
Enabling multi-agent collaboration
in knowledge graph environments

Iñaki Arango∗

Department of Biomedical Informatics
Harvard Medical School

Boston, MA 02115
inakiarango@college.harvard.edu

Ayush Noori∗
Department of Biomedical Informatics

Harvard Medical School
Boston, MA 02115

anoori@college.harvard.edu

Lucas Vittor∗
Department of Biomedical Informatics

Harvard Medical School
Boston, MA 02115

lvvittor@gmail.com

Joaquin Polonuer∗
Department of Biomedical Informatics

Harvard Medical School
Boston, MA 02115

jtpolonuer@gmail.com

Marinka Zitnik†

Department of Biomedical Informatics
Harvard Medical School

Boston, MA 02115
marinka@hms.harvard.edu

Abstract

Knowledge graphs (KGs) are critical for grounding large language models and
providing them with persistent memory. However, the development of agents
capable of collaboratively building and maintaining these KGs is hindered by a
lack of suitable environments. Current tools often obscure the construction process,
lack standardized editing APIs, and offer poor support for concurrent, multi-agent
collaboration. To address this, we introduce GRAPHWORLD, an environment
for agents to build and edit graphs. GRAPHWORLD provides agents with tools
to create, update, or delete nodes, edges, or properties of KGs, with support for
Python, TypeScript, and Rust. GRAPHWORLD relies on DIAMOND, a compact,
property-preserving storage format that permits scaling to multi-million-edge KGs.
All changes are version-controlled by integrating graph-aware diffing and merging
directly into Git, enabling multi-agent and human-agent collaboration through
standard branching workflows.

1 Introduction

Knowledge graphs (KGs) are relational databases that use a graph-based data model to encode
knowledge-informed interactions between different objects [1, 2]. Formally, a KG is defined by
a set of nodes as well as a set of edges that describe relationships between the nodes. In modern
heterogeneous KGs, nodes and edges have different types, and may also contain extra properties
or information [3]. KGs are rapidly becoming a core component of modern large language model

∗Equal contribution
†Correspondence: marinka@hms.harvard.edu

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Scaling Environments
for Agents (SEA).

(LLM)-based systems, enabling retrieval [4], grounded reasoning, and persistent memory. Integrating
KGs with LLMs can equip LLMs with rich, structured factual knowledge and traceable information
provenance, addressing common challenges faced by LLMs, including hallucination, indecision,
poor interpretability, and lack of domain-specific knowledge [5]. Further, KGs offer a mechanism
for agents to build and maintain a persistent memory of their interactions and learned knowledge
[6]. LLMs and agents excel at generating datasets from structured or unstructured sources, including
textual datasets (e.g., LangChain’s Tuna [7] and Alibaba’s DataJuicer [8, 9]) and graph datasets (e.g.,
Graphiti’s Zep [10]); however, to date, most KGs are created and maintained through manual or
semi-automated, non-agentic data pipelines. Tools to build and maintain KG environments both
for and with agents remain underdeveloped. Current methods for KG editing often do not expose
intermediate edits, lack a standard, multi-language edit API, and provide weak versioning and merge
semantics for concurrent work. These obstacles make agent-driven KG editing challenging.

To address these challenges, we introduce GRAPHWORLD, an environment for agents to build and
edit knowledge graphs. GRAPHWORLD provides a set of atomic edit tools that allow agents to create,
update, or delete nodes, edges, and knowledge properties. These tools are accessible from Python,
TypeScript, and Rust, ensuring broad interoperability across development ecosystems. To support
distributed and concurrent multi-agent or human–agent collaboration, GRAPHWORLD integrates
graph-aware diffs and three-way merges directly with Git. For scaling to multi-million-edge graphs,
we further introduce DIAMOND, a compact, property-preserving storage format optimized for labeled
property graphs. In experiments, DIAMOND achieves up to 34.1× compression over widely used LPG
formats, reducing storage demands while preserving all graph structure and metadata. Benchmarking
on synthetic and real-world KGs demonstrates that DIAMOND consistently outperforms JSON, JSON
Lines, and PG-JSON, especially as graphs grow in property density and size. The Git integration
in GRAPHWORLD produces semantic diffs that reveal node- and edge-level changes rather than
opaque binary differences, enabling reproducible and auditable histories of KGs. Applications of
GRAPHWORLD include automated validation of human edits, natural language editing tools for
domain experts, and ontology alignment workflows, all of which highlight GRAPHWORLD as a
human-AI environment for KG development. In biomedical settings, for example, GRAPHWORLD
compresses PrimeKG [11] to less than 9% of its original size while supporting transparent version
control, facilitating large-scale analysis and sharing. More broadly, GRAPHWORLD supports multi-
agent pipelines that continuously propose, review, and merge edits in knowledge graphs.

2 Related work

2.1 Tools or environments for agent-based graph interaction

Prior systems address specific features of the KG construction and agent integration workflow,
converting text into graph structures using LLMs [12], managing agent memory in real time [10,
13], enabling retrieval-augmented generation (RAG) over graphs [14], or supporting versioning
and provenance [15–17]. By contrast, GRAPHWORLD treats KG construction itself – observable,
version-controlled, multi-language editing of property-rich labeled property graphs (LPGs) – as the
first-class object.

Single-agent KG construction. Several methods exist to convert unstructured text into graph
representations. LangChain’s LLMGraphTransformer, KGGen [12], and related approaches build
graphs via prompting heuristics or extraction pipelines. Methods also exist to allow single agents to
build a KG; for example, Graphiti [10] provides an interface for an agent to build and query graphs.
While effective for initially populating a KG, these approaches do not expose per-edit observability,
structured diffs, or merge semantics, and are often bound to a single runtime or framework. By
contrast, GRAPHWORLD provides a standard set of atomic graph editing operations across languages
and under version control, allowing multiple agents, rather than a single LLM, to collaboratively
edit a graph. Moreover, single-agent KG construction systems can adopt the observable edit tools,
branching or merging semantics, and graph storage of GRAPHWORLD as a backend.

Graph retrieval for LLM reasoning. Graph-based RAG systems such as Neo4j [18], GraphRAG
[19], GNN-RAG [20], KG2RAG [21], KET-RAG [22], KG-RAG [23], and LlamaIndex KG indices
are consumers of graphs, improving grounding and multi-hop reasoning. GRAPHWORLD sits
upstream, allowing agents to build and maintain the graphs that retrieval systems depend on.

2

2.2 Graph data models

Various data models exist to represent graphs. GRAPHWORLD includes a version control system that
operates on top of a storage format, DIAMOND, and represents graphs using a specific data model.
Therefore, to explain the design choices of GRAPHWORLD, it is necessary to discuss the significant
body of existing work on graph data models, storage structures, and versioning approaches. We
highlight components that were adopted in GRAPHWORLD as well as features of GRAPHWORLD
that differ from previous work.

Machine-readable representations of KGs often use the Resource Description Framework (RDF) data
model [24], introduced at the World Wide Web Consortium (W3C) in 1999. Under RDF, a graph is
represented by a collection of triples. These triples follow the structure of subject-predicate-object
(e.g., (Horacio,likes,cars)). A resource is any subject, predicate, or object, and is identified
through a Unique Resource Identifier, or URI. Subjects in a triple can be a URI or a blank node, while
predicates must be a URI, and objects can be a URI, a blank node, or a literal (e.g., an integer, a float,
a string). A graphR is then represented as a set of RDF triples (also called semantic triples):

R ⊆ (URI ∪ blank)× URI× (URI ∪ blank ∪ literal)

where URI is the set of all URIs, and blank and literal are the sets of blank nodes and literals,
respectively.

Often KGs require the attachment of non-structural information to a node or edge in the graph. RDF
does not natively support this, and instead relies on reification. Reification achieves this through the
use of metadata predicate types that enable writing triples about other triples, but comes at the cost of
larger graph sizes, and has been a source of criticism for the format [25].

Labeled Property Graphs (LPGs) have recently emerged as a more flexible and efficient alternative to
RDF [3]. They combine edge-labeled graphs, which consist of graphs where nodes are connected
by directed edges that contain a label, or type, with property graphs, which allow arbitrary property
information to be added to nodes and edges. LPGs have been adopted as the official storage format
of the leading graph databases, including Neo4j and ArangoDB, which has driven to further adoption
in production settings [26]. It is worth nothing that not all databases adopted the same exact defition
of LPGs, and each provider has slightly different variants. For example, Neo4j allows any number of
labels on nodes but only one label per edge, while ArangoDB supports only one label per node and
one label per edge [26].

GRAPHWORLD adopts an multi-label definition of LPGs with flat properties that allow agents trained
on it to interact with modern KG tooling and databases.

2.3 Storage formats and compression

While these databases offer avenues to store graphs, they do not do so in a stateless manner. To load,
process, and serve the data, they database server must be on. A file format is needed to serialize
KGs and enable the exchange of information in a standardized format which can be loaded by the
database system or program of the user’s choice. This is akin to relational database management
systems (RDBMs) and the “comma-separated values” (CSV) file format that stores columnar data in
a text-based encoding. To address this need, Chiba et al. [27] have proposed the “Property Graph
Exchange Format” (PG) as a standard for representing LPGs. PG is a text-based format that encodes
the graph structure as well as the node and edge properties in a human-readable format. The format
specification also contains the definition of PG-JSON, a JSON-based serialization of PG that is easy
to parse, and PG-JSONL, a newline-delimited JSON format. The format is designed to be easy to
read and write, making it suitable for both humans and machines.

While versatile, the format can make graph files grow quickly in size, making it impractical to store
on git-backed server, which oftentimes have file size restrictions. Thus, GRAPHWORLD supports the
PG-JSON family of formats and also introduces DIAMOND, an LPG format that heavily compresses
graphs into a fraction of the size of their PG-JSON equivalents.

There is a significant body of literature on algorithms for lossless RDF graph compression, which has
been reviewed by Besta & Hoefler [28]. For example, some methods apply text compression methods
to text-based graph representations [29, 30]. The seminal WebGraph framework uses lexicographic
locality and reference encoding to greatly reduce storage per edge [31]. Brisaboa et al. [32] proposed

3

k2 trees, a succinct data structure for graph adjacency that models the graph as a tree, then recursively
partitions and stores the adjacency matrix to capitalize on large empty regions in sparse graphs [33,
34]. However, these methods only target topology, or the adjacency structure or derived indices. Edge
or node attributes are usually not considered or stored in separate, uncompressed arrays. We could
identify no compression tools compatible with storing node and edge properties, which is necessary
for our use case. That is, no binary encoding format or other efficient representation exists for LPGs,
motivating the need for DIAMOND. DIAMOND is described in more detail in Appendix A.2.

2.4 Version control systems

Unlike text or code, where line-based version control (à la Git) works well, KGs contain complex
structured data that requires specialized versioning strategies. In particular, KG versioning approaches
encounter the following challenges:

• Conflict management and resolution. While many existing solutions can record linear KG edit
histories, they lack support for branching and merging graph versions, and thus cannot support
parallel development or KG contextualization [17]. Reconciling KG merge conflicts entails more
than a simple union of all changes: for example, one branch may delete an edge that another branch
modifies.

• Static and queryable storage sizes. Naïvely storing multiple versions of large KGs can impose
significant storage demands. This is especially true of modern KGs that consist of millions, or
billions, of nodes and edges. For example, GenomicKG contains 347 million nodes, 1.36 billion
edges, and 3.9 billion node and edge properties [35]. GenomicKB was constructed from over 30
genomic datasets and annotations which are regularly updated, necessitating versioning of this
large KG. Instead of representing each version as a standalone file, which does not scale with the
number of edits, binary encoding and compression techniques can be used to both encode graph
structure and eliminate redundancy by only storing version changes. However, graph look-up,
membership, or other queries often cannot be executed directly over a compressed KG, leading to
undesirable query performance degradation.

• Lack of standards and interoperability. Currently, there does not exist a unified “Git for KGs”
standard; existing systems often sacrifice one aspect (e.g., merge support or query performance) to
gain another (e.g., storage efficiency or simplicity).

Several approaches have been proposed to address these challenges. Existing methods can be
categorized as follows [15–17]:

• Independent copies. Each graph version is managed and stored as a separate dataset. This method
is straightforward to implement but highly redundant and inefficient, both in terms of query time
and storage.

• Change-based versioning. Only differences, or deltas, between versions are stored. Broadly,
change-based methods reduce storage requirements but incur query performance overhead when
reconstructing past versions. Many existing change-based approaches like Frommhold et al. [36],
TailR [37], and RDF-adapted Darcs [38] lack support for branching [17]. Those that do support
branching, like R43ples [39], lack streamlined merge support. Thus, current methods are not suited
for parallel development.

• Timestamp-based versioning. Each edge is annotated with temporal validity information in a
single, unified KG. Query performance of timestamp-based methods like R&Wbase [40], ConVer-
G [41], and Aion [42] suffers as queries need to filter by version and time, and storage requirements
also increase due to the need to preserve temporal metadata. For example, ConVer-G, which uses
PostgreSQL as the storage, introduces in-graph provenance information in the graph to facilitate
querying, increasing the storage demands.

Finally, inspired by Git, some systems have implemented distributed version control mechanisms for
KGs. Most notably, QuitStore [36] and Git4Voc [43] adapt Git-like operations such as branching,
merging, and commit tracking to RDF data. However, QuitStore [17] relies on NQuads [44, 45], an
inefficient text-based storage format, to store the change information in a manner that Git tools can
easily interpret and display. In fact, in the Discussion section of QuitStore, Arndt et al. [17] write,
“The evaluation of more advanced compression systems for the stored RDF dataset or the employment
of a binary RDF serialization format, such as HDT [46] is still subject to future work.” Thus, to

4

date, no single system for versioning large-scale KGs has successfully combined efficient branching
and merging with scalable storage and high-performance queries. We sought to achieve this goal in
GRAPHWORLD by developing a novel versioning system for graphs, which we describe in Section
3.2.2. This version control system underlies the ability of GRAPHWORLD to support multi-agent
concurrent KG editing.

3 The GRAPHWORLD environment

3.1 Theoretical framework

We model GRAPHWORLD as an environment whose state is a fully observable LPG together with its
version history. At each time step, the agent proposes an atomic edit to the graph; the environment
applies this edit deterministically, producing a new LPG and a new commit in the version history.
Formally, GRAPHWORLD is defined by the tupleM = (S,A, δ,R,O) where S is the space of states
(G,H) with G a labeled property graph and H its commit history, A is the set of atomic LPG edits, δ
is the deterministic transition function, R is an externally specified reward function, and O = S since
the agent can access the entire LPG structure together with the version history.

State and observation. At time t, the environment is in state st = (Gt, Ht), where Gt =
(V,E,L, lV , lE ,K,W, pV , pE)t is an LPG as defined in Appendix A.1, and Ht is the sequence
of commits leading to Gt. The observation ot is identical to the state st for every t.

Actions. Each action at ∈ A corresponds to a single mutation of the 9-tuple structure, for example
adding nodes add_node(v, lV (v), pV (v)), edges add_edge(e, lE(e), pE(e)), updating properties
update_property(x, k, w) and deleting nodes delete_node(v) and edge delete_edge(e). All
actions are recorded in the commit history Ht, preserving an auditable trail of modifications.

Transition dynamics. The transition function is deterministic st+1 = δ(st, at), where δ is the
graph edit operator. A valid edit updates the LPG tuple Gt and appends a commit to Ht. Invalid edits
(e.g., deleting a non-existent node) produce a no-op or transition to an error state, depending on the
configuration of the task.

Rewards. GRAPHWORLD is task-agnostic. The reward function R(st, at, st+1) is external to the
environment and can be specified according to downstream objectives. For example, rewards may
encourage edits that improve graph completeness, penalize violations of ontology constraints, or favor
the addition of provenance information. This separation allows evaluation along two complementary
axes: construction quality metrics (task-dependent) and process metrics (environment-dependent,
e.g., edit efficiency or branching performance).

Episodes. An episode begins with an initial state (G0, H0) and proceeds until a stopping condition
is met, such as reaching a target benchmark graph, exhausting an edit budget, or receiving an explicit
termination signal. Because the environment incorporates Git-style versioning, episodes may include
branching and merging trajectories, enabling the study of collaborative and multi-agent editing
strategies.

3.2 System overview

GRAPHWORLD is designed to provide agents with a practical and extensible environment for building
and maintaining knowledge graphs. Its design follows three guiding principles: standarization,
production readiness, and observability.

Standardization. GRAPHWORLD offers a uniform interface for graph editing, allowing agents to
interact with knowledge graphs through a consistent set of tools.

Production readiness. By relying on proven libraries and widely used infrastructure, any agent
developed for GRAPHWORLD can be moved into production with minimal overhead.

5

Observability. The framework records each agent action as an auditable step, enabling fine-grained
evaluation of graph construction processes (e.g., scoring agents based on the efficiency of their editing
strategies).

At the system level, GRAPHWORLD consists of modular components that can be used independently
or in combination. The two core components are a language-agnostic software development kit
(SDK) for graph compression and manipulation, and a command-line interface (CLI) for versioning
and collaboration.

3.2.1 SDK for KG compression with DIAMOND

A core component of GRAPHWORLD is DIAMOND, a compact, property-preserving graph storage
format. DIAMOND provides high-performance graph compression and decompression routines,
implemented in Rust for efficiency, with bindings for Python and Node.js via PyO3 and napi-rs.
This multi-language design enables developers to embed the same compression methods into agents
written in different ecosystems, while maintaining consistency across them. Example programs
demonstrating usage in each language are provided in Appendix A.5.

The SDK supports two primary capabilities. First, it enables compression and decompression of
property graphs from common formats such as JSON Lines and serialized into the .diamond binary
encoding described in Appendix A.2. Second, it provides in-memory graph representations via the
PropertyGraph class, which allows developers to manipulate graphs directly and convert them
across formats without loss of information.

3.2.2 CLI for KG versioning

While the SDK addresses scalability, effective multi-agent editing requires version control. To this
end, GRAPHWORLD extends Git to support property graphs by defining custom drivers for filtering,
diffing, and merging. This integration leverages Git’s mature branching, archiving, and collaboration
workflows while adapting them to the semantics of graph data.

The interaction between GRAPHWORLD and Git is coordinated through the .gitattributes
file, which specifies how different file types should be handled during serialization, comparison,
and merging. When a repository is configured for use with GRAPHWORLD, graph files matching
user-defined patterns (e.g., .jsonl or .diamond) are automatically associated with these drivers.
This allows contributors to work with a familiar Git interface, while GRAPHWORLD manages the
underlying representation of graphs.

Filter drivers handle the translation between formats stored in the repository and those exposed in the
working tree. For example, a graph may be archived in the compressed DIAMOND format to save
space and ensure consistency, while being presented in a human-readable format when checked out.
This dual representation enables contributors to inspect or edit graphs locally without sacrificing the
efficiency of binary storage.

Diff drivers define how Git compares graph files across commits. Since graphs are often stored
in compressed binary form, traditional line-based diffs are meaningless. The custom diff driver
decompresses and interprets the files, producing a semantic comparison in terms of nodes, edges, and
properties. This allows reviewers to see meaningful changes, such as a node label update or an edge
addition, rather than an opaque binary. Figure 1 provides an example diff between two graphs.

Merge drivers extend this functionality to conflict resolution. Git’s default merge algorithm assumes
text-based files, where order matters. For graphs, order is irrelevant, and conflicts should only arise
when the same structural element is edited differently across branches. The custom merge driver
reconciles graphs by structure, reducing spurious conflicts and enabling order-independent merging
(Figure 2). This makes it possible for multiple agents or human collaborators to work concurrently
without frequent manual intervention.

These drivers integrate with Git’s existing workflows. Contributors can branch, commit, and merge as
usual, while GRAPHWORLD ensures that the version control semantics respect the underlying graph
structure.

6

~ Node (node_101)
labels: ["person"]

~ country: ["United States", "Japan"]
~ name: ["Alice", "Carol", "Juan"]
+ nicknames: ["Jan"]

~ Edge (edge_101_103_directed)
from: 101
to: 103
directed: true
labels: ["likes"]
since: ["2015"]

engaged: [false, true]

Figure 1: A human-readable Git diff of an LPG
used in GRAPHWORLD. Red elements indi-
cate deletions, yellow elements indicate mod-
ifications, and green elements indicate additions.

Figure 2: Three-way merge of an LPG in
GRAPHWORLD. Starting from a base graph, two
branches introduce independent edits. GRAPH-
WORLD computes semantic diffs and reconciles
them through a three-way merge to produce the
merged graph.

4 Applications of GRAPHWORLD environment

4.1 Multi-agent collaboration in GRAPHWORLD environment

The GRAPHWORLD environment is designed to model agent-agent and agent-human collaboration.
It abstracts away the other participants in the collaboration, such that each contributor must make
no assumptions about the features or functionalities of other collaborators. The agents that operate
within GRAPHWORLD can vary widely in their goals, design, and implementation. We provide two
examples of agents that could exist within the GRAPHWORLD environment.

Change-proposing agent. An agent might specialize in proposing improvements to a graph, both
in the form of new nodes or edges, or in an edit proposal for an existing entity within the graph. There
are many ways in which these suggestions can be made. The agent could train a graph neural network
(GNN) on the graph with a link prediction objective, predict the edges that are more likely to exist,
and pick the top k ∈ N as new edges to add. Alternatively, it could read unstructured documents to
identify known graph entities and look for relationships referenced in the text that are not present in
the current version of the graph. It could also take as input a particular node of interest in a sparse
region of the graph and look for information online that suggests the existence of currently missing
edges. Regardless of how these proposals arise, the agent can create a new branch, perform the
changes, and open a pull request (PR) to merge the new branch into the main one. Figure 3a depicts
the structure of such an agent.

Evidence-gathering agent. An evidence-gathering agent might review open PRs in the repository
that contain edge proposals and look for information on the Internet, in the scientific literature, in
proprietary databases, or perform independent tests to support or oppose the creation of the new edges
(Figure 4a). This agent plays the same role as peer review in the academic world, but it is automated
and scalable. Scientific research agents show strong performance in synthesizing existing scientific
knowledge from multiple sources [47, 48] and, therefore, may be adept at this role; however, they do
not produce consistent, structured outputs unless appropriately prompted; graphs provide a universal
schema to record their outputs in the context of existing scientific knowledge.

4.2 Human-AI co-creation of KGs in GRAPHWORLD

Beyond the design of individual agents, GRAPHWORLD supports complex workflows that integrate
human input with automated reasoning. These workflows combine the strengths of human domain
expertise with the scalability of agents. We describe three representative examples.

7

Figure 3: Overview of a change-proposing agent. (a) The agent has access to a toolbox of methods,
including GNN-based link prediction on the current KG, relation extraction from unstructured text,
and RAG over the literature to score candidates and then synthesize the top-k into edge-edit proposals.
(b) An expert scientist states an intent in natural language. The agent materializes it as concrete graph
edits on an isolated branch, opens a PR, and returns a reviewable checklist the scientist can accept,
modify, or reject. (c) The new agent-created branch does not interfere with the main KG and provides
an auditable, reproducible history of KG evolution.

Figure 4: Overview of an evidence-gathering agent. (a) The agent consults multiple external
sources, including online tools, scientific papers, and structured knowledge databases, to validate
edit proposals. Each candidate edit is either approved or disapproved based on supporting evidence.
(b) Human-generated edits proceed through the same process; they are insolated in a new branch,
validated agains the literature, and then merged into the mainline. (c) Similarly, agent-generated edits,
such as those from the change-proposing agent in Figure 3, are proposed on a separate branch and
merged once validated.

Automated validation of human edits. Human maintainers frequently seek to extend or refine
a KG. However, detecting semantic inconsistencies or unsupported claims is challenging without
computational assistance. In GRAPHWORLD, a change-proposing agent can continuously monitor
open pull requests (PRs) submitted by human editors. The agent verifies proposed edits against the
available literature or other structured resources and can take several actions: independently approving
and merging the PR, providing detailed feedback, or suggesting alternative edits (Figure 4b). This
workflow establishes a cycle in which human edits are systematically verified by machine reasoning.
The result is improved accuracy of human-generated graphs and reduced reliance on costly manual
validation. For graphs deployed in safety-critical applications, such as healthcare or logistics [49–51],
the verification workload can be dynamically scaled according to the estimated importance of the
affected nodes and edges.

8

Natural language editing for human domain experts. Domain experts often wish to contribute to
KG construction but may lack the technical expertise to interface directly with graph databases or
APIs. In GRAPHWORLD, agents serve as interpreters and actuators that translate high-level human
intentions into executable graph edits. A user specifies a desired change in natural language. The
agent supplements this instruction with information retrieved from structured or unstructured data
sources and proposes a set of candidate edits. These edits are applied in an isolated branch, committed,
and returned to the user for inspection (Figure 3b, Figure 3c). This workflow allows domain experts
to contribute without using graph query languages. As agent capabilities in GRAPHWORLD expand,
these systems can move beyond execution of text instructions toward co-pilots that engage in multi-
turn discussions with experts about the validity and scope of proposed knowledge changes [52].

Ontology alignment and entity deduplication. Large-scale KG construction often introduces
redundant nodes when integrating diverse sources or ontologies [11, 53]. These duplications can
fragment the graph: metadata and updates may apply to one duplicate node but not to others, and
the topology can become misleading if neighbors are split across copies [54]. In GRAPHWORLD,
an agent can be configured to inspect graph branches (such as main) and detect such redundancies.
Detection leverages semantic signals, including lexical similarity of node labels, synonym resolution,
and consistency of attached properties [55]. Upon identifying a likely duplication, the agent can either
(i) perform a merge of the redundant nodes, preserving their combined metadata and edges, or (ii)
raise an alert to human maintainers for confirmation. This workflow ensures that entity resolution is
continuous and systematic, improving graph integrity as the KG evolves. Multiple agents can monitor
graph development in parallel [56, 57], providing early detection of conflicts and contributing to a
high-quality and reliable final knowledge base.

4.3 Limitations and future work

Inneficient memory use of library bindings. Internally, the Rust core stores the decompressed
graphs in memory as Polars tables. This is extremely memory efficient, but it is difficult to transfer
across the bridge to the host binding language. Currently, the graph is converted into a simpler
PG-JSON-like representation before it is sent, but switching to this representation forces a copy of
memory, uses a space-inefficient layout, and prevents vectorized operations. To address this, we will
expose table-level APIs in all bindings and develop zero-copy exchange PyPolars and NodePolars.

Unnecessary deserialization cost. Every file read is currently canonicalized into an in-memory
PG-JSON representation before compression, duplicating the memory requirements to read the graph
and introducing an unnecessary extra pass. We will add streaming front-ends for every supported
format that will perform early type inference to amortize the ingestion overhead and will reduce the
need to maintain the entire graph at once in a memory-inefficient representation.

Property type constraints. DIAMOND, following the PG-JSON standard, currently assumes flat
optional properties whose values are homogeneous lists of primitive types (Boolean, String, Number).
Mixed-type lists, nested objects, and unions are not supported. We will extend schema inference to
nested types and perform an intermediate flattening step that enables support for nested types while
preserving compact encodings and round-trip fidelity.

These limitations largely reflect the unoptimized nature of the first version of our compression library.
We aim to reduce memory consumption through a mix of streaming, pipelining, and the elimination
of unnecessary steps, all while improving developer experience.

5 Conclusion

We presented GRAPHWORLD, an environment that makes the construction of KGs observable,
collaborative, and reproducible. GRAPHWORLD combines a language-agnostic manipulation library
for labeled property graphs, semantic graph diffs and merges built on top of Git, and DIAMOND,
a compact, property-preserving columnar graph encoding that scales to multi-million-edge KGs.
Together, these components let agents and humans propose, review, and merge edits with auditable
histories. We hope GRAPHWORLD will serve as the interoperability layer upon which multi-agent
KG systems are built, compared, and improved.

9

References
1. Ehrlinger, L. & Wöß, W. Towards a definition of knowledge graphs. SEMANTiCS (Posters,

Demos, SuCCESS) 48, 2 (2016).
2. Hogan, A. et al. Knowledge Graphs. ACM Comput. Surv. 54, 71:1–71:37. doi:10.1145/

3447772 (2021).
3. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J. & Vrgoč, D. Foundations of Modern

Query Languages for Graph Databases. ACM Comput. Surv. 50, 68:1–68:40. doi:10.1145/
3104031 (2017).

4. Wu, S. et al. STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases
2024. doi:10.48550/arXiv.2404.13207.

5. Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J. & Wu, X. Unifying Large Language Models and
Knowledge Graphs: A Roadmap. IEEE Transactions on Knowledge and Data Engineering 36,
3580–3599. doi:10.1109/TKDE.2024.3352100 (2024).

6. Park, J. S., O’Brien, J., Cai, C. J., Morris, M. R., Liang, P. & Bernstein, M. S. Generative
Agents: Interactive Simulacra of Human Behavior in Proceedings of the 36th Annual ACM
Symposium on User Interface Software and Technology (Association for Computing Machinery,
New York, NY, USA, 2023), 1–22. doi:10.1145/3586183.3606763.

7. Gao, A. K. Introducing Tuna - A Tool for Rapidly Generating Synthetic Fine-Tuning Datasets
2023.

8. Chen, D. et al. Data-Juicer: A One-Stop Data Processing System for Large Language Models
2023. doi:10.48550/arXiv.2309.02033.

9. Chen, D. et al. Data-Juicer 2.0: Cloud-Scale Adaptive Data Processing for and with Foundation
Models 2025. doi:10.48550/arXiv.2501.14755.

10. Rasmussen, P., Paliychuk, P., Beauvais, T., Ryan, J. & Chalef, D. Zep: A Temporal Knowledge
Graph Architecture for Agent Memory 2025. doi:10.48550/arXiv.2501.13956.

11. Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine.
Scientific Data 10, 67. doi:10.1038/s41597-023-01960-3 (2023).

12. Mo, B. et al. KGGen: Extracting Knowledge Graphs from Plain Text with Language Models
2025. doi:10.48550/arXiv.2502.09956.

13. Zhao, X. et al. AGENTiGraph: An Interactive Knowledge Graph Platform for LLM-based
Chatbots Utilizing Private Data 2024. doi:10.48550/arXiv.2410.11531.

14. Larson, J. & Truitt, S. GraphRAG: A new approach for discovery using complex information
2024.

15. Tzitzikas, Y., Theoharis, Y. & Andreou, D. On Storage Policies for Semantic Web Repositories
That Support Versioning in The Semantic Web: Research and Applications (eds Bechhofer, S.,
Hauswirth, M., Hoffmann, J. & Koubarakis, M.) (Springer, Berlin, Heidelberg, 2008), 705–719.
doi:10.1007/978-3-540-68234-9_51.

16. Fernández, J. D., Polleres, A. & Umbrich, J. Towards Efficient Archiving of Dynamic Linked
Open Data. DIACRON@ ESWC 1377, 34–49 (2015).

17. Arndt, N., Naumann, P., Radtke, N., Martin, M. & Marx, E. Decentralized Collaborative
Knowledge Management using Git. Journal of Web Semantics 54, 29–47. doi:10.1016/j.
websem.2018.08.002 (2019).

18. Miller, J. J. Graph database applications and concepts with Neo4j in Proceedings of the
southern association for information systems conference, Atlanta, GA, USA 2324 (2013), 141–
147.

19. Edge, D. et al. From local to global: A graph rag approach to query-focused summarization.
arXiv:2404.16130 (2024).

20. Mavromatis, C. & Karypis, G. GNN-RAG: Graph neural retrieval for large language model
reasoning. arXiv:2405.20139 (2024).

21. Zhu, X., Xie, Y., Liu, Y., Li, Y. & Hu, W. Knowledge graph-guided retrieval augmented
generation. NAACL (2025).

22. Huang, Y., Zhang, S. & Xiao, X. KET-RAG: A cost-efficient multi-granular indexing framework
for graph-rag in KDD (2025), 1003–1012.

23. Sanmartin, D. KG-RAG: Bridging the gap between knowledge and creativity. arXiv:2405.12035
(2024).

10

https://doi.org/10.1145/3447772
https://doi.org/10.1145/3447772
https://doi.org/10.1145/3104031
https://doi.org/10.1145/3104031
https://doi.org/10.48550/arXiv.2404.13207
https://doi.org/10.1109/TKDE.2024.3352100
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.48550/arXiv.2309.02033
https://doi.org/10.48550/arXiv.2501.14755
https://doi.org/10.48550/arXiv.2501.13956
https://doi.org/10.1038/s41597-023-01960-3
https://doi.org/10.48550/arXiv.2502.09956
https://doi.org/10.48550/arXiv.2410.11531
https://doi.org/10.1007/978-3-540-68234-9_51
https://doi.org/10.1016/j.websem.2018.08.002
https://doi.org/10.1016/j.websem.2018.08.002

24. Wood, D., Lanthaler, M. & Cyganiak, R. RDF 1.1 concepts and abstract syntax. W3C Recom-
mendation, W3C (2014).

25. Zaho, Z., Han, S. K. & Kim, J. R. LPG Representation of the Reification of RDF. International
Journal of Engineering and Technology 7, 562–566. doi:10.14419/ijet.v7i3.34.19382
(2018).

26. Besta, M. et al. Demystifying Graph Databases: Analysis and Taxonomy of Data Organization,
System Designs, and Graph Queries. ACM Comput. Surv. 56, 31:1–31:40. doi:10.1145/
3604932 (2023).

27. Chiba, H., Yamanaka, R. & Matsumoto, S. Property Graph Exchange Format 2019. doi:10.
48550/arXiv.1907.03936. arXiv: 1907.03936 [cs].

28. Besta, M. & Hoefler, T. Survey and Taxonomy of Lossless Graph Compression and Space-
Efficient Graph Representations 2019. doi:10.48550/arXiv.1806.01799.

29. Navarro, G. Compressing web graphs like texts. Dept. Comput. Sci., Univ. Chile, Santiago,
Chile, Tech. Rep. TR/DCC-2007-2 (2007).

30. Claude, F. & Navarro, G. Fast and Compact Web Graph Representations. ACM Trans. Web 4,
16:1–16:31. doi:10.1145/1841909.1841913 (2010).

31. Boldi, P. & Vigna, S. The webgraph framework I: compression techniques in Proceedings of
the 13th international conference on World Wide Web (Association for Computing Machinery,
New York, NY, USA, 2004), 595–602. doi:10.1145/988672.988752.

32. Brisaboa, N. R., Ladra, S. & Navarro, G. k2-Trees for Compact Web Graph Representation in
String Processing and Information Retrieval (eds Karlgren, J., Tarhio, J. & Hyyrö, H.) (Springer,
Berlin, Heidelberg, 2009), 18–30. doi:10.1007/978-3-642-03784-9_3.

33. Claude, F. & Ladra, S. Practical representations for web and social graphs in Proceedings of the
20th ACM international conference on Information and knowledge management (Association
for Computing Machinery, New York, NY, USA, 2011), 1185–1190. doi:10.1145/2063576.
2063747.

34. Brisaboa, N. R., Ladra, S. & Navarro, G. Compact representation of Web graphs with extended
functionality. Information Systems 39, 152–174. doi:10.1016/j.is.2013.08.003 (2014).

35. Feng, F. et al. GenomicKB: a knowledge graph for the human genome. Nucleic Acids Research
51, D950–D956. doi:10.1093/nar/gkac957 (2023).

36. Frommhold, M., Piris, R. N., Arndt, N., Tramp, S., Petersen, N. & Martin, M. Towards Ver-
sioning of Arbitrary RDF Data in Proceedings of the 12th International Conference on Se-
mantic Systems (Association for Computing Machinery, New York, NY, USA, 2016), 33–40.
doi:10.1145/2993318.2993327.

37. Meinhardt, P., Knuth, M. & Sack, H. TailR: a platform for preserving history on the web of
data in Proceedings of the 11th International Conference on Semantic Systems (Association for
Computing Machinery, New York, NY, USA, 2015), 57–64. doi:10.1145/2814864.2814875.

38. Cassidy, S. & Ballantine, J. Version Control for RDF Triple Stores. ICSOFT (ISDM/EHST/DC)
7, 5–12 (2007).

39. Graube, M., Hensel, S. & Urbas, L. R43ples: Revisions for triples in Proceedings of the 1st
Workshop on Linked Data Quality co-located with 10th International Conference on Semantic
Systems (SEMANTiCS 2014) (2014).

40. Vander Sande, M., Colpaert, P., Verborgh, R., Coppens, S., Mannens, E. & Van de Walle, R.
R&Wbase: Git for triples. LDOW 996 (2013).

41. Gil, J. P., Coquery, E., Samuel, J. & Gesquiere, G. ConVer-G: Concurrent versioning of
knowledge graphs 2024. doi:10.48550/arXiv.2409.04499.

42. Theodorakis, G., Clarkson, J. & Webber, J. Aion: Efficient Temporal Graph Data Management
in (Paestum, Italy, 2024). doi:10.48786/EDBT.2024.43.

43. Halilaj, L., Grangel-González, I., Coskun, G. & Auer, S. Git4Voc: Git-based Versioning for
Collaborative Vocabulary Development 2016. doi:10.48550/arXiv.1601.02433.

44. RDF 1.1 N-Quads 2014.
45. RDF Binary using Apache Thrift 2025.
46. Fernandez, J. D., Martínez-Prieto, M. A., Gutiérrez, C., Polleres, A. & Arias, M. Binary RDF

Representation for Publication and Exchange (HDT) SSRN Scholarly Paper. Rochester, NY,
2013. doi:10.2139/ssrn.3198999.

11

https://doi.org/10.14419/ijet.v7i3.34.19382
https://doi.org/10.1145/3604932
https://doi.org/10.1145/3604932
https://doi.org/10.48550/arXiv.1907.03936
https://doi.org/10.48550/arXiv.1907.03936
https://arxiv.org/abs/1907.03936
https://doi.org/10.48550/arXiv.1806.01799
https://doi.org/10.1145/1841909.1841913
https://doi.org/10.1145/988672.988752
https://doi.org/10.1007/978-3-642-03784-9_3
https://doi.org/10.1145/2063576.2063747
https://doi.org/10.1145/2063576.2063747
https://doi.org/10.1016/j.is.2013.08.003
https://doi.org/10.1093/nar/gkac957
https://doi.org/10.1145/2993318.2993327
https://doi.org/10.1145/2814864.2814875
https://doi.org/10.48550/arXiv.2409.04499
https://doi.org/10.48786/EDBT.2024.43
https://doi.org/10.48550/arXiv.1601.02433
https://doi.org/10.2139/ssrn.3198999

47. Skarlinski, M. D. et al. Language agents achieve superhuman synthesis of scientific knowledge
2024. doi:10.48550/arXiv.2409.13740.

48. Ai2. Introducing Ai2 Paper Finder 2025.
49. Alber, D. A. et al. Medical large language models are vulnerable to data-poisoning attacks.

Nature Medicine 31, 618–626 (2025).
50. Alsentzer, E. et al. Few shot learning for phenotype-driven diagnosis of patients with rare

genetic diseases. npj Digital Medicine 8, 380 (2025).
51. Yang, J. et al. Poisoning medical knowledge using large language models. Nature Machine

Intelligence 6, 1156–1168 (2024).
52. Gao, S. et al. Empowering Biomedical Discovery with AI Agents 2024. doi:10.48550/arXiv.

2404.02831.
53. Lobentanzer, S. et al. Democratizing Knowledge Representation with BioCypher. Nature

Biotechnology 41, 1056–1059. doi:10.1038/s41587-023-01848-y (2023).
54. Callahan, T. J. et al. An open source knowledge graph ecosystem for the life sciences. Scientific

Data 11, 363 (2024).
55. Johnson, R. et al. ClinVec: Unified Embeddings of Clinical Codes Enable Knowledge-Grounded

AI in Medicine. medRxiv, 2024–12 (2024).
56. Lu, Y. & Wang, J. KARMA: Leveraging Multi-Agent LLMs for Automated Knowledge Graph

Enrichment. arXiv:2502.06472 (2025).
57. Liu, B., Zhang, J., Lin, F., Yang, C., Peng, M. & Yin, W. SymAgent: A neural-symbolic self-

learning agent framework for complex reasoning over knowledge graphs in Proceedings of the
ACM on Web Conference (2025), 98–108.

58. Chiba, H. & Voß, J. Property Graph Exchange Format (PG). doi:10.5281/zenodo.13859531
(2024).

59. pola-rs/polars 2025.
60. apache/arrow-rs 2025.
61. Vohra, D. in Practical Hadoop Ecosystem: A Definitive Guide to Hadoop-Related Frameworks

and Tools (ed Vohra, D.) 325–335 (Apress, Berkeley, CA, 2016). doi:10.1007/978-1-4842-
2199-0_8.

62. apache/parquet-java 2025.
63. Collet, Y. & Kucherawy, M. Zstandard Compression and the application/zstd Media Type

Request for Comments RFC 8478 (Internet Engineering Task Force, 2018). doi:10.17487/
RFC8478.

64. Chandak, P., Huang, K. & Zitnik, M. Building a Knowledge Graph to Enable Precision Medicine.
Scientific Data 10, 67. doi:10.1038/s41597-023-01960-3 (2023).

12

https://doi.org/10.48550/arXiv.2409.13740
https://doi.org/10.48550/arXiv.2404.02831
https://doi.org/10.48550/arXiv.2404.02831
https://doi.org/10.1038/s41587-023-01848-y
https://doi.org/10.5281/zenodo.13859531
https://doi.org/10.1007/978-1-4842-2199-0_8
https://doi.org/10.1007/978-1-4842-2199-0_8
https://doi.org/10.17487/RFC8478
https://doi.org/10.17487/RFC8478
https://doi.org/10.1038/s41597-023-01960-3

A Technical Appendices and Supplementary Material

A.1 Formal definition of labeled property graphs

Formally, LPGs can be represented as a 9-tuple G = (V,E, L, lV , lE ,K,W, pV , pE) [26], where:
• V is the set of nodes,
• E is the set of edges,
• L is the set of labels,
• lV : V → P(L) is the function that maps nodes to their labels,
• lE : E → P(L) is the function that maps edges to their labels,
• K is the set of all possible property keys,
• W is the set of all possible property values,
• pV : V → K ×W is the function that maps nodes to their property key-value pairs, and
• pE : E → K ×W is the function that maps edges to their property key-value pairs.

Note that under this formulation lV and lE map to the power set of L, and not to L itself. Therefore,
every node and edge can have one label, more than one label, or no labels associated.

A.2 Graph compression algorithm

We designed binary encoding and compression techniques to efficiently store and represent labeled
property (LP) graphs. This enabled us to encode graph structure and metadata in a single, reduced-size
file, and simplified storage in teh git server. Initially, we attempted to identify and use a pre-existing
binary encoding format for LPG; however, as described in Section 2.3, given the recency of the LPG
format, we could not identify any. Therefore, we developed our own binary encoding format for
compressing graphs, which we refer to as DIAMOND. The compression steps are as follows (Figure
5).

Figure 5: The DIAMOND graph compression algorithm. Each step of the compression algorithm
is depicted.

Ingestion. First, we ingest the data in a standard format used to represent LPG graphs, for example,
in Graphviz DOT, JSON lines, or PG file formats. If the input format is not PG-JSON, the original
file is first converted to PG-JSON. This avoids having to define a separate compression routine for
every standard.

13

Schema extrapolation. Next, we extrapolate a strongly typed schema for the graph by sifting
through all the node and edge records to understand their structure. The first step in the schema
extrapolation is to split all the nodes and edges into groups. Groups are understood to potentially
have distinct properties. Separation into groups allows us to find an efficient representation for each
group that avoids having many nulls in our final binary file.

We create these groups by separating graph elements by label combinations, with all nodes with a
specific order-agnostic label combination grouped together. The same is done for edges. In practice,
we achieve order-agnostic grouping by lexicographically sorting the labels, but the compression
mechanism is method-agnostic. Each group within each element type is assigned an identifier in the
form of a natural number that will be used to reference the group in other parts of the algorithm. The
full pseudocode for GROUP_BY_LABELS can be found in the appendix under Algorithm 1.

Once all elements have been partitioned into their respective groups, the types of their properties are
inferred (see Algorithm 2). Following the PG-JSON standard [58], we assume that all properties
are optional. That is, a node with labels {animal, dog} might have property nicknames: ["puppy",
"pup"] declared but another node with the same labels might not. According to the PG-JSON
standard [58], all properties must have as their value a list of type Boolean, String or Number
(floating point). For each element in a group we iterate collecting all the properties present and storing
their corresponding types. There are two potential sources of conflict in this scenario.

1. Mismatched type within a property value list. The value for a property list in the PG-
JSON format can hold elements of different primitive types (e.g., ["puppy", 1]). This is
an unsupported feature in DIAMOND, as much of the space gains come from leveraging the
assumption that properties will always have the same type.

2. Mismatched type for a property across elements. Two elements belonging to the same
group could have lists composed of different values. Once again, DIAMOND relies on all
instances of a property within a group being of the same type, so an error is found if a
mismatch occurs.

If no conflicts are found the result after this step is finished is a mapping from a group identifier to a
map from property name to value list inner type. The full implementation of the type inference for a
specific group can be found in the appendix under Algorithm 3.

Table creation. We create two tables, one for nodes and one edges, that contain metadata about the
group. They each have two columns, id and type. The type column contains in each cell a value of
type String[] that represents a unique label combination and the id column contains the numerical
identifier assigned to that combination in the group partitioning step. For the detailed algorithm see
Algorithm 4.

Following the creation of the group metadata tables, we proceed to create one table per element group
to hold the information about its elements. For node groups each table consists of an id column that
holds the node identifier and one column per possible property for that node group (see Algorithm 5).
For edge groups each table consists of columns id, from, to, undirected plus one column per
possible property (see Algorithm 6).

Transform tables to efficient encoding. We encode all the group tables efficiently in memory by
using Polars [59] data frames. Polars data frames are tables consisting of multiple Apache Arrow
columns [60]. Arrow is a software framework for dealing with columnar data. It provides efficient
in-memory storage for various data types as well as utility functions for operating on that data. For
each node and edge group we iterate over their elements and convert each their static (e.g., id, from)
and dynamic (e.g., nickname) properties to Arrow series (see Algorithm 7) by finding the appropriate
Arrow data type that efficiently represents the underlying values. After all columns for a group are
created we group them in a Polars data frame, attaching the appropriate column name to the data
frame header.

Serializing the graph. We obtain a binary file by saving all the data frames created so far to disk
using the Apache Parquet format [61, 62] and grouping the files together using tar. We save each
data frame as a column-oriented Parquet file, compressing every column with Zstandard [63] at level
3 – an intermediate setting that offers a favorable trade-off between compression ratio and processing
speed – and partition the output into row groups of 1024× 1024 rows (roughly one million rows) so

14

that the files remain highly compressible while still allowing efficient parallel reads and selective
access to individual subsets of the data. Finally, all Parquet tables are combined together into a single
on-disk file, which is further compressed to minimize the on-disk file size. The final tar-compressed
file is saved with a .diamond extension.

By applying these steps – data ingestion, schema inference, normalization, binary encoding, and
bundling – the DIAMOND algorithm losslessly shrinks the size of the original graph data.

A.2.1 Algorithms

Algorithm 1 GROUP_BY_LABELS

Input: elements ▷ a list of items, each with a labels() method
Output: groups ▷ a map from a set of labels to (type_id, list of items)

1: groups← empty map
2: next_type_id← 0
3: for all item in elements do
4: labels← item.labels()
5: if labels is not empty then
6: key← sort(labels) ▷ sort alphabetically for a stable key
7: if key not in groups then
8: groups[key]← (next_type_id, empty list)
9: next_type_id← next_type_id +1

10: end if
11: append item to the list inside groups[key]
12: end if
13: end for
14: return groups

Algorithm 2 INFER_PROPERTY_TYPES_FOR_GROUPS

Input: groups ▷ a map from a set of labels to (type_id, list of items)
Output: prop_types_map ▷ a map from the same label set to (property name → data type)

1: prop_types_map← empty map
2: for all labels in groups do
3: items← groups[labels].items
4: properties_list← list of item.properties() for every item in items
5: status, inferred← INFERTYPES(properties_list)
6: if status is Success then
7: prop_types_map[labels]← inferred
8: else if status is MismatchedTypesWithinItem then
9: raise TypeInferenceFailed(labels, status.property)

10: else ▷ mismatched types across items
11: raise MismatchedListInnerType(labels, status.property, status.expected)
12: end if
13: end for
14: return prop_types_map

15

Algorithm 3 INFER_TYPES_FOR_PROPERTIES_VEC

Input: properties_vec ▷ list of property dictionaries
Output: types_map ▷ map (property name→ data type)

1: types_map← empty map
2: for all properties in properties_vec do
3: for all (key, value_list) in properties do
4: status, data_type← INFERTYPE(value_list)
5: ▷ Iterates over list checking all values are of the same type
6: if status is ErrorWithinList then
7: raise MismatchedTypesWithinItem(key, status.data_types)
8: end if
9: if key in types_map then

10: prev_type← types_map[key]
11: if prev_type ̸= data_type then
12: raise MismatchedTypesAcrossItems(key, prev_type, data_type)
13: end if
14: end if
15: types_map[key]← data_type
16: end for
17: end for
18: return types_map

Algorithm 4 BUILD_TYPES_DATA_FRAME

Input: type_map ▷ map from labels to (type_id, list of items)
Output: df ▷ table with two columns: id (integer) and type (list of labels)

1: type_ids← empty list
2: type_labels← empty list
3: for all (labels, (tid, _)) in type_map do
4: append tid to type_ids
5: append labels to type_labels
6: end for
7: col_id← CREATECOLUMN("id", type_ids)
8: col_type← CREATELISTCOLUMN("type", type_labels)
9: df← CREATEDATAFRAME(col_id, col_type)

10: return df

Algorithm 5 BUILD_DATA_FRAME_FOR_NODE_GROUP

Input: nodes ▷ list of node objects
Input: property_types ▷ map (property name→ data type)
Output: df ▷ table with an id column plus one column per property

1: columns← empty list
2: append COLUMN("id", list of node.id for each node in nodes) to columns
3: prop_cols← GETPROPERTYCOLUMNS(nodes, property_types)
4: append every element of prop_cols to columns
5: df← CREATEDATAFRAME(columns)
6: return df

16

Algorithm 6 BUILD_DATA_FRAME_FOR_EDGE_GROUP

Input: edges ▷ list of edge objects
Input: property_types ▷ map (property name→ data type)
Output: df ▷ table with columns id, from, to, undirected, plus one column per property

1: columns← empty list
2: append COLUMN("id", list of edge.id for each edge in edges) to columns
3: append COLUMN("from", list of edge.from for each edge in edges) to columns
4: append COLUMN("to", list of edge.to for each edge in edges) to columns
5: append COLUMN("undirected", list of edge.undirected for each edge in edges) to

columns
6: prop_cols← GETPROPERTYCOLUMNS(edges, property_types)
7: append every element of prop_cols to columns
8: df← CREATEDATAFRAME(columns)
9: return df

Algorithm 7 GET_DATA_FRAME_PROPERTY_COLUMNS

Input: elements ▷ list of items, each with a properties() map
Input: property_types ▷ map (property name→ data type)
Output: columns ▷ list of table columns, one per property

1: columns← empty list
2: for all (prop_name, dtype) in property_types do
3: builder← CREATELISTBUILDER(dtype)
4: for all item in elements do
5: values← item.properties()[prop_name] ▷ may be missing
6: if values exists then
7: series← SERIESFROMVALUES(values, dtype)
8: builder.add(series)
9: else

10: builder.add_null()
11: end if
12: end for
13: col← COLUMN(prop_name, builder.finish())
14: append col to columns
15: end for
16: return columns

A.3 Benchmarking DIAMOND

A.3.1 Benchmarking on diverse synthetic graphs

To evaluate the performance of the DIAMOND library under various graph characteristics and scales,
we conducted a benchmarking study using synthetically generated graphs. This approach allowed us
to control specific graph properties and observe their impact on compression efficiency and memory
consumption.

First, we designed a synthetic graph generator parameterized by three variables: µ ∈ R, σ ∈ R, and
p ∈ [0, 1]. The parameters µ and σ governed the number of properties associated with a group of
nodes or edges, which followed a Normal distribution with mean µ and standard deviation σ. The
parameter p represented the probability that a given node or edge would have a non-null value for a
specific property. By adjusting µ, σ, and p, we could simulate graphs with varying levels of property
density.

Using this generator, we created LPGBENCH, a dataset of diverse graphs with varying numbers of
nodes, edges, properties, and labels per element. The configurations in LPGBENCH included:

• Micro: 10 nodes, 100 edges, maximum 1 label per element, µ = 2.0, σ = 1.0, p = 0.3,
maximum 1 value per selected property.

17

• Small: 1,000 nodes, 10,000 edges, maximum 1 label per element, µ = 3.0, σ = 1.0,
p = 0.5, maximum 2 values per selected property.

• Medium: 100,000 nodes, 1,000,000 edges, maximum 1 label per element, µ = 4.0, σ = 1.0,
p = 0.7, maximum 2 values per selected property.

• Large: 1,000,000 nodes, 10,000,000 edges, maximum 2 labels per element, µ = 5.0,
σ = 1.0, p = 0.9, maximum 3 values per selected property.

We evaluated DIAMOND on LPGBENCH to understand the performance characteristics of the
DIAMOND library and compare the .diamond format against other popular graph representations.
Specifically, our benchmarking analyses were as follows.

Figure 6: File size vs. graph format across graph sizes. The .diamond file size is shown in red, as
compared to JSON and JSON Lines.

File size versus graph format (Figure 6). This analysis aimed to establish a baseline comparison
of the on-disk storage requirements for different graph formats across representative graph sizes
(micro, small, medium, and large). By fixing the graph structure and size, we directly compared the
inherent storage overhead and compression effectiveness of each format without the influence of
scaling property densities. As shown in Figure 6, at the smallest graph sizes with only 10 nodes and
100 edges, DIAMOND was outperformed by JSON and JSON lines. However, at even small graph
sizes with 1,000 nodes and 10,000 edges, the .diamond file is significantly smaller than its JSON and
JSON lines counterparts. Once the graph size scales to 10 million edges, the DIAMOND-compressed
file is only 5.69% the size of JSON Lines and 6.32% the size of JSON.

File size across graph sizes and property densities (Figure 7). This analysis investigated how
the file size of each graph format scales as the total number of graph elements increases, while
maintaining consistent property distributions defined by µ, σ and p. We sought to understand the
scalability of each format and evaluate how efficiently they handle increasing graph size under
different scenarios of property density and sparsity. As depicted in Figure 7, the compression ratio
achieved by DIAMOND, relative to JSON or JSON Lines, improves as properties become more dense
(e.g., comparing results for p = 0.3 versus p = 0.9, note that the y-axis is shared across the panels).
This observation aligns with our hypothesis that DIAMOND achieves greater compression efficiency
on graphs with higher property density.

18

Figure 7: File size across graph sizes and property densities. The .diamond file size is shown in
red, as compared to JSON and JSON Lines.

A.3.2 Benchmarking on real-world KGs

Beyond our synthetic benchmarks, we also sought to test the performance of DIAMOND on a real-
world KG. When applied on PrimeKG [64], a popular biomedical KG with over 55,000 downloads on
Harvard Dataverse at the time of writing, DIAMOND achieves up to 34.1× compression as compared
to other prevalent LPG graph formats, including CSV header, PG, YARS-PG, DOT, Cypher, and
JSONL (Figure 8). It consumes only 8.9% the size of the next smallest format and uses 2.9% of
the space required by the JSONL representation of the KG. Therefore, we successfully designed a
compressed format for LPG graphs that outperforms state-of-the-art graph representations.

Figure 8: DIAMOND performance on a real-world KG. As compared to other popular graph-
encoding formats, DIAMOND achieves up to a 34.1× compression ratio when used to compress
PrimeKG [11].

A.4 Production-readyness of DIAMOND

The DIAMOND library employs a continuous integration and continuous deployment (CI/CD) pipeline
based on GitHub actions to automate testing and streamline code release. CI/CD generates releases
based on the code modified in a pull request. The CI/CD pipeline is as follows:

Python continuous integration. If Python binding code is altered, a workflow is triggered that
performs linting, uses Bandit for security analysis, uses interrogate to evaluate docstring coverage,
performs static analysis and type checking with mypy, and performs unit testing with pytest. All
these checks are orchestrated via a Makefile.

19

Rust continuous integration. Similarly, modifications to the Rust binding code trigger a separate
workflow to lint and format the Rust code. A scheduled workflow is also in place to clear CI/CD
caches.

Continuous deployment. Upon pushing Python binding code to the trunk, a release workflow
is executed. This comprehensive workflow generates Python wheels for a range of platforms and
architectures, including various Linux targets (x86_64, x86, aarch64, armv7, s390x, ppc64le),
Windows (x64, x86), and macOS (x86_64, aarch64), creates a release following semantic versioning;
and publishes the package to PyPI.

A.5 Multi-language support in DIAMOND

The following code snippets illustrate the core graph loading and saving operations using the
PropertyGraph class across different language bindings for the DIAMOND library. First, the
user can instantiate a PropertyGraph object by reading data from a source file in the JSON Lines
format using methods like read_pg_jsonl or language-specific equivalents. This process parses the
input data and constructs the in-memory graph representation. Subsequently, the write_diamond
(or equivalent) method allows the user to serialize the PropertyGraph object into the .diamond
binary format. This can be accomplished as follows in the Rust core:

1 use diamond_core::PropertyGraph;
2

3 fn main() -> Result<(), Box<dyn std::error::Error>> {
4 let pg = PropertyGraph::read_pg_jsonl("./data/my_graph.jsonl")
5 .expect("Error reading graph");
6 println!("Successfully read graph");
7

8 pg.write_diamond("./data/my_graph.diamond")
9 .expect("Error writing diamond file");

10 println!("Successfully wrote graph");
11 }

The TypeScript binding allows the same operations to be performed in TypeScript:

1 import { PropertyGraph } from "diamond-graph";
2

3 const pg = PropertyGraph.readPgJsonl(inputJsonlPath);
4 console.log(`Successfully read graph from ${inputJsonlPath}`);
5 pg.writeDiamond(outputDiamondPath);

Finally, the Python binding allows the same operations to be performed in Python:

1 from diamond_graph import PropertyGraph
2

3 pg = PropertyGraph.read_pg_jsonl("./data/my_graph.jsonl")
4 pg.write_diamond("./data/my_graph.diamond")

A.6 Identifying graph differences through recursion

To compute the differences between two graphs, we recursively apply two generic primitives,
computeSetChanges and computeListChanges. These graph deltas are then useful in the merging
process.

20

A.6.1 Computing set changes

As described in Algorithm 15, we first define a primitive to determine the changes necessary to
transform an initial “source” set of elements, denoted as Ssource, into a “target” set, Starget, by
identifying elements that must be added, removed, or modified. We define a comparison function,
fcompare(e1, e2), which evaluates any two elements e1 and e2 (one from the source and one from the
target) and determines if they are identical (Equal), if the target element is a modified version of the
source element (Modified), or if they are otherwise distinct.

Next, we attempt to establish correspondences between elements in Ssource and Starget. The algorithm
iterates through each element si ∈ Ssource. For each si that has not yet been matched, it then scans
through elements tj ∈ Starget that also remain unmatched. Upon comparing si and tj using fcompare,
if an Equal relationship is found, si is recorded as unchanged, and both si and tj are marked as
accounted for, preventing their re-evaluation. The search for a match for si then concludes. Similarly,
if fcompare indicates a Modified relationship, the pair (si, tj) is stored to signify that si transforms
into tj , both elements are marked as accounted for, and the algorithm moves to the next source
element. This systematic pairing ensures that each element from either set is part of at most one such
Equal or Modified relationship.

Following this matching phase, the algorithm identifies elements for removal by examining the source
set. Any element si ∈ Ssource that was not marked as matched during the previous step is considered
to be absent from the target set (either directly or as a modified version) and is thus designated for
removal. Conversely, elements for addition are identified by examining the target set. Any element
tj ∈ Starget that remains unmarked is interpreted as a new element not present in the source set and is
designated for addition.

Ultimately, the algorithm outputs four collections: a list of elements to be added (Ladd), a list of
elements to be removed (Lremove), a list of pairs representing modifications (Lmodify), and a list of
elements that were found in both sets and remained unchanged (Lno_change). These collections
collectively define the delta transforming Ssource into Starget. The primary computational load arises
from the nested iterative search for matches, leading to a worst-case time complexity of O(|Ssource| ·
|Starget|) comparisons.

A.6.2 Computing list changes

Next, as shown in Algorithm 14, we define a primitive to determine the most efficient sequence of
changes necessary to transform an initial “source” list of elements into a “target” list using dynamic
programming. Note that, unlike Algorithm 15, this primitive deals with ordered lists rather than
unordered sets.

The first step involves constructing the cost matrix, where each cell represents the minimum number
of operations required to convert a prefix of the source sequence into a prefix of the target sequence.
The matrix edges are initialized, which corresponds to transforming a sequence into an empty one
(requiring deletions) or an empty sequence into a target sequence (requiring insertions). Then, the
rest of the matrix is iteratively computed. For any given pair of prefixes, the last elements of these
prefixes are considered to calculate the transformation cost. If these elements are deemed identical by
a provided comparison function fcompare(e1, e2), no new cost is incurred, and the value is carried over
from a previous state. If they differ, the algorithm explores the costs of three potential operations:
deleting the element from the source, inserting the element into the target, or modifying the source
element to match the target element. The comparison function can assign different costs based on
whether differing elements are considered “modified” versions or entirely distinct. The algorithm
always chooses the operation that produces the minimum cumulative cost for that particular cell.

Once this cost matrix is computed, the value in the cell corresponding to the full source and target
sequences represents the total minimum cost for the entire transformation. Starting from this final
cell, the algorithm traces a path back to the beginning of the matrix. The path taken is determined
by reversing the equality, modification, addition, or removal decisions made during the matrix
construction. This path directly translates into the sequence of operations that optimally transform
the source sequence into the target sequence. The final output is this ordered list of changes. This
algorithm is quadratic in terms of the lengths of the two sequences, both in time and memory.

21

A.6.3 Leveraging change primitives to compute graph differences

We recursively utilize the following primitives to compare two graphs, starting at the highest level
and traversing all the way down to single property lists. This level of detail enables us to write very
flexible logic for the graph merging strategies.

Algorithm 8 COMPARE_GRAPHS

Input: source, target ▷ full graph objects
Output: graphChanges ▷ {nodeChanges, edgeChanges}

1: nodeChanges← COMPARENODES(source.nodes, target.nodes)
2: edgeChanges← COMPAREEDGES(source.edges, target.edges)
3: return { nodeChanges, edgeChanges }

Algorithm 9 COMPARE_NODES

Input: source, target ▷ lists of nodes
Output: nodeChanges ▷ add / remove / modify / unchanged summary

1: procedure CMPNODE(n_a, n_b)
2: if NODEKEY(n_a) ̸= NODEKEY(n_b) then
3: return Different
4: end if
5: labelDiffs← COMPARELABELS(n_a.labels, n_b.labels)
6: propertyDiffs← COMPAREPROPERTIES(n_a.properties, n_b.properties)
7: labelsEqual← every change in labelDiffs is Equal
8: propsEqual← propertyDiffs.add = remove = modify = 0
9: return if labelsEqual ∧ propsEqual then Equal else Modified

10: end procedure
11: nodeChanges← COMPUTESETCHANGES(Set(source), Set(target), cmpNode)
12: return nodeChanges

Algorithm 10 COMPARE_EDGES

Input: source ▷ list of edges in graph A
Input: target ▷ list of edges in graph B
Output: edgeChanges ▷ add / remove / modify / unchanged summary

1: procedure CMPEDGE(e_a, e_b) ▷ returns Equal, Modified, Different
2: if EDGEKEY(e_a) ̸= EDGEKEY(e_b) then
3: return Different ▷ different IDs→ cannot match
4: end if
5: labelDiffs← COMPARELABELS(e_a.labels, e_b.labels)
6: propertyDiffs← COMPAREPROPERTIES(e_a.properties, e_b.properties)
7: sameEnds← (e_a.from = e_b.from) ∧ (e_a.to = e_b.to)
8: sameDir← (e_a.undirected = e_b.undirected)
9: labelsEqual← every change in labelDiffs is Equal

10: propsEqual← propertyDiffs.add = remove = modify = 0
11: return if sameEnds ∧ sameDir ∧ labelsEqual ∧ propsEqual then Equal else

Modified
12: end procedure
13: edgeChanges← COMPUTESETCHANGES(Set(source), Set(target), cmpEdge)
14: return edgeChanges

22

Algorithm 11 COMPARE_LABELS

Input: srcLabels, tgtLabels ▷ ordered lists
Output: labelChanges ▷ add / remove / modify / unchanged summary

1: procedure CMPLABEL(a, b)
2: return if a = b then Equal else Different
3: end procedure
4: return COMPUTELISTCHANGES(srcLabels, tgtLabels, cmpLabel)

Algorithm 12 COMPARE_PROPERTIES

Input: srcProps, tgtProps ▷ maps key→ list
Output: propChanges ▷ set-style diff for (key, list) entries

1: procedure CMPENTRY((k_a, v_a), (k_b, v_b))
2: if k_a ̸= k_b then
3: return Different
4: end if
5: listDiffs← COMPAREPROPERTYLIST(v_a, v_b)
6: return if every change in listDiffs is Equal then Equal else Modified
7: end procedure
8: propChanges ← COMPUTESETCHANGES(Set(Entries(srcProps)),

Set(Entries(tgtProps)), cmpEntry)
9: return propChanges

Algorithm 13 COMPARE_PROPERTY_LIST

Input: srcList, tgtList ▷ ordered value lists
Output: valueChanges ▷ list-style diff result

1: procedure CMPVALUE(a, b)
2: return if a = b then Equal else Different
3: end procedure
4: return COMPUTELISTCHANGES(srcList, tgtList, cmpValue)

A.7 Using graph differences to solve the three-way merge

When merging LPGs, a crucial first step is to reliably identify corresponding nodes and edges
across different versions of the graph: base, ours, and theirs. We achieve this using unique keys
generated by the nodeKey and edgeKey functions. This keying strategy allows us to distinguish
between structural changes (deletion or addition) and modifications. If a change causes an element’s
key to differ from its base version, then that change is regarded as structural (i.e., the old element
was deleted and a new element was added). A modification occurs when an element retains the same
key but its labels or properties are altered. Similarly to our diffing computation approach, we use
primitives based on sets and lists to perform all the necessary computations to merge graphs across
two branches.

The mergeSets algorithm implements a three-way merge for sets, designed to reconcile differences
between a local version (Sours) and a remote version (Stheirs), both derived from a common ancestor
(Sbase). The algorithm is generic, operating on elements of type T. It leverages a caller-provided
comparison function, fcompare : (T, T) → ComparisonResult, to determine if two elements are
identical, modified, or distinct. A diffing function, fdiff (which defaults to computeSetChanges), is
used to calculate the changes (SetChanges<T>, comprising additions, removals, and modifications)
between Sbase and Sours, and between Sbase and Stheirs. An important aspect of this algorithm is its
pluggable conflict resolution mechanism, defined by a MergeStrategy<T> (denoted as Σ), which
dictates how disagreements are handled. The function returns a MergeResult<T> containing the
merged set (Smerged) and an array of any conflicts encountered.

The process begins by computing the deltas: ∆ours = fdiff(Sbase, Sours, fcompare) and ∆theirs =
fdiff(Sbase, Stheirs, fcompare). These deltas itemize elements added to, removed from, or modified

23

in Sours and Stheirs relative to Sbase. For efficient lookup, modifications are stored in maps (Mours,
Mtheirs), mapping base elements to their modified versions, and deletions are stored in sets (Dours,
Dtheirs). The algorithm then iterates through each element ebase ∈ Sbase to determine its fate in Smerged.
The following cases arise. Let e′ours be the modified version of ebase.

First, cases 1-4 consider when the element was modified in Sours (Figure 9, left panel).

Case 1: modified identically in both branches. If ebase was also modified in Stheirs to e′theirs (a
“modify-modify” scenario), and if fcompare(e

′
ours, e

′
theirs) yields Equal, e′ours (or e′theirs) is added to

Smerged.

Case 2: modified differently in both branches. Otherwise, a MergeConflict<T> of type
“modify-modify” is created with ebase, e′ours, and e′theirs. The strategy Σ is invoked. If it returns
a resolved value, that value is added to Smerged; otherwise, the conflict is recorded.

Case 3: modified in ours, deleted in theirs. If ebase was deleted in Stheirs (a “modify-delete”
scenario, from ours/theirs perspective): A conflict of type “modify-delete” is created (with ebase and
e′ours). The strategy Σ is invoked. If resolved, the result is added to Smerged; otherwise, the conflict is
recorded.

Case 4: modified in ours, unchanged in theirs. If ebase was unchanged in Stheirs (not modified or
deleted): e′ours is added to Smerged.

Next, cases 5-7 consider when the element was deleted in Sours, not modified (Figure 9, left panel).

Case 5: deleted in ours, modified in theirs. If ebase was modified in Stheirs to e′theirs, a conflict of
type “delete-modify” is created (with ebase and e′theirs). The strategy Σ is invoked. If resolved, the
result is added to Smerged; otherwise, the conflict is recorded.

Case 6: deleted in ours, unchanged in theirs. If ebase was unchanged in Stheirs, ebase is considered
deleted and is not added to Smerged.

Case 7: deleted in both. If ebase was also deleted in Stheirs, ebase is considered deleted and is not
added to Smerged.

Next, cases 8-10 consider when the element was unchanged Sours, not modified or deleted (Figure 9,
left panel).

Case 8: unchanged in ours, modified in theirs. If ebase was modified in Stheirs to e′theirs, e
′
theirs is

added to Smerged.

Case 9: unchanged in ours, deleted in theirs. If ebase was deleted in Stheirs, ebase is not added to
Smerged.

Case 10: unchanged in both. If ebase was also unchanged in Stheirs, ebase is added to Smerged.

After processing all elements from Sbase, the algorithm handles additions. Let Aours be the set of
elements added in Sours and Atheirs be those added in Stheirs. The algorithm iterates through each
aours ∈ Aours. It attempts to find a corresponding atheirs ∈ Atheirs such that fcompare(aours, atheirs) is
either Equal or Modified. A set SmatchedTheirs tracks elements from Atheirs that have already been
matched. If such a match amatch ∈ Atheirs is found, then amatch is added to SmatchedTheirs. The following
cases then arise (Figure ??, right panel).

Case 11: added identically to both. If fcompare(aours, amatch) was Equal, so aours is added to Smerged
(representing a common addition).

24

Case 12: added differently to both. If fcompare(aours, amatch) was Modified (an “add-add-different”
scenario), so a conflict of type “add-add-different” is created with aours and amatch. The strategy Σ is
invoked. If resolved, the result is added to Smerged; otherwise, the conflict is recorded.

Case 13: added in ours, not added in theirs. If no such match is found for aours: aours is considered
a unique addition by “ours” and is added to Smerged.

Case 14: not added in ours, added in theirs. Finally, any elements atheirs ∈ Atheirs that were not
in SmatchedTheirs are considered unique additions by “theirs” and are added to Smerged.

Present in base

Theirs
Ours + − ∼ /

+ × × × ×
− × 7 5 6
∼ × 3 1,2 4
/ × 9 8 10

Not present in base

Theirs
Ours + − ∼ /

+ 11,12 × × 13
− × × × ×
∼ × × × ×
/ 14 × × ×

No conflict Potential conflict Impossible case

Figure 9: Cases for merging set primitives. Case 2 results in a “modify-modify-different” conflict,
Case 3 in a “modify-delete” conflict, Case 5 in a “delete-modify” conflict, and Case 12 in a “add-add-
different” conflict. All green cases results in no conflict, and cases 1 and 11 specifically result in no
conflict because the added or modified elements in both branches are equal modulo fcompare. All red
cases cannot occur (e.g., a branch cannot add an element that already existed in base).

The MergeStrategy<T>Σ is a function type (MergeConflict<T>×Fcompare → Resolution<T>).
A Resolution<T> can either indicate a successful resolution with a resulting value, or that the con-
flict remains unresolved. The default strategy, throwAllConflictsStrategy, leaves all conflicts
unresolved. An example strategy like timestampWins might resolve “modify-modify” conflicts by
selecting the version with a more recent updatedAt timestamp.

The algorithm concludes by returning Smerged and a list of all MergeConflict<T> objects for conflicts
that were not resolved by the chosen strategy Σ.

A.7.1 Merging list primitives

The mergeLists algorithm performs a three-way merge for ordered lists (arrays), reconciling a
local version (Lours) and a remote version (Ltheirs) against a common ancestor (Lbase). This func-
tion is generic for elements of type T. It relies on a comparison function, fcompare : T × T →
ComparisonResult, to ascertain equality or difference between elements. A diffing function, fdiff
(defaulting to computeListChanges), is employed to generate sequences of changes, ∆ours and
∆theirs, representing the transformations from Lbase to Lours and Lbase to Ltheirs, respectively. Each
change object in these sequences specifies an operation (such as Add, Remove, Modified, or Equal),
associated elements, and relevant indices from Lbase. A pluggable ListMergeStrategy<T>, de-
noted as Σlist, is used for resolving conflicts. The function outputs a ListMergeResult<T>, which
includes the merged list, Lmerged, and an array of any unresolved ListMergeConflict<T> objects,
Clist.

Initially, the algorithm computes the delta sequences: ∆ours = fdiff(Lbase, Lours, fcompare) and ∆theirs =
fdiff(Lbase, Ltheirs, fcompare). Pointers, pours and ptheirs, are initialized to traverse ∆ours and ∆theirs,
respectively. The core of the algorithm is a loop that continues as long as there are changes to process
in either delta sequence. Inside the loop, let cours be the current change from ∆ours and ctheirs be from
∆theirs.

First, we consider if one delta sequence is exhausted. If ctheirs is undefined (all changes in ∆theirs
processed), the remaining changes cours ∈ ∆ours are processed. If cours indicates an Add or Modified
operation, its target element is added to Lmerged. If it’s an Equal operation, its source element is

25

added. Remove operations are implicitly handled by not adding the element. pours is incremented. A
symmetric process occurs if cours is undefined.

Next, we consider if both delta sequences have changes. Let opours and optheirs be the operations for
cours and ctheirs. First, we consider addition operations.

Concurrent additions. If opours = Add and optheirs = Add, if fcompare(cours.targetElement,
ctheirs.targetElement) is Equal, cours.targetElement is added to Lmerged. Otherwise, an “add-add-
concurrent” conflict is created with cours.targetElement and ctheirs.targetElement. This conflict is
passed to the handleListConflict helper, which uses Σlist for resolution. In either case, both pours
and ptheirs are incremented.

Unilateral additions on ours or theirs. If opours = Add (and optheirs is not Add), cours.targetElement
is added to Lmerged. pours is incremented. Similarly, if optheirs = Add (and opours is not Add),
ctheirs.targetElement is added to Lmerged. ptheirs is incremented.

Next, we consider non-add operations (referencing Lbase elements). Both opours and optheirs are either
Modified, Remove, or Equal. Let idxours = cours.sourceIndex and idxtheirs = ctheirs.sourceIndex.

Non-add operation on the same element. If idxours = idxtheirs (both changes refer to the same
element in Lbase), let ebase = Lbase[idxours]. We have the following cases:

• If opours = Equal and optheirs = Equal, cours.sourceElement is added to Lmerged.

• If opours = Modified and optheirs = Modified: If fcompare(cours.targetElement,
ctheirs.targetElement) is Equal, cours.targetElement is added. Otherwise, a “modify-modify”
conflict (with ebase, idxours, cours.targetElement, ctheirs.targetElement) is handled via Σlist.

• If opours = Modified and optheirs = Remove, a “modify-delete” conflict (with ebase, idxours,
cours.targetElement) is handled.

• If opours = Remove and optheirs = Modified, a “delete-modify” conflict (with ebase, idxours,
ctheirs.targetElement) is handled.

• If opours = Remove and optheirs = Remove, the element is implicitly deleted.

Both pours and ptheirs are incremented.

Non-add operation on different elements. If idxours < idxtheirs, cours is processed. If opours is
Equal or Modified, the respective element (cours.sourceElement or cours.targetElement) is added to
Lmerged. pours is incremented. If idxtheirs < idxours, ctheirs is processed similarly. ptheirs is incremented.

The handleListConflict helper function takes a ListMergeConflict<T>, the strategy Σlist,
Lmerged, Clist, and fcompare. It calls Σlist(conflict, fcompare). If the returned Resolution<T> in-
dicates resolved as true and provides a value (not undefined), this value is pushed to Lmerged.
Otherwise, the conflict is added to Clist. The default strategy marks all conflicts as unresolved. The
algorithm concludes by returning an object containing Lmerged and the list Clist of any unresolved
conflicts.

A.7.2 Merging graphs

A similar approach can be taken to merging graphs through primitives than was taken before in
Appendix A.6.3. The only caveat is that recursive calls of primitives to lower level aspects of the
graph cannot be treated using a one-size-fits-all solution like for diffing. The merging strategy is
in charge of make the sub-call to the appropriate primitive to resolve a merge conflict as it sees fit.
For example, suppose an “add-add-different” conflict arises. One strategy might always pick the
element with the latest timestamp, requiring no sub-calls, while another, that might attempt to union
the properties of both version will have to use call a merge primitive on the two elements.

26

A.7.3 Sub-algorithms for git driver diffing

Algorithm 14 COMPUTE_LIST_CHANGES

Input: source ▷ original list
Input: target ▷ desired list
Input: compare ▷ function returning Equal, Modified or Different
Output: changes ▷ ordered list of edit operations

1: m← length(source), n← length(target)
2: matrix← (m+1)× (n+1) table filled with zeros
3:
4: for i = 0 to m do ▷ initialize first row/column
5: matrix[i][0]← i
6: end for
7: for j = 0 to n do
8: matrix[0][j]← j
9: end for

10:
11: for i = 1 to m do ▷ dynamic-programming fill
12: for j = 1 to n do
13: cmp← compare(source[i-1], target[j-1])
14: if cmp = Equal then
15: matrix[i][j]← matrix[i-1][j-1]
16: else
17: removeCost← matrix[i-1][j] +1
18: addCost← matrix[i][j-1] +1
19: replaceCost← matrix[i-1][j-1] + if cmp = Modified then 1 else 2
20: matrix[i][j]←min(removeCost, addCost, replaceCost)
21: end if
22: end for
23: end for
24:
25: changes← empty list ▷ back-trace to build edit script
26: i← m, j← n
27: while i > 0 or j > 0 do
28: if i > 0 ∧ j > 0 ∧ compare(source[i-1],target[j-1]) = Equal then
29: prepend Equal(i-1,j-1) to changes
30: i–, j–
31: else if i > 0 ∧ j > 0 ∧ compare(source[i-1],target[j-1]) = Modified ∧

matrix[i][j] = matrix[i-1][j-1]+ 1 then
32: prepend Modified(i-1,j-1) to changes
33: i–, j–
34: else if j > 0 ∧ (i = 0 ∨ matrix[i][j] = matrix[i][j-1]+ 1) then
35: prepend Add(j-1) to changes
36: j–
37: else
38: prepend Remove(i-1) to changes
39: i–
40: end if
41: end while
42: return changes

27

A.7.4 Sub-algorithms for graph merging

Algorithm 15 COMPUTE_SET_CHANGES

Input: sourceSet, targetSet ▷ sets of elements
Input: compare ▷ returns Equal, Modified or Different
Output: changes ▷ object containing add, remove, modify, unchanged

1: source← list of elements in sourceSet
2: target← list of elements in targetSet
3: toAdd← empty list
4: toRemove← empty list
5: toModify← empty list of pairs (old,new)
6: toDoNothing← empty list
7: sourceMatched← list of false of length source
8: targetMatched← list of false of length target
9:

10: for i = 0 to length(source)−1 do ▷ match equal or modified pairs
11: if sourceMatched[i] then continue
12: end if
13: for j = 0 to length(target)−1 do
14: if targetMatched[j] then continue
15: end if
16: cmp← compare(source[i], target[j])
17: if cmp = Equal then
18: mark sourceMatched[i] and targetMatched[j] as true
19: prepend source[i] to toDoNothing
20: break inner loop
21: else if cmp = Modified then
22: prepend (oldValue: source[i], newValue: target[j]) to toModify
23: mark sourceMatched[i] and targetMatched[j] as true
24: break inner loop
25: end if
26: end for
27: end for
28:
29: for i = 0 to length(source)−1 do ▷ collect unmatched elements
30: if not sourceMatched[i] then prepend source[i] to toRemove
31: end if
32: end for
33: for j = 0 to length(target)−1 do
34: if not targetMatched[j] then prepend target[j] to toAdd
35: end if
36: end for
37: return SetChanges(toAdd, toRemove, toModify, toDoNothing)

28

Algorithm 16 MERGE_SETS

Input: baseSet, oursSet, theirsSet ▷ three versions of the same set
Input: compare ▷ equality / modified / different
Input: diffFn ▷ produces SetChanges
Input: strategy ▷ conflict-resolution policy
Output: merged ▷ final reconciled set
Output: conflicts ▷ unresolved merge conflicts

1: merged← empty set ▷ initialise
2: conflicts← empty list
3:
4: ours← diffFn(baseSet, oursSet, compare) ▷ compute deltas
5: theirs← diffFn(baseSet, theirsSet, compare)
6:
7: ourMods← map base→new from ours.modify ▷ index modifications / deletions
8: theirMods← map base→new from theirs.modify
9: ourDel← set of ours.remove

10: theirDel← set of theirs.remove
11:
12: for all item in baseSet do ▷ iterate through base elements
13: oursChanged← item ∈ ourMods
14: theirsChanged← item ∈ theirMods
15: oursRemoved← item ∈ ourDel
16: theirsRemoved← item ∈ theirDel
17: if oursChanged then
18: ourV← ourMods[item]
19: if theirsChanged then
20: theirV← theirMods[item]
21: if compare(ourV,theirV)=Equal then
22: add ourV to merged
23: else
24: create conflict (modify-modify, item, ourV, theirV)
25: res← strategy(conflict, compare)
26: if res.resolved then add res.value to merged
27: elsepush conflict
28: end if
29: end if
30: else if theirsRemoved then
31: create conflict (modify-delete, item, ourV)
32: handle with strategy as above
33: else
34: add ourV to merged ▷ ours only
35: end if
36: continue
37: end if

29

38: if oursRemoved then
39: if theirsChanged then
40: theirV← theirMods[item]
41: create conflict (delete-modify, item, theirV)
42: handle with strategy
43: end if
44: continue ▷ deleted in ours
45: end if
46: if theirsChanged then
47: add theirMods[item] to merged
48: else if not theirsRemoved then
49: add item to merged
50: end if
51: end for
52:
53: ourAdds← set of ours.add ▷ stage 4 : handle additions
54: theirAdds← set of theirs.add
55: matchedT← empty set ▷ their additions already paired
56: for all a in ourAdds do
57: match← nil; cmpRslt← nil
58: for all b in theirAdds do
59: if b ∈ matchedT then continue
60: end if
61: c← compare(a,b)
62: if c = Equal ∨ c = Modified then
63: match← b; cmpRslt← c; break
64: end if
65: end for
66: if match then
67: add match to matchedT
68: if cmpRslt = Equal then
69: add a to merged ▷ identical add
70: else
71: create conflict (add-add-modified, a, match)
72: handle with strategy
73: end if
74: else
75: add a to merged ▷ unique add
76: end if
77: end for
78: for all b in theirAdds do
79: if b /∈ matchedT then add b to merged
80: end if
81: end for
82: return {merged, conflicts}

30

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have, to the best of our ability, considered each claim and we believe each
to be accurate.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: They are described in Section 4.3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

31

Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: To the best of our ability, we have made the details necessary to reproduce the
experimental results of the paper available in our methodological description.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

32

Answer: [No]

Justification: The code for the environment will be publicly released via an open-source
GitHub repository at a future date.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The DIAMOND compression experiments reported in the paper are determinis-
tic given our choice of KG and hardware, both of which are reported in the paper. Therefore,
error bars or confidence intervals are not provided, as there is no run-to-run variability to
quantify.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

33

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g.negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, this information is provided for every experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We believe that we are fully compliant with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consider-

ation due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work introduces developer tooling for graph construction and generation.
We have not identified direct harms associated with the research process, and negative
societal impacts from the intended use of this tooling are unlikely. While automatically
generated graphs could contain factual inaccuracies, this risk is not unique to our method
and already arises from both human error and existing automation pipelines. Moreover, such
inaccuracies are generally low-stakes. Consequently, we assess that the broader societal
impact of this work is limited.

Guidelines:

34

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

35

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

36

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

37

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related work
	Tools or environments for agent-based graph interaction
	Graph data models
	Storage formats and compression
	Version control systems

	The GraphWorld environment
	Theoretical framework
	System overview
	SDK for KG compression with Diamond
	CLI for KG versioning

	Applications of GraphWorld environment
	Multi-agent collaboration in GraphWorld environment
	Human-AI co-creation of KGs in GraphWorld
	Limitations and future work

	Conclusion
	Technical Appendices and Supplementary Material
	Formal definition of labeled property graphs
	Graph compression algorithm
	Algorithms

	Benchmarking Diamond
	Benchmarking on diverse synthetic graphs
	Benchmarking on real-world KGs

	Production-readyness of Diamond
	Multi-language support in Diamond
	Identifying graph differences through recursion
	Computing set changes
	Computing list changes
	 Leveraging change primitives to compute graph differences

	Using graph differences to solve the three-way merge
	Merging list primitives
	Merging graphs
	Sub-algorithms for git driver diffing
	Sub-algorithms for graph merging

