Under review as a conference paper at ICLR 2025

SCALABLE GAUSSIAN PROCESS VIA HILBERT-
SCHMIDT SINGULAR VALUE DECOMPOSITION

Anonymous authors
Paper under double-blind review

ABSTRACT

Gaussian process (GP) regression is widely used for its flexible mean predictions
and inherent uncertainty quantification. However, its scalability is limited by cu-
bic time complexity, O(n?), and quadratic space complexity, O(n?), making it
infeasible for large-scale datasets. Although recent advances have introduced ap-
proximate methods with time complexity O(nm?), where m < n is a tuning
parameter, these methods each have their own bottlenecks, such as requiring a
relatively large m or involving expensive preprocessing steps. Moreover, for ex-
tremely large datasets with millions of samples, the space complexity O(n?) be-
comes another significant bottleneck. In this paper, we present a novel method
based on the Hilbert-Schmidt singular value decomposition that obtains a low-
rank decomposition “for free”, reducing both time complexity to O(nm?) and
space complexity to O(nm), with no preprocessing overhead. We used simulated
large-scale datasets to demonstrate the performance of our method compared to
state-of-the-art approaches.

1 INTRODUCTION

Gaussian Process Regression (GPR) has become a cornerstone for nonparametric regression, largely
due to its flexibility in modeling complex data and its inherent ability to provide uncertainty quan-
tification (Cressie, 2015). GPR is widely used across numerous fields, including spatial and spa-
tiotemporal modeling (Banerjee et al., |2003), epidemiology (Lawson et al., 2016)), and machine
learning (Rasmussen & Williams}, 2006). Its ability to estimate both the conditional mean and co-
variance functions has made it indispensable for applications such as spatiotemporal data analysis,
surrogate modeling for complex physical simulations, and Bayesian optimization.

However, a major challenge with GPR is its poor scalability. As size increases, GPR suffers from
cubic time complexity, O(n?), due to the inversion of the kernel matrix, and quadratic space space
complexity, O(n?), due to the need to store the kernel matrix, where n is the number of data points.
These computational constraints render GPR impractical for large-scale datasets, such as those found
in forestry, geospatial applications, climate science, and single-cell RNA sequencing, where the
sample size can reach millions or even tens of millions.

As a result, over the past two decades, significant progress has been made in scaling GPR for large
datasets, with a primary focus on reducing computational complexity to O(nm?), where m <
n is a tuning parameter. These approaches can be broadly categorized into four groups: sparse
approximations, low-rank approximations, probabilistic methods, and structured kernels.

Sparse approximations reduce the effective number of data points by using a subset of points. Ex-
amples of these methods include Sparse GPR (SGPR, [Titsias, 2009, Nearest Neighbor Gaussian
Process (NNGP, [Finley et al., [2020), and approaches based on inducing points. Low-rank approx-
imations aim to approximate the full kernel matrix using lower-dimensional representations. Com-
mon methods include the Nystrom approximation (Williams & Seeger, |2000) and random Fourier
features (Rahimi & Recht, 2007). Additionally, methods like Deep Kernel Learning (DKL, Wil-
son et al.| 2016) combine GPs with neural networks to learn effective representations from high-
dimensional data, thereby reducing the dimensionality of the kernel. Probabilistic methods take
a different route by optimizing the GP model through variational inference, allowing for effi-
cient approximation of the posterior distribution. Examples include Variational Nearest Neighbor
(VNN, Wu et al., [2022)) and Sparse Variational Gaussian Process (SVGP, |Hensman et al., |2015).



Under review as a conference paper at ICLR 2025

Variants like SVGP with Contour Integral Quadrature (SVGP-CIQ, |Pleiss et al., [2020) further refine
this approach by employing advanced numerical methods to enhance efficiency. These methods are
often combined with Natural Gradient Descent (NGD, [Salimbeni et al., |2018;|Hensman et al., 2012)
to further improve the computational efficiency of updating the variational parameters. Structured
kernel approximations take advantage of specific structures in the covariance matrix to enable effi-
cient computations. Methods like Structured Kernel Interpolation (SKI, Wilson & Nickisch, [2015))
and KISS-GP (Wilson & Nickisch, [2015) belong to this category, exploiting grid-based or interpo-
lation methods to approximate the kernel matrix more efficiently. Additionally, Krylov subspace
methods, such as Lanczos Variance Estimates (LOVE, PPleiss et al.l [2018)), can approximate the
kernel matrix with reduced complexity while maintaining high accuracy.

These various scalable GPR methods have significantly expanded the range of applications that GPs
can handle in the context of big data. To streamline the use of these approaches, GPyTorch (Gardner
et al.,2018)) provides a powerful and efficient framework that integrates most of these methods into a
single toolbox. By offering flexible options for scaling GPs, GPyTorch allows users to efficiently ap-
ply these techniques to large-scale datasets while maintaining robust predictive performance, making
it an invaluable resource for researchers and practitioners alike.

Despite their advancements, these methods each have their own bottlenecks. For instance, some
approaches require a relatively large m, reducing their efficiency, while others involve complex pre-
processing steps or have tuning parameters that are difficult to optimize. Additionally, for extremely
large datasets, with millions or tens of millions of samples, the space complexity—which has been
relatively less addressed by many of these methods—becomes a significant bottleneck. Moreover,
methods like DKL and some variants of SVGP often require GPUs to manage the computational
load, which may not be readily available to all practitioners. This highlights the need for a method
that is both time- and space-efficient, requires minimal tuning or preprocessing, and does not depend
on GPU resources—though it should still be able to benefit from GPU acceleration when available.

10
.
”
) »
bs Legend

HS-SVD
= SKI
1 . LOVE

Computation Time

20000 31697 50237 79621 126191 2e+05 2e+06
Sample Size

Figure 1: Runtime (second) of our proposed HS-SVD and two SOTA methods: SKI and LOVE.

In this paper, we propose a scalable Gaussian Process framework based on the Hilbert-Schmidt
Singular Value Decomposition (HS-SVD), achieving a time complexity of O(nm?) and a space
complexity of O(nm) while maintaining strong predictive performance. Our method leverages a
specifically designed family of kernels, including the compact Matérn kernel, for which we prove its
smoothness. There is only one easy-to-tune parameter, m, an integer, and requires no preprocessing.
Our method does not require a GPU, making it accessible to a wider range of users. However,
when available, GPU usage can further accelerate the computations, providing an additional speed
advantage without being a necessity. Figure[I|shows that on simulated data (see Section ] for more
details), our proposed method, without using any GPUs, is more efficient than two state-of-the-art
(SOTA) methods, SKI and LOVE, using GPUs. We further validate the superior performance of our
approach on four simulated large-scale datasets, showing its advantage in terms of prediction MSE,
runtime, and memory usage, even compared to methods that rely on GPUs.



Under review as a conference paper at ICLR 2025

2 PRELIMINARIES

In this section, we review some of the key concepts and results in GPR and Hilbert-Schmidt Singular
Value Decomposition (HS-SVD), upon which our later methods will hinge.

2.1 GAUSSIAN PROCESS REGRESSION
GPR is a nonparametric regression technique, particularly valued for its interpretability and strong

theoretical foundations (Stein, 2012)). The goal of GPR is to predict the values of a function based
on noisy observations. We begin with the definition of a GP.

Definition 2.1 (GP) f is said to follow a GP over domain §) with mean function i : Q — R and
covariance or kernel function K : QxQ — R, denoted by f ~ GP(u, K), if for any x1, ..., x,, € Q,

[.f(xl)v T 7f(xn)]T ~ N(’U,E), where v = [.u(:cl)v' v ,‘u(xn)]T’ Eij = K(Iivxj)'

GPR takes a Bayesian approach by estimating the posterior distribution of the function given a set
of observations X = (z1,..,2,),Y = (Y1, .-, Yn)-

Definition 2.2 (Posterior of GP) Let f ~ GP(u, K). Then, given observations X,Y, f(Z), where
Z is a new set of points, is estimated by its posterior f(Z)|(X,Y), given by the following form:

FONXY) ~ N (u(Z) + KzxKxx (Y — u(X)), K2z — Kzx Kxx Kxz) ,

where
K(z1,21) K(z1,22) ... K(z1,2n)
K(zo,21) K(z3,22) ... K(20,2p)
Kxz = :
K(zm,x1) K(zm,x2) ... K(zm,zn)

In GPR, the primary computational challenge lies in calculating K %, which requires O(n?) oper-
ations. Moreover, storing K x x requires a space complexity of O(n?), as the entire kernel matrix
must be retained in memory. Another issue arises from numerical stability. As the data become
denser, or as the minimal separation between data points approaches zero, the matrix tends to be-
come ill-conditioned. This results in numerical instability during inversion, even when the time
complexity may be theoretically manageable. Hence, the combination of computational cost and
potential instability creates significant challenges for applying GPR to large datasets. These chal-
lenges have motivated a range of approximation techniques, such as low-rank approximations and
the use of inducing points, each with its own trade-offs in terms of accuracy, computational cost,
and stability.

2.2  HILBERT-SCHMIDT SINGULAR VALUE DECOMPOSITION

We first define the Mercer decomposition of kernels.

Lemma 2.3 (Mercer decomposition) Ler K be a continuous positive definite kernel on ().
K(x,2") can be expressed by the following form:

K(z,2') = Z A (z) (),
=1

where Ay > Ao > ... — 0 and ¢;’s are orthonormal.

This decomposition is also known as the Hilbert-Schmidt series, where ¢;’s are eigenfunctions of the
associated integral operator. We then use Mercer’s theorem to define the Hilbert-Schmidt Singular
Value Decomposition (HS-SVD) for a kernel matrix.



Under review as a conference paper at ICLR 2025

Definition 2.4 (HS-SVD) Ler K (x,2') = > ;2 Ndi(z)pi(2') be the Mercer decomposition of
kernel K, and consider the kernel matrix ¥ = K x x. Then the HS-SVD of X is given by

Y =PADT,
where
¢1($1) (bl(xn) )\1 )\
T — b2(z1) $2(zn) A= 2 )
d)oo(xl) d)oo(xn) )\oo

We note that the notation of infinite matrices is formal, while for computation we use the truncated
form whose depth may be chosen based on the numerical limits of one’s data type. The truncation
strikes a balance between computational efficiency and the accuracy of the low-rank approximation.
In this paper, we will use the following approximation

é1(z1) o Om(z1)] [M ¢1(w1) o P1(wn)
AT oA BT — p1(z2) o Pm(z2) A2 ¢2(z1) o P2(zn)
$1(z) o Gmlzn) ) Lbm(@) o b

Y.m Is a rank-m approximation to 3, which is the foundation of our proposed methods in this paper.

3 METHOD

As discussed in Section the primary computational bottlenecks in GPR arise from the inversion
of the kernel matrix Ky x, which incurs a time complexity of O(n?) and a space complexity of
O(n?). Current scalable methods typically approach these problems using two common strategies:

Low-rank approximation: These methods approximate K x x with alow-rank representation to make
computations more tractable. However, the cost of computing this low-rank representation is often
significant, and in practice, it may introduce numerical errors that compromise the model’s perfor-
mance.

Sparse approximation: This approach reduces the size of K x x by using a subset of inducing points
to approximate the dataset. The challenge with this method lies in choosing the number of inducing
points: too few points compromise accuracy, while too many reintroduce the computational burden
of a large matrix.

In this section, we propose a novel framework that addresses both size and stability challenges simul-
taneously. Our method leverages a low-rank decomposition of the kernel matrix without incurring
the high computational cost of explicitly calculating this decomposition. We achieve these goals by
using the HS-SVD introduced in Section which is based on the Mercer decomposition of the
kernel. This allows us to bypass the direct computation of the low-rank form while still retaining the
advantages of the decomposition.

3.1 COMPACT MATERN KERNELS

As discussed in Section [2.2] HS-SVD provides an efficient way to approximate the kernel matrix
Kx x by exploiting its spectral properties. Specifically, we have K xx ~ K,, = ®,| A,,®,,. The
choice of m is crucial for ensuring both accuracy and computational efficiency. The decay rate of
the eigenvalues \; typically governs how quickly the truncation error diminishes. For well-behaved
kernels, the decay rate is at least polynomial, allowing for rapid convergence of the truncated ap-
proximation to the full kernel.

This method works for any kernel, provided that its Mercer decomposition is known or its eigen-
functions ¢; and eigenvalues \; can be computed. However, for several widely used kernels, such as
the Radial Basis Function (RBF), Matérn, and exponential kernels, the exact Mercer decomposition
is not straightforward or explicitly available. To address this, we propose using the compact Matérn
kernel, which was initially defined for the 1-Dimensional interval: 2 = [0, 1] in (Cavoretto et al.



Under review as a conference paper at ICLR 2025

(2013), to study the radial basis function. We then extend this definition to arbitrary dimensions,
providing a practical and computationally efficient alternative.

Definition 3.1 (1-D compact Matérn, |Cavoretto et al., 2015) The  I-Dimensional  compact
Matérn kernel, denoted by K, , 5 : [0,1] x [0,1] — R, parametrized by ., p > 0 and B € Zo, is
defined as

K;7a7ﬂ(x,x') = pz Ny (x)dy(z') = pz2(a2 + lz7r2)7ﬁ sin (Imz) sin (Ira’),
=1 =1

where \; = (o2 + 1>72) 7P ¢y (x) = v/2sin(lnzx).

In this kernel, p is often called the spatial variance or partial sill that controls the point-wise vari-
ance, « is often referred to as the lengthscale, tension, or decay parameter that measures the spatial
dependency, and £ is called the smoothness parameter.

While the 1-D compact Matérn kernel serves as a valuable kernel, many practical applications re-
quire an extension to higher dimensions, especially 2-D for geospatial applications. We now gener-
alize it to arbitrary dimension 7:

Definition 3.2 (Compact Matérn) The compact Matérn kernel, denoted by K , 5 : [0,1]" x
[0,1]" — R, parametrized by o, p > 0 and 8 € Z~, is defined as

oo
Kop@a)=p Y Ny, 0,0 (@), ),
l1,.,l-=1

T - T r .
where \j, .1, = (042 + 772(2(1:1 1(21)) O (2) =2 [1=1 sin(lgmzy).

Next, we prove the smoothness of the compact Matérn kernel, which explains why £ is called the
smoothness parameter.

Theorem 3.3 The compact Matérn kernel is 3 — r — 1 times differentiable.

This smoothness result provides flexibility in controlling the regularity of the function sampled
from the GP. By tuning the parameter 3, practitioners can adjust the differentiability of the resulting
process, making the compact Matérn kernel an attractive choice for applications requiring different
levels of smoothness.

This flexibility in smoothness is also one of the key benefits of the standard Matérn kernel (Stein,
2012)). This connection offers a fair basis for comparison with other methods. For example, we can
directly compare our method with a C'!' compact Matérn and another method, such as NNGP, using
a standard C'! Matérn kernel. This ensures that any differences in performance can be attributed to
the underlying method, rather than differences in the choice of kernel smoothness.

Although the compact Matérn kernel may initially appear arbitrary, its definition is based on a the-
oretical connection to a differential operator. Specifically, we can derive this kernel as the Green’s
function of the modified Helmholtz operator, which further demonstrate the relationship between
compact Matérn and standard Matérn.

Definition 3.4 (Modified Helmholtz operator) Let A denote the Laplacian. Then define the fol-
lowing modified Helmholtz operator Lg o, : L2(€2) — L2(S2) as

Low= (-0 +a21),
where A is the Laplacian.

Proposition 3.5 (Cavoretto et al.,2015) Let K(z,2') : Q x Q — R be the Green’s function of
Lg .



Under review as a conference paper at ICLR 2025

* When Q =R", then K (z,x’) is the standard Matérn Kernel over R":
—r/2 T
K(@,a') = (allz = 2')"" Ky _yalalle = a'l), > ¢,
where Kg_, 5 is the modified Bessel function of the second kind with degree 3 — /2.

* When Q2 = [0,1]" with zero boundary condition, then K(x,z') is the compact Matérn
kernel in Definition[3.2]

In summary, the compact Matérn kernel and the standard Matérn kernel are fundamentally the same
at the differential operator level, with the compact Matérn defined on a compact domain [0, 1]”, while
the standard Matérn operates over the entire Euclidean space R”. Both kernels arise from formally
identical differential operators; however, the boundary conditions differ based on the domain. It is
also worth noting that the interval [0, 1] is used for simplicity of presentation, and the domain can
be replaced with any closed interval or bounded region without loss of generality.

3.2 FAST PREDICTION

As discussed in Section[2.] the posterior mean for prediction, also known as the best linear unbiased
prediction (BLUP), is given by E(f(Z)|X,Y) = u(Z)+ K zx K x % (Y — 1(X)). For simplicity, we
assume 4 = 0, as the prior mean can be handled separately. Then the BLUP becomes Kz x K )}ﬁ(Y.
The main computational burden GPR arises from the inversion K% . Therefore, improving the
computational efficiency largely depends on the stable and quick inverse of the kernel matrix.To ac-
count for noise or measurement error, which is a reasonable assumption in many real-world settings,
a nugget term, o2, is often added to the diagonal of the kernel matrix. This term represents inde-
pendent noise added to each observation, improving the model’s fit to noisy data. Additionally, the
nugget helps with numerical stability, particularly when the data is dense or there are small separa-
tions between points, by ensuring that the kernel matrix remains well-conditioned during inversion.
Combining the HS-SVD with the Sherman—Morrison—Woodbury formula (Pozrikidis,[2014)), we can
approximate the inverse as:

- _ _ 1 _ -
Ky = (@@L, +0A0 ) = (6° 1, +®,, A @) ) 7! = = (I, =@ (o®A + @, 2,) @)
Since the inversion only involves o?A L+ @) @, an m x m matrix, the computational complexity
is reduced to O(m?), where m < n, providing significant improvements over direct inverting the
n x n kernel matrix.

3.3 FAST LIKELIHOOD EVALUATION

In the previous section, we focused on making prediction using BLUP, which requires the kernel ma-
trix K, parameterized by kernel parameter 6 and nuggets o2. These parameters are typically un-
known and must be estimated. The most common approach for estimating 6 is the Maximum Like-
lihood Estimation (MLE). In this section, we address how to efficiently compute the log-likelihood
using the HS-SVD framework.

Up to an additive constant, the log likelihood function of a GP is

(h) = —%YTK(H)‘lY — %log |K(6)). (1)

Observe that in compact Matérn, only the eigenvalues \;(6) depend on the parameters ¢, while
the eigenfunctions ¢;(x) do not depend on ¢. This assumption holds for many common kernels,
including RBF, standard Matérn, and exponential kernels. Under this assumption, the matrices ®,,
do not need to be recomputed at each iteration of the optimization, allowing for efficient likelihood
evaluation.

Using the HS-SVD, we can express the first term in Equation (I) efficiently:

YTK@6)™'Y = %YT [L, =@ (0% A (0) " + @) @) '@, ] Y-
g



Under review as a conference paper at ICLR 2025

Again using HS-SVD, together with the Sylvester’s determinant theorem (Pozrikidis, [2014), the log
determinant in the second term of Equation (I)) can be computed as

1
log det(o? 1, +®,,A,, (0)®) = log [(02)" det(I,, +2<I>mAm(9)<I>I@)}
(o
2 Lo
=nlog(c”) + logdet | Ly, +— @, P A (0) | .
o
Combining these two components, we arrive at the following approximation to the log-likelihood:

1 _ _ 1
;YT [L, =@ (0% A (0) " + @, @) 1@, ] Y4+nlog(c?)+log det <Im +U2<I>;<1>mAm(9)) .

The reason for the speedup is due to the reduction in the size of the matrix computations. Without
the HS-SVD approximation, evaluating K ()~! and log |K(6)| involves operating on large n x
n matrices, which is both computationally and memory intensive. By using the HS-SVD, these
operations are reduced to much smaller m x m matrices, where m < n.

Furthermore, the truncation of eigenvalues in the HS-SVD approximation not only speeds up com-
putation but also stabilizes it. The discarded eigenvalues often approach zero and contribute little to
the overall matrix, but can make the original kernel matrix ill-conditioned. Truncating these small
eigenvalues removes the “singular” parts of the matrix, improving the stability of the inverse and
ensuring that the computations remain stable as n increases. In this way, our approach not only
accelerates the computations but also enhances their numerical stability.

3.4 ALGORITHM: THE HS-SVD-BASED SCALABLE GP

In this section, we present the complete scalable GP algorithm based on HS-SVD, as discussed in
previous sections. We keep the algorithm general, for kernels with a known Mercer decomposition
whose eigenfunctions are independent of the kernel parameters, including compact Matérn as a
concrete family of kernels of this kind. This method takes in data X, Y and a set of new points X ¢,
and outputs predicted outcomes Y., at these new points. In addition to parameter estimation by
MLE, this method can easily be extended to include posterior samples for uncertainty quantification,
since the key challenge, efficiently calculating K ~!, has already been addressed.

Algorithm: HS-SVD-based scalable GP regression
Require: m, 0 = (0k,0%), X = (21, .., 20), Y = (Y1, s Yn)s Xnew = (21, ..., 2'})
Ensure: m <n
D+ Qsl(xi) forxy, ...,y and @1, ..., P
Memory + &Y
Memory + &' &
00) =LY [I, —®(c?A(0) P+ @T®) '] Y + nlog(c?) + log det (I, +2 T PA(6))
0 = (0, 0?) = argmin, — 2/(6)
R D), s Am(6)
G+ (6°A 1 +2T9)!
H+ L (Y -2G2"Y)
CID;Z — d)l(x;) for acll, ...,x; and ¢1, ..., o
Yyew < ® A®TH
Output: Y ew

It is important to note that the large matrices in this algorithm should be stored in their low-rank
decompositions rather than their full-size forms, to improve computational efficiency and memory
savings. Any quantity that does not depend on 6, including Y 'Y, ®TY and ® ' ®, should only be
calculated once and then stored in memory. Furthermore, when evaluating matrix multiplications,
we always evaluate from right to left in order to use matrix-vector multiplications rather than matrix-
matrix multiplications.



Under review as a conference paper at ICLR 2025

4 SIMULATIONS

In this section, we conduct numerical experiments to evaluate the effectiveness of our method com-
pared to nine representative SOTA methods. We simulate large-scale datasets with n = 100, 000
from highly nonlinear functions, and compare the methods based on prediction mean square error
(MSE), run time, and RAM and VRAM usage.

The methods in our benchmark are: our proposed HS-SVD, Nearest Neighbor Gaussian Process
(NNGP), Stochastic Variational Gaussian Process (SVGP), Stochastic Variational Gaussian Process
with Contour Integral Quadrature (SVGP-CIQ), Variational Nearest Neighbor (VNN), Natural Gra-
dient Descent (NGD), Deep Kernel Learning (DKL), Sparse Gaussian Process Regression (SPGR),
Structured Kernel Interpolation (SKI), and the Lanczos Variance Estimates (LOVE). The HS-SVD
method is implemented by our own R code, the NNGP implementation is from the spNNGP R
package, and the remaining implementations are from the GPyTorch Python library. In the HS-SVD
simulations, a single CPU core was used. In the NNGP method, 16 CPU threads were used. The
remaining methods all used GPU(s).

In Simulation 1-4, we generate ~100, 000 samples, and randomly select 80,000 for training and
~20, 000 for testing, with 10 replicates in each setup. MSE and time are reported as mean (standard
deviation) in all tables, while RAM and VRAM usage are based on peak usage during a single run,
because memory usage depends heavily on external factors, such as system state, fragmentation
of memory, and caching. RAM usages should be judged in a relative manner, and VRAM usage
primarily indicates the maximum batch size that allows for convergence. Simulation 5 follows the
same setup as Simulation 1, except that the sample size varies from 20, 000 to 2, 000, 000 to produce
the results shown in Figure [T]in Section[I] For a fair comparison, we ensure that the kernel for each
model has the same smoothness. For the HS-SVD method, we chose 5 = 3 in the 1-D case, and
B = 4inthe 2-D case. Correspondingly, for the remaining methods, we chose Matérn with v = 3/2.

Simulation 1

In our first simulation, we begin with the 1-Dimensional case using a complex function, y =
sin(300(x — 0.5)2) (Figureleft). The 100, 000 x values are evenly spaced on [0.2, 0.8]. Gaussian
noise with 02 = 0.3 is added to y. Table [l|shows that HS-SVD with m = 50 performs the best
among these methods in terms of MSE, time, and memory.

! . ! ! X,
02 04 06 08 24“'/3

O.¢
o
Q@

Figure 2: Data generating functions for Simulations 1, 2 and 5 (left) and Simulation 3 and 4 (right)

Simulation 2

In the second simulation, we repeat the setup of Simulation 1 with one major change: the data are no
longer uniform across the domain. Instead, half of the data are uniform across the domain [0.2, 0.8],
and another half of the data are concentrated uniformly in the small region [0.25, 0.251]. This setup
is challenging as the kernel matrix becomes increasingly ill-conditioned as the data concentrates
around a single point (0.25). Table[2]shows that the MSE of NNGP and SVGP increased significantly
due to the ill-conditioned kernel matrix, while other methods still perform well.

Simulation 3

In the third simulation, we extend the evaluation to 2-Dimensional inputs. The true function is given
by y = 0.2sin(100||z — [0.5,0.5] T ||2) (Figure right). The design points are evenly distributed
ona 317 x 317 grid on the square [0.2,0.8]? (with 100, 489 total samples), then randomly split into
80, 000 for training and 20, 489 for testing. Gaussian noise with o2 = 0.1 is added to y.



Under review as a conference paper at ICLR 2025

Table 1: Results from Simulation 1, with evenly spaced 1-D inputs.

Method MSE (SD) | Time (seconds)  (SD) | RAM (MB) | VRAM (MB)
HS-SVD-50 | 0.2991 (<0.001) 042 (0.01) 135.2 0
NNGP 0.3158 (<0.001) 10449 (1.01) 142.7 0
SVGP 03015 _ (0.001) 16451 (23.35) 316.78 17.25
SVGP-CIQ | 03011 (<0.001) 1577 (0.0 48782 40.25
VNN 0.2998  (<0.001) 367.02  (33.57) 1177.16 2731.36
NGD 0.3045 (<0.001) 16624 (8.33) 347.58 196.16
DKL 03015 _ (0.007) 2990  (0.45) 72495 515.43
SGPR 0.3020 (<0.001) 2243 (1.26) A11.61 99.64
SKI 0.2996 (<0.001) 6.6 (0.57) 817.19 35.02
LOVE 0.2992  (<0.001) 3810 (0.42) 69821 515.12

Table 2: Results from Simulation 2, with half evenly spaced and half dense 1-D inputs.

Method MSE (SD) | Time (seconds) (SD) | RAM (MB) | VRAM (MB)
HS-SVD-50 | 0.3046 (<0.001) 0.426 (0.015) 130.9 0
NNGP 0.3546 (0.030) 104.331 (1.59) 132.3 0
SVGP 0.3346 (0.003) 158.99  (3.44) 314.90 17.66
SVGP-CIQ | 0.3091 (0.001) 4230  (2.99) 480.98 40.25
VNN 0.3057 (<0.001) 356.59 (32.91) 1161.08 2731.97
NGD 0.3099 (0.001) 17327  (5.57) 348.04 196.16
DKL 0.3048 (<0.001) 3515  (0.99) 704.00 532.98
SGPR 0.3054 (<0.001) 21.70  (1.27) 412.84 99.63
SKI 0.3050 (<0.001) 6.20  (0.16) 673.13 35.02
LOVE 0.3046 (<0.001) 42.66  (2.37) 681.31 514.16
Table 3: Results from Simulation 3, with evenly spaced 2-D inputs.
Method MSE (SD) | Time (seconds) (SD) | RAM (MB) | VRAM (MB)
HS-SVD-169 | 0.1010 (<0.001) 4.14 (0.13) 337.1 0
NNGP 0.1045  (<0.001) 11348  (1.05) 148.9 0
SVGP 0.1187 (<0.001) 206.71 (2.79) 779.40 98.018
SVGP-CIQ 0.1079  (<0.001) 26.06  (0.33) 480.61 17.97
VNN 0.1012  (<0.001) 2489  (1.38) 975.70 1267.19
NGD 0.1013  (<0.001) 61.47  (0.26) 362.33 26.33
DKL 0.1148 (0.003) 21.07  (1.88) 679.79 516.29
SGPR 0.1029  (<0.001) 42778  (3.41) 413.25 100.03
SKI 0.1209  (<0.001) 157.68 (12.16) 3903.85 32.20
LOVE 0.1169 (<0.001) 18.05  (0.29) 661.31 515.32

Table [3|shows a similar trend to the 1d case: the HS-SVD case achieves an MSE that is comparable
to the best performing methods while maintaining an excellent runtime. However, in this 2-D sce-
nario, HS-SVD requires more RAM than NNGP, primarily due to the need to store a larger number
of eigenfunctions, 169 in this 2-D case versus 50 in the 1-D case. Despite the higher memory usage,
the significant reduction in runtime justifies this trade-off. Moreover, methods that rely on interpo-
lation grids, such as SKI, scaled poorly with input dimension 7, especially when the true function is
complex, as the number of grid points grows exponentially with 7. On the other hand, the methods
that scale the most efficiently with r are those that either incorporate dimension reduction (DR),
such as in DKL and LOVE, or use variational inference, such as VNN and SVGP-CIQ. Importantly,
these methods are fully compatible with our HS-SVD framework. By integrating the strength of DR
and variational inference methods with HS-SVD’s low-rank decomposition, we could achieve the
best of both worlds—enhancing stability while maintaining fast runtime and low memory costs.



Under review as a conference paper at ICLR 2025

Simulation 4

In the fourth simulation, we repeat the setup of Simulation 3 with the addition of an extremely dense
region. Half of the design points are evenly distributed on a 234 x 234 grid on the square [0.2, 0.8]2.
Another half of the design points are on a 234 x 234 grid is placed in the small region [0.25,0.251]?,
leading to 109, 512 total samples. The dataset is then randomly split into a 80, 000 training set and
a 29,512 test set. Table[z_f] shows a similar trend as in Simulation 3, where with HS-SVD showing
the best MSE and runtime, while using more RAM than NNGP due to the larger number of required

eigenfunctions.

Table 4: Results from Simulation 4, with half evenly spaced and half dense 2-D inputs.

Method MSE (SD) | Time (seconds)  (SD) | RAM (MB) | VRAM (MB)
HS-SVD-169 | 0.1015 (<0.001) 425 (0.09) 338 0
NNGP 0.1036 (<0.001) [11.16  1.66 1492 0
SVGP 0.1096  (<0.001) 184.19 (2.75) TT1.44 98.12
SVGP-CIQ | 0.1058 (<0.001) 7249 (2.13) 48108 17.68
VNN 0.1017 (<0.001) 2327 (1.39) 95235 1267.30
NGD 0.1019 _ (0.001) 5756 (0.29) 342.19 26.83
DKL 0.1083  (<0.001) 22.07 (1.17) 691.13 516.39
SGPR 0.1016 (<0.001) 3627 (1.99) 41337 100.13
SKI 0.1163 (<0.001) 17690 (5.40) 3562.44 32.01
LOVE 0.1090 _ (0.001) 16.67 (0.36) 661.32 515.42

Simulation 5

Finally, we display the scaling power and empirical law of our method using the same setup as
Simulation 1, with a varied sample size from 20, 000 to 2, 000, 00, as shown in Figure[I] Specifically,
the time for HS-SVD with n = 2,000, 000 is comparable to the time taken by SKI and LOVE when
n = 200, 000, demonstrating the strong scalability of HS-SVD to handle big data.

5 DISCUSSION

In this paper, we introduced the HS-SVD method for obtaining low-rank approximations of kernel
matrices. We discussed the numerical advantages of this approach, particularly in reducing both
computational and memory cost, while also enhancing numerical stability. As an illustrative ex-
ample, we constructed the compact Matérn kernel for arbitrary dimensions, and provided insights
into its derivation, highlighting its connection to the widely used Matérn Kernel. Through empirical
comparisons with a variety of SOTA scalable GP methods, we demonstrated that our method signif-
icantly reduces computational time and memory requirements while achieving the best or near-best
prediction MSE, in various cases.

While the HS-SVD method offers significant computational benefits, several challenges and oppor-
tunities for improvement remain. First, although our method scales exceptionally well with sample
size, it does not fully overcome the curse of dimensionality. Specially, the truncation length m grows
exponentially with dimension 7, which limits its efficiency in regression with high-dimensional fea-
tures. One potential solution to this is integrating HS-SVD with DKL, which utilizes neural net-
works to learn low-dimensional feature representations of high-dimensional data, thus mitigating
the curse of dimensionality. Second, our method requires the Mercer decomposition for the cho-
sen kernel, which may not always be available. However, an approximate Mercer decomposition
might be computed in such cases. Importantly, this approximation only needs to be computed once
and can be reused across multiple applications, making it a manageable limitation. Third, currently
implemented on a single CPU core, our method would benefit from a GPU-based implementa-
tion, allowing for further speedups. Fourth, our method can be combined with existing methods
such as variational approaches for even greater scalability. Finally, beyond its application in GP,
the HS-SVD method can be extended to other problems that involve using kernel matrices, such
as smoothing splines and Radial Basis Function (RBF) approximations. This broader applicability
opens up numerous avenues for further research, potentially expanding the impact of this method
across multiple domains.

10



Under review as a conference paper at ICLR 2025

Reproducibility statement: In Appendix |Al we provide all the material necessary to reproduce
our simulations. This file includes code for generating our simulation data, training the models,
and assessing their performance. Additionally, details for the proof of Theorem [3.3| are located in

Appendix
Ethics Statement: Our paper does not deal with sensitive experiments, data, or any methods that
can be expected to cause harm. We have no conflicts of interest and have no data privacy concerns.

REFERENCES

Sudipto Banerjee, Bradley P Carlin, and Alan E Gelfand. Hierarchical modeling and analysis for
spatial data. Chapman and Hall/CRC, 2003.

Roberto Cavoretto, Gregory E Fasshauer, and Michael McCourt. An introduction to the Hilbert-
Schmidt SVD using iterated Brownian bridge kernels. Numerical Algorithms, 68:393-422, 2015.

Noel Cressie. Statistics for spatial data. John Wiley & Sons, 2015.

Andrew O Finley, Abhirup Datta, and Sudipto Banerjee. spNNGP R package for nearest neighbor
Gaussian process models. Journal of Statistical Software, 2020.

Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G Wilson. GPyTorch:
Blackbox matrix-matrix Gaussian process inference with GPU acceleration. Advances in neural
information processing systems, 31, 2018.

James Hensman, Magnus Rattray, and Neil Lawrence. Fast variational inference in the conjugate
exponential family. Advances in neural information processing systems, 25, 2012.

James Hensman, Alexander Matthews, and Zoubin Ghahramani. Scalable variational Gaussian pro-
cess classification. In Artificial Intelligence and Statistics, pp. 351-360. PMLR, 2015.

Andrew B Lawson, Sudipto Banerjee, Robert P Haining, and Maria Dolores Ugarte. Handbook of
spatial epidemiology. CRC press, 2016.

Geoff Pleiss, Jacob Gardner, Kilian Weinberger, and Andrew Gordon Wilson. Constant-time pre-
dictive distributions for Gaussian processes. In International Conference on Machine Learning,
pp. 4114-4123. PMLR, 2018.

Geoff Pleiss, Martin Jankowiak, David Eriksson, Anil Damle, and Jacob Gardner. Fast matrix
square roots with applications to Gaussian processes and Bayesian optimization. Advances in
neural information processing systems, 33:22268-22281, 2020.

Constantine Pozrikidis. An introduction to grids, graphs, and networks. Oxford University Press,
USA, 2014.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in
neural information processing systems, 20, 2007.

Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for machine learning,
ser. adaptive computation and machine learning. Cambridge, MA, UsA: MIT Press, 38:715-719,
2006.

Hugh Salimbeni, Stefanos Eleftheriadis, and James Hensman. Natural gradients in practice: Non-
conjugate variational inference in Gaussian process models. In International Conference on Arti-
ficial Intelligence and Statistics, pp. 689-697. PMLR, 2018.

Henry Stark and John W Woods. Probability, random processes, and estimation theory for engi-
neers. Prentice-Hall, Inc., 1986.

Michael L Stein. Interpolation of spatial data: some theory for kriging. Springer Science & Business
Media, 2012.

Michalis Titsias. Variational learning of inducing variables in sparse Gaussian processes. In Artificial
intelligence and statistics, pp. 567-574. PMLR, 2009.

11



Under review as a conference paper at ICLR 2025

Christopher Williams and Matthias Seeger. Using the Nystrom method to speed up kernel machines.
Advances in neural information processing systems, 13, 2000.

Andrew Wilson and Hannes Nickisch. Kernel interpolation for scalable structured Gaussian pro-
cesses (KISS-GP). In International conference on machine learning, pp. 1775-1784. PMLR,
2015.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel learning.
In Artificial intelligence and statistics, pp. 370-378. PMLR, 2016.

Luhuan Wu, Geoff Pleiss, and John P Cunningham. Variational nearest neighbor Gaussian process.
In International Conference on Machine Learning, pp. 24114-24130. PMLR, 2022.

12



Under review as a conference paper at ICLR 2025

A CODE AVAILABILITY

All code necessary for running simulations, generating figures, and generating tables is avail-
able as a downloadable zip file athttps: //anonymous.4open.science/r/ICLR_2025_
Anonymous_Submission-7011/readme.

B PROOF OF THEOREM [3.3]

We split Theorem 3.3]into two cases: r = 1 and generic . We begin with the differentiability of the
compact Matérn GP in the univariate case, i.e., r = 1.

Theorem B.1 When r = 1, the smoothness of the compact Matérn is 3 — 2.

Recall that the compact Matérn kernel is defined as

Z 2(a? + 1?7%) P sin (Inx) sin (Irz').
=1

Then, by Karhunen-Kosambi-Loeve Theorem (Stark & Woods, [1986), f ~ GP(0, K(-,-)) admits
the following representation:

o0

:ZZI\/)\»M;S” Z o? + Pr 2 5/2Sin(l7rx)7
1=1

where Z;s are i.i.d. standard normal random variables. Note that, for all 2, € (0, 1),

o0
P | lim Z Zi(0? + 27 ~P 2 sin (Imag) | =0
lp—o0 =1y
>P( lim [ |Z(a® + 27%) "2 sin (Irz)| | =0
l()*)OO _l:lo

[ oo
>P| 1L Zi(o? 4+ PP | =
> (lognoo Z\ (o + 157%) | 0

Li=lo

>P < lim i 21(1%2)—/3/2@ = 0)

lo—
0o iy,

[ oo
>P| I Z1 P
v (o [Y1?
Li=Ll0

:0):1 it B>1.

As a result, the probability that f(x) is continuous depends on the probability that the series uni-
formly converges on the unit interval. The series is uniformly convergent if 5 > 1. Taking deriva-
tives, we get a similar uniform convergence condition:

d
d—(a2 + 1272 7P 2 sin (Imx) = wl(a? + 1P72)P/2 cos(lmz) € O(17P+).
x

For uniform convergence of the first derivative, we need —3 + 1 < —1, that is, 5 > 2. Extending
the above calculation to k-th order derivative, we have

k

w(oz2 + 1272) 7P 2 sin (Imx) = 7R (@ 4 1272)7P/2 = O(17FHF),

13


https://anonymous.4open.science/r/ICLR_2025_Anonymous_Submission-7011/readme.
https://anonymous.4open.science/r/ICLR_2025_Anonymous_Submission-7011/readme.

Under review as a conference paper at ICLR 2025

Thus, we get that % f(x) converges uniformly with probability one if 3 > k + 1, that is, k <
B — 2. This is sufficient for point-wise convergence almost surely. The L; convergence is due to the
following inequalities:

E(|f(z) \zlf o)

<E[Z:1]) VA
=1

Now we generalize to arbitrary dimension 7.
Theorem B.2 The smoothness of the compact Matérn kernel over [0,1]" is § — r — 1.

Recall that the compact Matérn kernel is defined as

Z Ayt Oy (2) 1y, (7)),

l1,.,l-=1

Where A, i, = (o + 72301 13)~ By (@) = V2 [1,—, sin(lywz,) Similary to the
univariate case, by the Karhunen-Kosambi-Loeve theorem, f(z) ~ GP(0, K) admits the following
representation:

Z VAL L Dl (),

l1,.0lr=1

where Z;, . ;, arei.i.d. standard normal random variables.

.....

We now re-enumerate as

T) = Z Z VAPl ()

L=1l1+...+l,=L

Following the same logic as to prove C* we need only prove that

= > VA DF, i, (2)] < oo, Yo € [0,1]".

L=1l1+...4+1l.=L

First, we note that
-8
_ L 2 I 2
Moty = (@ + 7 (5 + ...+ 12)) F < <a2 + 2 <<r> +ot <r> )) 7

Thus, we have

s o [L? o k
<Oz + 7 <T>> D ¢l1,.-JT($) .

Then we note that, for the differential operator Dk = H; 1 aapsq , p1 + ... + pr = k, we have the

£ %

following inequality:

14



Under review as a conference paper at ICLR 2025

Then we have

fe%s) L2 —[5/2
* < <a2 + 72 ()) L*¢y, 4, (x)
L=11l1+...+l,=L "
Since |¢y, ... 1,| < 1, we then have
— 2 o (L o k — 2 o (L7 o k
< - = -
<Y <a+ﬂ(r>) =3 (QH(J) L 1.
L=11l1+...4l,=L L=1 lLi+...+l.=L
Then by the stars and bars Theorem, we have
L —1 X
Z 1 = #{Non-negative Partitions of L into r parts} = < r 1 ) =0(L™Y)
r_

I+t =L

Thus, with some abuse of notation,

£ [l @) ] -

To achieve absolute convergence, the condition becomes — (3 + k +r — 1 < —1, that is

k<pB—-r-—1

C ADDITIONAL EXPERIMENTAL DETAILS

The simulations in this paper were performed using an Intel 19-12900H and an NVIDIA RTX 3070
TI Mobile with 16GB of RAM and 8GB of VRAM.

The training information for simulations 1 and 2 is summarized below. Note that NGD and SVGP-
CIQ have two learning rates (LR).

Method Loss Function | Optimizer LR Batch Size | Epochs | Hardware
HS-SVD-50 | Likelihood Nelder-Mead | NA NA NA CPU

NNGP Likelihood Grid-Search | NA NA NA CPU

SVGP Likelihood Adam 0.005 32 6 CPU & GPU
SVGP-CIQ | ELBO Adam 0.1, 0.002 | 3200 5 CPU & GPU
VNN Likelihood Adam 0.02 1280 30 CPU & GPU
NGD ELBO Adam 0.001, 0.1 | 3200 60 CPU & GPU
DKL Likelihood Adam 0.02 NA 80 CPU & GPU
SGPR Likelihood Adam 0.01 NA 250 CPU & GPU
SKI Likelihood Adam 0.1 NA 32 CPU & GPU
LOVE Likelihood Adam 0.1 NA 100 CPU & GPU

Table 5: Training parameters for simulations 1 and 2

The training information for Simulations 3 and 4 are summarized below. We remark that SKI was
not able to train on all 80000 training points due to memory reasons, and so SKI was only trained
on 40000 data in the 2 dimensional simulations.

15



Under review as a conference paper at ICLR 2025

Method Loss Function | Optimizer LR Batch Size | Epochs | Hardware
HS-SVD-50 | Likelihood Nelder-Mead | NA NA NA CPU

NNGP Likelihood Grid-Search | NA NA NA CPU

SVGP Likelihood Adam 0.001 3200 20 CPU & GPU
SVGP-CIQ | ELBO Adam 0.1,0.002 | 3200 10 CPU & GPU
VNN Likelihood Adam 0.02 1280 10 CPU & GPU
NGD ELBO Adam 0.01,0.1 | 320 5 CPU & GPU
DKL Likelihood Adam 0.02 NA 60 CPU & GPU
SGPR Likelihood Adam 0.01 NA 350 CPU & GPU
SKI Likelihood Adam 0.005 NA 15 CPU & GPU
LOVE Likelihood Adam 0.1 NA 40 CPU & GPU

Table 6: Training parameters for simulations 3 and 4

16




	Introduction
	Preliminaries
	Gaussian Process Regression
	Hilbert-Schmidt Singular Value Decomposition

	Method
	Compact Matérn Kernels
	Fast Prediction
	Fast Likelihood Evaluation
	Algorithm: The HS-SVD-Based Scalable GP

	Simulations
	Discussion
	Code availability
	Proof of thm:smoothness
	Additional experimental details

