which contains 4 domains, Photo, Artpainting, Cartoon,
and Sketch, and shares the same seven categories, since the KL divergence of label distributions of
any two domains in the original PACS are very similar, e.g., DKL ⇡ 0.1. To make PACS dataset
suitable for evaluation in the setting of the proposed LCS, we filter the original PACS dataset by
re-sampling it, i.e., we randomly filter some samples in the original PACS to obtain pre-defined
label distribution. As a result, we can obtain three new datasets, resampled PACS (DKL = 0.3),
resampled PACS (DKL = 0.5), and resampled PACS (DKL = 0.7). Here DKL = 0.3(0.5, 0.7)
denotes that KL divergence of label distributions in any two different domains is approximately 0.3
(0.5, 0.7). Figure 5 depicts label distributions in these resampled datasets.

(a) (b) (c)

Figure 5: Label distributions of the resampled PACS datasets with DKL = 0.3 (a), DKL = 0.5 (b),
DKL = 0.7 (c).

For Terra Incognita (Beery et al., 2018), it consists of 57, 868 images across 20 locations, each
labeled with one of 15 classes (or marked as empty). Classes are either single species (e.g. ”Coyote”
or groups of species, e.g. ”Bird”). Figure 6 shows the label distribution in different locations. The
label distribution is long-tailed at each domain, and each domain has a different label distribution,
which is naturally applicable to our setting. We use the four domains from the original data, L28,
L43, L46, and L7, which share the same seven categories: bird, bobcat, empty, opossum, rabbit,
raccoon, and skunk. Here ’L28’ denotes that the image data is collected from location 28. Figure
6(b) depicts label distributions in the four domains above.

(a) (b)

Figure 6: (a) Label distributions of the whole Terra Incognita data. (b) Label distributions in the
four domains of the Terra Incognita data, which are used in our experiments.
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Figure 7: The proposed iLCC-LCS to learn the invariant p(y|nc) for multiple source domain adap-
tation. C denotes concatenation, and S denotes sampling from the posterior distributions.

A.2 SYNTHETIC DATA

The synthetic data generative process is as follows: we divide the latent variables into 5 segments,
which correspond to 5 domains. Each segment includes 1000 examples. Within each segment, we
first sample the mean and the variance from uniform distributions [1, 2] and [0.3, 1] for the latent
exogenous variables nc and ns, respectively. Then for each segment, we generate zc, zs, x and y
according to the following structural causal model:

zc := nc, zs := z3c + ns,y := z3c ,x := MLP(zc, zs), (11)

where following (Khemakhem et al., 2020) we mix the latent zc and zs using a multi-layer percep-
tron to generate x.

A.3 IMPLEMENTATION DETAILS

For the synthetic data, we used an encoder, e.g. 3-layer fully connected network with 30 hidden
nodes for each layer, and a decoder, e.g. 3-layer fully connected network with 30 hidden nodes
for each layer. We use a 3-layer fully connected network with 30 hidden nodes for the prior model.
Since this is an ideal environment to verify the proposed method, for hyper-parameters, we set � = 1
and � = 0 to remove the heuristic constraints, and we set � = 1e� 2. For the real data, all methods
used the same network backbone, ResNet-18 pre-trained on ImageNet. Since it can be challenging
to train VAE on high-resolution images, we use extracted features by ResNet-18 as our VAE input.
We then use 2-layer fully connected networks as the VAE encoder and decoder, use 2-layer fully
connected network for the prior model, and use 2-layer fully connected network to transfer nc to zc.
For hyper-parameters, we set � = 4, � = 0.1, � = 1e � 4 for the proposed method on all datasets.
A graphical depiction of the proposed iLCC-MSDA is shown in Figure 7.
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Table 3: Classification results on resampled PACS data (DKL = 0.3).

Methods Accuracy

!Art !Cartoon !Photo !Sketch Average

ERM 82.3 ± 0.3 81.3 ± 0.9 94.9 ± 0.2 76.2 ± 0.7 83.6
MCDA ((Saito et al., 2018)) 76.6 ± 0.6 85.1 ± 0.3 96.6 ± 0.1 70.1 ± 1.3 82.1
M3SDA (Peng et al., 2019) 79.6 ± 1.0 86.6 ± 0.5 97.1 ± 0.3 83.3 ± 1.0 86.6
LtC-MSDA (Wang et al., 2020) 82.7 ± 1.3 84.9 ± 1.4 96.9 ± 0.2 75.3 ± 3.1 84.9
T-SVDNet (Li et al., 2021) 81.8 ± 0.3 86.5 ± 0.2 95.9 ± 0.2 80.7 ± 0.8 86.3
IRM (Arjovsky et al., 2019) 79.6 ± 0.7 77.0 ± 2.2 94.6 ± 0.2 71.7 ± 2.3 80.7
IWCDAN (Tachet des Combes et al., 2020) 84.0 ± 0.5 78.1 ± 0.7 96.0 ± 0.1 75.5 ± 1.9 83.4
LaCIM (Sun et al., 2021) 63.1 ± 1.5 72.6 ± 1.0 82.7 ± 1.3 71.5 ± 0.9 72.5
iLCC-LCS(Ours) 86.4 ± 0.8 81.1 ± 0.8 95.9 ± 0.1 86.0 ± 1.0 87.4

Table 4: Classification results on resampled PACS data (DKL = 0.5).

Methods Accuracy

!Art !Cartoon !Photo !Sketch Average

ERM 85.4± 0.6 76.4 ± 0.5 94.4 ± 0.4 85.0 ± 0.6 85.3
MCDA ((Saito et al., 2018)) 81.6 ± 0.1 76.8 ± 0.1 93.6 ± 0.1 84.1 ± .6 84.0
M3SDA (Peng et al., 2019) 81.2 ± 1.2 77.5 ± 1.3 94.5 ± 0.5 84.3 ± 0.5 84.4
LtC-MSDA (Wang et al., 2020) 85.2 ± 1.5 75.2 ± 2.6 94.9 ± 0.6 85.1 ± 2.7 85.1
T-SVDNet (Li et al., 2021) 84.8 ± 0.3 77.6 ± 1.7 94.2 ± 0.2 86.4 ± 0.2 85.6
IRM (Arjovsky et al., 2019) 81.5 ± 0.3 71.1 ± 1.3 94.2 ± 0.1 78.7 ± 0.7 81.4
IWCDAN (Tachet des Combes et al., 2020) 79.2 ± 1.6 72.6 ± 0.7 95.6 ± 0.1 82.1 ± 2.2 82.4
LaCIM (Sun et al., 2021) 67.4 ± 1.6 66.6 ± 0.6 81.0 ± 1.2 82.3 ± 0.6 74.3
iLCC-LCS(Ours) 89.0 ± 0.7 77.6 ± 0.5 95.0 ± 0.3 87.4 ± 1.6 87.3

A.4 CLASSIFICATION RESULTS ON RESAMPLED PACS DATA

Since the KL divergence of label distributions between any two domains in original PACS data (Li
et al., 2017) is exceedingly small, approximately DKL ⇡ 0.1. We apply a filtering process, which
involves random sampling from the original PACS dataset to obtain a predefined label distribution.
As a result, we generate three new datasets: PACS (DKL = 0.3), resampled PACS (DKL = 0.5),
and resampled PACS (DKL = 0.7). Here DKL = 0.3(0.5, 0.7) denotes that KL divergence of label
distributions in any two different domains is approximately 0.3 (0.5, 0.7).

We evaluate the different methods on the resampled PACS data, and results can be found in Tables 3-
5. We can see that the proposed method performs better, compared with state-of-the-art methods. In
scenarios marked by substantial shifts in label distribution, conventional methods can inadvertently
give rise to uninformative features, undermining their efficacy in domain adaptation. Conversely,
our proposed method excels in capturing and adapting to these dynamic label distribution changes,
empowering it to make accurate predictions even under such challenging conditions.

Table 5: Classification results on resampled PACS data (DKL = 0.7).

Methods Accuracy

!Art !Cartoon !Photo !Sketch Average

ERM 86.1 ± 0.6 76.8 ± 0.3 94.6 ± 0.4 81.3 ± 2.0 84.7
MCDA ((Saito et al., 2018)) 80.8 ± 0.7 74.1 ± 1.2 94.4 ± 0.4 77.9 ± 0.4 81.8
M3SDA (Peng et al., 2019) 82.7 ± 1.3 76.2 ± 1.0 94.5 ± 0.7 80.8 ± 1.2 83.6
LtC-MSDA (Wang et al., 2020) 83.7 ± 1.6 74.6 ± 1.4 95.0 ± 0.7 80.8 ± 0.6 83.5
T-SVDNet (Li et al., 2021) 83.3 ± 0.8 74.7 ± 0.6 95.2 ± 0.3 74.5 ± 3.3 81.9
IRM (Arjovsky et al., 2019) 84.3 ± 0.8 73.3 ± 1.8 94.3 ± 0.1 69.4 ± 4.6 80.3
IWCDAN (Tachet des Combes et al., 2020) 76.3 ± 0.8 73.9 ± 1.6 93.1 ± 0.5 77.6 ± 3.8 80.2
LaCIM (Sun et al., 2021) 63.6 ± 0.9 68.7 ± 1.4 77.5 ± 3.8 77.8 ± 2.2 71.9
iLCC-LCS(Ours) 90.7 ± 0.3 74.2 ± 0.7 95.8 ± 0.3 83.0 ± 2.2 86.0

16



Under review as a conference paper at ICLR 2024

A.5 T-SNE VISUALIZATION

We visualize features of each class obtained by the proposed method via t-SNE to show how the
distributions of learned features change across domains. Figure 8 (a)-(d) depicts the detailed distri-
butions of the learned features by the proposed method in different 4 domains of TerraIncognita data.
Differing from the methods that learn invariant representations across domains, the distributions of
the learned features by the proposed method change across domains.

(a) (b)

(c) (d)

Figure 8: The t-SNE visualizations of learned features nc of different domains on the !L7 task in
TerraIncognita. (a)-(d) The learned features nc in domain L28, L43, L46, L7. Here ’L28’ denotes
that the image data is collected from location 28. We can observe that the distribution of learned
feature nc by the proposed method changes across domains.
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A.6 THE PROOF OF PROPOSITION 4.1

To establish non-identifiability, it suffices to demonstrate the existence of an alternative solution that
differs from the ground truth but can produce the same observed data. Let’s consider the latent
causal generative model defined in Eqs. 1 to 3 as our ground truth, represented in Figure 2(a), where
there exists a causal relationship from zc to zs. Now, we can always construct new latent variables
z0 as follows: z0c = gc(nc) and z0s = ns, depicted in Figure 2(b). Importantly, there is no causal
influence from z0c to z0s in this construction, which is different from the ground truth in Figure 2(a).
It becomes evident that this new set of latent variables z0 can generate the same x as obtained by z
through a composition function f � f 0, where f 0(z0) = [z0c,gs2(gs1(z0c) + z0s)]. This scenario leads
to a non-identifiable result, as the same observed data can be produced by different latent variable
configurations, thus confirming non-identifiability.

A.7 THE PROOF OF PROPOSITION 4.2

For convenience, we first introduce the following lemma.

Lemma A.1 Denote the mapping from n to z by g, given the assumption (ii) in proposition 4.2 that
the mapping f from z to x is invertible, we have that the mapping from n to x, e.g., f �g, is invertible.

Proof can be easily shown by the following: since the mapping g from n to z is defined as 2 where
both gc and gs2 are assumed to be invertible, we can obtain the inverse function of the mapping g
from n to z as follows: nc = g�1

c (zc), ns = g�1
s2 (zs)� g�1

s1 (zc), which clearly shows that the the
mapping g is invertible. Then by the assumption (ii) in proposition 4.2 that f is invertible, we have
that the composition of f and g is invertible, i.e., f � g is invertible.

The proof of proposition 4.2 is done in three steps. Step I is to show that the latent noise variables
n can be identified up to linear transformation, n = An̂ + c, where n̂ denotes the recovered latent
noise variable obtained by matching the true marginal data distribution. Step II shows that the linear
transformation can be reduced to permutation transformation, i.e., n = P(n̂) + c. Step III shows
that zc = h(ẑc), by using d-separation criterion in the graph structure in Figure 2(a), i.e., yS is
dependent on nS

c but independent of nS
s , given u.

Step I: Suppose we have two sets of parameters ✓ = (f ,g,T,⌘) and ✓ = (f̂ , ĝ, T̂, ⌘̂) corresponding
to the same conditional probabilities, i.e., p(f ,g,T,⌘)(x|u) = p((f̂ ,ĝ,T̂,⌘̂))(x|u) for all pairs (x,u).
Since the mapping from n to x is invertible, as Lemma A.1, with the assumption (i), by expanding
the conditional probabilities (see Step I for proof of Theorem 1 in Khemakhem et al. (2020) for more
details), we have:

log | detJ(f�g)�1(x)|+ log p(T,⌘)(n|u) = log | detJ(f̂�ĝ)�1(x)|+ log p(T̂,⌘̂)(n̂|u), (12)

Using the exponential family Eq. 1 to replace p(Tn,�)(n|u), we have:

log | detJ(f�g)�1(x)|+TT
�
(f � g)�1(x)

�
⌘(u)� log

Y

i

Zi(u) =

log | detJ(f̂�ĝ)�1(x)|+ T̂T
�
(f̂ � ĝ)�1(x)

�
⌘̂(u)� log

Y

i

Ẑi(u), (13)

Then by expanding the above at points ul and u0 mentioned in assumption (iii), and using Eq. 13 at
point ul subtract Eq. 13 at point u0, we find:

hT(n), ⌘̄(u)i+
X

i

log
Zi(u0)

Zi(ul)
= hT̂(n̂), ¯̂⌘(u)i+

X

i

log
Ẑi(u0)

Ẑi(ul)
. (14)

Here ⌘̄(ul) = ⌘(ul)�⌘(u0). Then by combining the 2` expressions (from assumption (iii) we have
2` such expressions) into a single matrix equation, we can write this in terms of L from assumption
(iii),

LTT(n) = L̂T T̂(n̂) + b. (15)
Since LT is invertible, we can multiply this expression by its inverse from the left to get:

T(n) = AT̂(n̂) + c, (16)
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where A = (LT )�1L̂T. According to a lemma 3 in Khemakhem et al. (2020) that there exist k
distinct values n1

i to nk
i such that the Derivative T 0(n1

i ), ..., T
0(nk

i ) are linearly independent, and the
fact that each component of Ti,j is univariate. We can show that A is invertible.

Step II Since we assume the noise to be two-parameter exponential family members, Eq. 16 can be
re-expressed as: ✓

T1(n)
T2(n)

◆
= A

✓
T̂1(n̂)
T̂2(n̂)

◆
+ c, (17)

Then, we re-express T2 in term of T1, e.g., T2(ni) = t(T1(ni)) where t is a nonlinear mapping. As
a result, we have from Eq. 17 that: (a) T1(ni) can be linear combination of T̂1(n̂) and T̂2(n̂), and
(b) t(T1(ni)) can also be linear combination of T̂1(n̂) and T̂2(n̂). This implies the contradiction
that both T1(ni) and its nonlinear transformation t(T1(ni)) can be expressed by linear combination
of T̂1(n̂) and T̂2(n̂). This contradiction leads to that A can be reduced to permutation matrix P
(See APPENDIX C in Sorrenson et al. (2020) for more details):

n = Pn̂+ c, (18)

where P denote the permutation matrix with scaling, c denote a constant vector. Note that this
result holds for not only Gaussian, but also inverse Gaussian, Beta, Gamma, and Inverse Gamma
(See Table 1 in Sorrenson et al. (2020)).

Step III: The above result shows that we can obtain the recovered latent noise variables n̂ up to per-
mutation and scaling transformation of the true n, which are learned by matching the true marginal
data distribution p(x|u). However, it is still not clear which part of n̂ corresponds to nc, e.g.,
permutation indeterminacy. Fortunately, the permutation can be removed by d-separation criteria
in the graph structure in Figure 2(a), which implies that nc is dependent on label y, while ns is
independent with y, given u. Thus, together with the d-separation criteria, Eq. 18 implies that:

nc = Pcn̂c + cc. (19)

Then by model assumption as defined in Eq. 2, using zc to replace nc obtains:

g�1
c (zc) = Pcĝ

�1
c (ẑc) + cc, (20)

which can re-expressed as:

zc = gc(P
�1
c (ĝ�1

c (ẑc)� cc)) = h((ẑc)), (21)

where h is clearly invertible, which implies that zc can be recovered up to block identifiability.

A.8 UNDERSTANDING ASSUMPTIONS FOR IDENTIFYING zc

Assumptions (i)-(iii) are motivated by the nonlinear ICA literature (Khemakhem et al., 2020), which
is to provide a guarantee that we can recover latent noise variables n up to a permutation and scaling
transformation. The main Assumption (iii) essentially requires sufficient changes in latent noise
variables to facilitate their identification.

Furthermore, we conduct model assumptions, as defined in Eqs. (1)-(3). Essentially, Eq. (1), derived
from Sorrenson et al. (2020), posits that each ni is sampled from the two-parameter exponential
family. We adopt this assumption in consideration of real-world applications where the dimension of
ni is unknown. By assuming two-parameter exponential family members, it has been demonstrated
that informative latent noise variables ni can be automatically separated from noise by an estimating
model (for more details, refer to Sorrenson et al. (2020)). However, it is important to acknowledge
that in real applications, the distribution of n could be arbitrary. In this context, assumption Eq.
(1) may only serve as an approximation for the true distribution of n. Nevertheless, in terms of
the performance of the proposed method on real datasets such as PACS and TerraIncognita, such
an approximation may be deemed acceptable to some extent. To establish a coherent connection
between these latent noise variables n and the latent variables z, we assume post-nonlinear models,
as defined in Eq. 2. We posit that post-nonlinear models could be further relaxed, as long as the
assumed models are invertible from n to x. Here, we choose to employ post-nonlinear models,
considering their ease of parameterization and understanding.
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A.9 DISCUSSION ON THE PROPOSED CAUSAL GRAPH

The versatility of our proposed causal graph extends beyond being narrowly designed for domain
adaptation. Instead, we hope that it is potential to effectively tackle a wide range of tasks across
diverse problem domains. In scenarios such as causal or anti-causal tasks, where a more specific
causal graph structure is deemed essential, our proposed causal graph might stand out as a flexible
and adaptable framework. It may serve not only as a solution for domain adaptation but also as a
source of inspiration for various tasks. This adaptability is rooted in the intentional modeling of
latent causal relationships within unstructured observational data. To illustrate, consider its applica-
tion in segmentation tasks, where interpreting graph nodes as distinct regions. Here, the absence of
direct connections between nodes may be reasonable; instead, connections should be contemplated
within high-level latent variables. This attribute enhances the versatility and potency of the pro-
posed causal graph, making it adaptable to the nuanced requirements of diverse tasks and problem
domains.

A.10 LIMITATIONS

One of the foundational assumptions mandates significant alterations in the latent noise variables,
driving observable variations in the data. However, the pragmatic feasibility of meeting this as-
sumption in real-world applications adds a layer of intricacy. The endeavor to induce substantial
changes in latent noise variables encounters challenges rooted in the inherent complexities of data-
generating processes. Specifically, in practical applications, the availability of an extensive pool
of training data across diverse domains may be limited. This limitation introduces a potential vul-
nerability for the proposed method. Addressing such scenarios involves effectively leveraging the
independence among n. For instance, the imposition of independence can be achieved through var-
ious regularization techniques, as enforcing a hyperparameter to enhance the independence among
ni in Eq. (7).
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