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Abstract

Unlearning methods that rely solely on forgetting data typically modify the network’s de-
cision boundary to achieve unlearning. However, these approaches are susceptible to the
“relearning” problem, whereby the network may recall the forgotten class upon subsequent
updates with the remaining class data. Our experimental analysis reveals that, although
these modifications alter the decision boundary, the network’s fundamental perception of
the samples remains mostly unchanged. In response to the relearning problem, we intro-
duce the Perception Revising Unlearning (PRU) framework. PRU employs a probability
redistribution method, which assigns new labels and more precise supervision information
to each forgetting class instance. The PRU actively shifts the network’s perception of
forgetting class samples toward other remaining classes. The experimental results demon-
strate that PRU not only maintains unlearned models’ classification effectiveness but also
significantly reduces the risk of relearning, suggesting a robust approach to class unlearning
tasks that depend solely on forgetting data. The experimental code is available1.

Keywords: Weakly-supervised learning; Machine Unlearning

1. Introduction

Machine unlearning (Brophy and Lowd, 2021; Nguyen et al., 2020; Sekhari et al., 2021),
which allows a model to forget certain data, has grown in importance due to increasing data
privacy concerns and legal protections (BUKATY, 2019; European Parliament and Council
of the European Union). This concept is crucial in the era of widespread machine learning
services (Ribeiro et al., 2015), which offer convenience but also necessitate adherence to
privacy agreements and the protection of users’ “right to be forgotten”. Classification
tasks, such as image classification (Lu and Weng, 2007), spam email detection (Guzella
and Caminhas, 2009), and customer behavior prediction (Li et al., 2019), are all important
machine learning services where class unlearning has also received much attention. Class
unlearning generally requires a well-trained model to forget or disregard certain classes that
it has previously learned. The data of the classes to be forgotten is termed “forgetting
data”, while the data of the classes to be retained is called “remaining data”.

∗ Corresponding author
1. https://github.com/DATA-Transpose/PRU
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Existing class unlearning methods fall into two main categories: retrain based and non-
retrain based. Retrain based methods (Bourtoule et al., 2021; Chen et al., 2022; Liu et al.,
2021) are time-consuming and impractical in many applications, leading to greater interest
in non-retrain based methods (Graves et al., 2021; Tarun et al., 2021; Thudi et al., 2022) that
don’t require retraining a model from scratch. However, these non-retrain based methods
typically need both forgetting and remaining class data for unlearning, a requirement not
always feasible in real-world applications where historical data may be deleted after training
due to storage constraints or privacy concerns.

Newly uploaded data may be able to help in such a situation of lacking historical data,
however, not every class has newly uploaded samples when the unlearning request is initi-
ated. For example, in face recognition applications (Masi et al., 2018), when a user’s latest
facial features are acquired and an unlearning request is made, other users’ data may not
be freshly uploaded, leaving only the forgetting data for the unlearning process. Existing
non-retrain unlearning methods (Graves et al., 2021; Tarun et al., 2021; Thudi et al., 2022;
Shen et al., 2024a), which focus on the parameter changes brought about by gradients, may
fail in such scenarios as they require a fine-tuning on remaining class data to maintain per-
formance on those classes. Boundary Unlearning (Chen et al., 2023) can unlearn using only
forgetting class data. It shifts focus from parameter space to output space by identifying
the nearest remaining class for each forgetting data and extending its decision boundary
to encompass the forgetting data. Thus, the model classifies forgetting data as some re-
maining class. Boundary Unlearning not only addresses the challenge of unlearning with
only forgetting data but also offers a more straightforward and comprehensible approach to
understanding unlearning.

The shifted boundary is vulnerable to being reversed, especially if the boundary is just
shifted by tuning the model with newly labeled forgetting data. This is because, if the
decision boundary of the remaining classes can be shifted and extended into that of the
forgetting class in such a way, the extended boundary can also be refined back by tuning it
on data from the remaining classes. This enables the model to readily recall the forgetting
class and again to correctly determine the samples that match the characteristics of the
forgetting class. This scenario, in which the model continues to train on the remaining class
data after unlearning, is a common occurrence. For example, in real-world applications,
the model needs to be updated with new data to adapt to possible changes in the data
distribution. Obviously, after unlearning, it is still possible to train the model on new
data from the remaining classes. We present the relearning problem, at the first time, of
recalling the forgetting class when the model continues to learn from only the remaining
class data. This relearning problem differs from the term used in Tarun et al. (2021), where
the unlearned model relearns from a dataset containing both forgetting and remaining data.
Therefore, how to avoid the relearning has emerged as a novel challenge for unlearning
that relies solely on forgetting class data.

According to the common neural network structure used in classification tasks (He et al.,
2016; Springenberg et al., 2015), the output layer is basically a linear layer, which is used to
map the sample features extracted by the upper layers into the output space, as shown in
Figure 2(a). For simplicity, we name the last linear layer classifier, and all the layers above
form the feature extractor. We found that simply using the relabeled forgetting data to guide
the shift of the decision boundary made the changes in the neural network very subtle, with



Countering Relearning with Perception Revising Unlearning

(a) Boundary shifting. (b) Perception revising.

Figure 1: Schematic representation of the network perceptual space. All data points (circles
and crosses) are forgetting class samples. Dashed and solid lines indicate decision boundaries
before and after unlearning, respectively. Red lines mark the forgetting class’s boundary,
while other colors represent other classes. Circles are successfully unlearned samples, and
crosses are samples that still be classified as the forgetting class after unlearning.

most of the changes occurring in the classifier and less in the feature extractor. This means
that the network’s perception of the sample has not changed much. For instance, a cat
observed by an unlearned model is not significantly different from the cat observed prior to
unlearning, except that the model says “that’s an aeroplane”. Therefore, we believe that
it is the subtle changes in the parameters, most of which occur in the classifier, that make
the model susceptible to relearning.

In this work, we propose a new unlearning framework, named Perception Revising Un-
learning (PRU), to address the relearning challenge. The PRU can use only forgetting data
in unlearning and can overcome the relearning problem by explicitly moving the network’s
perception of forgetting data towards the remaining classes, as shown in Figure 1(b). Unlike
searching for the nearest remaining class for forgetting data, as in Boundary Shrink (Chen
et al., 2023), we redistribute the decision probability on the forgetting class of a sample
proportionally to other classes, which is faster. We use the redistributed probabilities to
find new labels for each forgetting data and use the new probabilities as important supervi-
sory information in unlearning. These redistributed forgetting samples can be divided into
clusters according to their new labels. Then, in the network’s perception space (feature
extractor’s output space), we explicitly increase the gap among these clusters and decrease
the gap among the samples within a cluster. To allow more changes in the feature extractor,
we update the feature extractor and classifier alternately during unlearning, i.e., fixing the
parameters of one while updating the other.

Our contribution can be summarized as follows: 1) To solve the relearning problem
encountered by existing methods when only forgetting data is available, we propose the
Perception Revising Unlearning (PRU) framework with a simple strategy to revise the
network’s perception rather than shift the network’s decision boundary. 2) We novelly pro-
pose a simple strategy that can explicitly move the network’s perception of forgetting data
toward the remaining classes. We also novelly split a neural network into the feature ex-
tractor and the classifier, and propose a new flexible unlearning framework that alternately
updates these two parts of a network in unlearning for more significant changes in the fea-
ture extractor. 3) Experimental results illustrate that existing methods, which can only
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use forgetting data for unlearning, run into the relearning problem. In contrast, PRU can
overcome the relearning problem and shows superior performance over these baselines.

2. Related Work

2.1. Machine unlearning

Machine unlearning for traditional machine learning methods (Brophy and Lowd, 2021;
Li et al., 2021) have found analytical optimization solutions by identifying the impact of
data on model. However, for deep learning techniques (Cheng et al., 2016; Masi et al.,
2018; Mehrish et al., 2023; Shen et al., 2024b), the non-convex nature of the optimization
problem and the stochasticity of the learning process make it hard to identify the impact of
data on the trained model and further eliminate such impact from the model. Retraining
a new model from scratch with remaining data is straightforward but time-consuming. To
accelerate the retraining, retain-based methods (Bourtoule et al., 2021; Chen et al., 2022;
Liu et al., 2021) split the complete training dataset into partitions and train models one
for each partition, when unlearning, only the partitions that contained forgetting data need
to be retrained. However, these methods require as much data as possible in retraining to
restore the model’s performance on the remaining data, which makes them infeasible when
training data becomes less or unavailable. Non-retrain based methods mainly attempt to
identify the impact of data on the model and then eliminate these impacts. For example,
Golatkar et al. (2020) uses Fisher information (Martens, 2020) to identify data impact on
the model, in which the calculation of the Hessian matrix is complicated. The Unrolling
SGD (Thudi et al., 2022) and Amnesiac unlearning (Graves et al., 2021) record the changes
in network’s parameters during the training and recover these changes during unlearning.
The UNSIR (Tarun et al., 2021) uses the Impair-Repair two-step method, first using the
negative gradient of forgetting data to impair the network and then repairing the network
through remaining data. Although these non-retrain methods avoid retraining the model
and only require part of the training data, they still need the remaining class data to
maintain the performance of the model. In contrast, our proposed method will only require
the forgetting class data for unlearning.

2.2. Unlearning with only forgetting data

As aforementioned, in practical applications, the data of the remaining class is usually
unavailable and existing non-retrain based unlearning may fail in such a situation. For
example, Unrolling SGD (Thudi et al., 2022) first performs incremental learning on the
forgetting class data, records the direction of the gradient, and then impairs the network
by reloading a larger gradient in the reversed direction. If there is no remaining class data
to repair the network, the network may perform poorly on remaining classes.

Boundary Unlearning (Chen et al., 2023) focuses on the model’s output space and
proposes to achieve unlearning by shifting the model’s decision boundary with two specific
methods: 1) BoundaryShrink updates the input samples by fixing the network parameters
and searches the nearest incorrect class on the gradient direction for each forgetting data
as their new label. The original samples and their new labels are then used to update the
model; 2) BoundaryExpanding updates an expanded model by creating a dummy class in
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the output space, which dummy class will be used as the new label for forgetting data and
be directly pruned when the updating is completed. Although these methods only require
forgetting class data for unlearning, they result in the majority of the changes in the network
occurring in the output layer, with minimal alterations in the upper layers. That is, only
the decision boundary of the model changes, but the model’s perception of the sample does
not change much. This will make the unlearned model encounter the relearning problem. In
contrast, in our proposed method, the relearning problem will be solved by actively moving
the model’s perception of the forgetting class data toward that of the remaining classes.

3. Preliminaries

3.1. Class unlearning

Let D = {(xi, yi)}ni=1 ∈ X × Y be a dataset containing n data samples that belong to K
classes. The i-th pair of the data sample and its associated label can be denoted as (xi, yi),
where xi ∈ X ⊆ Rd and yi ∈ Y = {1, . . . ,K}. We denote Dk = {(xi, yi)|yi ∈ Yk} as a
subset of D that contains samples of the k-th class, where Yk is a set that only contains
class label k. When a class unlearning request is issued, it requires the model to forget
knowledge on the forgetting class Yf and maintain knowledge learned on the retain class
Yr, where Yf ,Yr ⊂ Y,Yf ∩ Yr = ∅ and Yr ∪ Yf = Y. Then, we can further denote their
corresponding dataset Df and Dr, where Df ∪ Dr = D and Df ∩ Dr = ∅. In the context
of unlearning, an original model g(·, θor) is trained with D. A retrained model g(·, θre) is
trained with Dr. An unlearning method U is expected to make g(·, θor) forget the knowledge
about Df by outputting an unlearned model g(·, θun), i.e., g(·, θun) = U(D, g(·, θor)), which
unlearned model has the similar performance as a retrained model, i.e., g(·, θun) ≈ g(·, θre).

In this work, we focus on the setting, where there is only forgetting data available for
unlearning. This is a more restricted condition than where both forgetting and remaining
data are available. In such a case, the unlearning method U is required to be able to use
only the forgetting class data for unlearning, i.e., g(·, θun) = U(Df , g(·, θor))

3.2. Deep neural network

As shown in Figure 2(a), a deep learning neural network for classification tasks g(x, θ)
is usually composed of multiple feature extraction layers followed by a linear layer. The
feature extraction layers can extract the features of the input sample x and output a feature
vector e. The structure and number of the feature extraction layers vary according to
specific tasks, and we define these feature extraction layers collectively as feature extractors
E(x, θE). The last linear layer will map the extracted features e into the output space and
get a probability vector p ∈ (0, 1)K , where pk ∈ (0, 1) is the possibility of x belonging to
the k-th class. Therefore, we define this linear layer classifier C(e, θC), and the network’s
output of a given sample x can be presented as g(x, θ) = C(E(x, θE), θC).

4. Method

In this section, we first introduce the main processes of the proposed PRU framework (shown
in Figure 2(b)). In PRU, we first use a probability redistribution strategy to find new labels



Zhang Chen Zhang Xu

Linear

CNN/Linear/RNN

𝐶 ", 𝜃!

×	𝑚

𝒆

𝐸 ", 𝜃"

𝑥

𝑦,

𝒑

(a) Network g(x, θ)

Unlearning training

ℒ!

𝐶 𝑒, 𝜃"

𝐸 𝑥, 𝜃!

ℒ"

𝐶 𝑒, 𝜃"

𝐸 𝑥, 𝜃!𝑥
0
0⋯

0

𝐷#$%&

𝑦𝒑 𝑥
9
6⋯

6

𝒑	redistribution

𝑦-𝒑.

…

…

…

…
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Figure 2: The overview of PRU. As shown in Figure 2(a), we divide the neural network
architecture commonly used in classification tasks into feature extractor E(·, θE) and clas-
sifier C(·, θC). Forgetting samples will be re-labeled and be used for unlearning training, in
which the E(·, θE) and C(·, θC) are alternately updated, as shown in Figure 2(b).

for each forgetting data and use the new decision probability as important supervisory
information to update the network. We use an alternating training method to alternately
update the feature extractor E(·, θE) and classifier C(·, θC). Specifically, in each training
epoch, we first fix the θC and update the θE , then fix the θE and update the θC . When
updating θE , we designed a new objective function to allow the model’s perception of these
samples, i.e., the e to actively move to their new classes. When updating θC , we use the
redistributed probability to slightly refine the model’s decision boundaries. We will detail
these steps in the following subsections.

4.1. Probability redistribution

An unlearned model that is retrained from scratch will classify the forgetting class data as
other remaining classes, and such new classes of each forgetting sample may be different,
even if they originally belonged to the same class. Intuitively, this new class should be
the one that is most difficult to distinguish from the original class of the forgetting sample
before unlearning. We hope that the model can transfer the ability once used to distinguish
forgetting classes to distinguish new classes after unlearning. For example, in the hand-
written digit, “4” and “9” are difficult to distinguish because they both have a tail and a
circle at the top-left (the “4” looks like it has a circle because it is handwritten), then if the
model is asked to forget “9”, it will say “4” without confusion when it sees such a pattern
with a tail and a circle at the top-left. Therefore, in PRU, we innovatively redistribute the
decision possibilities for not only finding the nearest incorrect class for each forgetting class
sample but also help the model better distinguish the remaining classes after unlearning.

We first use the original model gor(·, θ) to obtain the possibility vector pi ∈ (0, 1)K of the
i-th sample. When the model is asked to forget the f -th class, we will redistribute the pi

f to

other classes according to proportion. Specifically, an assignment proportion ai ∈ (0, 1)K

can be prepared by

ai
k =

pi
k∑K

k pi
k

, k ̸= f and ai
f = 0, (1)

then, the redistributed probability p̃i can be calculated as

p̃i
k = pi

k + pi
f · ai

k, k ̸= f and p̃i
f = 0. (2)
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Therefore, the new label of a forgetting sample can be obtained by ỹ = argmax(p̃i). Al-
though ỹ can be obtained directly by finding the second largest pi

k, the more important
role of p̃i is to provide supervision information in the unlearning training of PRU. We will
discuss this more detailed in the following subsection.

4.2. Unlearning training

We believe that the reason why existing unlearning methods (Chen et al., 2023) encounter
relearning problems when only using forgetting data is because the unlearned networks
only reshape the decision boundary and the network’s perception of the sample does not
change much. Therefore, we innovatively divide the network into a feature extractor E(·, θE)
followed by a classifier C(·, θC) and update them alternately with different objectives, in the
hope that more changes in the feature extractor will lead to more changes in the network’s
perception of the samples. When updating one, the parameters of the other will be fixed.

Inspired by knowledge distillation (Hinton et al., 2015), the output of a trained network
carries more information than finite discrete labels can and is usually more useful for training
other networks. Therefore, it is worth noting that, unlike existing methods that use the
new labels found for the forgetting class sample as supervision information, we use the
redistributed probability p̃i in our objective.

4.2.1. Updating feature extractor

Since the purpose of updating the feature extractor E(·, θE) is to revise the network’s
perception of the samples, we introduce a new objective to make the network’s perception
of the forgetting class samples move towards their new label (some remaining class).

Forgetting class samples can get their new labels after probability redistribution (Sec-
tion 4.1), that is, these samples that originally belonged to one class are divided into different
clusters (new classes). Thus, the first goal is to separate these different clusters as much
as possible. We calculate the centroid ok of k-th class’s cluster through the perception e
output by E(·, θE), i.e., ok = mean({ei|ỹi = k}) = 1

Nk

∑
ỹ=k e

i, where the ok is the centroid
of the k-th class’s cluster and Nk represents the number of samples in this cluster. We then
maximize the average Euclidean distance do between each pair of these centroids

Lo =
1

do + ϵ
, (3)

where ϵ is a very small number for calculation stability. While increasing the distance
between these clusters, we hope that the samples within each cluster can become closer.
Therefore, the second goal is to minimize the average Euclidean distance ds between each
pair of samples within the same cluster, i.e.,

Ls = mean({∥ ei − ej ∥2 |i ̸= j, ỹi = ỹj}), (4)

where the ∥ · ∥2 is the L2 norm.

We also need to take the goal of the classification task into account and help the model
distinguish the remaining class by minimizing the difference between the distribution of p̂i
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output by the unlearn model and the distribution of redistributed p̃i, specifically, we use
the Kullback-Leibler divergence to measure the difference

Lp =
∑
k

p̃i
k log

p̃i
k

p̂i
k

(5)

Finally, we have the objective function LE for updating the feature extractor E(·, θE),
that is, LE = Lp + Ls + Lo.

4.2.2. Updating classifier

Since the classifier C(·, θC) is usually a linear layer used as the output layer by a neural
network, changes in the classifier will have more effect on the network’s decision boundary.
The purpose of updating C(·, θC) is to match the revised perception by refining the decision
boundary. Considering this purpose and the computational complexity, only Lp, in Eq. 5,
is used as the objective when updating C(·, θC), i.e., LC = Lp.

5. Experiment

We evaluate the effectiveness of the proposed PRU on two benchmark datasets, i.e., Digit-
MNIST2 and CIFAR-103, and two nerual network architectures, i.e., AllCNN (Springenberg
et al., 2015) and ResNet18 (He et al., 2016). We use both architectures on the CIFAR-10
and use only the AllCNN on the Digit-MNIST. For ease of tabular presentation, we use an
abbreviation of the form “Data-Model” to denote the dataset and model structure setup
in tables. In this format, we use DM to denote the Digit-MNIST dataset and C10 denotes
CIFAR-10. For the model structure, we use A for AllCNN and R for ResNet18.

5.1. Settings

Datasets. For each dataset, we conducted experiments using all ten classes separately
as forgetting classes. To simulate the model update in the real-world application, we split
20% data from the training set of the raw dataset to form the future set Dnew and use only
the Dnew

r when updating. We conduct two groups of experiments: 1) to facilitate a more
fair comparison between comparison methods, we use all the forgetting data in the original
training data, i.e., the Df , when unlearning; 2) we simulate the unlearning with newly
uploaded forgetting class data, the Dnew

f when unlearning. Since the Dnew is randomly
sampled from the raw dataset, we can assume that Dnew and D are identically distributed,
except that the |Dnew

f | = |Df |/4. Unless otherwise specified, all experiments are conducted
using Df . Experiments on more datasets are placed in Appendix C.

Baselines. We conduct comparison experiments on two types of unlearning methods, one
requires both data of forgetting and remaining classes, like the Unrolling SGD (Thudi et al.,
2022), and the other can use only forgetting class data that includes Boundary Shrink and
Boundary Expanding (Chen et al., 2023). 1) Retrain: The unlearned model is trained
from scratch with remaining data, which model can be regarded as the optimal unlearned

2. https://yann.lecun.com/exdb/mnist/
3. https://www.cs.toronto.edu/~kriz/cifar.html

https://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
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model. 2) Boundary Shrink (Chen et al., 2023): It finds the nearest but incorrect label for
a forgetting data by using its neighbor searching, then, tunes the model with newly labeled
forgetting data. 3) Boundary Expanding (Chen et al., 2023): Instead of finding a new label,
Boundary Expanding creates a dummy class by adding an extra output neuron and assigns
the dummy class to forgetting data. After tuning with such newly labeled forgetting data,
the output neuron of the dummy class will be pruned. 4) Unrolling (Thudi et al., 2022):
When unlearning, Unrolling SGD performs incremental training and learns all forgetting
data before remaining data. It records gradients when learning the forgetting data and adds
recorded gradients on weights after the incremental training. 5) UnrollingOF: UnrollingOF
refers to a variant of Unrolling SGD using only forgetting class data. We implement it to
show that this type of method requires retaining class data to ensure their effectiveness of
unlearning.

Evaluation metrics Classification Accuracies: We test unlearned models on the forget-
ting test data and the retaining test data for obtaining Af and Ar, respectively. Both
Af and Ar are the closer to that of the Retrain model the better. Relearning Accuracies:
Unlearned models are continuously trained on the remaining only data for several epochs,
and the Af is observed during this relearning process. The faster the Af increases, the less
effect the unlearning. Unlearning time cost results are placed in Appendix D.

Implementation details. Following the baselines’ setting, for the training of the original
model, the training batch size for all datasets is set as 64 and the SGD optimizer with 0.9
momenta is used. We train the 1) AllCNN on the MINST using a learning rate of 0.01 for 10
epochs; 2) AllCNN on the CIFAR-10 using a learning rate of 0.1 for 30 epochs; 3) ResNet18
using a learning rate of 0.01 for 20 epochs. For the relearning test, we train an unlearned
model on Dnew

r with a learning rate of 0.001 for 10 epochs, and all other training settings
remain the same as the original training. To make the comparison fair, we select parameters
for all methods by conducting unlearning on the 0-th class and following the principle of
touching the forgetting accuracy of less than 0.01 while maintaining the remaining accuracy
as high as possible. Since PRU updates feature extractor E and classifier C alternately, we
can set the learning rate of E and C more flexibly (the parameter setting has been included
in the supplementary material). We set each class as the forgetting class for experiments.
When a class is set as a forgetting class, all other classes in the dataset are used as remaining
classes. The reported results are averages across experiments when each class is set as the
forgetting class. All the experiments are conducted for five trials and the reported results
are also the average across all five trials of experiments using different seeds.

5.2. Unlearning effectivness

We first evaluate the effectiveness of the unlearned methods and report the results in terms
of classification accuracy. The Af denotes the test accuracy on the forgetting class and
the Ar denotes the test accuracy on the remaining classes, the closer the two are to the
retrained model, the better the performance.

Let’s first take a look at the results when using Df for unlearning. As shown in Ta-
ble 1, the classification utility of our proposed PRU on the MNIST dataset outperforms
that of other methods that only use forgetting data for unlearning (marked in italic). On
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Table 1: Classification accuracy of unlearned models. The methods marked in italic letter
use only forgetting data.

Dataset Model Acc Original Retrain
Unroll UnrollOF BoundShrink BoundExpand PRU (OURS)

Df Dnew
f Df Dnew

f Df Dnew
f Df Dnew

f Df Dnew
f

DMNIST AllCNN
Ar ↑ 99.40 99.28 93.78 93.79 24.08 88.92 79.54 89.30 82.53 79.22 84.98 86.45
Af ↓ 99.38 0.00 0.000 0.000 5.170 0.090 13.18 12.98 12.23 11.89 0.000 0.000

CIFAR-10
AllCNN

Ar ↑ 84.17 84.11 89.59 88.87 64.97 66.33 78.82 81.19 81.62 80.84 77.86 84.59
Af ↓ 84.17 0.00 0.260 3.370 0.250 0.250 0.630 1.800 8.150 8.180 0.000 0.090

ResNet
Ar ↑ 85.55 86.65 85.32 80.30 39.15 24.95 81.03 81.94 82.74 81.34 80.35 84.39
Af ↓ 85.55 0.00 0.000 0.000 0.000 0.000 1.270 15.75 8.390 17.41 2.490 12.10

Table 2: Relearning results when unlearning using Df . Unlearned models are updated
with Dnew

r in 10 epochs, and the results of the 1/5/10-th epochs are reported. The first
column tells the dataset and model structure settings in abbreviations, please refer to the
first paragraph in Section 5 for a detailed description.

Data-Model Acc Original Retrain Unroll UnrollOF BoundShrink BoundExpand PRU (OURS)

DM-A
Ar ↑ 98.6/99.5/99.6 99.5/99.5/99.6 99.1/99.5/99.5 98.8/99.4/99.5 99.1/99.5/99.6 98.8/99.5/99.6 99.1/99.4/99.5

Af ↓ 88.8/85.3/85.3 0.0/0.0/0.0 0.0/0.0/0.0 8.1/12.7/8.4 75.6/72.7/71.7 76.2/83.4/82.6 9.0/4.8/2.7

C10-A
Ar ↑ 87.6/89.4/89.9 88.0/89.2/89.7 90.7/90.9/91.0 87.6/89.4/89.9 85.1/88.8/89.6 87.1/89.2/89.8 82.4/88.4/89.4

Af ↓ 86.9/75.4/68.0 0.0/0.0/0.0 0.8/0.9/0.8 86.3/75.0/67.5 45.4/51.3/50.1 81.7/70.3/62.7 1.5/8.9/11.3

C10-R
Ar ↑ 89.7/90.4/90.5 89.4/90.1/90.3 89.4/90.0/90.2 89.7/90.4/90.6 89.5/90.4/90.5 89.6/90.4/90.6 89.2/90.4/90.5

Af ↓ 67.7/49.8/40.4 0.0/0.0/0.0 0.0/0.0/0.0 65.1/51.4/42.8 57.3/43.6/35.4 60.2/40.5/30.3 27.0/10.2/5.2

the CIFAR-10 dataset, PRU’s classification utility exhibits comparable performance with
Boundary Unlearning. Although Boundary Expanding has a slightly higher Ar than PRU,
its Af is significantly higher than PRU, indicating that Boundary Expanding is not as effec-
tive as PRU in terms of forgetting. Table 2 shows the performance of the unlearned model
obtained by these methods in the relearning test. It can be observed that when updating
unlearned models using the Dnew

r , the Af of PRU does not exhibit the same degree of
improvement as the other compared methods, suggesting that PRU can effectively address
the relearning challenge. Unrolling’s classification utility is the most effective and its Af

remains unchanged during relearning, this is because it can use Dr to repair the network
more accurately. In contrast, UnrollOF, which is a variant of Unrolling that only uses Df ,
does not avoid the relearning problem while not retaining a good Ar in utility.

We also conducted experiments when unlearning using only Dnew
f . It is noteworthy

that we kept the parameter settings for all methods as they were when we conducted the
experiments using Df , and |Dnew

f | = |Df |/4. The results in Table 1 demonstrate that the Ar

and Af of the unlearned model obtained by each method increase when the amount of used
forgetting data decreases. This indicates that the degree of unlearning of each method is
weakening in this case. The results of the relearning tests presented in Table 3 also provide
evidence of this, with accelerated increasing of Af for all methods. Although this, the Af

rebound of PRU remains relatively slow in comparison to other methods, with the utility
demonstrating superior performance. The UnrollOF’s Af shows no growth in this case.
This is because, lacking access to retaining data, the UnrollOF relies only on forgetting
data to impair the network, which excessively damages the model. This results in poor
performance on the original task (as shown by the 24.95% accuracy in Table 1). Thus,
during relearning, its Af does improve as expected. As previously stated, the PRU allows
for more flexible tuning of the learning parameters. Thus, we further tune the learning rate
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Table 3: Relearning results when unlearning using Dnew
f . Unlearned models are updated

with Dnew
r in 10 epochs, and the results of the 1/5/10-th epochs are reported.

Data-Model Acc Original Retrain Unroll UnrollOF BoundShrink BoundExpand PRU (OURS)

DM-A
Ar ↑ 98.6/99.5/99.6 99.5/99.5/99.6 99.3/99.4/99.5 99.5/99.6/99.6 99.5/99.6/99.6 99.5/99.6/99.6 99.3/99.5/99.6

Af ↓ 88.8/85.3/85.3 0.0/0.0/0.0 0.0/0.0/0.0 99.4/98.5/98.1 99.0/98.1/97.4 98.6/97.6/97.1 19.4/26.1/30.3

C10-A
Ar ↑ 87.6/89.4/89.9 88.0/89.2/89.7 90.0/90.3/90.6 88.0/89.8/90.1 86.2/89.4/89.9 87.4/89.3/89.9 85.4/89.3/89.8

Af ↓ 86.9/75.4/68.0 0.0/0.0/0.0 9.0/10.0/10.3 43.8/44.2/43.3 57.5/60.8/57.1 80.1/69.9/61.4 46.2/51.8/48.0

C10-R
Ar ↑ 89.7/90.4/90.5 89.4/90.1/90.3 88.1/89.2/89.6 88.4/90.0/90.2 90.0/90.6/90.7 89.9/90.5/90.7 90.0/90.6/90.7

Af ↓ 67.7/49.8/40.4 0.0/0.0/0.0 0.0/0.0/0.0 0.0/0.0/0.0 67.6/49.3/40.0 61.6/42.3/31.7 63.0/41.9/30.6

of the PRU for the scenario where the amount of Dnew
f is less than that of Df . This enabled

the PRU to obtain utility and relearning test results comparable to those using Df in the
case of using Dnew

f . We also tried to tune parameters for other comparison methods, but
their results remained unchanged. Due to space constraints, this part of the experiment
has been included in the supplementary material.

5.3. Changes in model

In this section, we investigate changes in these unlearned models, including changes in model
parameters and differences in their output spaces.

5.3.1. Parameters changes

We mainly observe how much the parameters of the unlearned model have changed relative
to the parameters of the original model. Specifically, we first calculate the difference between
the parameters of the l-th layer of an unlearned model and that of the original model, i.e.,
δl = θlun − θlor, and then normalize the modulus of this difference with the parameter
modulus of the corresponding original model layer to obtain the relative parameter changes
∆, that is,

∆l =
∥ δl ∥2
∥ θlor ∥2

,∆l ≥ 0. (6)

The closer the ∆l is to 0, the less the unlearned model has changed from the original model.
On the contrary, the larger the ∆l, the more significant the change.

con
v1

con
v2

con
v3

con
v4

con
v5

con
v6

con
v7

con
v8

cla
ssi

fie
r

0.0

0.5

1.0

1.5

2.0 Retrain
BoundShrink
BoundExpand
OURS
Unroll
UnrollOF

(a) DMNIST

0.75

1.00

con
v1

con
v2

con
v3

con
v4

con
v5

con
v6

con
v7

con
v8

cla
ssi

fie
r

0

2
1e 1

(b) CIFAR-10

Figure 3: The ∆ (Eq.6) of each layer in the model. The left side shows the result on the
DMNIST dataset, and the right side shows the result on the CIFAR-10 dataset.



Zhang Chen Zhang Xu

We show the AllCNN parameter changes as examples. As shown in Figure 3, the
retrained model has the most significant parameter change when compared to the original
model. The unlearned model obtained by the proposed PRU and the one obtained by
the unrolling method exhibited comparable parameter changes, particularly in the layers
preceding the final layer, i.e., the feature extractor. The Unrolling requires both forgetting
and remaining class samples for its unlearning, but PRU only requires forgetting class
samples. The other three methods, which only use forgetting class samples, have subtle
changes in their feature extractor. By combining the results in Table 2 and Figure 3, we
can find that unlearned models with more alterations in the feature extractor are more
robust to the challenges of relearning. It is noteworthy that PRU exhibits almost no change
in the final classifier, yet it offers superior utility compared to other methods while effectively
mitigating the issue of relearning.

5.3.2. Perception changes

It is difficult to visualize the data distribution and decision boundaries by directly reducing
the dimension with PCA or T-SNE, since the dimensionality of image data is too high
and many samples are difficult to distinguish by lines or surfaces in 2-D or 3-D space.
Therefore, we regard the representation of a sample in the output space (perception space)
of the model’s feature extractor as the model’s perception of the sample, and observe 1) the
distribution of forgetting class samples in this space and 2) the distribution of their new
labels after unlearning.

1) Distribution of forgetting samples. Let’s first observe the relationship between
forgetting class samples and forgetting class boundary in the perception space. Intuitively, if
there is still a decision boundary for forgetting class in the perception space of an unlearned
model, the closer a sample is to this boundary, the greater the probability that it will be
classified as a forgetting class. For methods that mainly change the final classifier layer,
the boundaries of other classes are more likely to expand inward from the edge of this
cluster. Referring to the Figure 1(a), we use the output of the model’s feature extractor,
i.e., ei ∈ Rd, to represent data points (circles and crosses) in this figure. The closer to
the centroid of the red solid line area, the greater the probability of being classified as a
forgetting class, i.e. the greater the pi

f . Therefore, we are going to observe the relationship
between the distance from the forgetting class samples in the test set to their centroid and
the probability of them being classified as a forgetting class.

In detail, we have the centroid of = mean({ei|yi = f}) and the Euclidean distance
from a sample to the of , i.e., Disti =∥ ei − of ∥, yi = f . Since different networks have
different perceptual spaces, distances in different spaces cannot be compared directly, so we
will normalize these distances by the mean distance in their own space, and the normalized
distance is

nDisti =
Disti

mean({Distj |yj = f})
. (7)

We take the unlearning of the number “9” in MNIST dataset as an example, as shown
in Figure 4, when unlearning via Boundary Expanding, there are still 17% of “9” being
classified as “9” after unlearning. Although no forgetting data is being correctly classified
again in Boundary Shrink, there are still some samples that have a few probabilities on
the pi

f . This indicates that in these methods, the decision boundary of the forgetting class
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Figure 4: The probability of forgetting samples being determined as a forgetting class
after unlearning. The x-axis is the normalized distance from forgetting samples to their
centroid. Samples in red are still being determined as forgetting class. Samples in green
are determined as some other classes.

still remains. The results of Boundary Unlearning demonstrate that the centroid of the
test forgetting data is not the closest to the center of the forgetting class boundary. This
may be because the generalization ability of the original model makes the original boundary
of the forgetting class broader, and the distribution of the samples involved in modifying
the classification boundary has limited coverage, resulting in a limited modification of the
classification boundary. Our method behaves similarly to the retrained model in that none
of the test samples are classified or have the tendency to be classified as forgetting classes.

2) New labels of forgetting samples. We still want to ask, where do all these
forgetting class samples go after unlearning? We observe the classification results of all the
test forgetting samples predicted by the unlearned model and count how many percent of
them were classified in each class.
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Figure 5: Prediction distribution on test forgetting samples. The x-axis is classes.

Detailedly, we compare the distribution S, which is an unlearned model’s prediction
distribution on test forgetting samples, with the Sre obtained by the retrained model, and
evaluate the gap between the S and Sre using the Kullback-Leibler divergence (Kullback
and Leibler, 1951), i.e., DKL(S ∥ Sre). We take the unlearning of the number “9” in MNIST
dataset as an example. As shown in Figure 5, when unlearning class “9” in MNIST, the
retrained model classifies forgetting samples into class “4” at most, with class “7” being
the second most common. Among all the compared methods, the unlearning result of
our method is the closest to that of the retrained model as our method has the smallest
DKL(S ∥ Sre). This is because the PRU benefit from using the redistributed probability as
supervisory information and relabeling forgetting data, which allows for a more appropriate
destination for the forgetting data and further reduces the impact on the remaining classes.

5.4. Ablation study

To explore the contribution of each objective in PRU to the unlearned model, we conducted
an ablation study, whereby Lo and Ls are removed, and Lp is replaced with CELoss. The
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Table 4: Ablation result on PRU’s losses. Results in the table show the 0/1/5/10-th
relearning epoch result.

Data-Model Acc PRU PRU w/o Lp replace Lp with CELoss w/o Lo w/o Ls

DM-A
Ar ↑ 85.0/99.1/99.4/99.5 87.3/99.1/99.4/99.5 62.3/96.0/98.1/98.5 74.8/98.8/99.3/99.4 90.9/99.1/99.4/99.5

Af ↓ 0.0/9.0/4.8/2.7 0.0/0.0/3.7/4.7 0.0/0.0/0.0/0.0 0.0/0.0/0.8/2.7 0.0/0.0/0.3/0.5

C10-A
Ar ↑ 77.9/82.4/88.4/89.4 68.5/83.4/88.5/89.5 75.7/82.0/88.4/89.4 54.3/79.1/88.2/89.4 84.4/84.8/88.9/89.7

Af ↓ 0.0/1.5/8.9/11.3 20.8/72.7/55.8/47.0 0.0/2.1/10.6/12.5 0.0/0.2/4.0/7.3 0.0/23.4/35.8/35.4

C10-R
Ar ↑ 80.3/89.2/90.4/90.5 80.6/84.8/88.5/89.4 79.2/89.2/90.4/90.5 79.9/89.1/90.3/90.6 85.2/89.5/90.4/90.6

Af ↓ 2.5/27.0/10.2/5.2 11.1/75.2/60.1/48.5 2.1/28.0/10.2/5.2 2.5/26.2/9.3/5.1 3.2/52.3/28.2/19.3

results of the utility and relearning tests of the unlearned model are then observed. As
shown in Table 4, the unlearned model is more susceptible to relearning when Ls is not
used. A comparison of the unlearned model (0-th relearning epoch) reveals that Lp and Lo

play a pivotal role in maintaining Ar. This is because the new labels assigned for the samples
through our designed probability redistribution are more aligned with the current perception
of the network, thereby better maintaining the network’s performance on remaining classes.

5.5. Case study on ViT architecture

Table 5: ViT results. Results in the table show the 0/1/2/3-th relearning epoch result.

Acc Retrain Unroll UnrollOF BoundShrink BoundExpand PRU (OURS)

Ar ↑ 94.73 88.29/96.9/97.0/97.1 77.68/96.5/96.8/96.9 87.85/96.6/96.9/97.0 79.09/96.6/96.8/97.0 91.63/96.6/96.8/96.9
Af ↓ 0.0 1.74/7.8/9.9/11.5 0.35/6.4/9.0/11.1 0.72/10.2/14.0/16.6 3.78/19.7/22.3/24.1 0.27/6.9/10.8/13.2

We try to apply PRU in a larger network architecture. We selected the contemporary
Vision Transformer (ViT) (Dosovitskiy et al., 2021) for this case study. Settings are in the
supplementary material. The results in Table 5 demonstrate that PRU can still outperform
the comparison methods in both the utility after unlearning and the relearning test.

6. Conclusion

We focus on class unlearning tasks that use only forgetting class data. Existing methods that
only use forgetting data primarily achieve unlearning by modifying the decision boundary
of the network, and are susceptible to the relearning problem, in which the network may
recall the forgetting class when it is further updated with the remaining class data. We
analyzed this experimentally and found that although the decision boundary of the network
changed the network’s perception of the samples remained largely unaltered. In response to
the relearning problem, we designed the Perception Revising Unlearning (PRU) framework.
In the PRU, we design a probability redistribution method that can assign a new label and
more appropriate supervision information to each instance of forgetting data. During the
unlearning, the network’s perception of forgetting class samples can actively move to other
remaining classes. Experimental results show that PRU not only has superior unlearning
effectiveness but also effectively mitigates the effect of relearning problems.
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