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ABSTRACT

Generalist embodied agents must perform interactive, causally-dependent reason-
ing, continually interacting with the environment, acquiring information, and updat-
ing plans to solve long-horizon tasks before they could be adopted in real-life scenar-
ios. For instance, retrieving an apple from a cabinet may require opening multiple
doors and drawers before the apple becomes visible and reachable—demanding se-
quential interaction under partial observability. However, existing benchmarks fail
to systematically evaluate this essential capability. We introduce COIN, a bench-
mark designed to assess interactive reasoning in realistic robotic manipulation
through three key contributions. First, we construct COIN-50: 50 interactive tasks
in daily scenarios, and create COIN-Primitive required by causally-dependent
tasks, and COIN-Composition with mid-term complexity for skill learning and
generalization evaluation. Second, we develop a low-cost mobile AR teleoperation
system and collect the COIN-Primitive Dataset with 50 demonstrations per primi-
tive task (1,000 in total). Third, we develop systematic evaluation metrics about
execution stability and generalization robustness to evaluate CodeAsPolicy, VLA,
and language-conditioned H-VLA approaches. Our comprehensive evaluation
reveals critical limitations in current methods: models struggle with interactive
reasoning tasks due to significant gaps between visual understanding and motor
execution. We provide fine-grained analysis of these limitations.

1 INTRODUCTION

Recent advances in large-scale pretraining NVIDIA et al.| (2025b); Black et al.; Brohan et al.| (b)
and the creation of diverse datasets|O’Neill et al.| (2024); [Khazatsky et al.| (2024) and benchmarks
Zhang et al.;|Li et al.|(2024); L1iu et al.| have significantly advanced robotic manipulation capabilities.
However, current benchmarks primarily focus on simplified tasks that fail to capture the complexity
of real-world manipulation challenges, particularly those requiring interaction and causal reasoning
over long time horizons in partially observable environments.

Consider a robot tasked with "open a locked door". This seemingly simple instruction requires
a sequence of interdependent actions: locating the keyhole, inserting and turning the key, and
then rotating the handle with trials for the right directions. Such tasks demand what we term
interactive reasoning—the ability to continually interact with the environment, gather information,
update beliefs, and adapt plans accordingly. This requires multiple capabilities: perceiving partial
environmental states, reasoning about causal dependencies between actions, maintaining memory
of previous interactions, and dynamically adjusting strategies based on feedback. This capability
remains beyond the reach of most current Vision-Language-Action (VLA) models and VLM-based
planning approaches.

To address this gap, we introduce COIN (Chain Of INteraction) Benchmark, consisting of three
complementary components: COIN-50, featuring 50 interactive reasoning tasks grounded in ev-
eryday activities (with one demonstration per task); COIN-Primitive, containing 20 fundamental
manipulation skills that serve as building blocks (with approximately 50 trajectories per task); and
COIN-Composition, bridging COIN-Primitive and COIN-50 for evaluating the robustness of VLA
learning across visual understanding and instruction variations. Unlike previous benchmarks that
primarily test perception or simple manipulation, our tasks are systematically organized according
to a taxonomy of reasoning capabilities required in partially observable environments. Based on
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Figure 1: An illustration of COIN. Our benchmark focuses on evaluating the crucial interactive
reasoning ability of Vision-Language-Action (VLA) models and VLM-based robotic planning
systems, covering both rich reasoning knowledge and diverse primitive actions.

our analysis, we categorize these capabilities into three principal domains: (1) Object-Centric
Reasoning, encompassing physical property inference, spatial reasoning, mechanism understanding,
and visual reasoning; (2) Robot-Centric Reasoning, covering control optimization and embodiment
awareness (such as collision handling); and (3) Compositional Reasoning, including tool-mediated
problem solving, failure-driven adaptation, hierarchical planning, and experience utilization. These
capabilities, essential for robots to function effectively in human environments, remain underexplored
in existing benchmarks.

To support algorithm development and evaluation, we created a low-cost, phone-based teleoperation
system (hardware cost under $20 according to second-hand websites in China) inspired by Rayyan
(2024). Using this system, we collected the COIN-Primitive Dataset—over 1,000 expert demonstra-
tions across 20 fundamental manipulation skills recorded from multiple viewpoints. These primitives
serve as essential building blocks for VLA model fine-tuning and compositional task solving. Our
contributions include:

1. COIN Benchmark: We construct COIN-50 with 50 interactive tasks in daily scenarios, COIN-
Primitive with 20 fundamental manipulation skills required by causally-dependent tasks, and
COIN-Composition with mid-term complexity for skill learning and generalization evaluation,
systematically organized according to a principled taxonomy of interactive reasoning capabilities.

2. Low-Cost Mobile AR Teleoperation System and Dataset: We develop a smartphone-based
teleoperation system (hardware cost under $20 according to second-hand websites in China) and
collect the COIN-Primitive Dataset with 50 demonstrations per primitive task (1,000 in total),
enabling accessible data collection for the robotics community.

3. Systematic Evaluation Metrics and Analysis: We develop comprehensive evaluation metrics
about execution stability and generalization robustness to evaluate CodeAsPolicy, VLA, and
H-VLA approaches, revealing critical limitations including significant gaps between visual under-
standing and motor execution, and provide fine-grained analysis for these limitations.

2 RELATED WORKS

2.1 VISION-LANGUAGE-ACTION MODELS AND APPROACHES

CodeAsPolicy approaches|Liang et al.[(2022) combine VLMs with predefined skills to orchestrate
perception modules [Kirillov et al.| (2023}, 2024); [Yang et al.| (2023)) and low-level controllers in a
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Benchmark Tasks Demos Avg. Cont. Caus. Visual Inter. Visual Mech.
Steps Action Dep. Comp. Reas. Unobs. Unobs.

Robot Manipulation Benchmarks

CALVIN Mees et al. 34 200K 30 v X 4 X X X
Arnold|Gong et al.[(2023) 8 40 125.8 v X X X X X
SimplerEnv Zhu et al. 10 N/A 523 v X X X X X
Libero Liu et al. 130 50/task 77.3 v v 4 X X X
VLABench|Zhang et al. 100 163 1572 v X v X X X
RoboCASA [Zheng et al. 100 100/task371.9 v v 4 X v v
EmbodiedBench|Yang et al. 100 N/A N/A X X v X v X
RoboVerse |Geng et al.[(2025) 1000 9331 N/A v 4 4 X 4 v
Vision-Language Reasoning Benchmarks

VLMbench|Li et al.| (b) 100 N/A NA X v v X X X
ClevrSkills |Haresh et al. 12 N/A  N/A X 4 v X X X
ReflectVLM [Feng et al. 50 N/A  N/A X v v v X X
COIN (Ours) 90 1000+ 9889 v v v v v v

Table 1: Comprehensive benchmark comparison including quantitative metrics and reasoning ca-
pabilities. COIN demonstrates the longest average trajectory length (988.9 steps) and uniquely
combines all critical reasoning capabilities, particularly interactive reasoning. Our systematic eval-
uation framework with 1000+ demonstrations across 90 tasks provides unprecedented depth for
analyzing interactive manipulation.

modular, zero-shot framework. Works like Huang et al.|(ajcib) excel in generalization but struggle
with online adaptation due to their “plan-then-execute” paradigm, where VLMs disengage after initial
planning. While recent work |Duan et al.| introduces replanning mechanisms, significant challenges
remain in dynamic, partially observable scenarios requiring continuous interactive reasoning.

End-to-End VLA models Brohan et al|(bza); NVIDIA et al.| (2025b); [Li et al.| (a) directly map
visual observations and language to robotic actions via token prediction, learning policies through
imitation. Their unified architecture enables emergent reasoning through large-scale pretraining.
Despite success in basic manipulation tasks, these models struggle with long-horizon scenarios
requiring state maintenance and adaptive planning over extended interactions.

Hierarchical VLA (H-VLA) architectures|Figure Al (2025); Team et al.|(2025) bridge planning and
execution by decomposing high-level instructions into subtasks coordinated with low-level executors.
This approach combines explicit reasoning with learned behaviors, showing promise in complex
manipulation tasks and advancing toward more generalist robotic systems.

2.2 ROBOT MANIPULATION BENCHMARKS

Robot manipulation benchmarks excel in physical interaction and control capabilities. Works like
Arnold|Gong et al.|(2023) and SimplerEnv|Zhu et al.| offer photorealistic simulation but lack reasoning
components. Libero|Liu et al.| and RoboCASA [Zheng et al.| incorporate partial observability, but
most lack the combination of dynamic interaction, failure recovery, and interactive reasoning needed
for realistic scenarios. Table [I|shows that these benchmarks do not cover interactive reasoning well,
while our benchmark emphasizes this crucial capability of embodied Al

Vision-language embodied reasoning benchmarks prioritize reasoning over physical realism.
VLMbench |Li et al.| (b) and ClevrSkills Haresh et al.| support causal reasoning in simplified environ-
ments, while ReflectVLM |[Feng et al.| offers failure recovery but limited physical interaction. COIN
uniquely bridges this gap by combining all eight critical dimensions shown in Table [T} enabling
evaluation of true interactive reasoning in realistic, partially observable environments.

3 COIN: CHAIN OF INTERACTION BENCHMARK

In this section, we introduce: the formulation of tasks in COIN @ how we built such tasks in
COIN (3.2), how we collected datasets with human-in-the-loop teleoperation (3.3)), the statistics of
COIN (3.4)), and the evaluation metrics (3.5).
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3.1 TASKS FORMULATION

We formalize interactive reasoning tasks as a Partially Observable Markov Decision Process
(POMDP): M = (S, A, T,R,0, Z). The state space S encompasses robot configuration, ob-
ject states and physical properties. We implement two action spaces, the same as ManiSkill3: for
VLA models, Avia = {Ap, AR, g} € R3 x SO(3) x {0,1} using delta end-effector poses; for
CodeAsPolicy approaches, Avim = {q1...G7, 9} € [gmin, gmax)” X {0, 1} using absolute joint posi-
tions. The transition function 7~ models state dynamics while the reward function R : Sx.4 — {0,1}
provides sparse binary success feedback. Observations O include five camera views (front, left/right
back, left front, and wrist-mounted) with depth and segmentation maps, language instructions for
the task, and robot proprioceptive data, enabling agents to infer occluded state information through
interaction. More details can be found in Appendix

3.2 TASK BUILDING

COIN comprises 3 categories and 90 total tasks. We design a hierarchical task structure that
systematically evaluates interactive reasoning capabilities across different complexity levels:

¢ COIN-Primitive (20 tasks): Fundamental manipulation skills extracted from interactive reasoning
tasks by identifying commonly recurring behavioral patterns and essential manipulation primitives
(open-close, pick-place, push-pull, rotation).

* COIN-Composition (20 tasks): Mid-term complexity tasks that bridge the gap between primitives
and full interactive reasoning, introducing controlled increases in complexity through small visual
differences or instruction variations.

* COIN-50 (50 tasks): Full interactive reasoning tasks requiring multi-step causal reasoning under
partial observability, where agents must continually interact with the environment to gather
information and adapt their strategies.

As shown in Figure [2] and Appendix [H.2] we categorized these interactive tasks into three main
domains: (1) object information perception and manipulation, (2) robot-understanding and control,
and (3) compositional reasoning. This taxonomy helps systematically evaluate different aspects of
interactive reasoning capabilities in embodied agents.

Technical implementation. We built all environments on the ManiSkill3 platform Tao et al.l using
the Franka Emika Panda robot in tabletop manipulation settings. Environmental assets include
articulated objects from PartNet-Mobility |Xiang et al.|(2020) and additional assets from Zeng et al.;
Li et al.|(b); |[Sketchfab, All 90 tasks provide language instructions and corresponding reward.

Subtasks and VQA For each interactive task, we provide: (1) expert demonstrations, (2) ground truth
planning in the form of decomposed subtask sequences (oracle manipulation flow). As illustrated in
Figure 2] the average subtask length is 2.83, highlighting the multi-stage nature of these tasks. (3)
VQA (Visual Question-Answering) evaluations. The VQA is similar to ERQA protocol NVIDIA
et al.[(2025a); Embodied Reasoning| (2024) queries VLMs with task-specific questions about success
conditions or interaction history, serving as an embodied reasoning probe for future research. We
formulated them as multiple-choice problems, where VLMs answer these questions by selecting the
right answer.

3.3 TELEOPERATION AND DATA COLLECTION

Low-cost mobile AR teleoperation system. We introduce COIN-teleoperation, a smartphone-
based teleoperation system with a total hardware cost under $20. Built on ARKit|Inc.|(2023) and
ARCore [LLC|(2023)) with the help of Rayyan| (2024)), this system captures 6-DoF pose data from
mobile devices and achieves stable 20Hz control frequency even on older phones (e.g., iPhone 7 Plus),
making robotic data collection broadly accessible. Our comprehensive validation |G| demonstrates
90% data replay success and cross-device compatibility, confirming the reliability of our collection
approach.

COIN-Primitive Dataset. We collected a comprehensive dataset of 20 COIN-Primitive tasks as
mentioned in with 50 demonstrations per task captured from 5 camera viewpoints, totaling 1,000
trajectories using COIN-teleoperation. This dataset serves as the primary training resource for VLA
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Figure 2: Tasks in COIN: we provide diverse tasks with feasible primitive tasks, and provide GT
planning for these tasks, which could be used to guide the planning

')

model fine-tuning, providing diverse manipulation primitives that form the building blocks for more
complex interactive reasoning tasks.

3.4 COIN STATISTICS

Statistics. Figure [2] presents a comprehensive overview of COIN’s benchmark structure. COIN-
50 features an average task length of approximately 990 steps, substantially longer than existing
benchmarks. More critically, each task requires an average of 2.83 subtasks with frequent interactive
reasoning cycles, where 36% of tasks contain 2 subtasks, 46% contain 3, and 12% contain 4. This
reveals that our benchmark poses greater challenges not merely through temporal extension, but
through the density of reasoning interactions required—necessitating iterative "interaction-reasoning-
interaction" loops rather than simple sequential execution, fundamentally distinguishing interactive
reasoning from purely long-horizon tasks.

The benchmark’s reasoning taxonomy spans object-centric, robot-centric, and compositional reason-
ing. This focus addresses the under-representation of interactive reasoning in prior benchmarks and
supports the modeling of complex "interaction-reasoning-interaction" loops. Overall, COIN offers
a comprehensive and realistic testbed for assessing manipulation skills and reasoning capabilities
under partial observability and task complexity.

3.5 EVALUATION METRICS

We introduce a comprehensive evaluation framework with six complementary metrics that assess
different aspects of interactive reasoning and manipulation performance across all COIN tasks:
Task Performance Metrics:
¢ Success Rate (SR) measures the proportion of successfully completed trajectories across all
evaluated tasks.
* Class Success Rate (CSR) measures category-specific performance across reasoning domains
(object-centric, robot-centric, compositional).

Reasoning Assessment Metrics:

* Visual Question Answering Score (VS) assesses perceptual and reasoning capabilities by eval-
uating whether models correctly answer questions about environmental states and interactive
consequences.
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Figure 3: Model Architecture Comparison: (a) CodeAsPolicy uses VLMs for planning, with execution
handled separately by low-level code and constraint optimizers. (b) End-to-End VLA performs in-
loop perception and action directly from the environment. (¢) Hierarchical VLA (H-VLA) combines
high-level planning (System 2) with low-level VLA execution (System 1), connected via language
instructions.

Fine-grained Execution Quality Metrics:

* Trajectory Stability Score (TS) measures action quality and smoothness to identify erratic VLA
behaviors:
TS =0.3-Svet + 0.3 Sace +0.4- Sjeri
where each component uses Smooth(z) = exp(—CV;) with CV; = 7= (coefficient of variation)
applied to velocity, acceleration, jerk (3rd derivative), and position respectively. Higher scores
indicate better trajectory stability.

Gripper Control Stability (GS) assesses manipulation quality through coordination analysis:
GS =0.4"-S4n00th +0.3- Sf,-eq + 0.3 Scoord

where Ssmootn = exp(—abrupt changes) penalizes sudden gripper state transitions, S freq =
exp(—m) evaluates action frequency appropriateness, and S¢o.-q analyzes arm-gripper

Nempected
coordination timing. Higher scores indicate better gripper control quality.

* Generalization Capability Score (GCS) evaluates model adaptability through controlled task
variations:

GCS — SRcomposition
SRprimitive
where success rates are averaged across all tasks in each category. Scores close to 1.0 indicate
good generalization; lower scores reveal generalization failures.

These metrics provide comprehensive evaluation across task completion, reasoning understanding,
execution quality, and generalization capability, enabling detailed analysis of model performance
across all COIN benchmark components.

3.6 HIERARCHICAL VLA (H-VLA) ARCHITECTURE FOR COIN

Similar to Helix [Figure Al (2025), we propose a two-layered VLA framework that decomposes
complex reasoning tasks into manageable skill sequences, illustrated in Figure 3|c).

* System 2 (High-level planner), a VLM that processes multi-view images and task instructions to
generate a sequence of sub-tasks. Operating at fixed intervals, it monitors execution progress by
periodically evaluating current observations and adjusting the instruction queue accordingly.

¢ System 1 (Low-level executor), a VLA model that converts individual skill instructions into robot
actions. Taking images, proprioception data, and the current instruction as input, it generates
actions in real-time without knowledge of the overall task plan.



Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

In this section, we evaluate model performance across different task sets. Section @] introduces
our experiment setup and the models tested on COIN (see Figure [3] for an overview). We first
analyze how H-VLA and CodeAsPolicy perform on the complex COIN-50 tasks in Section[4.2] Since
most models struggle with COIN-50, we then examine their abilities on basic manipulation tasks in
COIN-Primitive and COIN-Composition to better understand the causes of failure (Section [4.3)).

4.1 EXPERIMENTAL SETUP

Models for COIN-50. COIN-50’s complex interactive reasoning tasks require models capable of
adaptive planning and execution. We evaluate:

* H-VLA models. As described in Section [3.6] this two-tier architecture combines VLMs for high-
level planning with VLAs for execution. We evaluate six configurations pairing two high-level
planners (GPT-40 and Gemini 2.0 Flash) with three VLA models (Gr00t N1, Pi0, and CogACT).
Unlike end-to-end VLAs, H-VLA can update plans during execution as new information becomes
available through interaction.

* CodeAsPolicy approaches. We implement two code-based planning systems: Voxposer and
Rekep, both using gpt —40-2024-11-20 for task decomposition and execution planning. Each
system reconstructs the environment from three camera views, with Voxposer additionally utilizing
ground truth object lists to enhance scene understanding. These approaches separate perception
and planning from execution through programmatic interfaces.

Models for COIN-Primitive and COIN-Composition. We only consider the "low-level controller”
of the two families of models above for COIN-50. Effectively, these are end-to-end VLA models as
in H-VLA models (see Section@ and CodeAsPolicy itself, which is the same model on different
benchmarks.

* End-to-end VLA models. We evaluate 3 cutting-edge vision-language-action models as adopted
in H-VLA above: Gr00t N1 NVIDIA et al.|(2025b), Pi0 |Black et al., and CogACT |Li et al.| (a).
Both Gr00t N1 and Pi0 process multi-view observations from three cameras (base-front, left-front,
and wrist-mounted), while CogACT processes only the left-front view per its design requirements.
We fine-tune all VLA models on the COIN-Primitive dataset until convergence or for a maximum
of three days (see Appendix [F for details). FollowingLiu et al.l we select checkpoints based on
validation success rates.

* CodeAsPolicy approaches. We evaluate the same Voxposer and Rekep implementations on
COIN-Primitive tasks to assess their performance on fundamental manipulation skills.

Evaluation Details. We report SR averaged over 10 trials. CSR is generated from the SR, and the
VQA score is generated by querying the VLM with expert demonstrations for about 50 steps per query.
For TS and GS, we report the scores according to the recorded trajectories during evaluation. For
GCS, we evaluate the score according to the SR between COIN-Primitive and COIN-Composition.
All tasks and environment specifications can be found in Appendix [C|and [H.2]

4.2 MAIN RESULTS FOR COIN-50

Overview: Interactive reasoning remains a fundamental challenge for current AI approaches.
Our evaluation reveals a stark capability gap in all tested systems when faced with tasks requiring
interactive reasoning. As shown in Table[d] all models fail to solve complex interactive reasoning
tasks, with success rates rarely exceeding 3%. Our analysis on COIN-50 reveals fundamental
limitations in both major approach categories:

CodeAsPolicy approaches face two critical issues: (1) Non-interactive planning architecture:
These methods cannot update plans based on environmental feedback, making them fundamentally
unsuited for partially observable environments requiring iterative interaction. For example, in "Pick
the cube" task, if the cube was not picked, it only repeat "back-home" and "pick the cube" loop,
without any new strategies. (2) Planning-execution gap: Significant disconnects exist as shown in
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Table 2: Trajectory and gripper stability analysis across different task types. Values show mean +
standard deviation, revealing execution quality patterns across model architectures. Bold values
indicate performance exceeding human baseline.

Model Task Type Trajectory Stability = Gripper Stability
CogACT Primitive 0.150 + 0.055 0.872+0.134
CogACT Composition 0.138 £ 0.039 0.796 +0.136
CogACT Interactive 0.146 + 0.041 0.782 +0.141
Gr00t N1 Primitive 0.082 +0.015 0.318 £0.116
Gr00t N1 Composition 0.086 £+ 0.002 0.327 £ 0.058
Gr00t N1 Interactive 0.084 4+ 0.002 0.294 £+ 0.050
Pi0 Primitive 0.084 + 0.067 0.440 £ 0.198
Pi0 Composition 0.035 £0.043 0.465 £ 0.253
Pi0 Interactive 0.061 £+ 0.050 0.440 £ 0.219
Human Dataset Primitive 0.134 £ 0.035 0.684 £ 0.297
4 N\

3 3 10 o 1 o o0 0 ©0 0 0 0 2 0

uo 20 o

GrOUtNl-sozo 10 10 [0 30

Pi0 - 50 00 o 0o 2 o o0 o o0 ©0 O O O o0 0
CogACTn 40 (40 0 30 10

VLA {
Rekep- o 0 0 0 0 0 0

Code
As Voxposer(N)- 0 o 0o 0o 0 0o 0o 0o 0 0 0
\

Policy
loxposer(TD) - o 0 o 0 0 0

A J/

Figure 4: Performance heatmap for different models on COIN-Primitive tasks. The visualization
reveals that VLA models achieve broader task coverage than CodeAsPolicy approaches, though with
different strengths across task types. Color intensity indicates success rate.

Huang et al.| (b) between high-level plans and low-level execution capabilities, which we analyze in
detail through COIN-Primitive and COIN-Composition evaluations.

H-VLA approaches suffer from multiple limitations: (1) Poor VLM planning performance: High-
level reasoning and plan generation capabilities are insufficient for complex interactive scenarios,
and their performance does not improve significantly as the number of interaction steps increases.
(2) Inadequate VLA execution: Low-level action generation models demonstrate poor manipulation
capabilities. (3) Weak VLM-VLA integration: The coordination between high-level planning and low-
level execution remains problematic. The integration relies on natural language instructions solely,
which is not adequate to represent the complex interaction between the robot and the environment as
shown in [Li| (2025)). Points 2 and 3 will be discussed in the next section.

To understand these fundamental limitations, we conducted detailed evaluations on COIN-Primitive
and COIN-Composition tasks. The following analysis provides deeper insights into the specific
failure modes of each approach.

4.3 MAIN RESULTS ON COIN-PRIMITIVE AND COIN-COMPOSITION

Overview: COIN-Primitive and COIN-Composition reveal specific failure modes. COIN-
Primitive serves as a testbed for evaluating fundamental manipulation skills, while COIN-Composition
tests generalization to minor environmental variations. Our detailed analysis confirms the limitations
identified in COIN-50 and reveals specific failure modes for each approach category.

CodeAsPolicy approaches reveal planning-execution disconnects. Our evaluation confirms the two
critical issues identified in COIN-50: (1) VLM-executor gap: Significant disconnects exist between
high-level VLM planning and low-level execution capabilities. As shown in Figure ] Voxposer
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Table 3: Generalization capability evaluation using COIN-Composition tasks. Models demonstrate
severe generalization failures when faced with minor visual or instruction variations from primitive
tasks.

Model Primitive SR Composition SR  Finished Tasks GCS

CogACT 19.0% 1.5% 3/20 0.079
Pi0 16.1% 6.5% 4/20 0.404
Gr00t N1 16.7% 0.0% 0/20 0.000

and Rekep perform poorly even on basic manipulation tasks, indicating fundamental misalignment
between planning and execution. (2) Articuation Manipulation problems: These two models are not
able to handle the articulated objects, such as cabinet, doors and switchs. This is mainly caused by
the structure is not feasible for key-points based representation.

H-VLA approaches confirm the three limitations identified in COIN-50. Our detailed analysis
reveals specific manifestations of the issues identified earlier: (1) Poor trajectory and gripper control.:
VLAs exhibit severe control precision issues, particularly struggling with gripper timing NVIDIA
et al] (2025b). As shown in Table[2] CogACT demonstrates relatively stable trajectories compared to
other VLAS, potentially due to its temporal ensemble mechanism, which is left for discussion in future
work. However, all VLLAs show significant jerky movements and high discontinuity. (2) Catastrophic
generalization failures: As shown in Table 3] models achieving reasonable success on primitive tasks
(16-19%) experience complete failure when faced with composition tasks. Even adding a single new
object or switching instructions causes task failure. (3) Weak VLM-VLA integration: Despite broader
task coverage when overfitted to primitive tasks, the coordination between high-level planning and
low-level execution remains fundamentally problematic. For example, while VLAs can successfully
execute "open the door" commands, changing the instruction to "pull the door" for the same physical
action results in dramatically reduced success rates and moves the gripper to unreasonable locations,
demonstrating that the natural language interface fails to capture the underlying action semantics.

5 CONCLUSIONS

We present COIN, a systematic evaluation benchmark for interactive reasoning in embodied Al
that encompasses three hierarchical evaluation levels: fundamental skill learning (COIN-Primitive),
intermediate capability testing (COIN-Composition), and critical interactive reasoning assessment
(COIN-50) providing 50 interactive tasks in partially observable settings. Additionally, our COIN-
teleoperation pipeline contributes a dataset of 1,000 demonstration trajectories for model training.

Through multi-layered evaluation metrics, our comprehensive analysis reveals fundamental limitations
in current EAI approaches, particularly in generalization and adaptability. We provide in-depth
analysis of these critical issues across both CodeAsPolicy and H-VLA paradigms. While achieving
better interactive reasoning capabilities remains a significant challenge, our findings highlight several
promising research directions worthy of deeper investigation:

Promising Research Directions. Based on our comprehensive analysis, we identify four critical
research directions:

(1) Improve VLA Trajectory Smoothness: Our findings suggest that adaptive ensemble mecha-
nisms, as potentially employed in CogACT, may contribute to more stable trajectory control compared
to Pi0 and Gr0Ot.(Table[2)). (2) Enhance Multimodal Perception Ability: Improving VLA visual
generalization and instruction-following capabilities through better multimodal perception could
enable more effective VLM-VLA coordination.(Section (3) YLM-VLA Integration Mech-
anisms: The result showed that H-VLA with natura language is facing great problems according
to (Table [3) and [Li (2025), showing the necessity to improve the integration between high-level
planning and low-level execution, models like |[Figure AI|(2025) might bring more help. (4) Adaptive
CodeAsPolicy Frameworks: CodeAsPolicy approaches now perform poorly on interactive and
primitve tasks, we should adopt adaptive feedback mechanisms to achieve more robust control in
dynamic environments (Section[4.2), moving beyond static "plan-then-execute" paradigms.
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6 ETHICS STATEMENT

Our research presents no significant ethical risks and does not negatively impact human welfare. On
the contrary, COIN contributes to the advancement of robotic applications that can assist humans in
daily tasks and industrial automation. The benchmark focuses on fundamental manipulation skills in
controlled environments, promoting safer and more reliable robotic systems. All experimental data
was collected in laboratory settings without involving human subjects or sensitive information.

7 REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our results, we commit to open-sourcing all components of our
work: (1) Complete source code for COIN benchmark implementation, evaluation metrics, and
baseline models will be made publicly available at [https://anonymous.4open.science/r/coin-EB1B/];
(2) The full COIN dataset including 1,000+ demonstration trajectories, task specifications, and
environment configurations will be released alongside the code; (3) Detailed experimental protocols,
hyperparameter settings, and computational requirements are documented in the appendix to facilitate
replication of our findings.
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Figure 5: Environment Setup

A THE USAGE OF LLM

We acknowledge the use of Large Language Models (LLMs) in the preparation of this work in the
following capacities:

Writing Assistance and Polishing: LL.Ms were employed to aid in refining the clarity and coherence
of our manuscript. This includes improving sentence structure, enhancing readability, and ensuring
consistent academic writing style throughout the paper. All technical content, experimental results,
and scientific contributions remain entirely our own work.

B LIMITATIONS AND FUTURE WORK

Despite COIN’s comprehensive design, several limitations must be acknowledged: (1) our focus
on a single robotic platform in static environments fails to capture the full complexity of dynamic
real-world scenarios; (2) the absence of dual-arm manipulation tasks that could reveal additional
coordination challenges in interactive reasoning.

For future work, we plan to pursue the promising research directions identified in our conclusions.
Specifically, we aim to investigate: (1) trajectory smoothness mechanisms inspired by CogACT’s
temporal ensemble approach to improve VLA execution stability; (2) enhanced multimodal perception
architectures that better integrate visual understanding with instruction following; (3) novel VLM-
VLA integration paradigms, comparing latent vector bridges against natural language interfaces;
and (4) adaptive CodeAsPolicy frameworks incorporating closed-loop feedback for dynamic re-
planning. Additionally, we anticipate significant advancement in human-inspired learning approaches
that enable iterative "think-execute-think" cycles, allowing models to formulate hypotheses, design
informative tests, and recursively update their world models based on interactive outcomes.

C ENVIRONMENT SETUP

We use a 7-DoF Franka Emika Panda robotic arm equipped with a parallel gripper as our standard
platform. As described in Section [3.1] we use different action spaces for VLA-based controllers
and VLM-based planners. Specifically, for VLA models using Panda inverse kinematics, we define
the action space as Ap € [—0.3,0.3] for positional deltas and AR € [—0.5,0.5] for orientation
deltas. The robot is observed from five camera perspectives providing comprehensive spatial and task
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Table 4: Performance comparison on COIN-50 interactive reasoning tasks. Human participants
achieve 40% success rate via teleoperation (100% in real-world settings), while current Al approaches
rarely exceed 3% success rates, revealing a substantial capability gap that highlights the significant
challenges in achieving interactive reasoning.

Model/Human Object-centric  Robot-centric  Compositional Overall
Human (Sim/ 10) N/A 40%
Human (Real/ 10) N/A 100%
H-VLA

Pi0 + Gemini 2.0 1.88% 2.14% 1.97% 1.99%
Pi0 + GPT-40 1.96% 2.50% 2.05% 2.17%
Gr00t N1 + Gemini 2.0 1.74% 2.50% 1.82% 2.02%
Gr00t N1 + GPT-40 1.52% 1.79% 1.59% 1.63%
CogACT + Gemini 2.0 2.14% 1.37% 2.24% 1.92%
CogACT + GPT-40 1.74% 1.07% 1.82% 1.54%
CodeAsPolicy

Voxposer(TD) 0.43% 0.00% 0.45% 0.29%
Voxposer(Normal) 2.17% 3.57% 2.27% 2.67%
Rekep 3.04% 3.57% 3.18% 3.26%

context for both VLA and VLM-based planning models. All environments are built on the ManiSkill3
platform using physics-based simulation.

D PERFORMANCE COMPARISON: MODELS VS. HUMAN BASELINE ON
COIN-50

To contextualize the difficulty level of COIN tasks and establish a performance baseline, we evaluated
both current Al systems and human performance on COIN-50 interactive reasoning tasks. For human
evaluation, we recruited 3 participants with B.S. degrees who had no prior exposure to our tasks, with
each participant attempting a representative subset of 10 tasks twice via teleoperation.

The results reveal a dramatic performance gap between human capabilities and current Al systems.
While humans achieve 40% success rates in simulation (100% in real-world settings, confirming task
feasibility), the best-performing Al model (Rekep) achieves only 3.26% overall success rate. This
12-fold performance difference demonstrates that current approaches are fundamentally limited in
their interactive reasoning capabilities, with substantial gaps that must be addressed before these
systems can effectively operate in partially observable environments requiring adaptive manipulation
strategies.

E VLM COMPARISON

E.1 VLM PLANNING COMPARISON

We evaluated VLM planners on COIN-50 tasks across execution time steps. GPT-40 consistently
outperforms Gemini 2.0 by approximately 1.5 points on our reasoning scale, maintaining this
advantage throughout task execution. While they could not improve the performance along the time
goes on, indicating there might be some problem on models’ historical information utilization.

E.2 VQA EVALUATION DETAILS
While the end-to-end task execution success rates are low, we evaluate the reasoning capabilities of

different VLMs through our embodied VQA protocol. The results reveal that GPT-40 consistently
outperforms Gemini-2.0-Flash, and all models show increased accuracy in the middle phases of

15



Under review as a conference paper at ICLR 2026

( pt-40-2024-11-20: Interaction Types Performance Across Task Steps \
Model Comparison: Mean Score Progression Interaction Types (sorted by avg. score)
10 —e— gpt-40-2024-11-20 —e— Experience utilization (11 tasks)
—e- gemini-20 —s— Tool-mediated problem solving (11 tasks)
+- Hierarchical planning (43 tasks)
8 Failure-driven adaptation (22 tasks)

e ——— | P
—— S
[ T P
R e i it TEDGEE S S = 4
2
2 4
0 3
o 1 2 3 a4 5 6 7 8 9 o 1 3 4 5 7 8 9
(@) Normalized Step (0-9) (b) Normalized Step
gpt-40-2024-11-20: Object Properties Performance Across Task Steps gpt-40-2024-11-20: Robot Skills Performance Across Task Steps
o Robot Skills (sorted by avg. score)
9

Action space navigation (21 tasks)
—e— Morphological reasoning (8 tasks)

—s— Perceptual perspective optimization (12 tasks)

®
©

o

S el | T _—
Object Properties (sorted by avg. score) \/4_"
Spatial relationship analysis (5 tasks)
5 —— Visual comparison (5 tasks) 5
+- Obstacle handling (17 tasks)

Mean Score (1-10)

-+~ Geometric reasoning (26 tasks)
4 —— Orientation analysis (15 tasks) 4
Mass estimation (6 tasks)
—e— Scale analysis (7 tasks)

3 3
0 1 2

3 4 5
(c)Normalized Step

3 4 5 6 7 8 9
\ (d) Normalized Step /

Figure 6: Comparison of VLM reasoning abilities on COIN-50 tasks evaluated along expert demon-
stration videos. GPT-40 consistently outperforms Gemini 2.0 across different reasoning categories
and time steps.

task execution before slightly declining in the final phase. This pattern suggests models gradually
accumulate task-relevant information through observation.

F MODEL TRAINING CONFIGURATIONS

We use the following training configurations: CogACT-Base trained on 4 x A800 GPUs with device
batch size 32 for 30K steps; GrOOt N1 2B trained on 4 x A800 GPUs with device batch size 16 for
120K steps; PiO-Fast trained on 3 x A800 GPUs with device batch size 2 for 470K steps.

G COIN-TELEOPERATION ALGORITHM AND COMPARISON

Our AR teleoperation system demonstrates robust performance across multiple validation metrics:

Data Quality Validation: 90% of collected trajectories can be successfully replayed in ManiSkill3,
indicating high fidelity data capture. Models trained on our data achieve consistent task performance,
validating data quality.

Cross-Device Compatibility: The system works reliably across Android and iOS devices released
after 2016, with stable 20Hz control frequency maintained even on older hardware (iPhone 7 Plus
tested).

Comparison with Traditional Methods: Our approach offers significant advantages in accessibility
(no specialized hardware required), scalability (easy deployment across environments), and cost-
effectiveness (hardware cost under $20 vs. thousands for traditional systems).

H MORE DETAILS ABOUT BENCHMARK

H.1 TASK DIVERSITY AND TEMPORAL ANALYSIS

COIN demonstrates unprecedented temporal complexity compared to existing benchmarks:
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Algorithm 1 COIN-teleoperation Pipeline

Require: Mobile device with sensors and AR framework
Ensure: Robot control commands
1: function MOBILEPHONEPROCESSING
2: XfMU « IMU sensor readings at time ¢
X7 « Gyroscope readings at time ¢
I; + Camera image at time ¢
(pt, R¢) + AR framework (ARKit/ARCore) processing of (X MU X997 T,)
Establish Web socket connection with PC
Transmit (p;, R;) to PC
end function
9: function PCPROCESSINGANDCONTROL
10 Receive (p;, R;) from mobile device
11: Apy = p; — pi—1, AR, = Ry - R4
12: Ap; = MedianFilter({Apt—g, ..., Ap:})
132 AR, = MedianFilter({AR; o, ..., AR,})
14: Ag; = InverseKinematics(Apy, A]A%t)
15: Send joint position commands Ag; to robot
16: end function

AN AR

Benchmark Average Length
ManiSkill 523
CALVIN 30

Libero 77.3
ARNOLD 125.8
VLABench 157.2
RLBench 180.2
RoboCASA Composition 371.9
COIN-50 988.9

Table 5: Trajectory length comparison across benchmarks. COIN features substantially longer
temporal horizons, requiring extended reasoning and planning capabilities.

Multi-Solution Task Diversity: Over 50% of COIN tasks exhibit substantial procedural diversity
with multiple valid solution paths. For example, in Tabletop-Find-Dice, agents can either systemati-
cally examine all faces or directly place dice on markers. This diversity prevents simple memorization
and requires genuine reasoning capabilities.

Temporal Dependencies: At least 40 tasks exhibit strong temporal dependencies where earlier
information and actions are essential for later stages, ensuring models must reason over extended
horizons beyond local cues.

H.2 TASK CLASSIFICATION DETAILS
COIN evaluates interactive reasoning across three principal domains—object-centric, robot-centric,

and compositional—each capturing distinct yet interdependent aspects of embodied intelligence
required for manipulation under partial observability.

H.3 OBJECT-CENTRIC REASONING

Object-centric reasoning encompasses an agent’s capacity to infer and utilize knowledge about
environmental entities through strategic interaction:

* Physical Property Inference (MAS, FRI, SCA, MOV): This category examines the agent’s
ability to:
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— Mass Estimation (MAS): Infer object mass distributions and leverage this information to
modulate manipulation forces appropriately for optimal handling.

— Friction Coefficient Assessment (FRI): Deduce surface characteristics and their implications
for stable grasping and precise manipulation without slippage.

— Scale Analysis (SCA): Assess dimensional compatibility between objects and end-effectors to
determine feasible manipulation strategies in space-constrained environments.

— Moveable Analysis (MOV): Determine which objects or object parts can be manipulated and
the constraints on their movement, distinguishing between fixed, partially constrained, and
freely movable elements.

¢ Spatial Reasoning (OBS, GEO, ORI, SRA): This domain evaluates the agent’s capacity to:

— Obstacle Handling (OBS): Identify which objects constitute impediments in the manipulation
space, distinguish between movable and fixed obstacles, and determine whether to relocate
obstacles or navigate around them based on task constraints and efficiency.

— Orientation Analysis (ORI): Determine optimal object reorientation for task completion based
on geometric and functional constraints in three-dimensional space.

— Spatial Relationship Analysis (SRA): Identify and reason about relative positions between
objects, including containment relationships (objects inside other objects), proximity rela-
tionships (nearest/farthest objects), and spatial arrangements crucial for task execution.

* Mechanism Understanding (LOC, KIN, SEQ): This category evaluates the agent’s ability to:
— Locking System Comprehension (LOC): Deduce the operational principles of locking mecha-
nisms and develop appropriate manipulation sequences to engage or disengage them.

— Kinematic Constraint Inference (KIN): Identify axes of motion in articulated objects to
facilitate effective manipulation within their degrees of freedom.

— Sequential Mechanism Navigation (SEQ): Comprehend multi-stage mechanisms and their
state-dependent behavior patterns to achieve desired functional outcomes.

* Visual Reasoning (GEO, VCP, SEM, OCC): This category evaluates the agent’s ability to
process and interpret visual information for manipulation:

— Geometric Reasoning (GEO): Infer shape-based affordances and constraints that influence
grasp planning and execution for objects with complex geometries and non-standard forms.

— Visual Comparison (VCP): Compare visual properties across object states or between ob-
served objects and internal representations to detect changes, identify matching features, or
recognize anomalies.

— Semantic Segmentation (SEM): Distinguish between different objects or object parts based on
visual features, enabling precise targeting of specific components during manipulation tasks.

— Occlusion Handling (OCC): Reason about partially visible or temporarily hidden objects by
maintaining object permanence and inferring obscured geometries from limited viewpoints.

H.4 ROBOT-CENTRIC REASONING

Robot-centric reasoning evaluates an agent’s capacity for self-awareness and adaptation within the
manipulation context, addressing the embodied nature of interaction:

* Embodiment Awareness (MOR, PPO, KCA): This domain assesses the agent’s ability to:
— Morphological Reasoning (MOR): Account for the robot’s physical dimensions when plan-
ning trajectories and interactions to avoid self-collisions and ensure manipulability.

— Perceptual Perspective Optimization (PPO): Strategically adjust sensor positioning to max-
imize information gain during task execution, particularly in partially observable environ-
ments.

— Kinematic Constraint Awareness (KCA): Reason about joint limitations and workspace
boundaries during motion planning to ensure executable action sequences.

* Control Optimization (DYN, ACT, SKL): This category evaluates the agent’s capacity to:

— Dynamic Response Tuning (DYN): Adapt control parameters based on task requirements and
environmental conditions to achieve desired manipulation outcomes.
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— Action Space Navigation (ACT): Select appropriate actions from the available repertoire based
on current state and task objectives within continuous control spaces.

— Skill Adaptation (SKL): Identify and modify learned manipulation skills to meet specific task
requirements and environmental conditions.

H.5 COMPOSITIONAL REASONING CAPABILITIES

Compositional reasoning encompasses higher-order cognitive functions that integrate multiple rea-
soning modalities to address complex, interactive challenges requiring adaptive strategies:

* Tool-Mediated Problem Solving (TOO): Identify, create, or adapt tools to overcome manipulation
constraints and extend interaction capabilities beyond the robot’s native end-effector, enabling
solutions to otherwise infeasible tasks.

¢ Failure-Driven Adaptation (FDA): Actively interact with the environment to gather information
about failure modes, then systematically refine strategies based on observed outcomes to develop
more robust manipulation approaches through iterative testing.

* Hierarchical Planning (PLA): Decompose complex tasks into coherent sequences of subtasks
with appropriate dependencies, adjusting the plan hierarchy in response to changing environmental
conditions or task requirements during execution.

» Experience Utilization (EXP): Incorporate historical interaction data into current decision-making
processes, applying lessons from previous manipulation attempts to enhance performance in novel
but related scenarios through transfer learning.

I TASKS TABLE

1.1 PRIMITIVE TASK

Task ID Task Image Description

Tabletop-Close-Cabinet-v1 Close the cabinet door

Tabletop-Close-Door-v1 Close the door

Tabletop-Close-Drawer-v1 Close the drawer
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Task ID

Task Image

Tabletop-Close-Microwave-
vl

Description

Tabletop-Open-Cabinet-v1

Close the microwave

Tabletop-Open-Door-v1

Open the cabinet door

Tabletop-Open-Drawer-v1

Open the door

Tabletop-Open-Microwave-
vl

Open the drawer

Tabletop-Open-Trigger-v1

Open the microwave

Tabletop-Pick-Apple-v1

Turn on the trigger

Pick the apple to the marker
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Task ID Task Image Description

Tabletop-Pick-Book- Find and pick the book from the
FromShelf-v1 bookshelf

Tabletop-Pick-Bottle-v1 Pick up the bottle and put it on the

marker

Tabletop-Pick-Cube-
ToHolder-v1

Pick up the cube, put it in the holder

Tabletop-Pick-Pen-v1 Pick up the pen and put it to the

marker

Tabletop-Pull-Pivot-v1 Pull the pivot to the target area

Tabletop-Put-Ball-
IntoContainer-v1

Put the ball into the container

Tabletop-Put-Fork-OnPlate-
vl

Put the fork on the plate
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Task ID

Task Image

Description

Tabletop-Rotate-Cube-v1

Rotate the cube till the white face
upward

Tabletop-Rotate-Holder-v1

Rotate the holder till the hole
upward

Tabletop-Rotate-USB-v1

Rotate the USB body for 90 degrees

Tabletop-Stack-Cubes-v1

Stack all the cubes

Table 6: Complete COIN-Primitive task specifications with visual exam-
ples (20 tasks)

1.2 INTERACTIVE TASK

Task ID Task Image Description Obj. Rob. Comp.
Tabletop- Put the balls in to the MAS no TOO
Balance-Pivot- holder to balance the SCA LPE
WithBalls-v1 long board on the FDA
triangular prism PLA
Tabletop-Clean- Arrange the bowl, fork no no no
For-Dinner-v1 onto the plate, clean for
dinner
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Task ID

Task Image

Tabletop-Close-
Cabinet-
WithObstacle-v1

Tabletop-Close-
Door-
WithObstacle-v1

Tabletop-Close-
Drawer-
WithLongObstacle-

vl

Tabletop-Close-
Drawer-
WithObstacle-v1

Tabletop-Find-
Book-Black-v1

Tabletop-Find-
Book-FromShelf-
vl

Description Obj. Rob. Comp.
close the cabinet door OBS no PLA
close the door no no no

close the drawer OBS no PLA

GEO FDA

close the drawer OBS ACT PLA

GEO PPO FDA

Find and pick the black GEO PPO EXP
book from the bookshelf OBS

and put it on the marker
Find and pick the highest GEO PPO EXP

book from the bookshelf
and put it on the marker
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Task ID

Task Image

Tabletop-Find-
Cube-RedDown-
vl

Tabletop-Find-
Cube-WithPivot-
vl

Tabletop-Find-
Dice-v1

Tabletop-Finish-
Hanobi-v1

Tabletop-Insert-
Conical-vl

Tabletop-Insert-
Objects-
WithShape-v1

Description Obj. Rob. Comp.
find the cube which have ORI PPO EXP
red face downward, and ACT PLA
put it on the marker with

red face upward
Move the heavy cube to MAS no TOO
the goal region PLA
find the dice which have GEO PPO EXP
2 and 4 point in the ORI PLA
corresponding face and
put it on the marker
Place all the hanobi in GEO ACT PLA
big to small from bottom SEQ EXP
to up
insert the conical to the GEO no no
container ORI
insert all the stick on the GEO no PLA

table into corresponding
holes
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Task ID

Task Image

Tabletop-Insert-
WithOrientation-
vl

Tabletop-Keep-
Pivot-Balance-v1

Tabletop-Lift-
Book-v1

Tabletop-Merge-
Box-vl

Tabletop-Merge-
USB-vl

Tabletop-Move-
Balls-
WithDustpan-v1

Tabletop-Move-
Balls-WithPivot-
vl

Description Obj. Rob. Comp.

insert the board on the GEO no PLA

wall ORI FDA

Balance the long board MAS no TOO

on the triangular prism LPE

and place the cubes to FDA

maintain balance

lift the book up to the GEO MOR PLA
higher platform ORI
SCA

Merge ball and boxs up GEO no no

ORI

Pick up the USB body GEO no PLA

and insert it into the
USB hub

move all the balls into MAS no TOO

the holder with dustpan SCA LPE
GEO

move all the balls into SCA no TOO

the dustpan as fast as you GEO LPE

can PLA
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Task ID

Task Image

Tabletop-Move-
Cross-WithStick-
vl

Tabletop-Move-
Cube-
DynamicFriction-
vl

Tabletop-Move-
Cube-
WithHolder-v1

Tabletop-Move-
Cube-WithPivot-
vl

Tabletop-Move-
Line-WithStick-
vl

Tabletop-Open-
Cabinet-
WithDoor-v1

Description Obj. Rob. Comp.
Use the stick to move the no no no
small cube along the
cross-shaped path to the
target position
move the cube to the FRI no PLA
marker MAS LPE
FDA
move the cube to the SCA no PLA
marker and put the GEO
holder on the cube SEQ
move the cube with the MAS ACT PLA
pivot to the marker DYN TOO
LPE
FDA
Use the stick to move the GEO ACT PLA
small cube along the ORI TOO
straight line path to the
target position
open the cabinet door OBS ACT PLA
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Task ID

Task Image

Tabletop-Open-
Cabinet-
WithObstacle-v1

Tabletop-Open-
Cabinet-
WithSwitch-v1

Tabletop-Open-
Door-
WithCabinet-v1

Tabletop-Open-
Door-
WithObstacle-v1

Tabletop-Pick-
Cube-Slippery-
vl

Tabletop-Pick-
Cube-WithDoor-
vl

Description Obj. Rob. Comp.
open the cabinet door OBS no PLA
open the door, notice the LOC no PLA
switch will control the FDA
state of the door
open the door OBS no PLA
open the door OBS no PLA
FDA
Pick the slippery cube FRI ACT PLA
TOO
LPE
FDA
put the cube to the OBS KIN PLA
marker ACT FDA
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Task ID

Task Image

Tabletop-Pick-
Cube-WithStick-
vl

Tabletop-Pick-
Cylinder-
WithObstacle-v1

Tabletop-Pick-
Eraser-
FromHolder-v1

Tabletop-Pick-
Object-
FromCabinet-v1

Tabletop-Put-
Balls-
IntoContainer-v1

Tabletop-Put-

Cube-
IntoCabinetWithOb
vl

stacle-

Description Obj. Rob. Comp.

Use the stick to move the GEO ACT PLA

small cube along the ORI TOO
T-shaped path to the

target position

pick up the center LOC KIN PLA

cylinder FDA

EXP

Pick up the eraser in the GEO MOR PLA

holder and place it to the ORI EXP

marker
pick up the object from OBS PPO PLA
the cabinet GEO MOR FDA
ACT

move all the balls into GEO ACT TOO

the dustpan as fast as you LPE

can PLA

FDA

put the object into the OBS PPO PLA

cabinet GEO MOR FDA

ACT
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Task ID

Task Image

Tabletop-Put-
Cube-
IntoMicrowave-
vl

Tabletop-Rotate-
Cube-Twice-vl

Tabletop-Seek-
Holder-
InCabinet-v1

Tabletop-Seek-
Objects-
InCabinet-v1

Tabletop-Seek-
Objects-
WithObstacle-v1

Tabletop-Slide-
Cube-Into-
Container-v1

Description Obj. Rob. Comp.
put the cube into the OBS ACT PLA
microwave GEO MOR FDA
rotate the cube till the ORI ACT PLA
green face upward FDA
Find the holder OBS ACT PLA
containing an eraser the GEO MOR EXP
cabinet, put it to the SEQ PPO
marker
Find the apple and the OBS ACT FDA
plate in the cabinet, put MOR PLA
them on the table PPO EXP
find the cube in the OBS MOR FDA
cabinet and pick it up ACT PLA
PPO
Slide a cube down a no no no

slope into a container
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Task ID

Task Image

Tabletop-Slide-
Cube-WithPath-
vl

Tabletop-Stack-
Books-OnBox-v1

Tabletop-Stack-
Books-vl

Tabletop-Stack-
Cube-WithColor-
vl

Tabletop-Stack-
LongObjects-v1

Description Obj. Rob. Comp.
Slide a cube down a FRI ACT PLA
slope to the marker ORI

GEO
Stack all things on the ORI PPO PLA
table GEO
Stack all things on the SCA PPO PLA
table ORI
Stack the cube with same ORI ACT PLA
color FDA
stack all the objects to SCA ACT FDA
make it most high ORI PLA
GEO
OBS

Table 7: COIN-50 interactive reasoning task specifications with visual
examples (50 tasks)
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