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Abstract

Reinforcement learning (RL) has shown promise in enhancing large language
model (LLM) reasoning, yet progress towards broader capabilities is limited by
the availability of high-quality, multi-domain datasets. This work introduces
GURU, a 92K RL-for-reasoning dataset designed to address this gap, covering
six reasoning domains: Math, Code, Science, Logic, Simulation, and Tabular,
each with corresponding verifiers. We build GURU via a careful data-curation
pipeline, including sourcing, deduplication, reward design, and domain-specific
and difficulty-based filtering. With GURU, we present a systematic investigation
of cross-domain RL generalization, and reveal several key aspects affecting cross-
domain transferability. We further train two models GURU-7B and GURU-32B
purely with RL on our curated data and observe largely improved performance
over leading open RL reasoning model baselines, with gains of 7.3% and 7.8%
respectively on an extensive 17-task, six-domain evaluation suite. We are releasing
our dataset, code, and evaluation suite to the community, aiming to support further
research and development of more general RL-enhanced reasoning models.

1 Introduction

Recent frontier reasoning models trained with reinforcement learning (RL), such as OpenAl-ol [[Ope+
nAll 2024]] and DeepSeek-R1 [Guo et al.,[2025]], demonstrate impressive performance across diverse
reasoning tasks. While many open-source efforts have attempted to unveil successful RL strategies,
many of the analysis [Yue et al., 2025} Zeng et al.,2025]] and training recipes [Hu et al.,[2025] |Luo
et al.,[2025b, [He et al.,[2025] |Yu et al., 2025]] are constrained to Math and Code domains. However,
whether or not these models can be reliably extended to other domains has not been adequately estab-
lished. This leaves two key questions for the community: across a broader spectrum of reasoning
challenges, (1) to what extent do RL-enhanced reasoning abilities transfer between diverse domains,
and (2) how can we build models that maintain high performance across these domains?

A major obstacle to tackling these questions is the lack of suitable data. Unlike supervised
fine-tuning (SFT), where a model receives token-level supervision, improving reasoning with RL
heavily relies on the quality of reward signal. As a result, public RL reasoning datasets are skewed
toward competition problems which are accompanied by reference solutions or unit tests that offer a
high-quality verification signal. Recent attempts to mine reward signals at scale from the web [Yuan
et al., 2025/ |Ma et al.,|2025] have not yet achieved the consistent quality needed to translate into clear
improvements in general reasoning using RL.
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(a) Cross-domain transfer performance. (b) Model performance across reasoning domains.

Figure 1: Left: Heatmap illustrating the transferability of domain-specific training. The best
validation accuracy (%) achieved per domain during RL training is presented in each cell. Right:
Comparison of 7B-scale/32B-scale models across the reasoning categories. Our model (GURU)
consistently outperforms strong baselines in most domains, demonstrating superior generalization
and balanced reasoning capability.

We introduce GURU, an open, curated RL corpus that spans six reasoning domains—Math, Code,
Science, Logic, Simulation, and Tabular. Each domain undergoes a five-stage construction pipeline:
(1) Data sourcing: collect high-quality public datasets or synthesize new ones. (2) Deduplica-
tion: eliminate near-duplicate problems to ensure diversity. (3) Reward design: build rule-based,
execution-based, or model-based verifiers that produce reliable rewards. (4) Heuristic filtering:
remove noisy or trivial examples using domain insights and pilot studies. (5) Difficulty filtering:
remove noisy or unstable samples and retain challenging ones to enhance data quality and focus RL
training on informative examples. The resulting corpus contains 92k examples, each paired with a
reliable reward function ready for RL research.

Building upon the multi-domain RL data from GURU, we conduct a series of controlled experiments
using the Qwen2.5-7B model to systematically analyze the domain generalization
of RL training. Our analysis yields several interesting findings: (1) Math, Code, and Science exhibits
substantial performance gains from cross-domain RL training, markedly exceeding transfer seen in
other domains. (2) Training on a simple mixed-domain corpus proves highly effective, consistently
achieving performance comparable to or surpassing models trained solely on single-domain data. See
Figure [T] (left) for illustrations. (3) The training dynamic can be domain-dependent, e.g., only Math
and Code show increased response length during RL, and the joint training can influence the dynamic
on specific domains. (4) While training on harder examples can boost in-domain performance, it
carries the risk of degrading performance on cross-domain tasks.

Finally, we deliver GURU-7B and GURU-32B, two general reasoning models trained with RL on
our dataset without SFT. On our unified evaluation suite with 17 reasoning tasks across six domains,
our models establish a new state-of-the-art within the category of open models trained with publicly
available data using RL. Specifically, GURU-7B surpasses Open-Reasoner-Zero-7B 2023],
by an average of 7.3%, and GURU-32B outperforms Open-Reasoner-Zero-32B by 7.8%. This
significant performance leap on a general reasoning suite highlights a crucial gap in multi-domain
capabilities compared to prior open efforts that have often seen stronger performance concentrated
in single domains like Math and Code. Our results demonstrate the efficacy of the GURU data in
advancing the frontier of general reasoning performance within the open ecosystem. To catalyze
further research and accelerate progress towards truly general reasoning, we would later release our
series of GURU reasoning models, the GURU dataset, the evaluation suite, and the corresponding
code. This is done to encourage the community to move beyond siloed single-domain pursuits and
collaboratively explore the challenges of more general, multi-domain reasoning.



2 Data Construction

Datasets used for Reinforcement Learning from Verifiable Rewards (RLVR) [Lambert et al., [2024]]
predominantly focus on narrow domains such as Math [Luo et al., 2025b, |Hu et al., 2025, He et al.,
2025, [Zeng et al., 2025]] and Code [Liu and Zhang|, 2025| [Luo et al., [2025al]. However, applying
RL on single-domain datasets often results in overfitting to the specific structures and heuristics of
that domain. As shown in Figure[I] models trained to excel on advanced math benchmarks exhibit
sharp performance drops when evaluated other domains. Even datasets that claim to cover broad
reasoning capabilities tend to remain confined within STEM boundaries and experience similar
generalization failures. Moreover, current RLVR datasets often suffer from high redundancy, noisy
queries, and poor difficulty calibration. These issues call for principled data curation, including
deduplication, domain-specific filtering, and difficulty screening. To address these challenges, we
construct a comprehensive pipeline for building GURU, a multi-domain, reward-verifiable dataset
designed to improve general reasoning through RL.

2.1 Data Pipeline

Figure [2| presents an overview of our data curation pipeline,
which is designed to ensure both domain diversity and reward
verifiability, and consists of the following five stages:

Data Data
Sourcing Deduplication

‘—I

Reward Heuristic
Design Filtering

‘—I

Data Sourcing We curate data across six reasoning-intensive
domains, ensuring both diversity and verifiability: (1) Math:
we adopt recent math reasoning collection ORI/ [He et al.,
2025]], DAPO [[Yu et al.l 2025[], and DeepScaler [Luo et al.,
2025b], which compile numerous Math datasets, including pre-
vious competition problems like AIME or AMC. (2) Code: n
we include programming problems sourced from online cod- Biterne
ing platforms, programming competitions, and synthetic code  \_ )
generation tasks. Our collection includes real-world problems .

from LeetCode [Xia et al.,[2025]), curated and verified problems Flgure 2 Qverwew of the data cu-
from TACO-Verified [Li, 2024], synthetic tasks from Primeln- ration pipeline of GURU dataset.
tellect [Mattern et al.|[2025]], and historical problems from LiveCodeBench [Jain et al.| 2024]]. Notably,
we reuse filtered subsets of Primelntellect and LiveCodeBench processed by DeepCoder [Luo et al.,
2025a). (3) Science: we include Weblnstruct-Verified [Ma et al.,|2025], a dataset crawled from web
and processed with LLMs as the data source for science. (4) Logic: we include symbolic reasoning
tasks sourced from both existing datasets and our own synthetic tasks. For existing datasets, we
include ARC-AGI(1 and 2) [[Chollet et al., 2024]], focusing on inducing abstract rules over symbolic
grids; and BARC [Li et al.| [2024b]], which extends these tasks for inductive and transductive gener-
alization. Additionally, we synthesize three tasks for RL training: Zebra Puzzle [Lin et al.,|2025],
a classic Logic grid puzzle requiring models to chain positional and equality constraints; Ordering
Pugzzles, requiring models to recover the unique linear order of up to 50 objects from diverse relational
constraints; and Graph Search, where models must construct a predicate graph from natural language
facts and reason over it to find entity paths. (5) Simulation: we include simulation-style reasoning
tasks from Code I/0 (PyEdu) [L1 et al., [2025]], where models must predict outputs or infer inputs
based on code without actual execution. (6) Tabular: we repurpose existing table-based question
answering datasets involving single- and multi-table reasoning. Specifically, we adopt HiTab [Cheng
et al.,2021]] and MultiHierTT [Zhao et al., 2022]]. Table E] summarizes the data sources and sample
scales for each domain. Further details are provided in Appendix.
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Data Deduplication Significant content overlap exists within Math and Code domains, as many
datasets originate from shared upstream sources. For instance, many Math datasets reuse problems
from past AIME exams or curated collections like NuminaMath [Li et al.| 2024a]]. Similarly, Code
datasets are often derived from online coding platforms (e.g., LeetCode) and curated benchmarks (e.g.,
APPS, CodeContests), leading to repeated problems across datasets. In our preliminary experiments,
we find similarity-based metrics such as embedding distance, Jaccard similarity, or n-gram overlap,
are prone to false positives. E.g., n-gram checking may incorrectly flag distinct samples that share a
common prefix or template but diverge in the actual problem content. To address this, we perform
deduplication using a relatively conservative matching strategy. If one question is a strict substring of



Table 1: Dataset statistics across all 6 domains, including raw sizes and filtered subsets.

. . w/ Dedup. w/ Difficulty
Domain Dataset Raw Size & Domain Filt. Filt.
ORI [He et al.|[2025] 105k
Math DAPO [Yu et al.| 2025) 17k 118.2k S4.4k
DeepScaler [Luo et al.| 2025b] 40.3k (272%) (340%)
LeetCode [Xia et al..[2025] 2k
Code TACO-Verified [L1}2024] 12.9k 23.7k 18.1k
Primelntellect [Mattern et al.|[2025] 16.3k (-26.2%) (-23.6%)
LiveCodeBench (history) [Jain et al.|[2024] 0.9k
Science Weblnstruct-Verifed [Ma et al.|[2025] 232k 317k 3.6k
(-86.3%) (-88.6%)
Zebra Puzzle 5.7k
Ordering Puzzle 2.9k
Logic Graph Puzzle 2.8k 13.6k 6.3k
8 ARC-AGI [[Chollet et al.|[2024] 0.4k (128%) (-53.7%)
ARC-AGI-2 [Chollet et al.|[2025] 1k
BARC [Li et al.}[2024b] 3.4k
Simulation | Code /O (PyEdu) ([ et al][2025) 27k 12.1k 3.7k
(-94.7%) (69.4%)
Tabular HiTab [Cheng et al.|2021] 7.5k 10.3k 6.1k
MultiHierTT [Zhao et al.||2022] 7.8k (-36.7%) (-32.7%)
Total - 684.9k 209.6k 91.9k

another, the shorter sample is removed. This process removes 27.2% of math samples and 7.5% of
code samples. To further support data quality assessment, we maintain a metadata-level mapping of
dataset provenance and cross-source dependencies, detailed in Appendix.

Reward Design A key challenge in RL for reasoning tasks is to design reward functions that
are fully automatic, low-noise, and domain-appropriate. Across all domains in our dataset, we
adopt binary rewards—a sample receives a reward of 1 if the output is judged as correct under
domain-specific verification rules, otherwise 0. We categorize reward design into three types:

1. Rule-Based Matching is the most common strategy, used in domains such as Math, Logic,
Simulation, and Tabular reasoning. Despite surface differences, these tasks share a common
pattern: the model is prompted to output its final answer in a structured form—typically enclosed
in a \box{}, a special tag (e.g., <answer>), or a JSON code block. The verifier extracts this
region, normalizes the output, and applies a strict match. For math, we incorporate a symbolic
program [|Cui et al.,|2025]] to account for variations in expression.

2. Execution-Based Verification is used in Code domains, where correctness is defined by program
behavior. The model generates a function or script, which is executed in a sandboxed environment
against test cases. The reward is 1 only if all tests pass. For tasks that rely on stdin/stdout formats,
we include fuzzy comparison routines to accommodate formatting and numerical variations.

3. Model-Based Verification is applied for Science, where answers are often open-ended and cannot
be reliably checked with hard rules. Here, we use the 1.5B verifier model [Ma et al.l [2025]] to
evaluate whether the model’s output entails the reference answer. This allows us to scale RL to
tasks that demand more semantic flexibility.

Heuristic Filtering Reliable reinforcement learning critically depends on robust and accurate
reward signals, which can be compromised by noisy, ambiguous, or poorly constructed training
samples. To address this, we apply a systematic heuristic filtering stage across all domains to improve
reward diversity, verifiability, and stability. We begin by removing samples with excessively long
prompts, as input truncation due to token limits can strip essential information and hinder model
performance. In the Code domain, we discard any sample whose reference solution fails its own
unit tests. To ensure stable reward computation in high-concurrency, multi-process environments,
we also filter out overly large inputs (e.g., stdin > 1MB) and randomly sample at most 8 test cases
per example. For Simulation tasks, where multiple input-output variants may exist per program,
we retain only a single pair per problem to maximize coverage and minimize redundancy. In Logic
domain, we control task complexity: for ordering puzzles, we retain those with more than 20 objects;
for graph-search tasks, we filter by retaining problems with node counts larger than 10 and higher



lookahead requirements; and for zebra puzzles, we preserve only samples with larger grids (> 10
objects, 5 attributes), to ensure robust symbolic and multi-step reasoning demands. In the Science
domain, we restrict the data to university- and PhD-level physics, chemistry, and biology questions,
excluding boolean and multiple-choice formats to avoid shortcut solutions. We also remove samples
with excessively high numeric precision, which often result in brittle or unreliable reward evaluations.

Difficulty Filtering To further enhance data quality and ensure that RL focuses on challenging and
reliable samples, we introduce a difficulty-aware filtering stage. This step is designed to (i) prioritize
samples that present sufficient difficulty to the model, and (ii) aggressively filter out samples that
exhibit signs of annotation noise or unstable reward signals.

We implement this by measuring the empirical pass rates of both a weak model (Myeq,
Qwen2.5-7B-Instruct) and a strong model (Mjong, Qwen3-30B-A8B) over N = 16 runs per
sample, denoted as Pyeax and Pyyong, respectively. Based on these statistics, we filter out samples that
satisfy any of the following conditions:

1. Overly easy samples: Py, > %. These examples are solved consistently by the weak model
and thus offer little room for further reasoning improvements via RL.

2. Potentially noisy samples: Py, = 0. We aggressively remove such samples, as consistent
failure by the strong model suggests it may be ambiguous, malformed, or otherwise unreliable.

3. Anomalous samples: Pyc.x > Piong. Empirical observations indicate that these samples often
exhibit reward inconsistencies or memorization artifacts, where the weak model converges to an
incorrect label but consistent output pattern that the strong model avoids.

To further refine the dataset in specific domains, we analyze the difficulty gap, defined as Pyong — Pyeak-
This metric serves as a proxy for the learnability of a sample, where higher values indicate greater
potential for RL to improve model reasoning capabilities. In the Math domain, given its large
scale and generally high baseline performance, we adopt a more aggressive filtering strategy. We
remove samples where the difficulty gap is marginal (Pyong — Pveax < 1%) and the strong model
already demonstrates high competence (Pirong = 0.75). This ensures that RL focuses on sufficiently
challenging math problems where meaningful improvements remain achievable. In the Science
domain, where data quality and model-based verifier are inherently noisier, we apply a stricter
criterion by discarding samples with Pyong — Pweak < 0.5, prioritizing samples with clearer reasoning
gaps and minimizing the inclusion of ambiguous or low-signal examples.

3 Analysis of Cross-Domain Reasoning Transfer

To gain a deeper understanding of how reasoning capabilities generalize across different domains
with RL, we conducted a controlled experimental analysis with our GURU dataset. Specifically,
we investigated the impact of RL on single reasoning domains versus a mixed-domain corpus on
their subsequent performance across a suite of domain-specific benchmarks. These experiments
aim to inform the design of additional large-scale RL reasoning experiments while also providing a
broadened perspective on the utility of data diversity when developing reasoning models.

To this end, we constructed an experimental dataset by randomly sampling a subset of 3K training
samples from each of the six domains covered by our GURU dataset. These subsets form a mixed
training dataset totaling 18K samples called GURU-18K. We train reasoning models directly from the
Qwen2.5-7B-Base model using RL on each of these single-domain subsets and the combined mixed
dataset with a training batch size 512 and gradient update batch size 64 per step. Figure [3]illustrates
the cross-domain generalization performance trained on every single domain and mixed (rows) and
evaluated on various target domain tasks (columns). Our analysis yields several key findings.

3.1 Differential Transferability

Domain identity matters. Math, Code, and Science benchmark performance is consistently and
significantly improved from other domains (Figure 3. This initially seems counter-intuitive, given
that Math, Code, and Science are often considered highly complex reasoning tasks. We hypothesize
this phenomenon stems from the base model’s extensive exposure to math and code tokens during
pretraining [Liu et al., 2024, |Yang et al., 2024]]. The model thus contains deep knowledge in these
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Figure 3: RL Model Cross-Domain Transfer Performance. The heatmap illustrates the normalized
performance gains of models trained via RL on different domain configurations (rows: single domains
or mixed corpus) when evaluated on the test sets of various domains (columns). Warmer colors
indicate higher performance gains, computed by applying min-max normalization to the validation
accuracies within each column. The best validation accuracy (%) achieved per domain during RL
training is annotated in each cell. This highlights differential transferability: Math, Code, and Science
benefit significantly from cross-domain transfer, while Logic, Simulation, and Tabular tasks see
limited gains, with improvements primarily driven by within-domain training.

domains which is effectively elicited and refined through RL, even when the training data originates
from different domains. Conversely, other domains exhibit limited or no substantial performance gains
when trained on cross-domain data. This asymmetry highlights the critical importance of curating
diverse cross-domain training data, particularly for domains less represented during pretraining, to
achieve broad reasoning competence.

Task difficulty matters. As shown in Figure[3] easier tasks within Math (e.g., MATH500
2021]], AMC) and Code (e.g., HumanEval [Chen et al.| 2021a], MBPP [Austin et al., 2021])
readily exhibit positive transfer from other domains. In contrast, performance on more challenging
benchmarks in those same domains, namely AIME24 and LiveCodeBench 2024], show
considerably less improvement from cross-domain training. For the most challenging tasks, those with
the lowest baseline absolute scores (e.g., ARC-AGI [Chollet et al, 2024], Codel/O 2023])),
we observe marginal to negligible gains from training on non-native domain data. This variance in
reasoning transferability suggests that cross-domain RL alone is not sufficient to effectively develop
models with general, complex reasoning capability. Thus, advanced competence in multiple domains
is dependent on training with domain-specific examples or with substantially more diverse data,
perhaps drawing from multiple difficult domains.

Mixed-domain training matches or exceeds single-domain performance. RL training on a
uniformly mixed dataset of reasoning tasks proves remarkably effective as shown in the last row of
FigureEl Across individual downstream benchmarks, models trained on this combined data achieve
performance levels consistently comparable to, and sometimes surpassing, those attained by models
trained exclusively on data from the target domain. This demonstrates that even a simple uniformly
mixed dataset across multiple domains can significantly enhance general reasoning capabilities with
minimal apparent interference between the six domains involved. However, future research should
investigate whether interference remains negligible as the number and diversity of included domains
is increased. Scaling in this manner might necessitate more refined domain balancing strategies.

3.2 Reward and Response-Length Dynamics

Figure [] shows the reward and average response length across six reasoning domains during RL
fine-tuning. The upper row indicates RL training with 3k single-domain examples, while the lower
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Figure 4: The reward and response length of each domain during RL training with: (top row) single
domain data (3k examples each) from GURU-18k; and (bottom row): using the full GURU-18k
mixture dataset. The x-axis is the number of gradient update steps.

Table 2: Performance (best validation accuracy within 200 RL steps) comparison trained on difficulty-
filtered (harder) v.s. unfiltered (easier) math data. Training on harder data improves in-domain
performance but leads to degradation on easier cross-domain tasks (e.g., HumanEval and HiTab).

Math (in-domain) Code & Tabular (cross-domain)
MATH500 AMC AIME24 | HumanEval LiveCodeBench HiTab Multihiertt
Unfiltered math 75.8 52.1 15.8 82.3 11.1 56.5 32.0
Difficulty-filtered math 78.6 58.4 21.7 73.1 10.7 53.5 355
A (+/-) +2.8 +6.3 +5.9 9.2 -0.4 -3.0 +3.5

row indicates joint training with 18k examples. The x-axes are aligned so that each horizontal position
represents an equal number of target domain samples.

In single-domain training, contrary to the common belief that RL drives models to produce longer
responses, we observe strong domain effects: on Code, Logic, and Tabular tasks, the policy actually
contracts its outputs, while Science and Math become more verbose, and simulation remains largely
unchanged. When we switch from single-domain training to joint training on the full GURU -18k
mixture, rewards climb steeply within the first few hundred gradient steps across all domains. This
demonstrates positive cross-domain transfer. Joint training may also reshape length dynamics: for
Logic, the single-domain run monotonically shortens answers, but the multi-domain run first lengthens
and then shortens them, suggesting that shared representations learned from other domains modulate
brevity preferences. In contrast, domains such as Tabular preserve their “short-answer” tendency
even under joint training, indicating that some length priors remain robust to cross-domain influence.

3.3 Effects of Training Data Difficulty

We further conducted an ablation to investigate the impact of training data difficulty on both in-domain
performance and cross-domain transferability. Specifically, we trained the base Qwen2.5-7B-Base
model using RL for 200 steps on either the complete, unfiltered Math domain data (representing a
mix of difficulties) or a difficulty-filtered subset containing primarily harder Math problems from
GURU. Other training configurations followed Section[3.I] We then evaluated performance on the
Math tasks (in-domain) and selected Code and Tabular analysis tasks (cross-domain).

As shown in Table 2] training on difficulty-filtered math data consistently improves in-domain
performance compared to unfiltered data, particularly on harder Math tasks like AMC (+6.3) and
AIME24 (+5.9). However, the effects on cross-domain tasks are difficulty-dependent. Easier
tasks such as HumanEval (-9.2) and HiTab (-3.0) suffer notable degradation. This decline was
corroborated by observed accuracy collapse (large drops after approximately 90 steps and 150 steps
respectively) during training on the filtered data. Conversely, performance on harder cross-domain
tasks (LiveCodeBench, Multihiertt) shows minimal negative impact or positive change.

In summary, increasing training data difficulty within a domain can consistently enhance in-domain
performance. It is reasonable to perform aggressive difficulty filtering when the sole objective
is maximizing performance within that specific domain on challenging tasks, e.g., AIME and



Table 3: Full 17 benchmark performance on 7B and 32B Models. GURU outperforms Baseline
Models with notable improvements. °: ORZ represents Open-Reasoner-Zero [Hu et al., [2025]).

Models — GURU RGe (:;ﬁ;ilr %I:v‘gll:gg ORZ | GURU ORZ %‘;‘E::gls“
Benchmarks | 7B 7B 7B - 7B° 32B  32B° 3B .
AIME24 17.50 17.08 15.60 1625 | 3229 47.50 27.20
Math MATH500 77.25 70.40 87.00 80.80 | 84.00 89.80 89.60
LiveCodeBench | 16.49 8.24 721 573 | 2832 2293 19.35
Code HumanEval 78.45 64.02 58.61 6341 | 91.16 84.14 82.24
MBPP 69.35 40.60 4925 50.05 | 78.45 75.80 76.75
. GPQA-diamond | 40.90 36.87 34.85 2020 | 52.02 53.53 43.94
Science | gyperGPQA 31.80 30.64 27.29 29.75 | 43.60 46.05 37.73
. ARC-AGI 7.00 1.34 0.90 0.00 | 18.50 13.00 4.50
Logic Zebra Puzzle 29.43 0.00 1.00 1.00 | 3150 1.00 0.50
Codel/O 13.00 8.50 7.00 1.00 | 1400 250 12.00
Simulation | CruxEval-I 61.72 63.63 56.25 71.13 | 79.38  71.13 72.63
CruxEval-O 71.28 56.50 58.31 64.88 | 88.38 82.38 67.75
FinQA 34.70 34.33 35.10 1534 | 4532 4520 45.41
Tabular | HiTab 52.00 42.50 36.00 37.50 | 60.00 44.00 47.00
MultiHiertt 4472 33.04 3542 29.76 | 56.55 52.08 52.68
IFEval 35.81 39.56 36.69 32.72 | 58.04 38.26 55.27
Others | 1 ;veBench 18.57 29.12 15.20 12.64 | 34.03 28.78 28.33
Average Score 41.17 31.30 33.04 33.90 | 52.68 46.95 44.88

LiveCodeBench. While for cross-domain transfer, it introduces a risk of negative transfer to easier
tasks in other domains. These results suggest that for beneficial cross-domain transfer, a more
balanced distribution of training data difficulties, or the explicit inclusion of cross-domain data, may
be more effective than solely increasing the difficulty of the source domain data.

4 Main Experiment

Having motivated the need for multi-domain data in cultivating general reasoning skills (Section [3),
we pivot to demonstrating its practical impact through large-scale RL training. This section reports on
training 7B and 32B models on the full GURU dataset. We empirically show that mixed multi-domain
training is indeed effective at scale. As focus on this fundamental demonstration, we leave fine-
grained studies on data scaling effects and online data mixing for future work. Section outlines
our experimental approach, followed by a comprehensive presentation of results in Section .2

4.1 Experimental Setup

Training Configurations We use verl [Sheng et al.,|2024]] as the RL training framework and
GRPO [Shao et al.,[2024] as the RL training algorithm. For general training hyper-parameters, we
utilize the AdamW optimizer [Loshchilov and Hutter, [2017]], incorporating a linear warm-up of 10
RL steps. The prompt batch size is 512 for one RL step, and we sample 16 responses for each prompt
with a temperature of 1.0. The mini-batch size is set to 64, i.e., 8 gradient updates for each RL step.
The maximum number of tokens is 4k for input prompt and 8k for generation. All experiments
are conducted on 24 GPU nodes, each equipped with 8 Hopper GPUs, for both RL training and
evaluation. The 7B model was trained on 4 nodes for 2 epochs from Qwen2.5-7B-Base and the 32B
model was trained on 16 nodes for 2 epochs from Qwen2.5-32B-Base, each lasting for 2.5 days.

Baselines For baseline comparisons, we select the most performant RL-trained reason-
ing models with open data in math and general reasoning at 7B and 32B scale: (1)
Open-Reasoner-Zero (ORZ) [Hu et al. [2025], (2) SimpleRL-Zoo [Zeng et al., |2025]], and (3)
General Reasoner [Ma et al., [2025]] We exclude distilled models from baselines for a fair com-



parison with our models RL-trained from base models without SFT. Also, it can directly verify our
GURU dataset’s effectiveness without dependency on the SFT data.

GURU Evaluation Suite Our evaluation covers 17 benchmarks across six key domains to assess
model capabilities comprehensively. The principle behind our evaluation is to establish rigor-
ous standards using challenging tasks that measure both the breadth and depth of reasoning. (1)
Math: We evaluate on two mathematical competition benchmarks: AIME24 [MAA| [2024] and
MATHS500 [Hendrycks et al.,|2021]]. (2) Code Generation: We measure standard program synthesis
using HumanEval [[Chen et al.| 2021a] and MBPP [Austin et al.| 2021]], while LiveCodeBench [Jain
et al.,[2024] provides dynamic evaluation of competitive programming skills. (3) Science: We use
GPQA and the recently released SuperGPQA, which spans over 100 scientific disciplines and presents
significantly increased difficulty. (4) Logical Reasoning: The suite includes ARC-AGI1 [Chollet
et al.| 2024] for abstract reasoning tasks, and our self-synthesized benchmark based on the classic
Zebra Puzzle format [Lin et al., 2025] to evaluate logical deduction capabilities. (5) Simulation: We
sample 200 examples from Codel/O [Li et al.,[2025]] to assess interactive simulation and reasoning,
and incorporate CRUXEval [Gu et al.| [2024]] for evaluating code-based reasoning capabilities. (6)
Tabular Tasks: We’ve also verified model’s tabular reasoning ability on Hitab [Cheng et al., [2021]]
and MultiHiertt [Zhao et al.l 2022]’s test split, as well as a financial tabular reasoning benchmark,
FinQA [Chen et al.l 2021b]. (7) Other Tasks: We also include IFEval [Zhou et al., 2023]] and
LiveBench [White et al., 2024] to test performance on novel, unseen task types, further probing
generalization and robustness. For scoring, ARC-AGI uses Pass@8, while all other benchmarks
report Avg@k with ke {1,8,32}. We only sample 32 times for AIME; any benchmarks with more
than 500 examples will be sampled only once. All experiments adopt R1’s inference settings with
temperature T=0.6 and Top-p=0.95.

4.2 Results

As shown in Table[3] GURU-7B and GURU-32B consistently demonstrate more balanced and advanced
performance across all six skill set evaluations. For overall performance, GURU-7B achieves an
average score of 41.17 %, outperforming the second-best RL model, Open-Reasoner-Zero-7B, by
7.3%. Similarly, GURU-32B attains 52.68 %, surpassing Open-Reasoner-Zero-32B by over 7.8%.
Notably, even without explicit training on certain tasks, applying RL with GURU also enhances the
model’s generalization ability—showing strong results on novel task types such as IFEval. This
clearly demonstrates the exceptional quality and effectiveness of the GURU dataset in promoting a
wide scope of reasoning ability, highlighting its value as a strong foundation for building general-
purpose reasoning models.

5 Related Work

Reinforcement Learning from Verifiable Rewards (RLVR) has emerged as a powerful paradigm
for enhancing the reasoning capabilities of Large Language Models [Guo et al., 2025, |OpenAl,
2024]). Following initial successes, a significant body of open work has explored RLVR, primarily
concentrating on specializing models for highly challenging single domains. Efforts such as Open-
Reasoner-Zero [Hu et al., 2025]], Skywork-OR1 [He et al.} 2025], DeepScaler [Luo et al.,[2025b], and
SimpleRL [Zeng et al.,|2025]] have notably leveraged extensive mathematical data to achieve state-of-
the-art performance on complex math benchmarks. Similarly, DeepCoder [Luo et al., [2025a] focused
on RL for code generation tasks. While powerful within their specific areas, this domain-specific focus
inherently limits the generalizability of the resulting models across the broader landscape of reasoning
tasks. Co-current works like General-Reasoner [Ma et al.,[2025] and Nemotron-CrossThinker [Akter|
et al.| 2025]] have begun to explore broader domains for RL training. However, their scope remains
constrained to STEM problems, leaving many crucial scenarios, including comprehensive coding,
logic, and tabular analysis unexplored by large-scale open RL efforts. Addressing this critical
gap in open resources and models for general reasoning via RLVR, we introduce GURU, a novel
multi-domain dataset spanning six reasoning domains: Math, Code, Science, Logic, Simulation,
and Tabular. Utilizing GURU, we train GURU-7B/32B, general reasoning models optimized via RL
exclusively on open data using our GURU dataset and see state-of-the-art results on general reasoning
among open models trained with publicly available data using RL.



6 Conclusion

In this work, we provide a curated dataset GURU for RL on general domains, covering Math, Code,
Science, Logic, Simulation, and Tabular analysis. We perform a controlled experiment on how RL
reasoning transfers across domains based on GURU and find out that domains and task difficulty
affect transferability and mixed-domain training matches or exceeds single-domain performance.
Finally, we developed GURU-7B and GURU-32B, general reasoning models optimized via RL on our
multi-domain GURU dataset using only open data, demonstrating state-of-the-art performance among
open models on an extensive reasoning evaluation suite over 17 tasks across six domains. These
models show a notable leap in general reasoning performance, highlighting the gap left by previous
open efforts concentrated on single domains like math or code. We would make the GURU dataset,
models, evaluation suite, and code available, aiming to support the community’s efforts towards more
general, multi-domain reasoning research.
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Societal Impacts

The release of the GURU, its unified evaluation suite, and the accompanying reinforcement-learning
code can substantially lower the barrier to entry for research on general reasoning. By providing
a high-quality, multi-domain resource under a permissive open-source license, the work enables
universities, non-profits, and smaller companies to reproduce and build upon state-of-the-art methods
without relying on proprietary data. A standardized benchmark spanning mathematics, code, logic,
tables, simulation, and science also helps the community expose domain-specific blind spots in
current models and encourages the development of more balanced, robust, and transparent reasoning
systems. In education, the automatically verifiable problems included in GURU can serve as rich
material for coursework and online learning platforms.

At the same time, powerful cross-domain reasoning models pose several risks. High-accuracy
generation of mathematical proofs or executable code could facilitate academic dishonesty or the
automated creation of malicious scripts; the English-centric, STEM-heavy data may amplify linguistic
and disciplinary biases; and large-scale RL training increases computational and energy costs. To
mitigate these concerns we (i) provide verifier source code and safety-filter examples to foster
downstream auditing and human-in-the-loop deployment, and (ii) restrict the corpus to a curated 92 k
high-information samples so as to avoid unnecessary compute.

Assets licenses

Our multi-domain corpus draws on a variety of public and synthetic datasets with differing license
terms. LiveCodeBench and HiTab are released under the MIT and Apache 2.0 licenses, respectively,
while TACO and Weblnstruct-verified use Apache 2.0 and CC BY 4.0. The ARC-AGI (Challenge &
Easy) benchmark is CC BY-SA, and the Graph Logical Dataset is CC BY 4.0. GURU incorporate a
mix of MIT, CC BY 4.0, and Apache 2.0-licensed content.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract clearly claims the scope and contributions of this paper.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in the Supplementary Material.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: For the assumptions in Section [3] results are shown and prove its correctness
in Section[3land Section 4.2

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: In Section[4.T} all details of experiments are clearly stated.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The data is open-sourced in Huggingface. The code will be submitted with the
Supplementary Material and later released online on github.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: In Section[d.T} all training and test details are disclosed.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The computing resource to perform evaluation on 32B models is pretty huge
and we can’t afford to evaluate every dataset multiple times. However, for datasets with
small sizes, like AIME24, we perform avg@32 score with 32 runs per sample.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The resources used to perform all experiments are stated in Section[4.2]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: This research is conducted following the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: In Section[6} we discussed the societal impacts of GURU.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: With rigorous data curation pipeline described in Section[2.1] we guarantee
the safeguards of our open-sourced data.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All licenses for existing assets are listed in Section [6}
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The detailed structure and documents of the GURU are listed in the separate
Supplementary Material.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This research does not include any crowdsourcing experiment and research
with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work uses only publicly available, anonymized datasets and does not
involve any new data collection from human participants or interaction with study subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: Our core contribution is an RL-based recipe for reasoning tasks, applied
directly to base LLMs to enable multi-domain reasoning. The behavior of these LLMs under
our designed reward schemes (e.g., chain-of-thought elicitation, credit assignment) is central
to our study. Therefore, we explicitly detail all LLM usage in Section 2] Section 3] and
Section ]

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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