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Abstract

Detection of relevant and meaningful communities
from any social network is always a constant research
challenge. Considering large social networks existing
approaches often fail to capture perfect community
partition or fail to converge fast. Inspired by non-
myopic reinforcement learning domain, in this paper,
we have proposed a novel game theory based com-
munity detection algorithm which considers commu-
nity retention based on temporal information as part
of a node’s strategy (i.e. for a node whether their
current assigned community is more profitable based
upon future possibilities, or should they switch at the
moment), thereby minimizing cross-community false
node switches. The proposed method has the follow-
ing properties (a) considers community retention for
a node in the network when it considers switching
to another community, (b) achieves significantly bet-
ter/comparable performance w.r.t baselines in terms
of metrics such as quality of partition on various
real world datasets,(c) faster convergence w.r.t tradi-
tional game theoretic approach which only considers
short-term utility by minimizing cross-community node
switches (d) utility to interpret at each iteration for any
particular node’s strategy.

Index terms - game theory, temporality, fast conver-
gence, modularity, probabilistic sampling, community
retention

Introduction
Community is a well-defined structure in any network
which refers to group of nodes that have more edge con-
nections among themselves than the edges that connect
them to the rest of the network. From the last two
decades, discovery of communities from any complex
network has been a well-researched problem with appli-
cations including social network analysis (Ji et al. 2020),
online recommendation system (Ying et al. 2013), bio-
logical networks etc.

Girvan–Newman algorithm (Girvan and Newman
2002b) was first proposed for finding communities in
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a biological network but later widely accepted to apply
in other real-world problems of community detection.
In the recent years, different techniques like hierarchi-
cal clustering (Cheng et al. 2012), optimization-based
algorithms and multiobjective evolutionary algorithm
(Li, Liu, and Wu 2017) have been suggested to detect
community structures.

Here we focus mainly on traditional game-theoretic
models (Basu and Maulik 2015), where individual nodes
in a graph participate in joining communities by choos-
ing the best strategy from the strategy space. We hence
show how our current methodology relates to them and
in some cases overcome previous drawbacks.

In this paper, we aim to propose a game theoretic
based community detection method to achieve a stable
community structure through considering not only local
neighborhood information but also temporal relations
into account.

Our main contributions are as follows:

• Fast Convergence with same community structure We
show our proposed method converges faster as com-
pared to traditional game theoretic approach, having
similar community structures.

• Theoretical Guarantees : In subsequent theorems we
show how pure Nash Equilibria holds for our model
along with faster convergence.

• Real world Applicability and Effectiveness We evalu-
ate our model on real-world social network datasets
and show case how community detection via tempo-
ral knowledge takes place through experiments.

• Interpretability We showcase how our method is eas-
ily interpretable w.r.t any particular node (i.e. why
a node choses a particular community at some itera-
tion) as compared to neural models which are often
hard to interpret.

The remaining of this paper is structured as follows.
The existing works on the related topics are discussed
in Section II. Preliminaries related to the community
detection methods have been described in Section III.
Section IV contains detailed walkthrough of our pro-
posed community detection algorithm. The results are



discussed in Section V. Conclusions from the study are
contained in Section VI.

Motivation for Community Detection in
Operation Research

Community Detection has a wide variety of applications
in relation to operation research including detecting
fraud detection of similar group of fraudsters in online
networks (Li et al. 2021) or in healthcare (Gangopad-
hyay and Chen 2016), or in e-commerce fields where
customer quality needs to be gauged (Arab 2021) where
user communities need to be discovered and changes
should be made towards the low engaging customers.
Even in e-commerce platforms where the business profit
lies in engaging users with more personalized recom-
mendation of products, community detection is widely
used (Feng et al. 2015). Hence it is imperative to solve
the problem of community detection in large networks
with less time so that it can be scaled to business within
their applications.

Background and Related Work

Most of the methods proposed in the recent years
have focused primarily towards modularity optimiza-
tion problem in networks, (Newman 2004) being one of
the first greedy approaches to modularity optimisation.
Recent work proposes modularity optimization that fol-
lows an agglomerative technique, with each node as a
distinct community, which can then be merged itera-
tively based on the modularity gain.

(McSweeney, Mehrotra, and Oh 2012) proposes a
similar setting where there consists of several iterations
consisting of the same node joining a particular com-
munity and then again switching to another community
successively, thus leading to a longer time for conver-
gence. Recent methods like (Jiang and Xu 2015) uses
labelling mechanism, whereby at each iteration a node
is randomly chosen which then performs its correspond-
ing profitable action and its then labelled, not to be
sampled in the later portions. While this clearly indi-
cates a faster run time execution, however these might
not lead to a stable Nash equilibrium, discussed later.
While most methods fundamentally rely on modular-
ity calculation through network dimensions, some in-
cluding (Bu et al. 2018) uses similarity methods like
neighborhood or cosine similarity to establish edge con-
nections. Additionally (Bu et al. 2018) follows a non-
cooperative game theoretic approach where partitions
are formed in parallel following fast heuristics.

Preliminaries

In this section, some preliminary concepts necessary for
our proposed approach are discussed.

Symbols Definition

A Real symmetric n x n adjacency
matrix representing the network.

δ Kronecker delta function.

δij =

{
1, i = j

0, i ̸= j

Q Modularity Function

γ Resolution Parameter.

q(u, v, C) The payoff function of node u when
node v joins its community C

ϕ(u) Community label assigned to node
u

m Total edges in the network

ki Degree of node i

µ(i, C) Utility of node i to join community
C

Cx Community labelled as x

µ(Cx, Cy) Utility of Cx when it wants to
merge with Cy

Concept of Modularity The fundamental goal of
community detection algorithms is to partition a net-
work into separate communities, where modularity rep-
resents the quality of a particular partition in the net-
work.

Considering an undirected graph of n nodes, A rep-
resents a real symmetric n x n dimensional adjacency
matrix, where Aij = 1 when nodes i and j are con-
nected else Aij = 0. Let us also denote the degree of a
node i by di.
Considering a partition of the network into ϕ groups,

the number of edges that fall in each group is equal to∑
ij Aijδϕi

δϕj
where δij is the Kronecker delta function.

The concept of modularity therefore is proposed as the
difference between the current number and the expected
number of edges placed randomly within the network. If
Pij be the probability that nodes i and j are connected,
then the modularity value given by the Reichardt &
Born modularity function can be written as follows:

Q(γ) =
1

2m

∑
i,j

(Aij − γ
ki.kj
2m

)δ(Ci, Cj)

where γ is the resolution parameter, in our case γ =
1

Game Theoretic Framework Considering a set-
ting with n players denoted as N = 1, 2, 3, . . . n, for each
ith player in the game, there is a set of strategies that
player takes in order to maximize its own payoff in the
game. Let’s say the set of such strategies be S where
S = S1 × S2 . . . Sn, combination of all the strategies of
the individual players.

In a network setting, we can consider each such node
as an agent that tries to maximize its own payoff, while



joining a particular community formed within the net-
work.

Corresponding strategies for node u include

• Join a particular community. C =⇒ C ∪ u

• Leave a particular community C =⇒ C − u

• Switch communities C1 and C2 : C1 − u =⇒ C2 ∪
u

As per Fig. 1 for a node i with degree di, the total
number of possible actions would be 3 ∗ di operations
where at each branch there are 3 options to choose from.

Figure 1: Strategy Set - The blue node can take any ac-
tion along its degree/branches, Arrow indicating joining
external clusters

Goal of such Strategies The goal for a node is
thus to choose the maximum payoff strategy, thereby
maximizing the modularity of the network, leading to
a stable partition, in subsequent iterations.

Definition 1. Payoff function. As per Marginal
Payoff under Section 3 Definition 1. (McSweeney,
Mehrotra, and Oh 2012) The payoff function of a node
u for node v is given as:

q(u, v, C) = µ(u,C ∪ v)− µ(u,C − v)

where µ(i, C) is
∑

j∈C(Aij − ki.kj

2m )δC,Ci

The payoff function indicates how useful a particu-
lar action will be for a given agent in a game setting.
In the community formation domain, payoff indicates
whether joining or leaving or switching a community is
profitable. From here we use the notation for denoting
the payoff function as utility function interchangeably.

Properties of Utility Function

Here we consider some of the desirable properties of
payoff functions in general. We follow definitions 2 &
3 of Section III from (McSweeney, Mehrotra, and Oh
2012) regarding the following properties.

Definition 2. Symmetric Let q be a payoff function
and u and v be two different nodes. Then, q is symmet-
ric iff

∀S∈N (q(u, v, C) = q(v, u, C))

Definition 3. Aditively-Separable q is additively-
separable iff µ(u, S) =

∑
v∈S δ(u, v, S), The property

of additively-separable states that a node u’s payoff for
a community S is the sum of the marginal payoffs over
the members of S.

We now introduce here the concept of Nash equilib-
rium in the context of reaching a solution to finding
optimal communities using the proposed payoff func-
tion. The motivation for proposing Nash equilibrium
is due to the fact that at the end of each iteration of
our community detection model we want to find an op-
timal community partition (each node is in the best
community relative to other possible alternative com-
munities). Since each of these nodes can take any of
the strategies independently as self-rational agents, the
stability of partitions formed is often decided whether
the partitions have reached a Nash equilibria. We thus
formally define the same

Definition 4. Nash Equilibria A partition ϕ is a
Nash Equilibrium for (N, µ) iff for all nodes u:

q(u, ϕ(u)) ≥ q(u,C ∪ u) ∀ C ∈ ϕ,C ̸= ϕ(u)

which indicates for any partition, corresponding
nodes’ payoffs wont improve any further.

Proposition 1. Every network will have at least one
Nash equilibrium provided a symmetric and additively-
separable payoff function is used.

This proposition is proven in (Bogomolnaia, Jackson
et al. 2002).

We thus show in further discussions how our pro-
posed payoff function would follow the utility function
properties, thus achieving Nash Equilibria.

Proposed Methodology

Temporal Based Game Theoretic
Community Detection

While an agent’s decision from is based upon local
neighborhood information in the network, despite being
profitable at current timepoint, it might not be prof-
itable later and a node might have to choose a com-
munity it initially rejected. We therefore consider the
improvement of an agent’s decision not only based on
its local information but also through its temporal in-
formation via community retention, i.e. if a node has a
higher chance of retention in the community it initially
chose.

As a result, we aim at reducing the sampling space
for the next iteration, by assigning a lower sampling
probability to the node. We consider this since it has
already made a wise decision, considering whether it
would be retained in a community for long during its
initial choice.



Defining Temporal Relation As per Fig: 2a Ini-
tially a node takes its action based on maximizing its
utility/payoff function and decides to join a community,
say C1. However, after some iteration, it finds that the
other communities its connected to via its branches are
much more profitable, lets say C2. So there is a corre-
sponding switch action. Hence, as per the node takes
a bad decision initially based on local motivations for
joining C1 instead of C2, but later switches community.

(a) Node n sees joining C1 is favourable in the first
iteration

(b) Node regrets in later iterations, now
chooses C2 which seem more profitable

Figure 2: A case of switching communities

Push and Pull Strategies While the general utility
function indicates how profitable an agent’s action will
be while joining a particular community at the current
instant, it does not consider whether a node will regret
the current choice based on local environment and have
to switch later on. We therefore propose the idea of
push and pull strategies.

Pull strategy involves the following. Suppose
in 4b a node i decides to join a community C, where the
corresponding community has nodes which has external
neighbors as O1, O2. If for a particular node belonging
to the external neighbors if there are a lot of connections
to them, then there is a high probability of that node
getting pulled into the community in some time later,
thus increasing more number of internal connections in
future, resulting in higher modularity of the community
as a whole.

So if we consider an average pull which actually indi-
cates the expected number of nodes that will be pulled
into the community, then the average number of inter-
nal connections in the future timestamp will increase
thereby forcing Ni to retain inside the community in-
stead of switching.

Figure 3: Community Retention : Push & Pull Strategy

The above claim can also be formally proved since is
a 2-way handshake mechanism. Fig 4a

Suppose n decides to join C which has n2 as an ex-
ternal neighbor. The claim we are making n should
consider its decision based on the face that n2 can be
pulled into C implies that n2 will join C among its other
best decisions which in-fact is contributed to also if n
joins C. Hence this becomes a good strategy.

(a) 2-way handshake problem

(b) Ni’s decision based on if O1 would
join

Figure 4: Validity of Push-Pull Strategy

Push Strategy However taking a decision based on
this can also be detrimental if there’s a case where the
external degree of such a node Oi is too high, indicating
more external connections if considered in the commu-
nity and hence more chance of escaping the community
bond later. Hence nodes with high degree being en-
tered through the pull are also prone to repulsion with
the community.

Modified Utility Function The corresponding util-
ity of the agent i to join a community Ct is given by



follows.

Payoff-Utility = µ(i, Ct) =
∑
j∈Ct

(Aij −
ki.kj
2m

)δ(Ct, Ci)

(1)

Community-Retention =
∑

Oj∈Oext

(ACt,Oj −
d
Oj

ext

2m
) (2)

λ(Payoff-Utility)+(1−λ)(Community-Retention) (3)

where C = C1, C2, ...., Cdi
, λ denotes the community

retention rate and
∑

j ACt,Oj
includes all edge counts

from community Ct to external node Oj .

Sampling Strategy

Initially all the nodes in the graph have a uniform
sampling probability P . After a node takes action based
on eq.3 we assign the node a sampling probability given
by eq. 4 for the next iteration.

Prob(Ni) =
λ ∗ P

PN1
+ PN2

+ · · ·+ λ ∗ P + PNn

(4)

By community retention mechanism, a particular
node had previously chosen a community wisely such
that there is less chance of switching to another commu-
nity via its other branches later on. Hence the intuition
is to give less chance to that node in the next iteration
to be sampled, in the same proportionate amount as
community retention rate. Also this guarantees that
post community retention action, if a node gets cho-
sen again and switches, its sampling probability gets
factored down by λ successively.

Demonstration Example

(a) C1: has 2 external nodes,
C2: has 1 external node

(b) Blue node decides whether
to join C1 or C2 based on com-
munity retention

Figure 5: Community Retention & Sampling Strategy

In the above example, we show only how the commu-
nity Retention can be calculated. The blue node chosen
has an initial probability = 1

14 , total nodes n being 14
as per Fig 5b.

From Fig: 5b Total edges m = 13, Degree dextC1
= 3,

Degree dextC2
= 2.

Community Retention for C1 = (6− (dext
C1

∗3+dext
C1

∗2)
2m ) =

5.42 since the external nodes (not considering blue
node) for C1 has degree 3 and 2 respectively. Com-

munity Retention for C2 = (4 − (dC2
∗3

2m ) = 3.76. Con-
sidering λ is 0.8, then the probability of the blue node
for the next iteration is

(0.8) ∗ P
PN1

+ PN2
+ · · ·+ (0.8) ∗ P + PNn

= 0.0579 < P =
1

14

where P = PN1 = PN−2 = ... = PNn = 1
14

Merging Strategy
Merging is done when a particular community C1

wants to merge with another community C2. Advan-
tage of a merge strategy is that instead of serial node
switchings all nodes from one community to its adjacent
community in a single iteration. Considering a commu-
nity Cx, we collapse it into one supernode SUx with
the outdegrees of the nodes within Cx represented as
the outdegree of SUx as in Fig 6 and the corresponding
utility function is given by eq. 5. The maximum utility
is then calculated as eq. 6

µm(Cx, C2) =
1

2m′

∑
(ACx,C2

− kCxkC2

2m′ ) (5)

utilitycomm = max
∀j∈C

(µm(Ci, Cj)) (6)

Nodes’ Unwillingness to merge However, some
nodes in Cx might be reluctant to switch under such
merge operation. So, intuitively their sampling proba-
bility should be higher in the next iterations, in order to
get a higher chance of switching to better community.

Sampling Probability for merged nodes
For each node that got merged, we assign sampling

Probability as eq 7 where Pm is the merging probability.

Prob(n) = Prob(n)/pm∀n ∈ Cx (7)

Figure 6: Whether Cx would merged with C1 or C2



Theoretical Proofs

Existence of Nash Equilibrium

Proposition 2. The proposed utility function 3 follows
additive-separable and symmetric properties.

Proof : We show it only for the first term in eq.1
which can be shown for second term eq.2 also due to
the same structure.

• Symmetric Property Suppose u joins community
which has v. So, symmetric property holds for the
first term a from 1, Au,v = Av,u. Also δ(Cu, Cv) =
δ(Cv, Cu) = 1

• Additively-Separable Property

By 1, δ(Ct, Ci) = 1, since node i joins the Ct com-
munity.

So D(C,Ct) =
∑

i∈C µ(i, Ct) indicates the utility for
all nodes in Ci w.r.t nodes in Ct.

Computing this for the entire partition set ϕ,
yields,

∑
C∈ϕ D(C,Ct), which by average results in

1
2m

∑
C∈ϕ

∑
i∈C µ(i, S), i.e Q.

Algorithm 1 Temporal Community Detection using
Game Theory

1: ProbabilityDist = [p1, p2, ..., pn], pi =
1
N

2: π = InitialPartition(G)
3: πprev = π
4: while true do
5: node Nt = selectNode(NodeList, p = Probabili-

tyDist)
6: π = CommunitySwitch(Nt, G, π)
7: if Nt switches then
8: pNt = λ ∗ pNt

9: end if
10: Pm = random Number s.t. 1N < Pm < 1
11: if Pm <= τ then
12: π = MergeCommunity(G,π) .... eq.5 , eq.6 ,

eq.7
13: end if
14: if Terminate(πprev, π) then
15: BREAK
16: end if
17: πprev = π
18: end while

Algorithm 2 Community Switch

1: Community Switch
2: for each neighbor of node n do
3: totalUtility =λ(utilityJoin)+1-λ(communityRetention)

from equation (3)
4: end for

Algorithm 3 Terminate

1: if NMI(πprev, π) >= η then
2: Terminate algorithm
3: end if

Complexity Analysis

Proposition 3. The space complexity provided by
TCDG can be asymptotically represented as O(n2) +
O(n)+O(ϕ) ≈ O(n2), where n and ϕ indicate the num-
ber of nodes and number of partitions formed in the
graph, respectively and n ≥ ϕ.

Proof. Space Complexity

• Storing Graph information as adjacency matrix :
O(n2)

• Storing dictionary of node and community labels :
O(n) ex. n1 : C5, n2 : C3

• Storing community dictionary : O(ϕ) for ϕ = total
community partitions formed e.x. C1 : (n2, n4), C2 :
(n3, n7)

Proposition 4. The time complexity provided by
TCDG can be asymptotically represented as O(n ∗ ϕ) +
O(ϕ ∗ (ϕ− 1))

Proof. Time Complexity
Considering ϕ as the number of partitions, the worst

case complexity based on the utility function would be
O(n∗ϕ). For merging strategy the worst case complex-
ity would be O(ϕ ∗ (ϕ− 1)).

Experiments and Results
We aim to answer the following questions:

Q1: Community Structure How closely does our
method resemble traditional methods in terms of mod-
ularity and no. of communities: Table 3.

Q2: Fast convergence How does TGDC converges
faster in less number of iterations.

Q3: Real World Effectiveness We have shown
how our model performs in real world datasets including
in recent covid research dataset. Table 2

Evaluation Metrics

Measurement of the Quality of Community A.
Normalized Mutual Information
The measure of the mutual dependence between the
communities is detected using Normalized Mutual In-
formation (NMI) (Xie, Kelley, and Szymanski 2013).
NMI measures the similarity between two partitions
and denotes the quality of the partition. Let the two
partitions or communities are C and C ′. Then NMI can
be denoted as

NMI(C,C ′) =
2I(C,C ′)

H(C) +H(C ′)
(8)



Where H(.) is the entropy function and the mutual in-
formation I(C,C ′) = H(C) + H(C ′) − H(C,C ′). No
similarity and maximum similarity of two communities
manifest NMI value 0 and 1 respectively.

Experimental Setup

All experiments are carried out on a 2.4GHz Intel
Core i9 processor, 32GB RAM, running OS Windows
10.0.18363. We ran the corresponding models TGDC,
GCD and other baseline models in python using net-
workx library.

Datasets Used

We use the following datasets for evaluation purpose.

• Amazon is collected by crawling Amazon website.
The vertices represent products; the edges indicate
the frequently co-purchase relationships; the ground-
truth communities are defined by the product cate-
gories in Amazon. This graph has 3,225 vertices and
10,262 edges

• Zachary’s karate club (Zachary 1977) proposes a so-
cial network dataset of 34 members of a karate club
at a US university in the 1970s.

• American College football (Girvan and Newman
2002a) consists of network of American football
games between Division IA colleges during Fall 2000
season.

• Dolphin social network (Lusseau et al. 2003) consists
of an undirected network of associations in dolphins
in NZ.

• Enron Email Dataset(Email) proposes a communica-
tion network dataset of employees under Enron hav-
ing around half million email conversations. For our
experiments we sampled some instances as per Table
1.

• ERDOS 992 proposes a pajek network dataset of
6.1K nodes and 7.5K edges.

• Facebook Food Network Data collected about Face-
book pages (November 2017). These datasets repre-
sent blue verified Facebook page networks of different
categories. Nodes represent the pages and edges are
mutual likes among them.

• Retweet Network Nodes are twitter users and edges
are retweets. These were collected from various social
and political hashtags.

• Facebook Politicians Network Data collected about
Facebook pages (November 2017). These datasets
represent blue verified Facebook page networks of
different categories. Nodes represent the pages and
edges are mutual likes among them.

Baseline Models

• MMSB (Airoldi et al. 2008) uses dense subgraph ex-
traction to detect overlapping communities in net-
work graphs.

Network Name Vertices Edges Degree
Amazon 3225 10262 12
Enron 143 623 10
Karate 34 78 1.2
Football 115 613 8.52
Dolphin 62 159 3

ERDOS992 6129 7591 2
Karate fb pages food 620 2102 6.78

retweet network 96 117 3.7
fb pages politician 5908 41729 14.12

Table 1: Networks under consideration

• CPM (Palla et al. 2005) uses k-clique information to
generate corresponding communities.

• Node2vec (Grover and Leskovec 2016) uses vertex em-
beddings learned via biased random walk.

• Fast-Unfold (Blondel et al. 2008) is a community de-
tection algorithm that tries to maximize the modu-
larity using louvain heuristics.

• Greedy MM Newman et al (Clauset, Newman, and
Moore 2004) starts with each node in its own com-
munity and tries to join pairs of communities until
no such community pair is left.

• GraphGAN (Wang et al. 2018) uses adversarial train-
ing in a min-max game and combines generative and
discriminative graph representation learning methods
for finding communities.

• GCD(Game-theoretic Community Detection) We use
(McSweeney, Mehrotra, and Oh 2012)’s basic com-
munity detection method using the node mechanism
structure and aim to compare the convergence rate.
This is also the case for λ = 1 in our model (i.e.
without the community retention feature) and with-
out any community merge.

As we see from the modularity values TGDC
achieves a majority modularity in most cases.

Evaluation on Real world Datasets As seen from
Table 2, it is clearly evident that our proposed Model
TGDC performs well in comparison to the traditional
community detection methods. All experiments corre-
sponding to 2 were run over a period of 6 phases per
model per dataset and the boundary values were de-
cided based on the average of the 6 phases. Here we
only showcase for larger datasets.

Evaluation on LFR Benchmark Datasets In
Fig. 7 we also showcase our model using the Lanci-
chinetti–Fortunato–Radicchi (LFR) benchmark dataset
proposed by (Lancichinetti, Fortunato, and Radicchi
2008), using corresponding degree distributions and
community size distributions. Here 4 graphs are gen-
erated for 4 different values of mixing parameter (µ)
compared against their NMI values, where µ denotes
the average ratio between the external connections of
a node to its degree. We see that our proposed model



Network Name TGDC(Our Model) MMSB CPM Node2vec Fast-unfold Greedy MM GraphGAN
Amazon 0.77 ± 0.01 0.63 ± 0.013 0.56 ± 0.007 0.59 ± 0.03 0.67 ± 0.02 0.62 ± 0.04 0.58 ± 0.01
Enron 0.54 ± 0.01 0.418 ± 0.008 0.380 ± 0.011 0.38 ± 0.026 0.42 ± 0.015 0.47 ± 0.02 0.51 ± 0.02
Karate 0.42 ± 0.014 0.418 ± 0.008 0.380 ± 0.011 0.38 ± 0.026 0.35 ± 0.13 0.39 ± 0.017 0.38 ± 0.021
Football 0.582 ± 0.002 0.604 ± 0.02 0.549 ± 0.064 0.573 ± 0.037 0.51 ±0.02 0.54 ±0.03 0.562 ±0.23
Dolphin 0.58 ± 0.016 0.55 ± 0.023 0.53 ± 0.036 0.57 ± 0.046 0.52 ± 0.04 0.51 ± 0.037 0.48 ± 0.12

ERDOS992 0.618 ± 0.002 0.604 ± 0.02 0.549 ± 0.064 0.573 ± 0.037 0.58 ± 0.02 0.571 ± 0.07 0.63 ± 0.01
FB-Pages-Food 0.61 ± 0.007 0.563 ± 0.014 0.503 ± 0.03 0.518 ± 0.011 0.55 ± 0.01 0.53 ± 0.03 0.61 ± 0.04

Retweet 0.51 ± 0.01 0.55 ± 0.023 0.53 ± 0.036 0.57 ± 0.046 0.48 ± 0.02 0.52 ± 0.03 0.57 ± 0.03
FB-Pages-Politician 0.71 ± 0.02 0.55 ± 0.023 0.53 ± 0.036 0.57 ± 0.046 0.64 ± 0.01 0.61 ± 0.003 0.704 ± 0.04

Table 2: Modularity Comparison for (λ = 0.8)

Network Name TGDC(Our Model) MMSB CPM Node2vec Fast-unfold Greedy MM GraphGAN
Amazon 445 423 417 409 338 431 312
Enron 13 14 13 13 13 12 13
Karate 3 4 3 3 5 4 4
Football 8 10 6 7 13 11 8
Dolphin 9 11 8 10 8 8 9

ERDOS992 606 580 592 558 621 586 574
FB-Pages-Food 80 72 61 71 77 73 86

Retweet 32 27 28 30 35 34 30
FB-Pages-Politician 9 11 8 10 11 9 9

Table 3: No. of Communities Comparison for λ = 0.8

TGDC performs comparatively better than the base-
lines.

Figure 7: LFR benchmark Dataset

Fast convergence w.r.t GCD (λ = 1)

We mainly focus on convergence comparison of our
model w.r.t game theoretic models like GCD, primarily
due to the reason that other baseline models have dif-
ferent domain architecture and different definitions for
iteration.

In Figure 8 we show how TGDC achieves almost the
same modularity in less number of iterations as com-
pared to the normal game theoretic model GCD . Here
λ = 1 corresponds to the case of GCD baseline model
and we use this notation interchangeably in the exper-
iments section. In Fig. 8a, for Karate dataset,at iter-
ation no. 80, value at λ0.7 is higher than at λ1. And
this behaviour is continued till the maximum modu-
larity is achieved. Similarly in Fig 8c for the Foot-
ball Dataset, this behaviour is seen where our proposed
model (TGDC) with λ = 0.7 achieves higher modularity
in less iterations, thus can converge faster.

(a) Karate Dataset -
TGDC(λ = 0.7) reaches peak
modularity 0.38

(b) FB pages Food
Dataset - TGDC(λ = 0.8)
reaches peak modularity 0.58

(c) FootBall Dataset - From
iteration no. 100 to 400,
TGDC(λ = 0.8) has higher
modularity values compared
to GCD(λ = 1)

Figure 8: Faster Convergence for TGDC model

Choosing optimum value for lambda

High lambda indicates more focus on local environment
based utility while low lambda indicates more focus on
future community retention. As we see from 9 having
very low lambda value results in more focus on future
retention rather than taking decision based on local en-
vironment, hence a node might not join a profitable
community, leading to slower convergence.

This is evident in Figure 9 where in 9a and 9b, lower
lambda values perform poorly w.r.t higher lambda val-
ues. Example : In Fig . 9a, λ0.8 value is considerably
higher than λ0.2 for iterations greater than 100.

Conclusion & Future work
We see from our experiments and results on how our
proposed approach can result in faster convergence with
the optimum value of λ, at the same time achieving sta-
ble community partition. For applicability our model
has also been tested on real world network datasets in-
cluding Amazon Dataset to show how it performs as
compared to traditional community detection models.
In future we aim to propose a dynamic version of this
approach where we propose to recompute communities



(a) Lower lambda value of 0.2 re-
sults in poor convergence - Retweet
Dataset

(b) Lower lambda value of 0.2 re-
sults in poor convergence- Karate
Dataset

(c) For Dolphin dataset, post itera-
tion 200, lambda 0.2 achieves less
modularity compared to lambda
0.8.

Figure 9: Deciding optimum lambda value - More iter-
ations required for lower lambda values to achieve peak
modularity

for specific nodes based on community retention his-
tory as opposed to recomputing the communities for
each static snapshot.
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