
Enabling multi-agent collaboration
in knowledge graph environments

Anonymous Author(s)
Affiliation
Address
email

Abstract

Knowledge graphs (KGs) are critical for grounding large language models and1

providing them with persistent memory. However, the development of agents2

capable of collaboratively building and maintaining these KGs is hindered by a3

lack of suitable environments. Current tools often obscure the construction process,4

lack standardized editing APIs, and offer poor support for concurrent, multi-agent5

collaboration. To address this, we introduce GRAPHWORLD, an environment6

for agents to build and edit graphs. GRAPHWORLD provides agents with tools7

to create, update, or delete nodes, edges, or properties of KGs, with support for8

Python, TypeScript, and Rust. GRAPHWORLD relies on DIAMOND, a compact,9

property-preserving storage format that permits scaling to multi-million-edge KGs.10

All changes are version-controlled by integrating graph-aware diffing and merging11

directly into Git, enabling multi-agent and human-agent collaboration through12

standard branching workflows.13

1 Introduction14

Knowledge graphs (KGs) are relational databases that use a graph-based data model to encode15

knowledge-informed interactions between different objects [1, 2]. Formally, a KG is defined by16

a set of nodes as well as a set of edges that describe relationships between the nodes. In modern17

heterogeneous KGs, nodes and edges have different types, and may also contain extra properties18

or information [3]. KGs are rapidly becoming a core component of modern large language model19

(LLM)-based systems, enabling retrieval [4], grounded reasoning, and persistent memory. Integrating20

KGs with LLMs can equip LLMs with rich, structured factual knowledge and traceable information21

provenance, addressing common challenges faced by LLMs, including hallucination, indecision,22

poor interpretability, and lack of domain-specific knowledge [5]. Further, KGs offer a mechanism23

for agents to build and maintain a persistent memory of their interactions and learned knowledge24

[6]. LLMs and agents excel at generating datasets from structured or unstructured sources, including25

textual datasets (e.g., LangChain’s Tuna [7] and Alibaba’s DataJuicer [8, 9]) and graph datasets (e.g.,26

Graphiti’s Zep [10]); however, to date, most KGs are created and maintained through manual or27

semi-automated, non-agentic data pipelines. Tools to build and maintain KG environments both28

for and with agents remain underdeveloped. Current methods for KG editing often do not expose29

intermediate edits, lack a standard, multi-language edit API, and provide weak versioning and merge30

semantics for concurrent work. These obstacles make agent-driven KG editing challenging.31

To address these challenges, we introduce GRAPHWORLD, an environment for agents to build and32

edit knowledge graphs. GRAPHWORLD provides a set of atomic edit tools that allow agents to create,33

update, or delete nodes, edges, and knowledge properties. These tools are accessible from Python,34

TypeScript, and Rust, ensuring broad interoperability across development ecosystems. To support35

distributed and concurrent multi-agent or human–agent collaboration, GRAPHWORLD integrates36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

graph-aware diffs and three-way merges directly with Git. For scaling to multi-million-edge graphs,37

we further introduce DIAMOND, a compact, property-preserving storage format optimized for labeled38

property graphs. In experiments, DIAMOND achieves up to 34.1× compression over widely used LPG39

formats, reducing storage demands while preserving all graph structure and metadata. Benchmarking40

on synthetic and real-world KGs demonstrates that DIAMOND consistently outperforms JSON, JSON41

Lines, and PG-JSON, especially as graphs grow in property density and size. The Git integration42

in GRAPHWORLD produces semantic diffs that reveal node- and edge-level changes rather than43

opaque binary differences, enabling reproducible and auditable histories of KGs. Applications of44

GRAPHWORLD include automated validation of human edits, natural language editing tools for45

domain experts, and ontology alignment workflows, all of which highlight GRAPHWORLD as a46

human-AI environment for KG development. In biomedical settings, for example, GRAPHWORLD47

compresses PrimeKG [11] to less than 9% of its original size while supporting transparent version48

control, facilitating large-scale analysis and sharing. More broadly, GRAPHWORLD supports multi-49

agent pipelines that continuously propose, review, and merge edits in knowledge graphs.50

2 Related work51

2.1 Tools or environments for agent-based graph interaction52

Prior systems address specific features of the KG construction and agent integration workflow,53

converting text into graph structures using LLMs [12], managing agent memory in real time [10,54

13], enabling retrieval-augmented generation (RAG) over graphs [14], or supporting versioning55

and provenance [15–17]. By contrast, GRAPHWORLD treats KG construction itself – observable,56

version-controlled, multi-language editing of property-rich labeled property graphs (LPGs) – as the57

first-class object.58

Single-agent KG construction. Several methods exist to convert unstructured text into graph59

representations. LangChain’s LLMGraphTransformer, KGGen [12], and related approaches build60

graphs via prompting heuristics or extraction pipelines. Methods also exist to allow single agents to61

build a KG; for example, Graphiti [10] provides an interface for an agent to build and query graphs.62

While effective for initially populating a KG, these approaches do not expose per-edit observability,63

structured diffs, or merge semantics, and are often bound to a single runtime or framework. By64

contrast, GRAPHWORLD provides a standard set of atomic graph editing operations across languages65

and under version control, allowing multiple agents, rather than a single LLM, to collaboratively66

edit a graph. Moreover, single-agent KG construction systems can adopt the observable edit tools,67

branching or merging semantics, and graph storage of GRAPHWORLD as a backend.68

Graph retrieval for LLM reasoning. Graph-based RAG systems such as Neo4j [18], GraphRAG69

[19], GNN-RAG [20], KG2RAG [21], KET-RAG [22], KG-RAG [23], and LlamaIndex KG indices70

are consumers of graphs, improving grounding and multi-hop reasoning. GRAPHWORLD sits71

upstream, allowing agents to build and maintain the graphs that retrieval systems depend on.72

2.2 Graph data models73

Various data models exist to represent graphs. GRAPHWORLD includes a version control system that74

operates on top of a storage format, DIAMOND, and represents graphs using a specific data model.75

Therefore, to explain the design choices of GRAPHWORLD, it is necessary to discuss the significant76

body of existing work on graph data models, storage structures, and versioning approaches. We77

highlight components that were adopted in GRAPHWORLD as well as features of GRAPHWORLD78

that differ from previous work.79

Machine-readable representations of KGs often use the Resource Description Framework (RDF) data80

model [24], introduced at the World Wide Web Consortium (W3C) in 1999. Under RDF, a graph is81

represented by a collection of triples. These triples follow the structure of subject-predicate-object82

(e.g., (Horacio,likes,cars)). A resource is any subject, predicate, or object, and is identified83

through a Unique Resource Identifier, or URI. Subjects in a triple can be a URI or a blank node, while84

predicates must be a URI, and objects can be a URI, a blank node, or a literal (e.g., an integer, a float,85

a string). A graphR is then represented as a set of RDF triples (also called semantic triples):86

R ⊆ (URI ∪ blank)× URI× (URI ∪ blank ∪ literal)

2

where URI is the set of all URIs, and blank and literal are the sets of blank nodes and literals,87

respectively.88

Often KGs require the attachment of non-structural information to a node or edge in the graph. RDF89

does not natively support this, and instead relies on reification. Reification achieves this through the90

use of metadata predicate types that enable writing triples about other triples, but comes at the cost of91

larger graph sizes, and has been a source of criticism for the format [25].92

Labeled Property Graphs (LPGs) have recently emerged as a more flexible and efficient alternative to93

RDF [3]. They combine edge-labeled graphs, which consist of graphs where nodes are connected94

by directed edges that contain a label, or type, with property graphs, which allow arbitrary property95

information to be added to nodes and edges. LPGs have been adopted as the official storage format96

of the leading graph databases, including Neo4j and ArangoDB, which has driven to further adoption97

in production settings [26]. It is worth nothing that not all databases adopted the same exact defition98

of LPGs, and each provider has slightly different variants. For example, Neo4j allows any number of99

labels on nodes but only one label per edge, while ArangoDB supports only one label per node and100

one label per edge [26].101

GRAPHWORLD adopts an multi-label definition of LPGs with flat properties that allow agents trained102

on it to interact with modern KG tooling and databases.103

2.3 Storage formats and compression104

While these databases offer avenues to store graphs, they do not do so in a stateless manner. To load,105

process, and serve the data, they database server must be on. A file format is needed to serialize106

KGs and enable the exchange of information in a standardized format which can be loaded by the107

database system or program of the user’s choice. This is akin to relational database management108

systems (RDBMs) and the “comma-separated values” (CSV) file format that stores columnar data in109

a text-based encoding. To address this need, Chiba et al. [27] have proposed the “Property Graph110

Exchange Format” (PG) as a standard for representing LPGs. PG is a text-based format that encodes111

the graph structure as well as the node and edge properties in a human-readable format. The format112

specification also contains the definition of PG-JSON, a JSON-based serialization of PG that is easy113

to parse, and PG-JSONL, a newline-delimited JSON format. The format is designed to be easy to114

read and write, making it suitable for both humans and machines.115

While versatile, the format can make graph files grow quickly in size, making it impractical to store116

on git-backed server, which oftentimes have file size restrictions. Thus, GRAPHWORLD supports the117

PG-JSON family of formats and also introduces DIAMOND, an LPG format that heavily compresses118

graphs into a fraction of the size of their PG-JSON equivalents.119

There is a significant body of literature on algorithms for lossless RDF graph compression, which has120

been reviewed by Besta & Hoefler [28]. For example, some methods apply text compression methods121

to text-based graph representations [29, 30]. The seminal WebGraph framework uses lexicographic122

locality and reference encoding to greatly reduce storage per edge [31]. Brisaboa et al. [32] proposed123

k2 trees, a succinct data structure for graph adjacency that models the graph as a tree, then recursively124

partitions and stores the adjacency matrix to capitalize on large empty regions in sparse graphs [33,125

34]. However, these methods only target topology, or the adjacency structure or derived indices. Edge126

or node attributes are usually not considered or stored in separate, uncompressed arrays. We could127

identify no compression tools compatible with storing node and edge properties, which is necessary128

for our use case. That is, no binary encoding format or other efficient representation exists for LPGs,129

motivating the need for DIAMOND. DIAMOND is described in more detail in Appendix A.2.130

2.4 Version control systems131

Unlike text or code, where line-based version control (à la Git) works well, KGs contain complex132

structured data that requires specialized versioning strategies. In particular, KG versioning approaches133

encounter the following challenges:134

• Conflict management and resolution. While many existing solutions can record linear KG edit135

histories, they lack support for branching and merging graph versions, and thus cannot support136

parallel development or KG contextualization [17]. Reconciling KG merge conflicts entails more137

3

than a simple union of all changes: for example, one branch may delete an edge that another branch138

modifies.139

• Static and queryable storage sizes. Naïvely storing multiple versions of large KGs can impose140

significant storage demands. This is especially true of modern KGs that consist of millions, or141

billions, of nodes and edges. For example, GenomicKG contains 347 million nodes, 1.36 billion142

edges, and 3.9 billion node and edge properties [35]. GenomicKB was constructed from over 30143

genomic datasets and annotations which are regularly updated, necessitating versioning of this144

large KG. Instead of representing each version as a standalone file, which does not scale with the145

number of edits, binary encoding and compression techniques can be used to both encode graph146

structure and eliminate redundancy by only storing version changes. However, graph look-up,147

membership, or other queries often cannot be executed directly over a compressed KG, leading to148

undesirable query performance degradation.149

• Lack of standards and interoperability. Currently, there does not exist a unified “Git for KGs”150

standard; existing systems often sacrifice one aspect (e.g., merge support or query performance) to151

gain another (e.g., storage efficiency or simplicity).152

Several approaches have been proposed to address these challenges. Existing methods can be153

categorized as follows [15–17]:154

• Independent copies. Each graph version is managed and stored as a separate dataset. This method155

is straightforward to implement but highly redundant and inefficient, both in terms of query time156

and storage.157

• Change-based versioning. Only differences, or deltas, between versions are stored. Broadly,158

change-based methods reduce storage requirements but incur query performance overhead when159

reconstructing past versions. Many existing change-based approaches like Frommhold et al. [36],160

TailR [37], and RDF-adapted Darcs [38] lack support for branching [17]. Those that do support161

branching, like R43ples [39], lack streamlined merge support. Thus, current methods are not suited162

for parallel development.163

• Timestamp-based versioning. Each edge is annotated with temporal validity information in a164

single, unified KG. Query performance of timestamp-based methods like R&Wbase [40], ConVer-165

G [41], and Aion [42] suffers as queries need to filter by version and time, and storage requirements166

also increase due to the need to preserve temporal metadata. For example, ConVer-G, which uses167

PostgreSQL as the storage, introduces in-graph provenance information in the graph to facilitate168

querying, increasing the storage demands.169

Finally, inspired by Git, some systems have implemented distributed version control mechanisms for170

KGs. Most notably, QuitStore [36] and Git4Voc [43] adapt Git-like operations such as branching,171

merging, and commit tracking to RDF data. However, QuitStore [17] relies on NQuads [44, 45], an172

inefficient text-based storage format, to store the change information in a manner that Git tools can173

easily interpret and display. In fact, in the Discussion section of QuitStore, Arndt et al. [17] write,174

“The evaluation of more advanced compression systems for the stored RDF dataset or the employment175

of a binary RDF serialization format, such as HDT [46] is still subject to future work.” Thus, to176

date, no single system for versioning large-scale KGs has successfully combined efficient branching177

and merging with scalable storage and high-performance queries. We sought to achieve this goal in178

GRAPHWORLD by developing a novel versioning system for graphs, which we describe in Section179

3.2.2. This version control system underlies the ability of GRAPHWORLD to support multi-agent180

concurrent KG editing.181

3 The GRAPHWORLD environment182

3.1 Theoretical framework183

We model GRAPHWORLD as an environment whose state is a fully observable LPG together with its184

version history. At each time step, the agent proposes an atomic edit to the graph; the environment185

applies this edit deterministically, producing a new LPG and a new commit in the version history.186

Formally, GRAPHWORLD is defined by the tupleM = (S,A, δ,R,O) where S is the space of states187

(G,H) with G a labeled property graph and H its commit history, A is the set of atomic LPG edits, δ188

is the deterministic transition function, R is an externally specified reward function, and O = S since189

the agent can access the entire LPG structure together with the version history.190

4

State and observation. At time t, the environment is in state st = (Gt, Ht), where Gt =191

(V,E,L, lV , lE ,K,W, pV , pE)t is an LPG as defined in Appendix A.1, and Ht is the sequence192

of commits leading to Gt. The observation ot is identical to the state st for every t.193

Actions. Each action at ∈ A corresponds to a single mutation of the 9-tuple structure, for example194

adding nodes add_node(v, lV (v), pV (v)), edges add_edge(e, lE(e), pE(e)), updating properties195

update_property(x, k, w) and deleting nodes delete_node(v) and edge delete_edge(e). All196

actions are recorded in the commit history Ht, preserving an auditable trail of modifications.197

Transition dynamics. The transition function is deterministic st+1 = δ(st, at), where δ is the198

graph edit operator. A valid edit updates the LPG tuple Gt and appends a commit to Ht. Invalid edits199

(e.g., deleting a non-existent node) produce a no-op or transition to an error state, depending on the200

configuration of the task.201

Rewards. GRAPHWORLD is task-agnostic. The reward function R(st, at, st+1) is external to the202

environment and can be specified according to downstream objectives. For example, rewards may203

encourage edits that improve graph completeness, penalize violations of ontology constraints, or favor204

the addition of provenance information. This separation allows evaluation along two complementary205

axes: construction quality metrics (task-dependent) and process metrics (environment-dependent,206

e.g., edit efficiency or branching performance).207

Episodes. An episode begins with an initial state (G0, H0) and proceeds until a stopping condition208

is met, such as reaching a target benchmark graph, exhausting an edit budget, or receiving an explicit209

termination signal. Because the environment incorporates Git-style versioning, episodes may include210

branching and merging trajectories, enabling the study of collaborative and multi-agent editing211

strategies.212

3.2 System overview213

GRAPHWORLD is designed to provide agents with a practical and extensible environment for building214

and maintaining knowledge graphs. Its design follows three guiding principles: standarization,215

production readiness, and observability.216

Standardization. GRAPHWORLD offers a uniform interface for graph editing, allowing agents to217

interact with knowledge graphs through a consistent set of tools.218

Production readiness. By relying on proven libraries and widely used infrastructure, any agent219

developed for GRAPHWORLD can be moved into production with minimal overhead.220

Observability. The framework records each agent action as an auditable step, enabling fine-grained221

evaluation of graph construction processes (e.g., scoring agents based on the efficiency of their editing222

strategies).223

At the system level, GRAPHWORLD consists of modular components that can be used independently224

or in combination. The two core components are a language-agnostic software development kit225

(SDK) for graph compression and manipulation, and a command-line interface (CLI) for versioning226

and collaboration.227

3.2.1 SDK for KG compression with DIAMOND228

A core component of GRAPHWORLD is DIAMOND, a compact, property-preserving graph storage229

format. DIAMOND provides high-performance graph compression and decompression routines,230

implemented in Rust for efficiency, with bindings for Python and Node.js via PyO3 and napi-rs.231

This multi-language design enables developers to embed the same compression methods into agents232

written in different ecosystems, while maintaining consistency across them. Example programs233

demonstrating usage in each language are provided in Appendix A.5.234

The SDK supports two primary capabilities. First, it enables compression and decompression of235

property graphs from common formats such as JSON Lines and serialized into the .diamond binary236

encoding described in Appendix A.2. Second, it provides in-memory graph representations via the237

5

PropertyGraph class, which allows developers to manipulate graphs directly and convert them238

across formats without loss of information.239

3.2.2 CLI for KG versioning240

While the SDK addresses scalability, effective multi-agent editing requires version control. To this241

end, GRAPHWORLD extends Git to support property graphs by defining custom drivers for filtering,242

diffing, and merging. This integration leverages Git’s mature branching, archiving, and collaboration243

workflows while adapting them to the semantics of graph data.244

The interaction between GRAPHWORLD and Git is coordinated through the .gitattributes245

file, which specifies how different file types should be handled during serialization, comparison,246

and merging. When a repository is configured for use with GRAPHWORLD, graph files matching247

user-defined patterns (e.g., .jsonl or .diamond) are automatically associated with these drivers.248

This allows contributors to work with a familiar Git interface, while GRAPHWORLD manages the249

underlying representation of graphs.250

Filter drivers handle the translation between formats stored in the repository and those exposed in the251

working tree. For example, a graph may be archived in the compressed DIAMOND format to save252

space and ensure consistency, while being presented in a human-readable format when checked out.253

This dual representation enables contributors to inspect or edit graphs locally without sacrificing the254

efficiency of binary storage.255

Diff drivers define how Git compares graph files across commits. Since graphs are often stored256

in compressed binary form, traditional line-based diffs are meaningless. The custom diff driver257

decompresses and interprets the files, producing a semantic comparison in terms of nodes, edges, and258

properties. This allows reviewers to see meaningful changes, such as a node label update or an edge259

addition, rather than an opaque binary. Figure 1 provides an example diff between two graphs.260

Merge drivers extend this functionality to conflict resolution. Git’s default merge algorithm assumes261

text-based files, where order matters. For graphs, order is irrelevant, and conflicts should only arise262

when the same structural element is edited differently across branches. The custom merge driver263

reconciles graphs by structure, reducing spurious conflicts and enabling order-independent merging264

(Figure 2). This makes it possible for multiple agents or human collaborators to work concurrently265

without frequent manual intervention.266

~ Node (node_101)
labels: ["person"]

~ country: ["United States", "Japan"]
~ name: ["Alice", "Carol", "Juan"]
+ nicknames: ["Jan"]

~ Edge (edge_101_103_directed)
from: 101
to: 103
directed: true
labels: ["likes"]
since: ["2015"]

engaged: [false, true]

Figure 1: A human-readable Git diff of an LPG
used in GRAPHWORLD. Red elements indi-
cate deletions, yellow elements indicate mod-
ifications, and green elements indicate additions.

Figure 2: Three-way merge of an LPG in
GRAPHWORLD. Starting from a base graph, two
branches introduce independent edits. GRAPH-
WORLD computes semantic diffs and reconciles
them through a three-way merge to produce the
merged graph.

These drivers integrate with Git’s existing workflows. Contributors can branch, commit, and merge as267

usual, while GRAPHWORLD ensures that the version control semantics respect the underlying graph268

structure.269

6

4 Applications of GRAPHWORLD environment270

4.1 Multi-agent collaboration in GRAPHWORLD environment271

The GRAPHWORLD environment is designed to model agent-agent and agent-human collaboration.272

It abstracts away the other participants in the collaboration, such that each contributor must make273

no assumptions about the features or functionalities of other collaborators. The agents that operate274

within GRAPHWORLD can vary widely in their goals, design, and implementation. We provide two275

examples of agents that could exist within the GRAPHWORLD environment.276

Change-proposing agent. An agent might specialize in proposing improvements to a graph, both277

in the form of new nodes or edges, or in an edit proposal for an existing entity within the graph. There278

are many ways in which these suggestions can be made. The agent could train a graph neural network279

(GNN) on the graph with a link prediction objective, predict the edges that are more likely to exist,280

and pick the top k ∈ N as new edges to add. Alternatively, it could read unstructured documents to281

identify known graph entities and look for relationships referenced in the text that are not present in282

the current version of the graph. It could also take as input a particular node of interest in a sparse283

region of the graph and look for information online that suggests the existence of currently missing284

edges. Regardless of how these proposals arise, the agent can create a new branch, perform the285

changes, and open a pull request (PR) to merge the new branch into the main one. Figure 3a depicts286

the structure of such an agent.287

Figure 3: Overview of a change-proposing agent. (a) The agent has access to a toolbox of methods,
including GNN-based link prediction on the current KG, relation extraction from unstructured text,
and RAG over the literature to score candidates and then synthesize the top-k into edge-edit proposals.
(b) An expert scientist states an intent in natural language. The agent materializes it as concrete graph
edits on an isolated branch, opens a PR, and returns a reviewable checklist the scientist can accept,
modify, or reject. (c) The new agent-created branch does not interfere with the main KG and provides
an auditable, reproducible history of KG evolution.

Evidence-gathering agent. An evidence-gathering agent might review open PRs in the repository288

that contain edge proposals and look for information on the Internet, in the scientific literature, in289

proprietary databases, or perform independent tests to support or oppose the creation of the new edges290

(Figure 4a). This agent plays the same role as peer review in the academic world, but it is automated291

and scalable. Scientific research agents show strong performance in synthesizing existing scientific292

knowledge from multiple sources [47, 48] and, therefore, may be adept at this role; however, they do293

not produce consistent, structured outputs unless appropriately prompted; graphs provide a universal294

schema to record their outputs in the context of existing scientific knowledge.295

7

Figure 4: Overview of an evidence-gathering agent. (a) The agent consults multiple external
sources, including online tools, scientific papers, and structured knowledge databases, to validate
edit proposals. Each candidate edit is either approved or disapproved based on supporting evidence.
(b) Human-generated edits proceed through the same process; they are insolated in a new branch,
validated agains the literature, and then merged into the mainline. (c) Similarly, agent-generated edits,
such as those from the change-proposing agent in Figure 3, are proposed on a separate branch and
merged once validated.

4.2 Human-AI co-creation of KGs in GRAPHWORLD296

Beyond the design of individual agents, GRAPHWORLD supports complex workflows that integrate297

human input with automated reasoning. These workflows combine the strengths of human domain298

expertise with the scalability of agents. We describe three representative examples.299

Automated validation of human edits. Human maintainers frequently seek to extend or refine300

a KG. However, detecting semantic inconsistencies or unsupported claims is challenging without301

computational assistance. In GRAPHWORLD, a change-proposing agent can continuously monitor302

open pull requests (PRs) submitted by human editors. The agent verifies proposed edits against the303

available literature or other structured resources and can take several actions: independently approving304

and merging the PR, providing detailed feedback, or suggesting alternative edits (Figure 4b). This305

workflow establishes a cycle in which human edits are systematically verified by machine reasoning.306

The result is improved accuracy of human-generated graphs and reduced reliance on costly manual307

validation. For graphs deployed in safety-critical applications, such as healthcare or logistics [49–51],308

the verification workload can be dynamically scaled according to the estimated importance of the309

affected nodes and edges.310

Natural language editing for human domain experts. Domain experts often wish to contribute to311

KG construction but may lack the technical expertise to interface directly with graph databases or312

APIs. In GRAPHWORLD, agents serve as interpreters and actuators that translate high-level human313

intentions into executable graph edits. A user specifies a desired change in natural language. The314

agent supplements this instruction with information retrieved from structured or unstructured data315

sources and proposes a set of candidate edits. These edits are applied in an isolated branch, committed,316

and returned to the user for inspection (Figure 3b, Figure 3c). This workflow allows domain experts317

to contribute without using graph query languages. As agent capabilities in GRAPHWORLD expand,318

these systems can move beyond execution of text instructions toward co-pilots that engage in multi-319

turn discussions with experts about the validity and scope of proposed knowledge changes [52].320

Ontology alignment and entity deduplication. Large-scale KG construction often introduces321

redundant nodes when integrating diverse sources or ontologies [11, 53]. These duplications can322

fragment the graph: metadata and updates may apply to one duplicate node but not to others, and323

the topology can become misleading if neighbors are split across copies [54]. In GRAPHWORLD,324

an agent can be configured to inspect graph branches (such as main) and detect such redundancies.325

Detection leverages semantic signals, including lexical similarity of node labels, synonym resolution,326

and consistency of attached properties [55]. Upon identifying a likely duplication, the agent can either327

(i) perform a merge of the redundant nodes, preserving their combined metadata and edges, or (ii)328

8

raise an alert to human maintainers for confirmation. This workflow ensures that entity resolution is329

continuous and systematic, improving graph integrity as the KG evolves. Multiple agents can monitor330

graph development in parallel [56, 57], providing early detection of conflicts and contributing to a331

high-quality and reliable final knowledge base.332

4.3 Limitations and future work333

Inneficient memory use of library bindings. Internally, the Rust core stores the decompressed334

graphs in memory as Polars tables. This is extremely memory efficient, but it is difficult to transfer335

across the bridge to the host binding language. Currently, the graph is converted into a simpler336

PG-JSON-like representation before it is sent, but switching to this representation forces a copy of337

memory, uses a space-inefficient layout, and prevents vectorized operations. To address this, we will338

expose table-level APIs in all bindings and develop zero-copy exchange PyPolars and NodePolars.339

Unnecessary deserialization cost. Every file read is currently canonicalized into an in-memory340

PG-JSON representation before compression, duplicating the memory requirements to read the graph341

and introducing an unnecessary extra pass. We will add streaming front-ends for every supported342

format that will perform early type inference to amortize the ingestion overhead and will reduce the343

need to maintain the entire graph at once in a memory-inefficient representation.344

Property type constraints. DIAMOND, following the PG-JSON standard, currently assumes flat345

optional properties whose values are homogeneous lists of primitive types (Boolean, String, Number).346

Mixed-type lists, nested objects, and unions are not supported. We will extend schema inference to347

nested types and perform an intermediate flattening step that enables support for nested types while348

preserving compact encodings and round-trip fidelity.349

These limitations largely reflect the unoptimized nature of the first version of our compression library.350

We aim to reduce memory consumption through a mix of streaming, pipelining, and the elimination351

of unnecessary steps, all while improving developer experience.352

5 Conclusion353

We presented GRAPHWORLD, an environment that makes the construction of KGs observable,354

collaborative, and reproducible. GRAPHWORLD combines a language-agnostic manipulation library355

for labeled property graphs, semantic graph diffs and merges built on top of Git, and DIAMOND,356

a compact, property-preserving columnar graph encoding that scales to multi-million-edge KGs.357

Together, these components let agents and humans propose, review, and merge edits with auditable358

histories. We hope GRAPHWORLD will serve as the interoperability layer upon which multi-agent359

KG systems are built, compared, and improved.360

References361

1. Ehrlinger, L. & Wöß, W. Towards a definition of knowledge graphs. SEMANTiCS (Posters,362

Demos, SuCCESS) 48, 2 (2016).363

2. Hogan, A. et al. Knowledge Graphs. ACM Comput. Surv. 54, 71:1–71:37. doi:10.1145/364

3447772 (2021).365

3. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J. & Vrgoč, D. Foundations of Modern366

Query Languages for Graph Databases. ACM Comput. Surv. 50, 68:1–68:40. doi:10.1145/367

3104031 (2017).368

4. Wu, S. et al. STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases369

2024. doi:10.48550/arXiv.2404.13207.370

5. Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J. & Wu, X. Unifying Large Language Models and371

Knowledge Graphs: A Roadmap. IEEE Transactions on Knowledge and Data Engineering 36,372

3580–3599. doi:10.1109/TKDE.2024.3352100 (2024).373

6. Park, J. S., O’Brien, J., Cai, C. J., Morris, M. R., Liang, P. & Bernstein, M. S. Generative374

Agents: Interactive Simulacra of Human Behavior in Proceedings of the 36th Annual ACM375

Symposium on User Interface Software and Technology (Association for Computing Machinery,376

New York, NY, USA, 2023), 1–22. doi:10.1145/3586183.3606763.377

9

https://doi.org/10.1145/3447772
https://doi.org/10.1145/3447772
https://doi.org/10.1145/3447772
https://doi.org/10.1145/3104031
https://doi.org/10.1145/3104031
https://doi.org/10.1145/3104031
https://doi.org/10.48550/arXiv.2404.13207
https://doi.org/10.1109/TKDE.2024.3352100
https://doi.org/10.1145/3586183.3606763

7. Gao, A. K. Introducing Tuna - A Tool for Rapidly Generating Synthetic Fine-Tuning Datasets378

2023.379

8. Chen, D. et al. Data-Juicer: A One-Stop Data Processing System for Large Language Models380

2023. doi:10.48550/arXiv.2309.02033.381

9. Chen, D. et al. Data-Juicer 2.0: Cloud-Scale Adaptive Data Processing for and with Foundation382

Models 2025. doi:10.48550/arXiv.2501.14755.383

10. Rasmussen, P., Paliychuk, P., Beauvais, T., Ryan, J. & Chalef, D. Zep: A Temporal Knowledge384

Graph Architecture for Agent Memory 2025. doi:10.48550/arXiv.2501.13956.385

11. Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine.386

Scientific Data 10, 67. doi:10.1038/s41597-023-01960-3 (2023).387

12. Mo, B. et al. KGGen: Extracting Knowledge Graphs from Plain Text with Language Models388

2025. doi:10.48550/arXiv.2502.09956.389

13. Zhao, X. et al. AGENTiGraph: An Interactive Knowledge Graph Platform for LLM-based390

Chatbots Utilizing Private Data 2024. doi:10.48550/arXiv.2410.11531.391

14. Larson, J. & Truitt, S. GraphRAG: A new approach for discovery using complex information392

2024.393

15. Tzitzikas, Y., Theoharis, Y. & Andreou, D. On Storage Policies for Semantic Web Repositories394

That Support Versioning in The Semantic Web: Research and Applications (eds Bechhofer, S.,395

Hauswirth, M., Hoffmann, J. & Koubarakis, M.) (Springer, Berlin, Heidelberg, 2008), 705–719.396

doi:10.1007/978-3-540-68234-9_51.397

16. Fernández, J. D., Polleres, A. & Umbrich, J. Towards Efficient Archiving of Dynamic Linked398

Open Data. DIACRON@ ESWC 1377, 34–49 (2015).399

17. Arndt, N., Naumann, P., Radtke, N., Martin, M. & Marx, E. Decentralized Collaborative400

Knowledge Management using Git. Journal of Web Semantics 54, 29–47. doi:10.1016/j.401

websem.2018.08.002 (2019).402

18. Miller, J. J. Graph database applications and concepts with Neo4j in Proceedings of the403

southern association for information systems conference, Atlanta, GA, USA 2324 (2013), 141–404

147.405

19. Edge, D. et al. From local to global: A graph rag approach to query-focused summarization.406

arXiv:2404.16130 (2024).407

20. Mavromatis, C. & Karypis, G. GNN-RAG: Graph neural retrieval for large language model408

reasoning. arXiv:2405.20139 (2024).409

21. Zhu, X., Xie, Y., Liu, Y., Li, Y. & Hu, W. Knowledge graph-guided retrieval augmented410

generation. NAACL (2025).411

22. Huang, Y., Zhang, S. & Xiao, X. KET-RAG: A cost-efficient multi-granular indexing framework412

for graph-rag in KDD (2025), 1003–1012.413

23. Sanmartin, D. KG-RAG: Bridging the gap between knowledge and creativity. arXiv:2405.12035414

(2024).415

24. Wood, D., Lanthaler, M. & Cyganiak, R. RDF 1.1 concepts and abstract syntax. W3C Recom-416

mendation, W3C (2014).417

25. Zaho, Z., Han, S. K. & Kim, J. R. LPG Representation of the Reification of RDF. International418

Journal of Engineering and Technology 7, 562–566. doi:10.14419/ijet.v7i3.34.19382419

(2018).420

26. Besta, M. et al. Demystifying Graph Databases: Analysis and Taxonomy of Data Organization,421

System Designs, and Graph Queries. ACM Comput. Surv. 56, 31:1–31:40. doi:10.1145/422

3604932 (2023).423

27. Chiba, H., Yamanaka, R. & Matsumoto, S. Property Graph Exchange Format 2019. doi:10.424

48550/arXiv.1907.03936. arXiv: 1907.03936 [cs].425

28. Besta, M. & Hoefler, T. Survey and Taxonomy of Lossless Graph Compression and Space-426

Efficient Graph Representations 2019. doi:10.48550/arXiv.1806.01799.427

29. Navarro, G. Compressing web graphs like texts. Dept. Comput. Sci., Univ. Chile, Santiago,428

Chile, Tech. Rep. TR/DCC-2007-2 (2007).429

30. Claude, F. & Navarro, G. Fast and Compact Web Graph Representations. ACM Trans. Web 4,430

16:1–16:31. doi:10.1145/1841909.1841913 (2010).431

10

https://doi.org/10.48550/arXiv.2309.02033
https://doi.org/10.48550/arXiv.2501.14755
https://doi.org/10.48550/arXiv.2501.13956
https://doi.org/10.1038/s41597-023-01960-3
https://doi.org/10.48550/arXiv.2502.09956
https://doi.org/10.48550/arXiv.2410.11531
https://doi.org/10.1007/978-3-540-68234-9_51
https://doi.org/10.1016/j.websem.2018.08.002
https://doi.org/10.1016/j.websem.2018.08.002
https://doi.org/10.1016/j.websem.2018.08.002
https://doi.org/10.14419/ijet.v7i3.34.19382
https://doi.org/10.1145/3604932
https://doi.org/10.1145/3604932
https://doi.org/10.1145/3604932
https://doi.org/10.48550/arXiv.1907.03936
https://doi.org/10.48550/arXiv.1907.03936
https://doi.org/10.48550/arXiv.1907.03936
https://arxiv.org/abs/1907.03936
https://doi.org/10.48550/arXiv.1806.01799
https://doi.org/10.1145/1841909.1841913

31. Boldi, P. & Vigna, S. The webgraph framework I: compression techniques in Proceedings of432

the 13th international conference on World Wide Web (Association for Computing Machinery,433

New York, NY, USA, 2004), 595–602. doi:10.1145/988672.988752.434

32. Brisaboa, N. R., Ladra, S. & Navarro, G. k2-Trees for Compact Web Graph Representation in435

String Processing and Information Retrieval (eds Karlgren, J., Tarhio, J. & Hyyrö, H.) (Springer,436

Berlin, Heidelberg, 2009), 18–30. doi:10.1007/978-3-642-03784-9_3.437

33. Claude, F. & Ladra, S. Practical representations for web and social graphs in Proceedings of the438

20th ACM international conference on Information and knowledge management (Association439

for Computing Machinery, New York, NY, USA, 2011), 1185–1190. doi:10.1145/2063576.440

2063747.441

34. Brisaboa, N. R., Ladra, S. & Navarro, G. Compact representation of Web graphs with extended442

functionality. Information Systems 39, 152–174. doi:10.1016/j.is.2013.08.003 (2014).443

35. Feng, F. et al. GenomicKB: a knowledge graph for the human genome. Nucleic Acids Research444

51, D950–D956. doi:10.1093/nar/gkac957 (2023).445

36. Frommhold, M., Piris, R. N., Arndt, N., Tramp, S., Petersen, N. & Martin, M. Towards Ver-446

sioning of Arbitrary RDF Data in Proceedings of the 12th International Conference on Se-447

mantic Systems (Association for Computing Machinery, New York, NY, USA, 2016), 33–40.448

doi:10.1145/2993318.2993327.449

37. Meinhardt, P., Knuth, M. & Sack, H. TailR: a platform for preserving history on the web of450

data in Proceedings of the 11th International Conference on Semantic Systems (Association for451

Computing Machinery, New York, NY, USA, 2015), 57–64. doi:10.1145/2814864.2814875.452

38. Cassidy, S. & Ballantine, J. Version Control for RDF Triple Stores. ICSOFT (ISDM/EHST/DC)453

7, 5–12 (2007).454

39. Graube, M., Hensel, S. & Urbas, L. R43ples: Revisions for triples in Proceedings of the 1st455

Workshop on Linked Data Quality co-located with 10th International Conference on Semantic456

Systems (SEMANTiCS 2014) (2014).457

40. Vander Sande, M., Colpaert, P., Verborgh, R., Coppens, S., Mannens, E. & Van de Walle, R.458

R&Wbase: Git for triples. LDOW 996 (2013).459

41. Gil, J. P., Coquery, E., Samuel, J. & Gesquiere, G. ConVer-G: Concurrent versioning of460

knowledge graphs 2024. doi:10.48550/arXiv.2409.04499.461

42. Theodorakis, G., Clarkson, J. & Webber, J. Aion: Efficient Temporal Graph Data Management462

in (Paestum, Italy, 2024). doi:10.48786/EDBT.2024.43.463

43. Halilaj, L., Grangel-González, I., Coskun, G. & Auer, S. Git4Voc: Git-based Versioning for464

Collaborative Vocabulary Development 2016. doi:10.48550/arXiv.1601.02433.465

44. RDF 1.1 N-Quads 2014.466

45. RDF Binary using Apache Thrift 2025.467

46. Fernandez, J. D., Martínez-Prieto, M. A., Gutiérrez, C., Polleres, A. & Arias, M. Binary RDF468

Representation for Publication and Exchange (HDT) SSRN Scholarly Paper. Rochester, NY,469

2013. doi:10.2139/ssrn.3198999.470

47. Skarlinski, M. D. et al. Language agents achieve superhuman synthesis of scientific knowledge471

2024. doi:10.48550/arXiv.2409.13740.472

48. Ai2. Introducing Ai2 Paper Finder 2025.473

49. Alber, D. A. et al. Medical large language models are vulnerable to data-poisoning attacks.474

Nature Medicine 31, 618–626 (2025).475

50. Alsentzer, E. et al. Few shot learning for phenotype-driven diagnosis of patients with rare476

genetic diseases. npj Digital Medicine 8, 380 (2025).477

51. Yang, J. et al. Poisoning medical knowledge using large language models. Nature Machine478

Intelligence 6, 1156–1168 (2024).479

52. Gao, S. et al. Empowering Biomedical Discovery with AI Agents 2024. doi:10.48550/arXiv.480

2404.02831.481

53. Lobentanzer, S. et al. Democratizing Knowledge Representation with BioCypher. Nature482

Biotechnology 41, 1056–1059. doi:10.1038/s41587-023-01848-y (2023).483

54. Callahan, T. J. et al. An open source knowledge graph ecosystem for the life sciences. Scientific484

Data 11, 363 (2024).485

11

https://doi.org/10.1145/988672.988752
https://doi.org/10.1007/978-3-642-03784-9_3
https://doi.org/10.1145/2063576.2063747
https://doi.org/10.1145/2063576.2063747
https://doi.org/10.1145/2063576.2063747
https://doi.org/10.1016/j.is.2013.08.003
https://doi.org/10.1093/nar/gkac957
https://doi.org/10.1145/2993318.2993327
https://doi.org/10.1145/2814864.2814875
https://doi.org/10.48550/arXiv.2409.04499
https://doi.org/10.48786/EDBT.2024.43
https://doi.org/10.48550/arXiv.1601.02433
https://doi.org/10.2139/ssrn.3198999
https://doi.org/10.48550/arXiv.2409.13740
https://doi.org/10.48550/arXiv.2404.02831
https://doi.org/10.48550/arXiv.2404.02831
https://doi.org/10.48550/arXiv.2404.02831
https://doi.org/10.1038/s41587-023-01848-y

55. Johnson, R. et al. ClinVec: Unified Embeddings of Clinical Codes Enable Knowledge-Grounded486

AI in Medicine. medRxiv, 2024–12 (2024).487

56. Lu, Y. & Wang, J. KARMA: Leveraging Multi-Agent LLMs for Automated Knowledge Graph488

Enrichment. arXiv:2502.06472 (2025).489

57. Liu, B., Zhang, J., Lin, F., Yang, C., Peng, M. & Yin, W. SymAgent: A neural-symbolic self-490

learning agent framework for complex reasoning over knowledge graphs in Proceedings of the491

ACM on Web Conference (2025), 98–108.492

58. Chiba, H. & Voß, J. Property Graph Exchange Format (PG). doi:10.5281/zenodo.13859531493

(2024).494

59. pola-rs/polars 2025.495

60. apache/arrow-rs 2025.496

61. Vohra, D. in Practical Hadoop Ecosystem: A Definitive Guide to Hadoop-Related Frameworks497

and Tools (ed Vohra, D.) 325–335 (Apress, Berkeley, CA, 2016). doi:10.1007/978-1-4842-498

2199-0_8.499

62. apache/parquet-java 2025.500

63. Collet, Y. & Kucherawy, M. Zstandard Compression and the application/zstd Media Type501

Request for Comments RFC 8478 (Internet Engineering Task Force, 2018). doi:10.17487/502

RFC8478.503

64. Chandak, P., Huang, K. & Zitnik, M. Building a Knowledge Graph to Enable Precision Medicine.504

Scientific Data 10, 67. doi:10.1038/s41597-023-01960-3 (2023).505

12

https://doi.org/10.5281/zenodo.13859531
https://doi.org/10.1007/978-1-4842-2199-0_8
https://doi.org/10.1007/978-1-4842-2199-0_8
https://doi.org/10.1007/978-1-4842-2199-0_8
https://doi.org/10.17487/RFC8478
https://doi.org/10.17487/RFC8478
https://doi.org/10.17487/RFC8478
https://doi.org/10.1038/s41597-023-01960-3

A Technical Appendices and Supplementary Material506

A.1 Formal definition of labeled property graphs507

Formally, LPGs can be represented as a 9-tuple G = (V,E, L, lV , lE ,K,W, pV , pE) [26], where:508

• V is the set of nodes,509

• E is the set of edges,510

• L is the set of labels,511

• lV : V → P(L) is the function that maps nodes to their labels,512

• lE : E → P(L) is the function that maps edges to their labels,513

• K is the set of all possible property keys,514

• W is the set of all possible property values,515

• pV : V → K ×W is the function that maps nodes to their property key-value pairs, and516

• pE : E → K ×W is the function that maps edges to their property key-value pairs.517

Note that under this formulation lV and lE map to the power set of L, and not to L itself. Therefore,518

every node and edge can have one label, more than one label, or no labels associated.519

A.2 Graph compression algorithm520

We designed binary encoding and compression techniques to efficiently store and represent labeled521

property (LP) graphs. This enabled us to encode graph structure and metadata in a single, reduced-size522

file, and simplified storage in teh git server. Initially, we attempted to identify and use a pre-existing523

binary encoding format for LPG; however, as described in Section 2.3, given the recency of the LPG524

format, we could not identify any. Therefore, we developed our own binary encoding format for525

compressing graphs, which we refer to as DIAMOND. The compression steps are as follows (Figure526

5).527

Figure 5: The DIAMOND graph compression algorithm. Each step of the compression algorithm
is depicted.

Ingestion. First, we ingest the data in a standard format used to represent LPG graphs, for example,528

in Graphviz DOT, JSON lines, or PG file formats. If the input format is not PG-JSON, the original529

file is first converted to PG-JSON. This avoids having to define a separate compression routine for530

every standard.531

13

Schema extrapolation. Next, we extrapolate a strongly typed schema for the graph by sifting532

through all the node and edge records to understand their structure. The first step in the schema533

extrapolation is to split all the nodes and edges into groups. Groups are understood to potentially534

have distinct properties. Separation into groups allows us to find an efficient representation for each535

group that avoids having many nulls in our final binary file.536

We create these groups by separating graph elements by label combinations, with all nodes with a537

specific order-agnostic label combination grouped together. The same is done for edges. In practice,538

we achieve order-agnostic grouping by lexicographically sorting the labels, but the compression539

mechanism is method-agnostic. Each group within each element type is assigned an identifier in the540

form of a natural number that will be used to reference the group in other parts of the algorithm. The541

full pseudocode for GROUP_BY_LABELS can be found in the appendix under Algorithm 1.542

Once all elements have been partitioned into their respective groups, the types of their properties are543

inferred (see Algorithm 2). Following the PG-JSON standard [58], we assume that all properties544

are optional. That is, a node with labels {animal, dog} might have property nicknames: ["puppy",545

"pup"] declared but another node with the same labels might not. According to the PG-JSON546

standard [58], all properties must have as their value a list of type Boolean, String or Number547

(floating point). For each element in a group we iterate collecting all the properties present and storing548

their corresponding types. There are two potential sources of conflict in this scenario.549

1. Mismatched type within a property value list. The value for a property list in the PG-550

JSON format can hold elements of different primitive types (e.g., ["puppy", 1]). This is551

an unsupported feature in DIAMOND, as much of the space gains come from leveraging the552

assumption that properties will always have the same type.553

2. Mismatched type for a property across elements. Two elements belonging to the same554

group could have lists composed of different values. Once again, DIAMOND relies on all555

instances of a property within a group being of the same type, so an error is found if a556

mismatch occurs.557

If no conflicts are found the result after this step is finished is a mapping from a group identifier to a558

map from property name to value list inner type. The full implementation of the type inference for a559

specific group can be found in the appendix under Algorithm 3.560

Table creation. We create two tables, one for nodes and one edges, that contain metadata about the561

group. They each have two columns, id and type. The type column contains in each cell a value of562

type String[] that represents a unique label combination and the id column contains the numerical563

identifier assigned to that combination in the group partitioning step. For the detailed algorithm see564

Algorithm 4.565

Following the creation of the group metadata tables, we proceed to create one table per element group566

to hold the information about its elements. For node groups each table consists of an id column that567

holds the node identifier and one column per possible property for that node group (see Algorithm 5).568

For edge groups each table consists of columns id, from, to, undirected plus one column per569

possible property (see Algorithm 6).570

Transform tables to efficient encoding. We encode all the group tables efficiently in memory by571

using Polars [59] data frames. Polars data frames are tables consisting of multiple Apache Arrow572

columns [60]. Arrow is a software framework for dealing with columnar data. It provides efficient573

in-memory storage for various data types as well as utility functions for operating on that data. For574

each node and edge group we iterate over their elements and convert each their static (e.g., id, from)575

and dynamic (e.g., nickname) properties to Arrow series (see Algorithm 7) by finding the appropriate576

Arrow data type that efficiently represents the underlying values. After all columns for a group are577

created we group them in a Polars data frame, attaching the appropriate column name to the data578

frame header.579

Serializing the graph. We obtain a binary file by saving all the data frames created so far to disk580

using the Apache Parquet format [61, 62] and grouping the files together using tar. We save each581

data frame as a column-oriented Parquet file, compressing every column with Zstandard [63] at level582

3 – an intermediate setting that offers a favorable trade-off between compression ratio and processing583

speed – and partition the output into row groups of 1024× 1024 rows (roughly one million rows) so584

14

that the files remain highly compressible while still allowing efficient parallel reads and selective585

access to individual subsets of the data. Finally, all Parquet tables are combined together into a single586

on-disk file, which is further compressed to minimize the on-disk file size. The final tar-compressed587

file is saved with a .diamond extension.588

By applying these steps – data ingestion, schema inference, normalization, binary encoding, and589

bundling – the DIAMOND algorithm losslessly shrinks the size of the original graph data.590

A.2.1 Algorithms591

Algorithm 1 GROUP_BY_LABELS

Input: elements ▷ a list of items, each with a labels() method
Output: groups ▷ a map from a set of labels to (type_id, list of items)

1: groups← empty map
2: next_type_id← 0
3: for all item in elements do
4: labels← item.labels()
5: if labels is not empty then
6: key← sort(labels) ▷ sort alphabetically for a stable key
7: if key not in groups then
8: groups[key]← (next_type_id, empty list)
9: next_type_id← next_type_id +1

10: end if
11: append item to the list inside groups[key]
12: end if
13: end for
14: return groups

Algorithm 2 INFER_PROPERTY_TYPES_FOR_GROUPS

Input: groups ▷ a map from a set of labels to (type_id, list of items)
Output: prop_types_map ▷ a map from the same label set to (property name → data type)

1: prop_types_map← empty map
2: for all labels in groups do
3: items← groups[labels].items
4: properties_list← list of item.properties() for every item in items
5: status, inferred← INFERTYPES(properties_list)
6: if status is Success then
7: prop_types_map[labels]← inferred
8: else if status is MismatchedTypesWithinItem then
9: raise TypeInferenceFailed(labels, status.property)

10: else ▷ mismatched types across items
11: raise MismatchedListInnerType(labels, status.property, status.expected)
12: end if
13: end for
14: return prop_types_map

15

Algorithm 3 INFER_TYPES_FOR_PROPERTIES_VEC

Input: properties_vec ▷ list of property dictionaries
Output: types_map ▷ map (property name→ data type)

1: types_map← empty map
2: for all properties in properties_vec do
3: for all (key, value_list) in properties do
4: status, data_type← INFERTYPE(value_list)
5: ▷ Iterates over list checking all values are of the same type
6: if status is ErrorWithinList then
7: raise MismatchedTypesWithinItem(key, status.data_types)
8: end if
9: if key in types_map then

10: prev_type← types_map[key]
11: if prev_type ̸= data_type then
12: raise MismatchedTypesAcrossItems(key, prev_type, data_type)
13: end if
14: end if
15: types_map[key]← data_type
16: end for
17: end for
18: return types_map

Algorithm 4 BUILD_TYPES_DATA_FRAME

Input: type_map ▷ map from labels to (type_id, list of items)
Output: df ▷ table with two columns: id (integer) and type (list of labels)

1: type_ids← empty list
2: type_labels← empty list
3: for all (labels, (tid, _)) in type_map do
4: append tid to type_ids
5: append labels to type_labels
6: end for
7: col_id← CREATECOLUMN("id", type_ids)
8: col_type← CREATELISTCOLUMN("type", type_labels)
9: df← CREATEDATAFRAME(col_id, col_type)

10: return df

Algorithm 5 BUILD_DATA_FRAME_FOR_NODE_GROUP

Input: nodes ▷ list of node objects
Input: property_types ▷ map (property name→ data type)
Output: df ▷ table with an id column plus one column per property

1: columns← empty list
2: append COLUMN("id", list of node.id for each node in nodes) to columns
3: prop_cols← GETPROPERTYCOLUMNS(nodes, property_types)
4: append every element of prop_cols to columns
5: df← CREATEDATAFRAME(columns)
6: return df

16

Algorithm 6 BUILD_DATA_FRAME_FOR_EDGE_GROUP

Input: edges ▷ list of edge objects
Input: property_types ▷ map (property name→ data type)
Output: df ▷ table with columns id, from, to, undirected, plus one column per property

1: columns← empty list
2: append COLUMN("id", list of edge.id for each edge in edges) to columns
3: append COLUMN("from", list of edge.from for each edge in edges) to columns
4: append COLUMN("to", list of edge.to for each edge in edges) to columns
5: append COLUMN("undirected", list of edge.undirected for each edge in edges) to

columns
6: prop_cols← GETPROPERTYCOLUMNS(edges, property_types)
7: append every element of prop_cols to columns
8: df← CREATEDATAFRAME(columns)
9: return df

Algorithm 7 GET_DATA_FRAME_PROPERTY_COLUMNS

Input: elements ▷ list of items, each with a properties() map
Input: property_types ▷ map (property name→ data type)
Output: columns ▷ list of table columns, one per property

1: columns← empty list
2: for all (prop_name, dtype) in property_types do
3: builder← CREATELISTBUILDER(dtype)
4: for all item in elements do
5: values← item.properties()[prop_name] ▷ may be missing
6: if values exists then
7: series← SERIESFROMVALUES(values, dtype)
8: builder.add(series)
9: else

10: builder.add_null()
11: end if
12: end for
13: col← COLUMN(prop_name, builder.finish())
14: append col to columns
15: end for
16: return columns

A.3 Benchmarking DIAMOND592

A.3.1 Benchmarking on diverse synthetic graphs593

To evaluate the performance of the DIAMOND library under various graph characteristics and scales,594

we conducted a benchmarking study using synthetically generated graphs. This approach allowed us595

to control specific graph properties and observe their impact on compression efficiency and memory596

consumption.597

First, we designed a synthetic graph generator parameterized by three variables: µ ∈ R, σ ∈ R, and598

p ∈ [0, 1]. The parameters µ and σ governed the number of properties associated with a group of599

nodes or edges, which followed a Normal distribution with mean µ and standard deviation σ. The600

parameter p represented the probability that a given node or edge would have a non-null value for a601

specific property. By adjusting µ, σ, and p, we could simulate graphs with varying levels of property602

density.603

Using this generator, we created LPGBENCH, a dataset of diverse graphs with varying numbers of604

nodes, edges, properties, and labels per element. The configurations in LPGBENCH included:605

• Micro: 10 nodes, 100 edges, maximum 1 label per element, µ = 2.0, σ = 1.0, p = 0.3,606

maximum 1 value per selected property.607

17

• Small: 1,000 nodes, 10,000 edges, maximum 1 label per element, µ = 3.0, σ = 1.0,608

p = 0.5, maximum 2 values per selected property.609

• Medium: 100,000 nodes, 1,000,000 edges, maximum 1 label per element, µ = 4.0, σ = 1.0,610

p = 0.7, maximum 2 values per selected property.611

• Large: 1,000,000 nodes, 10,000,000 edges, maximum 2 labels per element, µ = 5.0,612

σ = 1.0, p = 0.9, maximum 3 values per selected property.613

We evaluated DIAMOND on LPGBENCH to understand the performance characteristics of the614

DIAMOND library and compare the .diamond format against other popular graph representations.615

Specifically, our benchmarking analyses were as follows.616

Figure 6: File size vs. graph format across graph sizes. The .diamond file size is shown in red, as
compared to JSON and JSON Lines.

File size versus graph format (Figure 6). This analysis aimed to establish a baseline comparison617

of the on-disk storage requirements for different graph formats across representative graph sizes618

(micro, small, medium, and large). By fixing the graph structure and size, we directly compared the619

inherent storage overhead and compression effectiveness of each format without the influence of620

scaling property densities. As shown in Figure 6, at the smallest graph sizes with only 10 nodes and621

100 edges, DIAMOND was outperformed by JSON and JSON lines. However, at even small graph622

sizes with 1,000 nodes and 10,000 edges, the .diamond file is significantly smaller than its JSON and623

JSON lines counterparts. Once the graph size scales to 10 million edges, the DIAMOND-compressed624

file is only 5.69% the size of JSON Lines and 6.32% the size of JSON.625

File size across graph sizes and property densities (Figure 7). This analysis investigated how626

the file size of each graph format scales as the total number of graph elements increases, while627

maintaining consistent property distributions defined by µ, σ and p. We sought to understand the628

scalability of each format and evaluate how efficiently they handle increasing graph size under629

different scenarios of property density and sparsity. As depicted in Figure 7, the compression ratio630

achieved by DIAMOND, relative to JSON or JSON Lines, improves as properties become more dense631

(e.g., comparing results for p = 0.3 versus p = 0.9, note that the y-axis is shared across the panels).632

This observation aligns with our hypothesis that DIAMOND achieves greater compression efficiency633

on graphs with higher property density.634

18

Figure 7: File size across graph sizes and property densities. The .diamond file size is shown in
red, as compared to JSON and JSON Lines.

A.3.2 Benchmarking on real-world KGs635

Beyond our synthetic benchmarks, we also sought to test the performance of DIAMOND on a real-636

world KG. When applied on PrimeKG [64], a popular biomedical KG with over 55,000 downloads on637

Harvard Dataverse at the time of writing, DIAMOND achieves up to 34.1× compression as compared638

to other prevalent LPG graph formats, including CSV header, PG, YARS-PG, DOT, Cypher, and639

JSONL (Figure 8). It consumes only 8.9% the size of the next smallest format and uses 2.9% of640

the space required by the JSONL representation of the KG. Therefore, we successfully designed a641

compressed format for LPG graphs that outperforms state-of-the-art graph representations.642

Figure 8: DIAMOND performance on a real-world KG. As compared to other popular graph-
encoding formats, DIAMOND achieves up to a 34.1× compression ratio when used to compress
PrimeKG [11].

A.4 Production-readyness of DIAMOND643

The DIAMOND library employs a continuous integration and continuous deployment (CI/CD) pipeline644

based on GitHub actions to automate testing and streamline code release. CI/CD generates releases645

based on the code modified in a pull request. The CI/CD pipeline is as follows:646

Python continuous integration. If Python binding code is altered, a workflow is triggered that647

performs linting, uses Bandit for security analysis, uses interrogate to evaluate docstring coverage,648

performs static analysis and type checking with mypy, and performs unit testing with pytest. All649

these checks are orchestrated via a Makefile.650

19

Rust continuous integration. Similarly, modifications to the Rust binding code trigger a separate651

workflow to lint and format the Rust code. A scheduled workflow is also in place to clear CI/CD652

caches.653

Continuous deployment. Upon pushing Python binding code to the trunk, a release workflow654

is executed. This comprehensive workflow generates Python wheels for a range of platforms and655

architectures, including various Linux targets (x86_64, x86, aarch64, armv7, s390x, ppc64le),656

Windows (x64, x86), and macOS (x86_64, aarch64), creates a release following semantic versioning;657

and publishes the package to PyPI.658

A.5 Multi-language support in DIAMOND659

The following code snippets illustrate the core graph loading and saving operations using the660

PropertyGraph class across different language bindings for the DIAMOND library. First, the661

user can instantiate a PropertyGraph object by reading data from a source file in the JSON Lines662

format using methods like read_pg_jsonl or language-specific equivalents. This process parses the663

input data and constructs the in-memory graph representation. Subsequently, the write_diamond664

(or equivalent) method allows the user to serialize the PropertyGraph object into the .diamond665

binary format. This can be accomplished as follows in the Rust core:666

1 use diamond_core::PropertyGraph;
2

3 fn main() -> Result<(), Box<dyn std::error::Error>> {
4 let pg = PropertyGraph::read_pg_jsonl("./data/my_graph.jsonl")
5 .expect("Error reading graph");
6 println!("Successfully read graph");
7

8 pg.write_diamond("./data/my_graph.diamond")
9 .expect("Error writing diamond file");

10 println!("Successfully wrote graph");
11 }

The TypeScript binding allows the same operations to be performed in TypeScript:667

1 import { PropertyGraph } from "diamond-graph";
2

3 const pg = PropertyGraph.readPgJsonl(inputJsonlPath);
4 console.log(`Successfully read graph from ${inputJsonlPath}`);
5 pg.writeDiamond(outputDiamondPath);

Finally, the Python binding allows the same operations to be performed in Python:668

1 from diamond_graph import PropertyGraph
2

3 pg = PropertyGraph.read_pg_jsonl("./data/my_graph.jsonl")
4 pg.write_diamond("./data/my_graph.diamond")

A.6 Identifying graph differences through recursion669

To compute the differences between two graphs, we recursively apply two generic primitives,670

computeSetChanges and computeListChanges. These graph deltas are then useful in the merging671

process.672

20

A.6.1 Computing set changes673

As described in Algorithm 15, we first define a primitive to determine the changes necessary to674

transform an initial “source” set of elements, denoted as Ssource, into a “target” set, Starget, by675

identifying elements that must be added, removed, or modified. We define a comparison function,676

fcompare(e1, e2), which evaluates any two elements e1 and e2 (one from the source and one from the677

target) and determines if they are identical (Equal), if the target element is a modified version of the678

source element (Modified), or if they are otherwise distinct.679

Next, we attempt to establish correspondences between elements in Ssource and Starget. The algorithm680

iterates through each element si ∈ Ssource. For each si that has not yet been matched, it then scans681

through elements tj ∈ Starget that also remain unmatched. Upon comparing si and tj using fcompare,682

if an Equal relationship is found, si is recorded as unchanged, and both si and tj are marked as683

accounted for, preventing their re-evaluation. The search for a match for si then concludes. Similarly,684

if fcompare indicates a Modified relationship, the pair (si, tj) is stored to signify that si transforms685

into tj , both elements are marked as accounted for, and the algorithm moves to the next source686

element. This systematic pairing ensures that each element from either set is part of at most one such687

Equal or Modified relationship.688

Following this matching phase, the algorithm identifies elements for removal by examining the source689

set. Any element si ∈ Ssource that was not marked as matched during the previous step is considered690

to be absent from the target set (either directly or as a modified version) and is thus designated for691

removal. Conversely, elements for addition are identified by examining the target set. Any element692

tj ∈ Starget that remains unmarked is interpreted as a new element not present in the source set and is693

designated for addition.694

Ultimately, the algorithm outputs four collections: a list of elements to be added (Ladd), a list of695

elements to be removed (Lremove), a list of pairs representing modifications (Lmodify), and a list of696

elements that were found in both sets and remained unchanged (Lno_change). These collections697

collectively define the delta transforming Ssource into Starget. The primary computational load arises698

from the nested iterative search for matches, leading to a worst-case time complexity of O(|Ssource| ·699

|Starget|) comparisons.700

A.6.2 Computing list changes701

Next, as shown in Algorithm 14, we define a primitive to determine the most efficient sequence of702

changes necessary to transform an initial “source” list of elements into a “target” list using dynamic703

programming. Note that, unlike Algorithm 15, this primitive deals with ordered lists rather than704

unordered sets.705

The first step involves constructing the cost matrix, where each cell represents the minimum number706

of operations required to convert a prefix of the source sequence into a prefix of the target sequence.707

The matrix edges are initialized, which corresponds to transforming a sequence into an empty one708

(requiring deletions) or an empty sequence into a target sequence (requiring insertions). Then, the709

rest of the matrix is iteratively computed. For any given pair of prefixes, the last elements of these710

prefixes are considered to calculate the transformation cost. If these elements are deemed identical by711

a provided comparison function fcompare(e1, e2), no new cost is incurred, and the value is carried over712

from a previous state. If they differ, the algorithm explores the costs of three potential operations:713

deleting the element from the source, inserting the element into the target, or modifying the source714

element to match the target element. The comparison function can assign different costs based on715

whether differing elements are considered “modified” versions or entirely distinct. The algorithm716

always chooses the operation that produces the minimum cumulative cost for that particular cell.717

Once this cost matrix is computed, the value in the cell corresponding to the full source and target718

sequences represents the total minimum cost for the entire transformation. Starting from this final719

cell, the algorithm traces a path back to the beginning of the matrix. The path taken is determined720

by reversing the equality, modification, addition, or removal decisions made during the matrix721

construction. This path directly translates into the sequence of operations that optimally transform722

the source sequence into the target sequence. The final output is this ordered list of changes. This723

algorithm is quadratic in terms of the lengths of the two sequences, both in time and memory.724

21

A.6.3 Leveraging change primitives to compute graph differences725

We recursively utilize the following primitives to compare two graphs, starting at the highest level726

and traversing all the way down to single property lists. This level of detail enables us to write very727

flexible logic for the graph merging strategies.728

Algorithm 8 COMPARE_GRAPHS

Input: source, target ▷ full graph objects
Output: graphChanges ▷ {nodeChanges, edgeChanges}

1: nodeChanges← COMPARENODES(source.nodes, target.nodes)
2: edgeChanges← COMPAREEDGES(source.edges, target.edges)
3: return { nodeChanges, edgeChanges }

Algorithm 9 COMPARE_NODES

Input: source, target ▷ lists of nodes
Output: nodeChanges ▷ add / remove / modify / unchanged summary

1: procedure CMPNODE(n_a, n_b)
2: if NODEKEY(n_a) ̸= NODEKEY(n_b) then
3: return Different
4: end if
5: labelDiffs← COMPARELABELS(n_a.labels, n_b.labels)
6: propertyDiffs← COMPAREPROPERTIES(n_a.properties, n_b.properties)
7: labelsEqual← every change in labelDiffs is Equal
8: propsEqual← propertyDiffs.add = remove = modify = 0
9: return if labelsEqual ∧ propsEqual then Equal else Modified

10: end procedure
11: nodeChanges← COMPUTESETCHANGES(Set(source), Set(target), cmpNode)
12: return nodeChanges

Algorithm 10 COMPARE_EDGES

Input: source ▷ list of edges in graph A
Input: target ▷ list of edges in graph B
Output: edgeChanges ▷ add / remove / modify / unchanged summary

1: procedure CMPEDGE(e_a, e_b) ▷ returns Equal, Modified, Different
2: if EDGEKEY(e_a) ̸= EDGEKEY(e_b) then
3: return Different ▷ different IDs→ cannot match
4: end if
5: labelDiffs← COMPARELABELS(e_a.labels, e_b.labels)
6: propertyDiffs← COMPAREPROPERTIES(e_a.properties, e_b.properties)
7: sameEnds← (e_a.from = e_b.from) ∧ (e_a.to = e_b.to)
8: sameDir← (e_a.undirected = e_b.undirected)
9: labelsEqual← every change in labelDiffs is Equal

10: propsEqual← propertyDiffs.add = remove = modify = 0
11: return if sameEnds ∧ sameDir ∧ labelsEqual ∧ propsEqual then Equal else

Modified
12: end procedure
13: edgeChanges← COMPUTESETCHANGES(Set(source), Set(target), cmpEdge)
14: return edgeChanges

22

Algorithm 11 COMPARE_LABELS

Input: srcLabels, tgtLabels ▷ ordered lists
Output: labelChanges ▷ add / remove / modify / unchanged summary

1: procedure CMPLABEL(a, b)
2: return if a = b then Equal else Different
3: end procedure
4: return COMPUTELISTCHANGES(srcLabels, tgtLabels, cmpLabel)

Algorithm 12 COMPARE_PROPERTIES

Input: srcProps, tgtProps ▷ maps key→ list
Output: propChanges ▷ set-style diff for (key, list) entries

1: procedure CMPENTRY((k_a, v_a), (k_b, v_b))
2: if k_a ̸= k_b then
3: return Different
4: end if
5: listDiffs← COMPAREPROPERTYLIST(v_a, v_b)
6: return if every change in listDiffs is Equal then Equal else Modified
7: end procedure
8: propChanges ← COMPUTESETCHANGES(Set(Entries(srcProps)),

Set(Entries(tgtProps)), cmpEntry)
9: return propChanges

Algorithm 13 COMPARE_PROPERTY_LIST

Input: srcList, tgtList ▷ ordered value lists
Output: valueChanges ▷ list-style diff result

1: procedure CMPVALUE(a, b)
2: return if a = b then Equal else Different
3: end procedure
4: return COMPUTELISTCHANGES(srcList, tgtList, cmpValue)

A.7 Using graph differences to solve the three-way merge729

When merging LPGs, a crucial first step is to reliably identify corresponding nodes and edges730

across different versions of the graph: base, ours, and theirs. We achieve this using unique keys731

generated by the nodeKey and edgeKey functions. This keying strategy allows us to distinguish732

between structural changes (deletion or addition) and modifications. If a change causes an element’s733

key to differ from its base version, then that change is regarded as structural (i.e., the old element734

was deleted and a new element was added). A modification occurs when an element retains the same735

key but its labels or properties are altered. Similarly to our diffing computation approach, we use736

primitives based on sets and lists to perform all the necessary computations to merge graphs across737

two branches.738

The mergeSets algorithm implements a three-way merge for sets, designed to reconcile differences739

between a local version (Sours) and a remote version (Stheirs), both derived from a common ancestor740

(Sbase). The algorithm is generic, operating on elements of type T. It leverages a caller-provided741

comparison function, fcompare : (T, T) → ComparisonResult, to determine if two elements are742

identical, modified, or distinct. A diffing function, fdiff (which defaults to computeSetChanges), is743

used to calculate the changes (SetChanges<T>, comprising additions, removals, and modifications)744

between Sbase and Sours, and between Sbase and Stheirs. An important aspect of this algorithm is its745

pluggable conflict resolution mechanism, defined by a MergeStrategy<T> (denoted as Σ), which746

dictates how disagreements are handled. The function returns a MergeResult<T> containing the747

merged set (Smerged) and an array of any conflicts encountered.748

The process begins by computing the deltas: ∆ours = fdiff(Sbase, Sours, fcompare) and ∆theirs =749

fdiff(Sbase, Stheirs, fcompare). These deltas itemize elements added to, removed from, or modified750

23

in Sours and Stheirs relative to Sbase. For efficient lookup, modifications are stored in maps (Mours,751

Mtheirs), mapping base elements to their modified versions, and deletions are stored in sets (Dours,752

Dtheirs). The algorithm then iterates through each element ebase ∈ Sbase to determine its fate in Smerged.753

The following cases arise. Let e′ours be the modified version of ebase.754

First, cases 1-4 consider when the element was modified in Sours (Figure 9, left panel).755

Case 1: modified identically in both branches. If ebase was also modified in Stheirs to e′theirs (a756

“modify-modify” scenario), and if fcompare(e
′
ours, e

′
theirs) yields Equal, e′ours (or e′theirs) is added to757

Smerged.758

Case 2: modified differently in both branches. Otherwise, a MergeConflict<T> of type759

“modify-modify” is created with ebase, e′ours, and e′theirs. The strategy Σ is invoked. If it returns760

a resolved value, that value is added to Smerged; otherwise, the conflict is recorded.761

Case 3: modified in ours, deleted in theirs. If ebase was deleted in Stheirs (a “modify-delete”762

scenario, from ours/theirs perspective): A conflict of type “modify-delete” is created (with ebase and763

e′ours). The strategy Σ is invoked. If resolved, the result is added to Smerged; otherwise, the conflict is764

recorded.765

Case 4: modified in ours, unchanged in theirs. If ebase was unchanged in Stheirs (not modified or766

deleted): e′ours is added to Smerged.767

Next, cases 5-7 consider when the element was deleted in Sours, not modified (Figure 9, left panel).768

Case 5: deleted in ours, modified in theirs. If ebase was modified in Stheirs to e′theirs, a conflict of769

type “delete-modify” is created (with ebase and e′theirs). The strategy Σ is invoked. If resolved, the770

result is added to Smerged; otherwise, the conflict is recorded.771

Case 6: deleted in ours, unchanged in theirs. If ebase was unchanged in Stheirs, ebase is considered772

deleted and is not added to Smerged.773

Case 7: deleted in both. If ebase was also deleted in Stheirs, ebase is considered deleted and is not774

added to Smerged.775

Next, cases 8-10 consider when the element was unchanged Sours, not modified or deleted (Figure 9,776

left panel).777

Case 8: unchanged in ours, modified in theirs. If ebase was modified in Stheirs to e′theirs, e
′
theirs is778

added to Smerged.779

Case 9: unchanged in ours, deleted in theirs. If ebase was deleted in Stheirs, ebase is not added to780

Smerged.781

Case 10: unchanged in both. If ebase was also unchanged in Stheirs, ebase is added to Smerged.782

After processing all elements from Sbase, the algorithm handles additions. Let Aours be the set of783

elements added in Sours and Atheirs be those added in Stheirs. The algorithm iterates through each784

aours ∈ Aours. It attempts to find a corresponding atheirs ∈ Atheirs such that fcompare(aours, atheirs) is785

either Equal or Modified. A set SmatchedTheirs tracks elements from Atheirs that have already been786

matched. If such a match amatch ∈ Atheirs is found, then amatch is added to SmatchedTheirs. The following787

cases then arise (Figure ??, right panel).788

Case 11: added identically to both. If fcompare(aours, amatch) was Equal, so aours is added to Smerged789

(representing a common addition).790

24

Case 12: added differently to both. If fcompare(aours, amatch) was Modified (an “add-add-different”791

scenario), so a conflict of type “add-add-different” is created with aours and amatch. The strategy Σ is792

invoked. If resolved, the result is added to Smerged; otherwise, the conflict is recorded.793

Case 13: added in ours, not added in theirs. If no such match is found for aours: aours is considered794

a unique addition by “ours” and is added to Smerged.795

Case 14: not added in ours, added in theirs. Finally, any elements atheirs ∈ Atheirs that were not796

in SmatchedTheirs are considered unique additions by “theirs” and are added to Smerged.797

Present in base

Theirs
Ours + − ∼ /

+ × × × ×
− × 7 5 6
∼ × 3 1,2 4
/ × 9 8 10

Not present in base

Theirs
Ours + − ∼ /

+ 11,12 × × 13
− × × × ×
∼ × × × ×
/ 14 × × ×

No conflict Potential conflict Impossible case

Figure 9: Cases for merging set primitives. Case 2 results in a “modify-modify-different” conflict,
Case 3 in a “modify-delete” conflict, Case 5 in a “delete-modify” conflict, and Case 12 in a “add-add-
different” conflict. All green cases results in no conflict, and cases 1 and 11 specifically result in no
conflict because the added or modified elements in both branches are equal modulo fcompare. All red
cases cannot occur (e.g., a branch cannot add an element that already existed in base).

The MergeStrategy<T>Σ is a function type (MergeConflict<T>×Fcompare → Resolution<T>).798

A Resolution<T> can either indicate a successful resolution with a resulting value, or that the con-799

flict remains unresolved. The default strategy, throwAllConflictsStrategy, leaves all conflicts800

unresolved. An example strategy like timestampWins might resolve “modify-modify” conflicts by801

selecting the version with a more recent updatedAt timestamp.802

The algorithm concludes by returning Smerged and a list of all MergeConflict<T> objects for conflicts803

that were not resolved by the chosen strategy Σ.804

A.7.1 Merging list primitives805

The mergeLists algorithm performs a three-way merge for ordered lists (arrays), reconciling a806

local version (Lours) and a remote version (Ltheirs) against a common ancestor (Lbase). This func-807

tion is generic for elements of type T. It relies on a comparison function, fcompare : T × T →808

ComparisonResult, to ascertain equality or difference between elements. A diffing function, fdiff809

(defaulting to computeListChanges), is employed to generate sequences of changes, ∆ours and810

∆theirs, representing the transformations from Lbase to Lours and Lbase to Ltheirs, respectively. Each811

change object in these sequences specifies an operation (such as Add, Remove, Modified, or Equal),812

associated elements, and relevant indices from Lbase. A pluggable ListMergeStrategy<T>, de-813

noted as Σlist, is used for resolving conflicts. The function outputs a ListMergeResult<T>, which814

includes the merged list, Lmerged, and an array of any unresolved ListMergeConflict<T> objects,815

Clist.816

Initially, the algorithm computes the delta sequences: ∆ours = fdiff(Lbase, Lours, fcompare) and ∆theirs =817

fdiff(Lbase, Ltheirs, fcompare). Pointers, pours and ptheirs, are initialized to traverse ∆ours and ∆theirs,818

respectively. The core of the algorithm is a loop that continues as long as there are changes to process819

in either delta sequence. Inside the loop, let cours be the current change from ∆ours and ctheirs be from820

∆theirs.821

First, we consider if one delta sequence is exhausted. If ctheirs is undefined (all changes in ∆theirs822

processed), the remaining changes cours ∈ ∆ours are processed. If cours indicates an Add or Modified823

operation, its target element is added to Lmerged. If it’s an Equal operation, its source element is824

25

added. Remove operations are implicitly handled by not adding the element. pours is incremented. A825

symmetric process occurs if cours is undefined.826

Next, we consider if both delta sequences have changes. Let opours and optheirs be the operations for827

cours and ctheirs. First, we consider addition operations.828

Concurrent additions. If opours = Add and optheirs = Add, if fcompare(cours.targetElement,829

ctheirs.targetElement) is Equal, cours.targetElement is added to Lmerged. Otherwise, an “add-add-830

concurrent” conflict is created with cours.targetElement and ctheirs.targetElement. This conflict is831

passed to the handleListConflict helper, which uses Σlist for resolution. In either case, both pours832

and ptheirs are incremented.833

Unilateral additions on ours or theirs. If opours = Add (and optheirs is not Add), cours.targetElement834

is added to Lmerged. pours is incremented. Similarly, if optheirs = Add (and opours is not Add),835

ctheirs.targetElement is added to Lmerged. ptheirs is incremented.836

Next, we consider non-add operations (referencing Lbase elements). Both opours and optheirs are either837

Modified, Remove, or Equal. Let idxours = cours.sourceIndex and idxtheirs = ctheirs.sourceIndex.838

Non-add operation on the same element. If idxours = idxtheirs (both changes refer to the same839

element in Lbase), let ebase = Lbase[idxours]. We have the following cases:840

• If opours = Equal and optheirs = Equal, cours.sourceElement is added to Lmerged.841

• If opours = Modified and optheirs = Modified: If fcompare(cours.targetElement,842

ctheirs.targetElement) is Equal, cours.targetElement is added. Otherwise, a “modify-modify”843

conflict (with ebase, idxours, cours.targetElement, ctheirs.targetElement) is handled via Σlist.844

• If opours = Modified and optheirs = Remove, a “modify-delete” conflict (with ebase, idxours,845

cours.targetElement) is handled.846

• If opours = Remove and optheirs = Modified, a “delete-modify” conflict (with ebase, idxours,847

ctheirs.targetElement) is handled.848

• If opours = Remove and optheirs = Remove, the element is implicitly deleted.849

Both pours and ptheirs are incremented.850

Non-add operation on different elements. If idxours < idxtheirs, cours is processed. If opours is851

Equal or Modified, the respective element (cours.sourceElement or cours.targetElement) is added to852

Lmerged. pours is incremented. If idxtheirs < idxours, ctheirs is processed similarly. ptheirs is incremented.853

The handleListConflict helper function takes a ListMergeConflict<T>, the strategy Σlist,854

Lmerged, Clist, and fcompare. It calls Σlist(conflict, fcompare). If the returned Resolution<T> in-855

dicates resolved as true and provides a value (not undefined), this value is pushed to Lmerged.856

Otherwise, the conflict is added to Clist. The default strategy marks all conflicts as unresolved. The857

algorithm concludes by returning an object containing Lmerged and the list Clist of any unresolved858

conflicts.859

A.7.2 Merging graphs860

A similar approach can be taken to merging graphs through primitives than was taken before in861

Appendix A.6.3. The only caveat is that recursive calls of primitives to lower level aspects of the862

graph cannot be treated using a one-size-fits-all solution like for diffing. The merging strategy is863

in charge of make the sub-call to the appropriate primitive to resolve a merge conflict as it sees fit.864

For example, suppose an “add-add-different” conflict arises. One strategy might always pick the865

element with the latest timestamp, requiring no sub-calls, while another, that might attempt to union866

the properties of both version will have to use call a merge primitive on the two elements.867

26

A.7.3 Sub-algorithms for git driver diffing868

Algorithm 14 COMPUTE_LIST_CHANGES

Input: source ▷ original list
Input: target ▷ desired list
Input: compare ▷ function returning Equal, Modified or Different
Output: changes ▷ ordered list of edit operations

1: m← length(source), n← length(target)
2: matrix← (m+1)× (n+1) table filled with zeros
3:
4: for i = 0 to m do ▷ initialize first row/column
5: matrix[i][0]← i
6: end for
7: for j = 0 to n do
8: matrix[0][j]← j
9: end for

10:
11: for i = 1 to m do ▷ dynamic-programming fill
12: for j = 1 to n do
13: cmp← compare(source[i-1], target[j-1])
14: if cmp = Equal then
15: matrix[i][j]← matrix[i-1][j-1]
16: else
17: removeCost← matrix[i-1][j] +1
18: addCost← matrix[i][j-1] +1
19: replaceCost← matrix[i-1][j-1] + if cmp = Modified then 1 else 2
20: matrix[i][j]←min(removeCost, addCost, replaceCost)
21: end if
22: end for
23: end for
24:
25: changes← empty list ▷ back-trace to build edit script
26: i← m, j← n
27: while i > 0 or j > 0 do
28: if i > 0 ∧ j > 0 ∧ compare(source[i-1],target[j-1]) = Equal then
29: prepend Equal(i-1,j-1) to changes
30: i–, j–
31: else if i > 0 ∧ j > 0 ∧ compare(source[i-1],target[j-1]) = Modified ∧

matrix[i][j] = matrix[i-1][j-1]+ 1 then
32: prepend Modified(i-1,j-1) to changes
33: i–, j–
34: else if j > 0 ∧ (i = 0 ∨ matrix[i][j] = matrix[i][j-1]+ 1) then
35: prepend Add(j-1) to changes
36: j–
37: else
38: prepend Remove(i-1) to changes
39: i–
40: end if
41: end while
42: return changes

27

A.7.4 Sub-algorithms for graph merging869

Algorithm 15 COMPUTE_SET_CHANGES

Input: sourceSet, targetSet ▷ sets of elements
Input: compare ▷ returns Equal, Modified or Different
Output: changes ▷ object containing add, remove, modify, unchanged

1: source← list of elements in sourceSet
2: target← list of elements in targetSet
3: toAdd← empty list
4: toRemove← empty list
5: toModify← empty list of pairs (old,new)
6: toDoNothing← empty list
7: sourceMatched← list of false of length source
8: targetMatched← list of false of length target
9:

10: for i = 0 to length(source)−1 do ▷ match equal or modified pairs
11: if sourceMatched[i] then continue
12: end if
13: for j = 0 to length(target)−1 do
14: if targetMatched[j] then continue
15: end if
16: cmp← compare(source[i], target[j])
17: if cmp = Equal then
18: mark sourceMatched[i] and targetMatched[j] as true
19: prepend source[i] to toDoNothing
20: break inner loop
21: else if cmp = Modified then
22: prepend (oldValue: source[i], newValue: target[j]) to toModify
23: mark sourceMatched[i] and targetMatched[j] as true
24: break inner loop
25: end if
26: end for
27: end for
28:
29: for i = 0 to length(source)−1 do ▷ collect unmatched elements
30: if not sourceMatched[i] then prepend source[i] to toRemove
31: end if
32: end for
33: for j = 0 to length(target)−1 do
34: if not targetMatched[j] then prepend target[j] to toAdd
35: end if
36: end for
37: return SetChanges(toAdd, toRemove, toModify, toDoNothing)

28

Algorithm 16 MERGE_SETS

Input: baseSet, oursSet, theirsSet ▷ three versions of the same set
Input: compare ▷ equality / modified / different
Input: diffFn ▷ produces SetChanges
Input: strategy ▷ conflict-resolution policy
Output: merged ▷ final reconciled set
Output: conflicts ▷ unresolved merge conflicts

1: merged← empty set ▷ initialise
2: conflicts← empty list
3:
4: ours← diffFn(baseSet, oursSet, compare) ▷ compute deltas
5: theirs← diffFn(baseSet, theirsSet, compare)
6:
7: ourMods← map base→new from ours.modify ▷ index modifications / deletions
8: theirMods← map base→new from theirs.modify
9: ourDel← set of ours.remove

10: theirDel← set of theirs.remove
11:
12: for all item in baseSet do ▷ iterate through base elements
13: oursChanged← item ∈ ourMods
14: theirsChanged← item ∈ theirMods
15: oursRemoved← item ∈ ourDel
16: theirsRemoved← item ∈ theirDel
17: if oursChanged then
18: ourV← ourMods[item]
19: if theirsChanged then
20: theirV← theirMods[item]
21: if compare(ourV,theirV)=Equal then
22: add ourV to merged
23: else
24: create conflict (modify-modify, item, ourV, theirV)
25: res← strategy(conflict, compare)
26: if res.resolved then add res.value to merged
27: elsepush conflict
28: end if
29: end if
30: else if theirsRemoved then
31: create conflict (modify-delete, item, ourV)
32: handle with strategy as above
33: else
34: add ourV to merged ▷ ours only
35: end if
36: continue
37: end if

29

38: if oursRemoved then
39: if theirsChanged then
40: theirV← theirMods[item]
41: create conflict (delete-modify, item, theirV)
42: handle with strategy
43: end if
44: continue ▷ deleted in ours
45: end if
46: if theirsChanged then
47: add theirMods[item] to merged
48: else if not theirsRemoved then
49: add item to merged
50: end if
51: end for
52:
53: ourAdds← set of ours.add ▷ stage 4 : handle additions
54: theirAdds← set of theirs.add
55: matchedT← empty set ▷ their additions already paired
56: for all a in ourAdds do
57: match← nil; cmpRslt← nil
58: for all b in theirAdds do
59: if b ∈ matchedT then continue
60: end if
61: c← compare(a,b)
62: if c = Equal ∨ c = Modified then
63: match← b; cmpRslt← c; break
64: end if
65: end for
66: if match then
67: add match to matchedT
68: if cmpRslt = Equal then
69: add a to merged ▷ identical add
70: else
71: create conflict (add-add-modified, a, match)
72: handle with strategy
73: end if
74: else
75: add a to merged ▷ unique add
76: end if
77: end for
78: for all b in theirAdds do
79: if b /∈ matchedT then add b to merged
80: end if
81: end for
82: return {merged, conflicts}

30

NeurIPS Paper Checklist870

1. Claims871

Question: Do the main claims made in the abstract and introduction accurately reflect the872

paper’s contributions and scope?873

Answer: [Yes]874

Justification: We have, to the best of our ability, considered each claim and we believe each875

to be accurate.876

Guidelines:877

• The answer NA means that the abstract and introduction do not include the claims878

made in the paper.879

• The abstract and/or introduction should clearly state the claims made, including the880

contributions made in the paper and important assumptions and limitations. A No or881

NA answer to this question will not be perceived well by the reviewers.882

• The claims made should match theoretical and experimental results, and reflect how883

much the results can be expected to generalize to other settings.884

• It is fine to include aspirational goals as motivation as long as it is clear that these goals885

are not attained by the paper.886

2. Limitations887

Question: Does the paper discuss the limitations of the work performed by the authors?888

Answer: [Yes]889

Justification: They are described in Section 4.3.890

Guidelines:891

• The answer NA means that the paper has no limitation while the answer No means that892

the paper has limitations, but those are not discussed in the paper.893

• The authors are encouraged to create a separate "Limitations" section in their paper.894

• The paper should point out any strong assumptions and how robust the results are to895

violations of these assumptions (e.g., independence assumptions, noiseless settings,896

model well-specification, asymptotic approximations only holding locally). The authors897

should reflect on how these assumptions might be violated in practice and what the898

implications would be.899

• The authors should reflect on the scope of the claims made, e.g., if the approach was900

only tested on a few datasets or with a few runs. In general, empirical results often901

depend on implicit assumptions, which should be articulated.902

• The authors should reflect on the factors that influence the performance of the approach.903

For example, a facial recognition algorithm may perform poorly when image resolution904

is low or images are taken in low lighting. Or a speech-to-text system might not be905

used reliably to provide closed captions for online lectures because it fails to handle906

technical jargon.907

• The authors should discuss the computational efficiency of the proposed algorithms908

and how they scale with dataset size.909

• If applicable, the authors should discuss possible limitations of their approach to910

address problems of privacy and fairness.911

• While the authors might fear that complete honesty about limitations might be used by912

reviewers as grounds for rejection, a worse outcome might be that reviewers discover913

limitations that aren’t acknowledged in the paper. The authors should use their best914

judgment and recognize that individual actions in favor of transparency play an impor-915

tant role in developing norms that preserve the integrity of the community. Reviewers916

will be specifically instructed to not penalize honesty concerning limitations.917

3. Theory assumptions and proofs918

Question: For each theoretical result, does the paper provide the full set of assumptions and919

a complete (and correct) proof?920

Answer: [NA]921

31

Justification: [NA]922

Guidelines:923

• The answer NA means that the paper does not include theoretical results.924

• All the theorems, formulas, and proofs in the paper should be numbered and cross-925

referenced.926

• All assumptions should be clearly stated or referenced in the statement of any theorems.927

• The proofs can either appear in the main paper or the supplemental material, but if928

they appear in the supplemental material, the authors are encouraged to provide a short929

proof sketch to provide intuition.930

• Inversely, any informal proof provided in the core of the paper should be complemented931

by formal proofs provided in appendix or supplemental material.932

• Theorems and Lemmas that the proof relies upon should be properly referenced.933

4. Experimental result reproducibility934

Question: Does the paper fully disclose all the information needed to reproduce the main ex-935

perimental results of the paper to the extent that it affects the main claims and/or conclusions936

of the paper (regardless of whether the code and data are provided or not)?937

Answer: [Yes]938

Justification: To the best of our ability, we have made the details necessary to reproduce the939

experimental results of the paper available in our methodological description.940

Guidelines:941

• The answer NA means that the paper does not include experiments.942

• If the paper includes experiments, a No answer to this question will not be perceived943

well by the reviewers: Making the paper reproducible is important, regardless of944

whether the code and data are provided or not.945

• If the contribution is a dataset and/or model, the authors should describe the steps taken946

to make their results reproducible or verifiable.947

• Depending on the contribution, reproducibility can be accomplished in various ways.948

For example, if the contribution is a novel architecture, describing the architecture fully949

might suffice, or if the contribution is a specific model and empirical evaluation, it may950

be necessary to either make it possible for others to replicate the model with the same951

dataset, or provide access to the model. In general. releasing code and data is often952

one good way to accomplish this, but reproducibility can also be provided via detailed953

instructions for how to replicate the results, access to a hosted model (e.g., in the case954

of a large language model), releasing of a model checkpoint, or other means that are955

appropriate to the research performed.956

• While NeurIPS does not require releasing code, the conference does require all submis-957

sions to provide some reasonable avenue for reproducibility, which may depend on the958

nature of the contribution. For example959

(a) If the contribution is primarily a new algorithm, the paper should make it clear how960

to reproduce that algorithm.961

(b) If the contribution is primarily a new model architecture, the paper should describe962

the architecture clearly and fully.963

(c) If the contribution is a new model (e.g., a large language model), then there should964

either be a way to access this model for reproducing the results or a way to reproduce965

the model (e.g., with an open-source dataset or instructions for how to construct966

the dataset).967

(d) We recognize that reproducibility may be tricky in some cases, in which case968

authors are welcome to describe the particular way they provide for reproducibility.969

In the case of closed-source models, it may be that access to the model is limited in970

some way (e.g., to registered users), but it should be possible for other researchers971

to have some path to reproducing or verifying the results.972

5. Open access to data and code973

Question: Does the paper provide open access to the data and code, with sufficient instruc-974

tions to faithfully reproduce the main experimental results, as described in supplemental975

material?976

32

Answer: [No]977

Justification: The code for the environment will be publicly released via an open-source978

GitHub repository at a future date.979

Guidelines:980

• The answer NA means that paper does not include experiments requiring code.981

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/982

public/guides/CodeSubmissionPolicy) for more details.983

• While we encourage the release of code and data, we understand that this might not be984

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not985

including code, unless this is central to the contribution (e.g., for a new open-source986

benchmark).987

• The instructions should contain the exact command and environment needed to run to988

reproduce the results. See the NeurIPS code and data submission guidelines (https:989

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.990

• The authors should provide instructions on data access and preparation, including how991

to access the raw data, preprocessed data, intermediate data, and generated data, etc.992

• The authors should provide scripts to reproduce all experimental results for the new993

proposed method and baselines. If only a subset of experiments are reproducible, they994

should state which ones are omitted from the script and why.995

• At submission time, to preserve anonymity, the authors should release anonymized996

versions (if applicable).997

• Providing as much information as possible in supplemental material (appended to the998

paper) is recommended, but including URLs to data and code is permitted.999

6. Experimental setting/details1000

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1001

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1002

results?1003

Answer: [NA]1004

Justification: [NA]1005

Guidelines:1006

• The answer NA means that the paper does not include experiments.1007

• The experimental setting should be presented in the core of the paper to a level of detail1008

that is necessary to appreciate the results and make sense of them.1009

• The full details can be provided either with the code, in appendix, or as supplemental1010

material.1011

7. Experiment statistical significance1012

Question: Does the paper report error bars suitably and correctly defined or other appropriate1013

information about the statistical significance of the experiments?1014

Answer: [No]1015

Justification: The DIAMOND compression experiments reported in the paper are determinis-1016

tic given our choice of KG and hardware, both of which are reported in the paper. Therefore,1017

error bars or confidence intervals are not provided, as there is no run-to-run variability to1018

quantify.1019

Guidelines:1020

• The answer NA means that the paper does not include experiments.1021

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1022

dence intervals, or statistical significance tests, at least for the experiments that support1023

the main claims of the paper.1024

• The factors of variability that the error bars are capturing should be clearly stated (for1025

example, train/test split, initialization, random drawing of some parameter, or overall1026

run with given experimental conditions).1027

33

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,1028

call to a library function, bootstrap, etc.)1029

• The assumptions made should be given (e.g., Normally distributed errors).1030

• It should be clear whether the error bar is the standard deviation or the standard error1031

of the mean.1032

• It is OK to report 1-sigma error bars, but one should state it. The authors should1033

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1034

of Normality of errors is not verified.1035

• For asymmetric distributions, the authors should be careful not to show in tables or1036

figures symmetric error bars that would yield results that are out of range (e.g.negative1037

error rates).1038

• If error bars are reported in tables or plots, The authors should explain in the text how1039

they were calculated and reference the corresponding figures or tables in the text.1040

8. Experiments compute resources1041

Question: For each experiment, does the paper provide sufficient information on the com-1042

puter resources (type of compute workers, memory, time of execution) needed to reproduce1043

the experiments?1044

Answer: [Yes]1045

Justification: Yes, this information is provided for every experiment.1046

Guidelines:1047

• The answer NA means that the paper does not include experiments.1048

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1049

or cloud provider, including relevant memory and storage.1050

• The paper should provide the amount of compute required for each of the individual1051

experimental runs as well as estimate the total compute.1052

• The paper should disclose whether the full research project required more compute1053

than the experiments reported in the paper (e.g., preliminary or failed experiments that1054

didn’t make it into the paper).1055

9. Code of ethics1056

Question: Does the research conducted in the paper conform, in every respect, with the1057

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1058

Answer: [Yes]1059

Justification: We have not identified potential harms caused by the research process and1060

there is unlikely to be negative societal impact or harmful consequences from the adoption1061

of new developer tooling for graph generation. It is possible that graphs get generated1062

automatically that are incorrect, but this is independent of the method of construction, as it1063

happens even now due to human error and faulty automations. The impact of this is also1064

very limited.1065

Guidelines:1066

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1067

• If the authors answer No, they should explain the special circumstances that require a1068

deviation from the Code of Ethics.1069

• The authors should make sure to preserve anonymity (e.g., if there is a special consider-1070

ation due to laws or regulations in their jurisdiction).1071

10. Broader impacts1072

Question: Does the paper discuss both potential positive societal impacts and negative1073

societal impacts of the work performed?1074

Answer: [NA]1075

Justification: We have not identified potential harms caused by the research process, and1076

there are unlikely that negative societal impact or harmful consequences will arise from the1077

adoption of new developer tooling for graph generation. It is possible that graphs can be1078

generated automatically that are factually incorrect; however, this risk is independent of the1079

34

https://neurips.cc/public/EthicsGuidelines

method of construction, as it happens even now due to human error and faulty automations.1080

The impact of this is also limited.1081

Guidelines:1082

• The answer NA means that there is no societal impact of the work performed.1083

• If the authors answer NA or No, they should explain why their work has no societal1084

impact or why the paper does not address societal impact.1085

• Examples of negative societal impacts include potential malicious or unintended uses1086

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1087

(e.g., deployment of technologies that could make decisions that unfairly impact specific1088

groups), privacy considerations, and security considerations.1089

• The conference expects that many papers will be foundational research and not tied1090

to particular applications, let alone deployments. However, if there is a direct path to1091

any negative applications, the authors should point it out. For example, it is legitimate1092

to point out that an improvement in the quality of generative models could be used to1093

generate deepfakes for disinformation. On the other hand, it is not needed to point out1094

that a generic algorithm for optimizing neural networks could enable people to train1095

models that generate Deepfakes faster.1096

• The authors should consider possible harms that could arise when the technology is1097

being used as intended and functioning correctly, harms that could arise when the1098

technology is being used as intended but gives incorrect results, and harms following1099

from (intentional or unintentional) misuse of the technology.1100

• If there are negative societal impacts, the authors could also discuss possible mitigation1101

strategies (e.g., gated release of models, providing defenses in addition to attacks,1102

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1103

feedback over time, improving the efficiency and accessibility of ML).1104

11. Safeguards1105

Question: Does the paper describe safeguards that have been put in place for responsible1106

release of data or models that have a high risk for misuse (e.g., pretrained language models,1107

image generators, or scraped datasets)?1108

Answer: [NA]1109

Justification: [NA]1110

Guidelines:1111

• The answer NA means that the paper poses no such risks.1112

• Released models that have a high risk for misuse or dual-use should be released with1113

necessary safeguards to allow for controlled use of the model, for example by requiring1114

that users adhere to usage guidelines or restrictions to access the model or implementing1115

safety filters.1116

• Datasets that have been scraped from the Internet could pose safety risks. The authors1117

should describe how they avoided releasing unsafe images.1118

• We recognize that providing effective safeguards is challenging, and many papers do1119

not require this, but we encourage authors to take this into account and make a best1120

faith effort.1121

12. Licenses for existing assets1122

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1123

the paper, properly credited and are the license and terms of use explicitly mentioned and1124

properly respected?1125

Answer: [NA]1126

Justification: [NA]1127

Guidelines:1128

• The answer NA means that the paper does not use existing assets.1129

• The authors should cite the original paper that produced the code package or dataset.1130

• The authors should state which version of the asset is used and, if possible, include a1131

URL.1132

35

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1133

• For scraped data from a particular source (e.g., website), the copyright and terms of1134

service of that source should be provided.1135

• If assets are released, the license, copyright information, and terms of use in the1136

package should be provided. For popular datasets, paperswithcode.com/datasets1137

has curated licenses for some datasets. Their licensing guide can help determine the1138

license of a dataset.1139

• For existing datasets that are re-packaged, both the original license and the license of1140

the derived asset (if it has changed) should be provided.1141

• If this information is not available online, the authors are encouraged to reach out to1142

the asset’s creators.1143

13. New assets1144

Question: Are new assets introduced in the paper well documented and is the documentation1145

provided alongside the assets?1146

Answer: [NA]1147

Justification: [NA]1148

Guidelines:1149

• The answer NA means that the paper does not release new assets.1150

• Researchers should communicate the details of the dataset/code/model as part of their1151

submissions via structured templates. This includes details about training, license,1152

limitations, etc.1153

• The paper should discuss whether and how consent was obtained from people whose1154

asset is used.1155

• At submission time, remember to anonymize your assets (if applicable). You can either1156

create an anonymized URL or include an anonymized zip file.1157

14. Crowdsourcing and research with human subjects1158

Question: For crowdsourcing experiments and research with human subjects, does the paper1159

include the full text of instructions given to participants and screenshots, if applicable, as1160

well as details about compensation (if any)?1161

Answer: [NA]1162

Justification: [NA]1163

Guidelines:1164

• The answer NA means that the paper does not involve crowdsourcing nor research with1165

human subjects.1166

• Including this information in the supplemental material is fine, but if the main contribu-1167

tion of the paper involves human subjects, then as much detail as possible should be1168

included in the main paper.1169

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1170

or other labor should be paid at least the minimum wage in the country of the data1171

collector.1172

15. Institutional review board (IRB) approvals or equivalent for research with human1173

subjects1174

Question: Does the paper describe potential risks incurred by study participants, whether1175

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1176

approvals (or an equivalent approval/review based on the requirements of your country or1177

institution) were obtained?1178

Answer: [NA]1179

Justification: [NA]1180

Guidelines:1181

• The answer NA means that the paper does not involve crowdsourcing nor research with1182

human subjects.1183

36

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)1184

may be required for any human subjects research. If you obtained IRB approval, you1185

should clearly state this in the paper.1186

• We recognize that the procedures for this may vary significantly between institutions1187

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1188

guidelines for their institution.1189

• For initial submissions, do not include any information that would break anonymity (if1190

applicable), such as the institution conducting the review.1191

16. Declaration of LLM usage1192

Question: Does the paper describe the usage of LLMs if it is an important, original, or1193

non-standard component of the core methods in this research? Note that if the LLM is used1194

only for writing, editing, or formatting purposes and does not impact the core methodology,1195

scientific rigorousness, or originality of the research, declaration is not required.1196

Answer: [NA]1197

Justification: [NA]1198

Guidelines:1199

• The answer NA means that the core method development in this research does not1200

involve LLMs as any important, original, or non-standard components.1201

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1202

for what should or should not be described.1203

37

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related work
	Tools or environments for agent-based graph interaction
	Graph data models
	Storage formats and compression
	Version control systems

	The GraphWorld environment
	Theoretical framework
	System overview
	SDK for KG compression with Diamond
	CLI for KG versioning

	Applications of GraphWorld environment
	Multi-agent collaboration in GraphWorld environment
	Human-AI co-creation of KGs in GraphWorld
	Limitations and future work

	Conclusion
	Technical Appendices and Supplementary Material
	Formal definition of labeled property graphs
	Graph compression algorithm
	Algorithms

	Benchmarking Diamond
	Benchmarking on diverse synthetic graphs
	Benchmarking on real-world KGs

	Production-readyness of Diamond
	Multi-language support in Diamond
	Identifying graph differences through recursion
	Computing set changes
	Computing list changes
	 Leveraging change primitives to compute graph differences

	Using graph differences to solve the three-way merge
	Merging list primitives
	Merging graphs
	Sub-algorithms for git driver diffing
	Sub-algorithms for graph merging

